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Abstract

The statistics of extremes have played an important role in engineering practice for water resources design and management.

How recent developments in the statistical theory of extreme values can be applied to improve the rigor of hydrologic applications

and to make such analyses more physically meaningful is the central theme of this paper. Such methodological developments

primarily relate to maximum likelihood estimation in the presence of covariates, in combination with either the block maxima or

peaks over threshold approaches. Topics that are treated include trends in hydrologic extremes, with the anticipated intensification

of the hydrologic cycle as part of global climate change. In an attempt to link downscaling (i.e., relating large-scale atmosphere–

ocean circulation to smaller-scale hydrologic variables) with the statistics of extremes, statistical downscaling of hydrologic extremes

is considered. Future challenges are reviewed, such as the development of more rigorous statistical methodology for regional

analysis of extremes, as well as the extension of Bayesian methods to more fully quantify uncertainty in extremal estimation. Ex-

amples include precipitation and streamflow extremes, as well as economic damage associated with such extreme events, with

consideration of trends and dependence on patterns in atmosphere–ocean circulation (e.g., El Ni~nno phenomenon).

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The mathematician, carried along on his flood of

symbols, dealing apparently with purely formal

truths, may still reach results of endless importance

for our description of the physical universe. (Karl

Pearson, 1857–1936)

This quote by Karl Pearson, a pioneer in the field of

statistics, makes use of the term ‘‘flood’’ in a sense that

has no connection to hydrology. In fact, some would

argue that mathematical statistics have made little, if

any, contribution to the physical understanding of

hydrologic phenomenon such as floods. On the other

hand, the statistics of extremes have played an impor-
tant role in engineering practice for water resources

design and management. How recent developments in

the statistical theory of extreme values can be applied

both to improve the rigor of hydrologic applications and

to make such analyses more physically meaningful is the

central theme of this paper.

Although the fundamental probabilistic theory of

extreme values has been well developed for a long time

(e.g., [59]), the statistical modeling of extremes remains a

subject of active research (for a recent text, see [15]). In
the present paper, a statistical modeling approach based

on maximum likelihood (ML) estimation, in the possible

presence of covariates, will be advocated [15,87]. Such

covariates could incorporate trends, cycles, or actual

physical variables (e.g., measures of large-scale atmo-

sphere–ocean circulation patterns such as the El Ni~nno
phenomenon). Probability weighted moments (PWM)

(or L-moments) are more popular than ML in applica-
tions to hydrologic extremes, both because of their

computational simplicity and because of their good

performance for small samples [40,43]. But the PWM

technique has the disadvantage of not being able to

readily incorporate covariates. On the other hand, it is

still straightforward to apply the ML technique in the

presence of covariates, in conjunction with either the
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block (e.g., annual) maxima or the peaks over threshold

(POT) (commonly termed ‘‘partial duration series’’ in

the hydrologic literature) approaches.

In the present paper, the applications to hydrologic

extremes are limited to those about which we are most
familiar. In particular, our focus is on climate-related

issues, both variability and change. As part of global

climate change, an accelerated hydrologic cycle (in-

cluding an increase in heavy precipitation) is anticipated

on a theoretical basis [95,96], is predicted by numerical

models of the climate system [21], and has been detected

in observed precipitation [32,48] and, possibly, stream-

flow [33,62] and evaporation [8,93]. Improved under-
standing of large-scale atmosphere–ocean sources of

low frequency variation (such as the El Ni~nno phenom-

enon) has led to efforts in ‘‘statistical downscaling’’ for

smaller-scale meteorological and hydrologic variables

[60].

In Section 2 the use of the statistics of extremes in

hydrology and the characteristics of hydrologic extremes

are reviewed. Section 3 contains a description of recent
methodological developments in the statistics of ex-

tremes, including a point process model that combines

the block maxima and POT techniques and a compari-

son of estimation techniques (some technical details

about ML estimation are relegated to an appendix). The

issue of trends in hydrologic extremes in conjunction

with global climate change is the subject of Section 4,

whereas an attempt to link downscaling with the
statistics of extremes is made in Section 5. Finally,

problems in hydrologic extremes for which future de-

velopments in the statistics of extremes are needed (e.g.,

regional analysis) are outlined in Section 6.

2. Hydrologic extremes

2.1. Historical use of statistics of extremes

Some of the earliest applications of the statistical

theory of extreme values were to hydrology and to

closely related problems in climatology. In a paper
published in 1941, the statistician Emil Gumbel, a pio-

neer in the application of the statistics of extremes,

considered the problem of the statistical estimation of

the ‘‘return period’’ of floods. He cautioned that:

In order to apply any theory we have to suppose that

the data are homogeneous, i.e. that no systematical

change of climate and no important change in the ba-

sin have occurred within the observation period and

that no such changes will take place in the period

for which extrapolations are made. (p. 187 in [34])

Thus early on, the spectre of possible climate change

was raised, an issue that will receive attention in the

present paper. Gumbel also grappled with opponents to

the statistics of extremes on a physical basis; in the

context of floods, the question of how could the distri-

bution of largest values be unbounded. He observed that

‘‘Some authors have tried to introduce upper and lower
limits to the discharges, even though it is doubtful that

such limits exist’’ (p. 163 in [34]). In a somewhat dif-

ferent guise, this same conundrum will be confronted in

the present paper.

Quite a bit later, Gumbel published the first book on

the statistics of extremes. Many of the applications dealt

with hydrology or climatology (pp. 236–245 in [35]), and

he noted that: ‘‘The oldest problems connected with
extreme values arise from floods’’ (p. 4 in [35]). Evi-

dently, he was still confronted with resistance on

a physical basis to the statistical theory of extreme val-

ues, being compelled to state:

The exploration of how unlimited distributions be-

have at infinity is just part of the common general ef-

fort of mathematics and science to transgress the

finite, as calculus has done since Newton’s time for

the infinite, and nuclear physics is doing for the infin-

itesimal. (p. 2 in [35])

Not surprisingly, several important original contri-

butions to extreme value theory have been made by

hydrologists in collaboration with statisticians. A few of

these contributions are cited here: namely, the POT
approach to extremal modeling, PWM estimation of

parameters of extremal distributions, and regional

analysis of extremes. The POT approach originated in

hydrology quite a while ago [81,94]. Its rationale is that

if additional information about the extreme upper tail

were used besides the annual maxima (i.e., other rela-

tively high values in the sample), then more accurate

estimates of the parameters and quantiles of extreme
value distributions would be obtained [64,65]. Early

work in hydrology usually assumed an exponential dis-

tribution for the excess over a high threshold, being

equivalent to a Gumbel distribution for the maximum

[94]. The theoretical basis for the POT approach will be

addressed in Section 3.1.

First proposed by Landwehr et al. [58] for extreme

value distributions, the parameter estimation technique
of PWM (i.e., linear combinations of ‘‘L-moments’’, the

term that commonly appears in the hydrology literature)

also has a well-established tradition in hydrology [40].

This method has been advocated not just because of its

good performance for small-sample sizes [43], but as a

good choice of starting values for the iterative numerical

procedure required to obtain ML estimates [39] and as

an alternative to ML that is faster to compute and that
produces ‘‘feasible’’ values (i.e., finite mean). The com-

parative performance of the ML and PWM techniques

will be considered in Section 3.2.
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Regional analysis is another device for making use of

more available information that originated with esti-

mation of hydrologic extremes in mind [22,44]. The

basic idea is that if a region is relatively homogenous,

then the estimation of extreme quantiles at a given site
can be improved by using extreme observations at other

sites as well (i.e., a trade-off between space and time). In

practice, it is assumed that the region is homogenous,

after adjustment for spatial variations in parameters

(e.g., only the mean might be allowed to vary across the

region). It is also common in hydrology to make use of

PWM in performing a regional analysis [42]. Future

statistical developments that could aid in improving the
statistical rigor of regional analysis will be addressed in

Section 6.1.

2.2. Characteristics of hydrologic extremes

Before discussing the statistical characteristics of

hydrologic extremes, the generalized extreme value

(GEV) distribution is defined. It arises as the limiting
distribution of the maximum of a series of independent

and identically distributed observations [59] (how these

conditions can be relaxed will be discussed later, in-

cluding Sections 2.2.3 and 3.1.1). It also arises in con-

junction with physical systems that possess scale

invariance [4]. The cumulative distribution function of

the GEV is given by:

F ðx; l; r; cÞ ¼
expf�½1þ cðx� lÞ=r��1=cg;

1þ cðx� lÞ=r > 0; c 6¼ 0;

expf� exp½�ðx� lÞ=r�g; c ¼ 0:

8><
>: ð1Þ

Here l, r > 0, and c are the location, scale, and shape

parameters, respectively. The parameterization for the

shape parameter c in Eq. (1) follows the notational

convention prevalent today in the statistics literature;

in the hydrologic literature, it is still common to pa-

rameterize in terms of c� ¼ �c instead.
If the shape parameter c > 0, then the GEV distri-

bution is said to be heavy tailed. Because its probability

density function decreases at so slow a rate in the upper

tail, the moments of the GEV are infinite for orders

greater than 1=c (e.g., the variance is infinite if c > 1=2;
the mean is infinite if c > 1). If c < 0, then the distribu-

tion has a bounded upper tail. The case of c ¼ 0 in Eq.

(1), obtained by taking the limit of the general expression
as c ! 0, is termed the Gumbel distribution (i.e., an

unbounded, thin tail). Used to estimate design values (or

return levels), the quantile function F �1ð1� p; l; r; cÞ,
0 < p < 1, of the GEV distribution can be expressed as:

F �1ð1� p; l; r; cÞ

¼
l þ ðr=cÞf½� lnð1� pÞ��c � 1g; c 6¼ 0;

l þ rf� ln½� lnð1� pÞ�g; c ¼ 0:

(
ð2Þ

2.2.1. Heavy tails

There is much evidence that the distributions of

hydrologic variables are heavy tailed. Such evidence is

generally based on fitting the GEV distribution, with a

likelihood ratio test being one way to test whether the
shape parameter c ¼ 0 (i.e., thin tail) when ML esti-

mation is used. One issue concerns the chance mecha-

nism by which a heavy-tailed distribution arises. A

mixture of Gumbel distributions, as might arise when

the extremal distributions depends on the time of day or

year or on some covariate such as the El Ni~nno phe-

nomenon, can resemble the GEV [68].

Although it can be difficult to determine from only a
single site unless the record is relatively long, the dis-

tribution of maximum precipitation amount (e.g.,

hourly or daily) appears consistently to have a heavy tail

[29,86,87]. Regional analyses of precipitation extremes,

in which the shape parameter c is constrained to be

constant within the area, provide clear evidence of heavy

tails [9,10]. An example of extreme daily precipitation

amount will be treated in Section 2.3.1.
Streamflow (e.g., daily or monthly) is routinely found

to possess a heavy tail, especially in arid and semi-arid

regions, with this tail tending to heavier than that of

precipitation [3,31,63,68]. An open question concerns

the extent to which the heavy upper tail of streamflow is

directly attributable to that of precipitation, as opposed

to the integrative nature of runoff. Statistical theory, in

combination with the physical relationship between
rainfall and runoff, suggests that any heavy-tailed

characteristics of precipitation ought to be inherited by

streamflow. This issue could be more systematically

studied through the use of rainfall–runoff models [92].

An example of peak streamflow will be treated in Sec-

tion 2.3.2.

The extreme tails of other hydrologic variables have

not received as much attention, but some likewise ap-
pear to be heavy tailed. For example, Lamoureux [57],

in an analysis of a long record (nearly 500 yr) of sedi-

mentation rates for a high latitude lake (apparently

quite sensitive to extreme high precipitation), found a

heavy tail. Further, the highest sedimentation rates for

estuaries appear to be related to major storms [7]. The

long records produced in paleohydrology and related

fields would surely benefit from more use of the statistics
of extremes.

Finally, there is some evidence that the distribution of

the economic damage associated with extreme hydro-

logic events can be heavy tailed. For instance, Katz [52]

obtained results indicating that the distribution of eco-

nomic damage from hurricanes making landfall in the

US (of which flooding is a major source of damage) has

a heavy tail. It remains to determine the extent to which
damage being heavy tailed is attributable to the under-

lying climate or hydrologic variables, as opposed to an

inherent tendency of income or wealth. An example of
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economic damage from floods will be treated in Section

4.2.1.

2.2.2. Annual and diurnal cycles

Because hydrologic variables can exhibit marked pe-

riodic behavior on both diurnal and annual time scales,

naturally their extremes do as well. However, such cycles

in extremes have not received much attention, as the

block maxima technique does not require their explicit

modeling. Still annual cycles in hydrologic extremes

have been modeled in connection with devising a more

efficient, indirect approach to estimating the distribution
of annual maxima [11,78]. Like the POT and regional

analysis approaches, the basic motivation is that

monthly or seasonal maxima constitute additional in-

formation about the upper tail of the distribution. Al-

though for some regions and certain seasons, diurnal

cycles in precipitation amounts can be quite large [55],

such features have generally not been introduced di-

rectly into the statistical modeling of extremes.
Another impetus for modeling annual cycles is related

to the increased adoption of the POT approach instead

of block maxima, necessitating the inclusion of any

annual cycles. In fact, the early paper by Todorovic and

Zelenhasic [94] included an application of the POT

method to streamflow, allowing the rate of occurrence

of exceedances of a high threshold to have an annual

cycle and considering the possibility that the distribution
of excesses over the threshold depends on the season as

well (also see [50]). Using the POT approach to estimate

the parameters, Smith [86,87] found annual cycles in

both the location and scale parameters, l and r, of the
GEV distribution in modeling extreme daily precipita-

tion amount at a large number of sites across the US. An

example of modeling the annual cycle in extreme daily

precipitation amount will be given in Section 2.3.1.

2.2.3. Temporal and spatial dependence

Because hydrologic variables exhibit substantial de-

pendence over a wide range of temporal and spatial

scales, it should be anticipated that their extremes do as

well. Temporal dependence enters into the POT method
for estimating the distribution of annual maxima. Al-

though there is some evidence that exceedances of high

thresholds occur in clusters for hourly or daily precipi-

tation, it is still somewhat inconclusive [2,20]. ‘‘Declu-

stering’’ procedures (i.e., making use only of the single

highest exceedance within a cluster) are routinely em-

ployed in applications of the POT approach to hydro-

logic time series to avoid the effects of dependence. In
particular, Todorovic and Zelenhasic (p. 1642 in [94])

recommended that ‘‘When a flood hydrograph is a

multiple peaked hydrograph . . . , only the largest peak is

taken into consideration’’.

Although it is clear that there must be some spatial

dependence among hydrologic extremes at least over

small scales, it is rare to take such dependence explicitly

into account. In Section 6.1, this issue will be discussed

in conjunction with the topic of regional analysis of

extremes.

2.3. Examples

To illustrate some of the characteristics typical of

hydrologic extremes, two examples are treated: one

concerned with estimating the distribution of the an-

nual maximum of daily precipitation amount, another

with estimating the distribution of annual peak

streamflow.

2.3.1. Fort Collins maximum precipitation

Daily precipitation amounts at a single location (Fort

Collins, CO, USA) are analyzed for the time period

1900–1999 (source: Colorado Climate Center, Colorado

State Univ. http://ulysses.atmos.colostate.edu). Because

of a flood that occurred on 28 July 1997, this data set is

of special interest (although this particular rain gauge is

not actually situated within the area that received the

most intense precipitation) [72]. Fig. 1 shows the time
series of annual maximum daily precipitation amount

derived from the original daily data. When the GEV

distribution is fitted by ML directly to the sample of 100

annual maxima (i.e., block maxima approach), some

evidence of a heavy tail is obtained (ĉc ¼ 0:174,
P-value  0:038 for likelihood ratio test of c ¼ 0).

As an alternative to the block maxima approach, the

same GEV distribution for the annual maximum is fitted
by ML, indirectly using the POT method, to the time

series of daily precipitation amount at Fort Collins (with

a relatively low threshold of 0.40 in. to avoid the com-

plication of varying the threshold itself depending on the

time of year; no declustering was applied). In this ap-

Fig. 1. Annual maximum of daily precipitation amount at Fort Col-

lins, CO, USA, 1900–1999.
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proach, annual cycles for the location and scale pa-

rameters, l and r, are explicitly modeled. Formally, it is

assumed that the annual maximum of daily precipitation

amount has a GEV distribution with parameters lðtÞ
and ln rðtÞ (taking logarithm constrains the scale pa-
rameter to be positive), t ¼ 1; 2; . . . ; 365, possibly de-

pending on particular day t within a given year through

sine waves:

lðtÞ ¼ l0 þ l1 sinð2pt=T Þ þ l2 cosð2pt=T Þ;
ln rðtÞ ¼ r0 þ r1 sinð2pt=T Þ þ r2 cosð2pt=T Þ:

ð3Þ

Here T ¼ 3651
4
days and the shape parameter c is taken

constant (although an annual cycle in c would be per-

missible as well).

Both the incorporation of an annual cycle in the lo-

cation parameter lðtÞ and the subsequent addition of an

annual cycle in the log-transformed scale parameter rðtÞ
produce large reductions in the minimized negative log-

likelihood function (i.e., P-values near zero for likeli-

hood ratio tests of l1 ¼ l2 ¼ 0 and r1 ¼ r2 ¼ 0 in Eq.

(3); additional terms in Fourier series were not consid-

ered). The estimated shape parameter is nearly the same

as for the block maxima method (ĉc ¼ 0:182), but the

evidence for a heavy tail is much stronger because so

much more data enters into the estimation procedure
(P-value near zero for likelihood ratio test of c ¼ 0).

Further, our method of analysis eliminates the possi-

bility that this heavy tail is simply an artifact of annual

cycles.

One way to portray the nature of the annual cycle in

extremes is through an ‘‘effective’’ design value. This

quantity has an interpretation similar to that for an

ordinary design value (i.e., the quantile corresponding to
a specified return period), except that it varies depending

on the time of year. These estimated design values are

obtained by substituting the parameter estimates into

Eq. (2) for the quantile function of the GEV distribu-

tion. Fig. 2 shows the effective design value for a 100-yr

return period (i.e., p ¼ 0:01 in Eq. (2)), with the pa-

rameters of the GEV distribution being rescaled to re-

flect the maximum of daily precipitation amount over a
month (average length ¼ ð365:25Þ=12 day) instead of a

year. The design values range from a low in mid-January

of about 1.1 in. to a high in mid-July of 4.3 in. (observed

daily maximum over 100-yr period is 4.63 in. reflecting

the flood in 1997). To give a rough feeling for the actual

annual cycle in extreme precipitation, the observed

monthly maximum of daily precipitation for each year

in the 100-yr record is also included in Fig. 2. Consistent
with the effective design values for the fitted GEV dis-

tribution, a marked tendency is evident toward higher

precipitation extremes in summer than in winter.

It is also of interest to estimate the return period for

the high precipitation event in July 1997 (i.e., 4.63 in.).

With annual cycles in the parameters of the GEV dis-

tribution (Eq. (3)), the determination of a return period
involves combining probabilities that differ depending

on the day within a year (see Chapter 7 in [15]). Refitting

only the data for the time period 1900–1996 (i.e., leaving

out the 1997 flood event; the parameter estimates are not

very sensitive to whether this event is included), the es-

timated return period for a daily amount of 4.63 in. is

roughly 50.8 yr for the GEV distribution, as compared

to 562.3 yr for the corresponding Gumbel distribu-
tion. Such a large difference in estimated return periods

amply illustrates the effect of neglecting a heavy tail.

Details on the implementation of ML with covariates

(such as the annual cycles in the parameters as specified

in Eq. (3)) for the GEV distribution will be described in

Section 3 and Appendix A.

2.3.2. Potomac River peak flow

Fig. 3 shows a relatively long time series of the annual

peak instantaneous flow (1 cfs¼ 0.028317 m3/s; water

year October–September) of the Potomac River at Point

of Rocks, MD, USA, for the time period 1895–2000
(source: US Geological Survey http://water.usgs.gov/

nwis/peak). Smith [82] also analyzed the same time se-

ries, except that the available record then ended at 1986.

He fitted the GEV distribution to the data by ML ob-

taining an estimated shape parameter of ĉc  0:42, but
expressed concern that this distribution does not nec-

essarily fit the upper tail of annual peak flow well.

When the GEV distribution is again fitted by ML to
the longer time series of 106 annual maxima, fairly

strong evidence of a heavy tail is obtained (ĉc ¼ 0:191,
P-value  0:002 for likelihood ratio test of c ¼ 0). With

the increased sample size and smaller estimated shape

parameter compared to those obtained in [82], a

quantile–quantile (Q–Q) plot for the GEV distribution

Fig. 2. Annual cycle in effective design value (100-yr return period) for

fitted GEV distribution for monthly maximum of Fort Collins daily

precipitation. Observed values of monthly maximum of daily precipi-

tation indicated by circles.
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(Fig. 4) indicates that the fit is reasonably adequate,

even in the upper tail. In Section 5.2.2, another annual

peak flow time series will be analyzed for which the fit of
the GEV distribution does not appear to be acceptable.

3. Methodological developments

3.1. Theoretical framework

Underlying the POT method is a formal statistical

model, consisting of a Poisson process for the occur-
rence of an exceedance of a high threshold and a gen-

eralized Pareto (GP) distribution for the excess over the

threshold (termed ‘‘Poisson–GP model’’). A basic ref-

erence for the point process representation of extremes is

Leadbetter et al. (Chapter 5 in [59], also see Chapter 7 in

[15]).

3.1.1. Poisson–GP model

Arising as an approximation for the distribution of

excesses above a high threshold, the cumulative distri-

bution and quantile functions for the GP are given by:

F ðx; r�; cÞ ¼ 1� ½1þ cðx=r�Þ��1=c
;

r� > 0; 1þ cðx=r�Þ > 0;

F �1ð1� p; r�; cÞ ¼ ðr�=cÞðp�c � 1Þ; 0 < p < 1:

ð4Þ

Here r� and c are the scale and shape parameters, re-

spectively. The interpretation of the shape parameter c is
equivalent to that for the GEV distribution (e.g., if

c > 0, then the GP distribution is heavy tailed). By

convention, c ¼ 0 refers to the limiting case obtained as

c ! 0 in Eq. (4) of the exponential distribution (i.e., an

unbounded, thin tail).
Let X1;X2; . . . ;Xn, denote a time series (assumed, for

now, to be independent and identically distributed)

whose high extreme values are of interest. The Poisson–

GP model consists of two components (Chapter 4 in

[15,25], Chapter 5 in [77]): (i) the occurrences of ex-

ceedances of some high threshold u (i.e., Xi > u, for some

i) are generated by a Poisson process (with rate parameter

k); and (ii) the excesses over threshold u (i.e., Xi � u, for
some i) have a GP distribution (with scale and shape

parameters, r� and c). The scale parameter r� of the GP

distribution differs from that for the GEV by an amount

depending on the threshold u (see Eq. (A.3) in Appendix

A). As previously mentioned, the assumption of inde-

pendence can be relaxed by dealing with cluster maxima

instead of all exceedances, and one way to relax the as-

sumption of identical distribution is by letting the pa-
rameters of the Poisson–GP model depend on covariates

(e.g., annual or diurnal cycles).

3.1.2. Point process approach

Among others, Smith [85] developed the statistical

theory needed to apply the point process approach to

the statistics of extremes. In essence, this approach in-

volves representing the two components of the Poisson–

GP model (i.e., the occurrence of exceedances and the

excesses over a high threshold) jointly as a two-dimen-
sional nonhomogenous Poisson process (one dimension

is time, the other the excess values). In this way, features

of the GEV distribution for block maxima and the POT

approach can be combined. In particular, the GEV

distribution can be indirectly fitted via the POT method,

but still in terms of the GEV parameterization. In this

way, the scale parameter r is invariant with respect to

the choice of threshold u, the extension to time-depen-
dent parameters (e.g., covariates) is immediate, and even

thresholds that vary with time (e.g., because of annual

cycles or trends) are permissible (Chapter 7 in [15]).

Suppose that it is desired to fit the GEV distribution,

with parameters l, r, and c, for the maximum over some

time period denoted by 1=h. In other words, the time

Fig. 4. Q–Q plot for fit of GEV distribution to annual peak flow of

Potomac River (line of equality indicates perfect fit).

Fig. 3. Annual peak flow of Potomac River at Point of Rocks, MD,

USA, 1895–2000.
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scaling constant h constitutes the length of the sampling

frequency relative to the period over which the maxi-

mum is being taken (e.g., in the Fort Collins precipita-

tion example of Section 2.3.1, h ¼ 1=365:25 because the

time series is daily and the annual maximum is being
modeled; although to construct Fig. 2, h ¼ 12=ð365:25Þ).

It is convenient to view the data values as a two-

dimensional vector ðx; zÞ, where x denotes a value of the

variable and z indicates whether or not this value

exceeds the threshold u (i.e., z ¼ 1 if x > u, z ¼ 0 oth-

erwise). Let f ðx; z; l; r; cÞ denote the joint density cor-

responding to the two-dimensional nonhomogenous

Poisson process that generates these values ðx; zÞ (but
note that the distribution of x, when x < u, is not ac-

tually specified). Then this density can be expressed as

(see Appendix A and [15,87]):

� ln f ðx; z; l; r; cÞ
¼ zfln½r þ cðu� lÞ� þ ð1=cÞ ln½1þ cðu� lÞ=r�g
þ zð1þ 1=cÞ lnf1þ ½cðx� uÞ�=½r þ cðu� lÞ�g
þ h½1þ cðu� lÞ=r��1=c

;

1þ ½cðx� uÞ�=½r þ cðu� lÞ� > 0: ð5Þ

Let the bivariate random sample fðXi; ZiÞ : i ¼
1; 2; . . . ; ng correspond to the representation ðx; zÞ above
(again, we do not actually need to keep track of any

value Xi < u). The ML technique involves evaluat-

ing Eq. (5) at each member of the sample (i.e.,
� ln f ðXi; Zi; l; r; cÞ, i ¼ 1; 2; . . . ; n), summing these n

terms, and determining by numerical methods the values

of the parameters, l, r, and c, that minimize this sum.

The parameters of the GEV distribution in Eq. (5) could

actually depend on time or other covariates (e.g., as in

the annual cycles specified by Eq. (3) for the Fort Collins

example), expressed in full generality as lðtÞ, rðtÞ, and
cðtÞ.

3.2. Parameter estimation

In the present paper, we make use exclusively of ML

because of the need to fit structural models. Neverthe-
less, it has been known for a long time that the perfor-

mance of ML can be extremely erratic for small samples

(say n6 25), especially in the estimation of extreme

quantiles of the GEV distribution (Eq. (2)). For in-

stance, Martins and Stedinger (p. 739 in [66]) pointed

out that ‘‘absurd values of the GEV shape parameter . . .
can be generated’’. They provided an example in which a

random sample of size n ¼ 15 is generated from a GEV
distribution with shape parameter ĉc ¼ 0:2, yet the ML

technique yields an estimate of ĉc ¼ 2:48. Such small-

sample behavior could not have been ruled out on a

theoretical basis, because the primary justification for

ML arises from its asymptotic properties (i.e., for large

samples).

Given the need in applied hydrology for extreme

quantile estimates even when the historical record is

quite short, the poor performance of ML provided the

impetus for the development of alternative estimation

techniques. When the shape parameter c of the GEV
distribution is positive (i.e., heavy tail), Hosking et al.

[43] showed that PWM estimators are superior to ML

for small samples (e.g., n ¼ 15 or 25) in estimating upper

quantiles of the GEV (e.g., 1� p ¼ 0:9 or 0.99). They

attributed the poor performance of ML to a relatively

few cases in which much larger estimates of the shape

parameter than the true positive value are produced (i.e.,

consistent with the example in [66]). Hosking [40] dis-
cussed more generally the advantages of PWM over

ML.

As mentioned earlier, PWM estimators are only de-

fined for a GEV distribution with finite mean (i.e., shape

parameter c < 1). Although it has been argued [43] that

this constraint is not restrictive in practice (e.g., for peak

streamflow), it still appears that it is imposed primarily

for pragmatic, not physical reasons. Because PWM es-
timators have not received much attention in the

mathematical statistics literature (for one exception, see

[70]), a theoretical explanation of their good perfor-

mance has been lacking.

Recent work by Coles and Dixon [16] indicates that

one source of the apparent superiority of PWM for

small samples is related to its constraint of finite mean.

If the same constraint (i.e., c < 1) is imposed on ML (by
the technique of penalized likelihood estimation in [16]),

then the performance of ML is comparable, perhaps

even superior to PWM for small samples. Similarly,

Martins and Stedinger [66] constrained the shape pa-

rameter through a Bayesian prior distribution whose

support has an upper bound of c ¼ 1=2 (i.e., constraint

of finite variance) (Bayesian methods will be discussed in

Section 6.2). In an attempt to avoid the limitations of
both ML and PWM, Morrison and Smith [68] combined

these two estimation methods. The question remains of

whether it is really justified to impose a constraint such

as finite mean (recall the quote by Gumbel in Section 2

about the issue of a distribution being unbounded). In

particular, are the users of the GEV distribution in

hydrologic applications aware that moments above

some finite order would be infinite, no matter how small
a positive value the shape parameter assumes?

3.3. Standard errors, resampling, and residuals

One advantage of the ML method is that approxi-
mate standard errors for estimated parameters and de-

sign values can be automatically produced, either via the

information matrix (e.g., ‘‘Extremes’’ software [30]) or

through profile likelihood (Chapter 3 in [15]). But like

the parameter estimates themselves, such standard er-

rors can be quite unreliable for small-sample sizes.
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‘‘Resampling’’, an alternative approach for determining

standard errors, is becoming increasing popular [23,28].

A technique, such as the ‘‘bootstrap’’, is used to man-

ufacture ‘‘new’’ samples from the original one. The

bootstrap generates new samples by drawing at random
with replacement from the original sample. By refitting

the estimator to a large number of bootstrap samples

and calculating the standard deviation of these estimates

across the samples, more realistic standard errors can be

obtained. Some software for statistics of extremes can

produce bootstrap standard errors and confidence in-

tervals for parameters and quantiles (e.g., ‘‘Xtremes’’

software [77]). We note that the bootstrap can be ap-
plied to other estimation procedures (e.g., PWM), not

just ML.

One difficulty with fitting more complex models, such

as the GEV distribution with covariates, is that resam-

pling procedures are based on the premise that the

original sample consists of independent and identically

distributed data. Generally, this issue can be circum-

vented by making use of the fitted model to convert the
original data to generalized ‘‘residuals’’. Then the re-

sampling exercise is performed in terms of these resid-

uals.

To be more specific, suppose that the random vari-

able Xt has a GEV distribution (Eq. (1)) with time-

dependent parameters, lðtÞ, rðtÞ, cðtÞ. By design, in this

model the observations would not be identically dis-

tributed (rather, nonstationary). But the residual ran-
dom variable �t, obtained by the transformation

�t ¼ f1þ cðtÞ½Xt � lðtÞ�=rðtÞg�1=cðtÞ
; ð6Þ

would be identically distributed (i.e., exponential with

unit scale parameter). New samples could be generated

through a multi-stage procedure: (i) convert the original

data to residuals using Eq. (6) (with estimates for the

model fit to the original data being substituted in place

of the unknown parameters); (ii) produce new samples

of residuals by the conventional bootstrap; and (iii)

form new samples of data by converting the bootstrap
residuals through the inverse of Eq. (6) [24]:

Xt ¼ lðtÞ þ rðtÞ½��cðtÞ
t � 1�=cðtÞ: ð7Þ

Essentially the same strategy is effective for producing

diagnostic displays. For instance, Q–Q plots (recall Fig.

4) are likewise designed for independent and identically

distributed data. One could use Eq. (6) for the GEV

distribution with time-dependent parameters, and then

construct a Q–Q plot of the empirical quantiles for the

residuals as compared to those for the theoretical ex-
ponential distribution. Similarly, if the POT approach

were being employed, one might be interested in

checking how well the GP distribution with time-

dependent parameters, rðtÞ and cðtÞ, fit the excesses over
a threshold (e.g., as an aid in determining whether the

threshold is high enough). In this case, the excesses can

be transformed to an exponential distribution (with unit

scale parameter) through

�t ¼ ½1=cðtÞ� lnf1þ cðtÞ½Xt=rðtÞ�g ð8Þ
(for more detailed discussion of graphical procedures to

examine the fit of extreme value models, see [15,87,88]).

4. Change in hydrologic extremes

The methodology for fitting extremal distributions by
ML with time varying parameters has been described in

Section 3. In addition, an example has already been

treated in Section 2.3.1 (involving annual cycles in pa-

rameters, as opposed to a long-term trend). So every-

thing is in place to fit trends in hydrologic extremes. For

instance, a simple candidate model for trends in the

GEV distribution (Eq. (1)) could involve linear trends in

the location and log-transformed scale parameters (al-
though a trend in the shape parameter would be per-

missible as well); that is,

lðtÞ ¼ l0 þ l1t; ln rðtÞ ¼ r0 þ r1t; cðtÞ ¼ c; ð9Þ
where t denotes time (e.g., in units of days or years). It

should be noted that some have questioned whether it is

reasonable to assume linear trends as in Eq. (9), with

nonparametric alternatives being feasible [38,75].

Notwithstanding the fact that the statistics of ex-

tremes are widely applied in hydrology, only rarely has

this methodology been applied to detect trends in hyd-

rologic extremes. Thus the evidence of trends to be cited
is based primarily on methodology, such as least squares

regression, that does not necessarily reflect properties of

extremes like heavy tails. Moreover, because the statis-

tics of extremes have not been relied on, any detected

trends generally are not expressed in terms of design

values or return periods (as desirable for water resources

design and management).

4.1. Evidence of trends

As mentioned in the Introduction, it is anticipated

that the hydrologic cycle would intensify as part of the

enhanced greenhouse effect on global climate. In this

subsection, the evidence of trends in precipitation and

streamflow is reviewed.

4.1.1. Precipitation

A tendency toward increases in the frequency of ex-

treme high precipitation has been detected in many areas
of the world, including the US [49]. This effect has been

generally measured in terms of trends in high quantiles

of daily precipitation amount, but also shows up for the

maximum daily precipitation amount over a month or

season [48]. To more easily detect an effect, these ana-

lyses involved aggregation over a number of sites within
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quite large regions (e.g, the US is divided into nine

subregions). So it is unclear what such trends in pre-

cipitation extremes necessarily imply for design values

or returns periods within smaller regions; in particu-

lar, water basins. Moreover, their relevance for high
streamflow and floods has been questioned [14].

Information about predicted changes in extremes

with global warming is also available from deterministic

numerical models of the global climate system, known

as general circulation models (GCMs). Zwiers and

Kharin [102] compared GCM control run output for the

present climate with GCM experiment run output for a

doubling in the atmospheric concentration of carbon
dioxide (CO2). The GEV distribution was fitted by the

method of PWM to the annual maxima of the synthetic

daily precipitation amounts for both the present and

doubled CO2 climate at each of several thousand grid

points. The estimated design values increase nearly ev-

erywhere across the world, but the differences are not

necessarily statistically significant. In a follow-up study

[56], the transient response of precipitation extremes, in
which the CO2 concentration is gradually increased in-

stead of doubled, was examined. Because GCMs do not

necessarily produce realistic precipitation extremes for

the present climate, these results should be viewed with

caution.

4.1.2. Streamflow

Peak streamflow, a variable that is closely related to

precipitation extremes as well as other hydrometeoro-

logical factors (e.g., snowmelt), does not necessarily

exhibit an increasing trend, notwithstanding other evi-

dence in support of an intensified hydrologic cycle. For

example, Robson et al. [79] were unable to detect any
trend in annual peak flow for data pooled across the

U.K. Similarly, Zhang et al. [101] found virtually no

sites in Canada with increasing trends (but did detect

some decreasing trends) in annual peak flow and high

quantiles of daily mean flow. Although Lins and Slack

[62] uncovered increasing trends in streamflow across

much of the US, most of these trends were confined to

low and moderate quantiles, not relevant for peak
flow or flooding. Nevertheless, Groisman et al. [33]

concluded that, given the well-documented increasing

trends in extreme precipitation and the relationship be-

tween extreme precipitation and high flow, it is likely

that increasing trends in high flow have occurred in the

eastern US. On the other hand, they attribute the lack of

trends in peak flow in the western US to the compen-

sating effect of decreases in snow cover extent.
Other hydrometeorological variables should reflect

any acceleration in the hydrologic cycle as well. For

instance, Brutsaert and Parlange [8] pointed out that the

limited data available (in some parts of the world) for

evaporation are consistent with this hypothesis, with

Szilagyi et al. [93] finding intensified actual evapotran-

spiration over the US. Ultimately, trends in hydrologic

extremes should be seen in societal impacts as well. Al-

though a marked increasing trend in flood damage in the

US has occurred, Pielke and Downton [74] showed that

it is primarily attributable to shifts in societal vulnera-
bility, not necessarily any trends in precipitation ex-

tremes or streamflow. The trend in US flood damage

will be illustrated in the example in Section 4.2.1. Re-

gional analysis (Section 6.1) would constitute a more

powerful approach to the detection of trends.

4.2. Examples

4.2.1. US flood damage

Fig. 5 shows the time series of annual total economic

damage due to floods in the US for the time period

1932–1997 (for source of data, see [74]). The damages
were totaled over the calendar year through 1982,

thereafter over the water year (October–September), and

have been adjusted for inflation (constant 1995 $). An

increasing trend, especially in the highest values, is clear

from the plot of the raw time series. Much discussion

has centered around whether this trend reflects a change

in climate [74].

When the GP distribution is fitted by ML to this
damage data set, with a linear trend in the log-trans-

formed scale parameter (i.e., ln rðtÞ ¼ r0 þ r1t), an es-

timated slope of r̂r1 ¼ 0:0275 (corresponding to an

increase in damage of about 2.79% per yr) is obtained

(P-value < 10�4 for likelihood ratio test of r1 ¼ 0).

There is no evidence of a heavy tail (ĉc ¼ 0:029), and a

residual Q–Q plot (Fig. 6) using Eq. (8) to adjust for the

trend in the scale parameter appears acceptable. Also
included in Fig. 5 is the median of the GP distribution

(i.e., quantile function given by Eq. (4) with p ¼ 0:5) for
the fitted trend in the scale parameter, increasing from

about 0.64 to 3.82 billion $ over the period of record.

Fig. 5. US annual damage from floods, 1932–1997 (constant 1995 $).

Trend in median of fitted GP distribution given by dashed line.
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Other functional forms of trend in the scale parameter

could be considered, and the present linear one (in ln r)
should be viewed as a simple starting point.

When Pielke and Downton [74] converted the data

into damage per capita, there is still a statistically sig-
nificant, but weaker increasing trend. For damage per

unit wealth, the estimated trend is no longer even in-

creasing. A more ideal, but also more elaborate, ap-

proach to the statistical modeling of such data would be

predicated upon recognizing that total flood damage can

be represented as a ‘‘random sum’’ (i.e., not only does

the damage vary from flood to flood, but the number of

floods varies from year to year as well). Katz [53] made
use of this form of stochastic model in an application to

economic damage caused by hurricanes.

4.2.2. Fremantle maximum sea level

Fig. 7 shows the time series of annual maximum sea

level at Fremantle, Western Australia, for the time period

1897–1989 (source: Chapter 6 in [15] and http://www.

stats.bris.ac.uk/�masgc/ismev/datasets.html). Only 86 yr

of data are actually available (i.e., values for 1902, 1907,

1910–1911, 1924, and 1942 are missing). It should be
noted that missing data pose no problem for ML in

principle (in particular, there is no need to replace

them with interpolated values). Perhaps an increasing

trend is discernable from the plot of the raw time series,

but it is not as obvious as in the flood data example just

treated.

When the GEV distribution is fitted by ML to the sea

level maxima, with a linear trend in the location pa-
rameter (i.e., lðtÞ ¼ l0 þ l1t), an estimated slope of

l̂l1 ¼ 0:00232 m per yr is obtained (P-value < 10�3 for

likelihood ratio test of l1 ¼ 0). Instead of being heavy

tailed, the fitted GEV distribution has either a boun-

ded tail or an unbounded, thin tail (ĉc ¼ �0:125, P-

value  0:109 for likelihood ratio test of c ¼ 0). A Q–Q

plot (not shown) can be constructed on the basis of Eq.

(6) to adjust for the trend in the location parameter and
appears to be satisfactory. Also included in Fig. 7 is the

median of the GEV distribution (i.e., quantile function

given by Eq. (2) with p ¼ 0:5) for the fitted trend in the

location parameter, increasing from about 1.43–1.61 m

over the period of record. Again, more complex forms of

trend model for the location parameter could be con-

sidered.

Coles (Chapter 6 in [15]) introduced the Southern
Oscillation into the model as an additional covariate,

along with the trend term, on which the location pa-

rameter of the GEV distribution depends. This modi-

fication has little effect on the estimated slope of the

trend term. The treatment of covariates within the

framework of the statistics of extremes is the subject of

Section 5.

5. Statistical downscaling of extremes

The term ‘‘statistical downscaling’’ [97] refers to em-
pirical relationships between patterns in large-scale at-

mosphere–ocean circulation and smaller-scale climate

(and related hydrologic) variables. In recent years, much

attention has been devoted to this topic, with the im-

petus being that deterministic numerical models of the

climate system predict large-scale patterns (e.g., of

‘‘smooth’’ variables such as atmospheric pressure) much

better than they do regional or local weather or climate
variables (especially, ‘‘erratic’’ variables like precipita-

tion) [60,98].

Although the scope of statistical downscaling has

included extreme events, generally the statistics of ex-

tremes have not been formally applied in this context

(for one exception, see [6]). The dependence of the pa-

Fig. 6. Q–Q plot for fit of GP distribution to US annual damage from

floods (line of equality indicates perfect fit).

Fig. 7. Annual maximum sea level at Freemantle, Western Australia,

1897–1989. Trend in median of fitted GEV distribution given by

dashed line.
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rameters of extremal distributions on covariates has

occasionally been considered, but not in the context of

downscaling (see Section 6.1). In most cases, the fitting

of covariate relationships has been based on least

squares regression, as opposed to ML for extremal dis-
tributions (for an exception, see [83]). Linking statistical

downscaling and extreme value theory would be mutu-

ally beneficial. Replacing conventional regression anal-

ysis techniques with the statistics of extremes would

make the treatment of downscaled extremes more sta-

tistically relevant, and the incorporation of covariates

into the statistical models of extremes would also make

this methodology more physically appealing.

5.1. Covariates

The appropriate methodology for the statistical

downscaling of extremes can be achieved through the
incorporation of covariates into the extremal distri-

bution. As with the case of trends, the methodology

for fitting extremal distributions by ML with time-

dependent parameters (Section 3) applies. Unlike a

deterministic trend variable, a covariate is itself a

random variable. But by fitting the extremal distri-

bution conditional on the values assumed by the co-

variate, the problem reduces to that of a time varying
parameter. For instance, given the value of a covariate

(say Y ¼ y), the conditional distribution of the maxi-

mum could be assumed GEV with parameters lðyÞ,
rðyÞ, and cðyÞ. A typical parameterization would be

the same as in Eq. (9), replacing the time index t with

the covariate value y. More generally, the covariate Y

could actually be a vector (i.e., consisting of one or

more covariates).
One natural candidate to serve as a covariate for

hydrologic extremes would be the El Ni~nno–Southern
Oscillation (ENSO) phenomenon, the dominant mode

in global climate variations on an annual time scale

[73]. It has been associated with climate anomalies

(such as droughts or floods) across large regions of

the world. The ENSO phenomenon has also been di-

rectly linked to interannual variations in streamflow
[27,47,76]. Although the relationship between extreme

flows and ENSO has been occasionally examined (for

low flows, see [69]; for high flows, see [45]), the statis-

tics of extremes have not been used. More generally,

both nonlinear dynamical theory and observational

evidence support the existence of climate ‘‘regimes’’

[71,89]. So it might be anticipated hydrologic extremes

ought to shift on at least an annual time scale in
conjunction with patterns in large-scale atmosphere–

ocean circulation. The term downscaling is appropriate

because ENSO could be viewed as essentially a global

phenomenon, whereas even streamflow for a large

drainage basin reflects a much smaller than global

scale.

5.2. Examples

To demonstrate that the statistics of extremes con-

stitutes a viable methodology for the downscaling of

extremes, two examples are treated: one concerned with
estimating the distribution of the monthly maximum

of daily precipitation amount conditional on monthly

mean pressure, another with estimating the distribution

of annual peak flow conditional on the state of ENSO.

5.2.1. Chico maximum precipitation

The maximum of daily precipitation amount for the

month of January at Chico, CA, USA, for 78 yr is

modeled (over time period 1907–1988, with 4 yr being

eliminated because of missing values), with the covariate

Y being the mean sea level pressure (mb� 1000) for

January at a grid point (i.e., derived from observations
within the grid box) off the Pacific Coast (40�N, 130�W).

Fig. 8 shows a scatter plot of the January maximum of

daily precipitation amount versus the pressure covariate,

suggesting at least a weak inverse relationship.

Given a pressure value Y ¼ y, the conditional distri-

bution of the monthly maximum of daily precipitation is

assumed GEV, with parameters related to the pressure

value by

lðyÞ ¼ l0 þ l1y; ln rðyÞ ¼ r0 þ r1y; cðyÞ ¼ c ð10Þ

(dependence of the shape parameter on pressure would

be permissible as well). Katz and Parlange [54] originally

analyzed this same precipitation and pressure data, but

for conditional stochastic modeling of the time series of

daily precipitation amounts (i.e., not just extremes). The
following results can be viewed as an extension of those

in Katz [51], in which extreme precipitation was mod-

eled conditional on only two pressure states (below or

above average).

Fig. 8. Scatter plot of January maximum of daily precipitation

amount at Chico, CA, USA, vs. January mean pressure.
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Table 1 gives the results of fitting by ML three pos-

sible conditional GEV distributions to the Chico pre-

cipitation maxima:

Model (i). No dependence of any parameters on

pressure (l1 ¼ 0, r1 ¼ 0 in (10));

Model (ii). Only location parameter depends on

pressure (l1 6¼ 0, r1 ¼ 0 in (10));

Model (iii). Both location and scale parameters de-

pend on pressure (l1 6¼ 0, r1 6¼ 0 in (10)).

Based on the POT approach with a threshold of u ¼ 40

mm (because monthly maxima of daily data are in-

volved, the time scaling constant is h ¼ 1=31 in Eq. (5);

no declustering was applied), the right-most column in
Table 1 lists the negative of the maximized log likelihood

function (labeled ‘‘� ln L’’) for each of these three

models. A likelihood ratio test for l1 ¼ 0 in Eq. (10)

(i.e., model (i) vs. model (ii)) indicates strong evidence

that the location parameter ought to be varied with

pressure (P-value < 10�4). The estimated slope param-

eter in model (ii) is l̂l1 ¼ �1:361 mm per mb, or higher

precipitation extremes being associated with lower
pressure (consistent with Fig. 8).

A likelihood ratio test for r1 ¼ 0 in Eq. (1) (i.e.,

model (ii) vs. model (iii)) suggests only weak evidence

that the scale parameter ought to be varied as well (P-

value  0:209). There is also only weak evidence of

Chico daily precipitation amount having a heavy-tailed

distribution (model (ii): ĉc ¼ 0:151, P-value  0:160 for

likelihood ratio test of c ¼ 0), most likely because only
one month of data (i.e., January) is being analyzed. A

residual Q–Q plot (not shown) for the fitted GEV dis-

tribution in model (ii) based on Eq. (6) appears rea-

sonably satisfactory.

To illustrate the magnitude of the effects of the

pressure covariate on maximum precipitation, an ‘‘ef-

fective’’ return period is estimated on the basis of the

best fitting model (ii). First, a design value is estimated
for the fitted unconditional GEV distribution (i.e.,

model (i) with no conditioning on the pressure covari-

ate) by Eq. (2) (e.g., 61.8 mm for a return period of 10 yr

and 73.0 mm for 20 yr). Then the effective return period

corresponding to this estimated design value is deter-

mined for the fitted GEV distribution (i.e., model (ii)),

conditional on the value of the pressure covariate by Eq.

(1). Given a 10-yr long-run return period, this effective
return period varies from about 3.7 yr for the lowest

observed pressure to 23.6 yr for the highest; for a 20-yr

return period, from about 8.1–44.9 yr.

5.2.2. Salt River peak flow

Fig. 9 shows the annual peak instantaneous flow (1

cfs ¼ 0:028317 m3/s; water year October–September) of

the Salt River near Roosevelt, AZ, USA, for the time

period 1924–1999 water year (1986 missing; source:

US Geological Survey http://water.usgs.gov/nwis/peak).
Streamflow at this location has been previously ana-

lyzed, with Anderson and Meerschaert [3] finding that

the monthly mean flow is quite seasonal and possesses a

heavy-tailed distribution (shape parameter c  0:3).
Moreover, Dettinger and Diaz [27] detected statistically

significant correlations between ENSO and monthly

mean streamflow at many locations across the world,

including higher flows being associated with El Ni~nno
events in the southwestern US. However, these studies

did not focus on peak flow.

When the GEV distribution is fitted by ML to the

Salt River peak flow data, a rather high estimated shape

parameter is obtained (ĉc ¼ 0:859) and a Q–Q plot (not

shown) indicates very poor fit for the highest observa-

tions (ĉc ¼ 0:677 for penalized likelihood [16] and

ĉc ¼ 0:41 for PWM, quite a bit smaller than ML but still
relatively high values). Alternatively, a GP distribution

is assumed instead, with ML yielding an estimated shape

parameter of ĉc ¼ 0:279 (i.e., consistent with that ob-

tained by Anderson and Meerschaert [3] for monthly

Table 1

Fitted GEV distribution (by POT approach with threshold of 40 mm) to maximum daily precipitation (mm) in January at Chico, CA, USA,

conditional on pressure covariate (mb� 1000)

Model l̂l0 (mm) l̂l1 (mm per mb) r̂r0 r̂r1 ĉc � ln L

l1 ¼ 0, r1 ¼ 0 35.489 0 2.226 0 0.1984 244.10

l1 6¼ 0, r1 ¼ 0 58.129 �1.361 2.315 0 0.1508 235.27

l1 6¼ 0, r1 6¼ 0 58.146 �1.284 2.979 �0.045 0.1986 234.49

Fig. 9. Annual peak flow for Salt River near Roosevelt, AZ, USA,

1924–1999.
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mean flow) and a Q–Q plot (not shown) whose ap-

pearance is more satisfactory than that for the GEV

distribution (irrespective of the estimation technique).

Evidently, annual peak flow for the Salt River corre-

sponds more closely to a single extreme event than to a
maximum of a number of independent high values (the

case for using the GP, instead of the GEV, distribution

has been made by Smith [82] in conjunction with the

Potomac River peak flow).

Next the Southern Oscillation is introduced as a co-

variate into the GP distribution. As an index of the

Southern Oscillation, the fall (i.e., September–Novem-

ber) seasonal mean Darwin pressure (mb� 1000),
overlapping with the start of the water season, is used

(source: NOAA Climate Prediction Center http://

www.cpc.ncep.noaa.gov/data/indices/index.html). Ano-

malously high Darwin pressure generally coincides with

El Ni~nno events. A scatter plot (not shown) of the peak

flow versus Darwin pressure suggests at least a weak

positive relationship (consistent with the results of

Dettinger and Diaz [27]).
When the conditional GP distribution is fitted by ML

to the Salt River peak flow, with the log-transformed

scale parameter being linearly related to the Darwin

pressure (i.e., ln rðyÞ ¼ r0 þ r1y), the estimated slope

of r̂r1 ¼ 0:0450 (corresponding to an increase of

about 4.61% per mb) is statistically significant (P-

value  0:005 for likelihood ratio test of r1 ¼ 0). In this

model, the estimated shape parameter is smaller yet
(ĉc ¼ 0:156) with only very weak evidence of a heavy tail

(P-value  0:234 for likelihood ratio test of c ¼ 0). A

residual Q–Q plot (Fig. 10) for the GP distribution

based on Eq. (8) appears satisfactory, even somewhat

improved upon the corresponding Q–Q plot without the

Darwin pressure as a covariate. Given a 10-yr long-run

return period, the effective return period varies from

about 21
2
to 101 yr over the historical range of the values

assumed by Darwin pressure; for a 20-yr return period,

from about 31
2
to 384 yr.

6. Future developments

In this section, the focus is on problems in hydrologic

extremes whose solution would require advances in the

methodology of the statistics of extremes. These prob-

lems include regional analysis of extremes, Bayesian

quantification of uncertainty in extremal estimates, and

statistics of multivariate hydrologic extremes. Finally,

the issue of how to link the statistics of extremes with
more conventional stochastic models of hydrologic time

series is briefly discussed.

6.1. Regional analysis

Regional flood frequency analysis dates back many

decades, revolving around the somewhat nebulous

concept of an ‘‘index flood’’ [5,44]. In practice, it is as-

sumed that if annual peak flows were scaled (e.g., di-

viding by the sample mean of annual peak flow for a

particular site), then these index floods would have

identical distributions across all sites within a given re-
gion. Estimation typically proceeds by averaging (e.g.,

weighted by number of observations at a site) individual

site estimates (e.g., based on PWM) to obtain a single

regional estimated flood distribution [42]. Local quan-

tiles estimates can be obtained by applying the inverse

operation to scaling (i.e., rescaling the quantile derived

from the regional flood distribution). In practice, much

evidence indicates that regional analysis produces more
accurate site quantile estimates than those based on

single site data alone [41]. Although regional analysis

originated with floods in mind, the same approach has

been applied to precipitation extremes [10]. Sometimes,

covariates are incorporated into regional analyses. For

example, Buishand [9] modeled the location and scale

parameters of the Gumbel distribution for annual

maximum snow depth as linear functions of the winter
mean temperature; Smith [83] modeled the logarithm of

the scale parameter of the GP distribution for high flows

as a linear function of the basin size. More generally, the

method of least squares (unweighted, weighted, or gen-

eralized) is used to relate site quantities (e.g., parameters

or high quantiles of extremal distributions) to physical

characteristics, such as catchment area and average an-

nual precipitation (e.g., [63]).
Various limitations of regional analysis have been

raised right from the start of its use [26], including the

distortion that arises from dividing the peak flows by

their sample mean instead of the unknown population

mean [90,91], spatial heterogeneity of regions (i.e., the

distribution of scaled flows not being identical across

Fig. 10. Q–Q plot for fit of GP distribution to annual peak flow of Salt

River conditional on Darwin pressure (line of equality indicates perfect

fit).
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sites [61]), and spatial dependence of high flows [41,90].

Nevertheless, it is rare that regional analysis has been

expressed in terms of a formal statistical model (e.g.,

including explicit assumptions about how the par-

ameters of the GEV distribution vary within the region).
As an example of a formal model for regional anal-

ysis of extremes, consider the GEV distribution with

parameters, lðsÞ, rðsÞ, and cðsÞ, where the two-dimen-

sional index s ¼ ðs1; s2Þ indicates the location of a site

within a given region. In regional analysis, these pa-

rameters would not be estimated separately site by site,

but jointly with the imposition of constraints on the

parameters, such as lðsÞ and rðsÞ varying with s but
cðsÞ ¼ c, for all s. Buishand [10] fit such a model by ML

to annual maxima of daily precipitation amount at a

number of sites, among other things obtaining stronger

evidence of heavy tails than any single site analysis

would permit. He also considered the case of the addi-

tional constraint of rðsÞ=lðsÞ being independent of s

(i.e., consistent with the traditional form of index flood)

(recently, Sveinsson et al. [91] fit the same form of
model). Similarly, Smith [83] fit the GP distribution by

ML, say with parameters rðsÞ and cðsÞ, to high flows,

likewise constraining the shape parameter (i.e., cðsÞ ¼ c).
As an example of how regional analysis could be

extended to incorporate a trend, let the time-dependent

parameters of the GEV distribution be denoted by

lðs; tÞ, rðs; tÞ, and cðs; tÞ, at site s and time t. A linear

trend in the location parameter within the region could
be represented as lðs; tÞ ¼ l0ðsÞ þ l1t. Here the intercept

l0ðsÞ depends on the site s, but the slope l1 is assumed

constant within the region.

Why has this constrained ML approach not been

applied more in practice for regional analysis? One

reason is that the formulations to date have been pred-

icated upon the assumption of spatial independence (for

an exception, see [64]). Yet high flows are known to
exhibit significant positive correlations across space

(e.g., correlations of roughly 0.2 or higher [41]). While

neglecting such dependence would have little, if any ef-

fect on point estimates of quantiles, it does result in an

underestimation of the standard errors of such esti-

mates. Nevertheless, even when spatial dependence is

taken into account, a net gain in accuracy over single

site analyses should be obtained.
Methodological approaches for dealing with spatial

dependence of extremes are still in a rudimentary stage

of development. Although some directions are promis-

ing, so far they leave something to be desired, either with

respect to compromising the statistical theory of ex-

tremes or with respect to hydrologic realism. Within the

hydrologic literature, one approach has been to exam-

ine the scaling properties of quantiles of peak flow,
searching for some type of invariance principle as the

basin size varies [36,67,84]. Such empirical scaling be-

havior is then used to infer the form of underlying sto-

chastic model (i.e., with the appropriate scaling

properties). This approach does not make explicit use of

the statistical theory of extremes; moreover, distribu-

tions such as the lognormal have been assumed that are

not flexible enough for modeling extreme tails.
Within the statistics literature, models for how ex-

tremes ought to vary as a function of the spatial area

have been devised through extension of extreme value

theory [18]. The ‘‘max-stability’’ property, which can be

viewed as an invariance principle for extremes, has been

generalized from the univariate and multivariate cases to

a form appropriate for spatial extremes. With the mo-

tivation being the extremal behavior of spatially aggre-
gated precipitation, the model includes the property that

the maximum value over time at an individual site

within the region is approximately GEV distributed with

parameters lðsÞ, rðsÞ, and cðsÞ. Under the simplifying

assumption that the shape parameter is constant over all

sites within the region (i.e., cðsÞ ¼ c), the distribution of

the maximum value over time of the areal-averaged

process (say, averaged over region S with area DS) is
likewise approximately GEV with the same common

shape parameter cðSÞ ¼ c but with location and scale

parameters, lðSÞ and rðsÞ, that are not simply given by

the spatial averages of the corresponding site values,
�ll ¼ ð1=DSÞ

R
lðsÞds and �rr ¼ ð1=DSÞ

R
rðsÞds, but also

depend on a measure of the spatial dependence at high

levels (somewhat analogous to the so-called ‘‘extremal

index’’ that measures the temporal dependence of ex-
tremes [2]).

Before such an approach would be readily applicable

to spatial hydrologic processes, the methodology needs

to be further developed, including diagnostic checks on

model assumptions. Still it would be useful to reconcile

the scaling properties that arise from the statistics of

extremes for spatial processes with those that have been

empirically derived in hydrology.

6.2. Bayesian estimation

Consideration of Bayesian methodology might nat-

urally arise in the estimation of hydrologic extremes for
several reasons (Chapter 9 in [15]). As mentioned in

Section 3.3, the large-sample approximate expressions

for standard errors of ML estimates can be unreliable in

practice. Moreover, in the estimation of events such as

floods, historical information is often available that,

while being of lower quality than more recent flow

measurements, ought to be incorporated into the anal-

ysis. The Bayesian paradigm is well suited to deal with
both of these circumstances. With recent advances in

numerical methods for Bayesian estimation (i.e., Mar-

kov Chain Monte Carlo (MCMC)), the approach is

feasible for a rich variety of model structures [13].

Yet the incorporation of Bayesian methods into the

statistics of extremes has not been very prevalent so far,
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with applications focused on hydrologic extremes being

quite rare. Coles and Tawn [19], in a Bayesian analysis

of extreme daily precipitation at a single site that makes

use of prior information elicited from an expert hy-

drologist, obtained a 95% credible interval (i.e., Baye-
sian analogue to a confidence interval) for the 100-yr

design value roughly half as wide as the corresponding

confidence interval. Despite resistance to the use of

historical information about floods [44], approximate

Bayesian methods (termed ‘‘generalized’’ ML) that

combine historical information with more recent high

flow measurements have appeared in the hydrologic

literature [46].
Bayesian estimation can also help deal with the spatial

modeling of extremes, a topic just discussed in the con-

text of regional analysis, enabling models to be fitted for

which ML is intractable. Casson and Coles [13] em-

ployed the technique of MCMC to obtain Bayesian es-

timates for a model in which spatial dependence among

high levels is induced solely by conditioning on a latent

(‘‘hidden’’) process. For an application to high winds
associated with hurricanes, as simulated by a numerical

meteorological model, they showed that taking into ac-

count the spatial characteristics of extremes yields a

substantial reduction in the length of confidence intervals

for high quantiles. Ideally, actual observed covariates

could be incorporated into such a statistical model

(along with, or in place of, the latent process) to make the

representation of spatial dependence more realistic.

6.3. Multivariate extremes

Within the last decade or so, the extension of the

univariate statistics of extremes to the multivariate case
has been well developed within the statistics literature

(Chapter 8 in [15,17]). Yet the applications of the sta-

tistics of multivariate extremes to hydrology so far have

been rather limited, in part because of the complexity of

the theory. The central issue in multivariate extremes is

how to measure the dependency among extreme levels of

the variables involved [20]. This problem is somewhat

analogous to that of temporal dependence at high levels
in the case of univariate extremes.

As a compelling example of the need for a multivar-

iate theory, consider the extreme event of the failure of a

dike. As de Haan and de Ronde [37] pointed out, dike

failure is a function two dependent variables, still water

level and wave height, whose combination must be ex-

treme for the dike to fail. Hydrologic applications have

generally dealt with bivariate extremes, the most tract-
able situation. For example, Yue [100] used the Gumbel

logistic model for bivariate extremes to model the joint

distribution of annual maximum storm peak and total

storm amount, observing that hydrologic engineering

design and management requires more information

about a storm than just its peak intensity. In a similar

vein, Adamson et al. [1] portrayed floods as ‘‘intrinsi-

cally multivariate random events, characterized not only

by their peak flow, but also by their volume and the

duration of discharge above critical thresholds’’ (p.

2825). Such information is needed to make realistic as-
sessments of economic damage from floods.

6.4. Unified statistical modeling

Quite a large effort has been devoted to the develop-
ment of rather elaborate stochastic models for hydro-

logic variables, such as precipitation or streamflow [80].

Yet such models are generally based on thin-tailed dis-

tributions (e.g., exponential, gamma, lognormal), and

consequently fail to capture any heavy tails. For exam-

ple, Rodr�ııguez-Iturbe et al. [80] found that although a

particular form of Poisson clustering (i.e., Bartlett–

Lewis) model for precipitation has satisfactory aggrega-
tion properties, it still fails to produce a heavy enough

tail for the distribution of the annual maximum of hourly

or daily precipitation amounts. Similarly, Xu et al. [99]

determined that although a chain-dependent Markov

correlation pulse model for daily streamflow satisfacto-

rily reproduces many short-term statistics, it still does

not represent the distribution of annual peak flow well.

One somewhat ad hoc approach to counteract this prob-
lem is to replace the upper tail of the model distribution

with the GP (e.g., Cameron et al. [12] did so for hourly

precipitation amount). Although such an approach is

effective, it entails the estimation of additional parame-

ters. Moreover, it is not clear how to extend this ap-

proach to allow for any temporal dependence of extremes

(i.e., clustering of exceedances of a high threshold).

7. Discussion

The primary theme of this paper concerns how recent

developments in the statistics of extremes can be applied

not only to improve the rigor of hydrologic applications,

but to make such analyses more physically meaningful.

In terms of methodology, these developments primarily
relate to ML estimation in the presence of covariates.

From the perspective of hydrology, much remains to be

done. In particular, we have not dealt with the issue of

the physical basis for functional relationships between

parameters of extremal distributions and covariates, as

well as the physical interpretation of any such statistical

models that are fitted to hydrologic extremes.

What has been done is to provide a more rigorous
methodology by which trends in hydrologic extremes,

with the anticipated intensification of the hydrologic

cycle as part of global climate change, can be routinely

incorporated in extreme value analyses. We have also

linked the downscaling of hydrologic extremes with the

statistical theory of extreme values. In the future, it is
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anticipated that regional analysis of hydrologic extremes

can be improved through use of constrained ML esti-

mation, as well as explicit modeling of spatial depen-

dence. It is also anticipated that uncertainties in the

statistical estimation of hydrologic extremes will be
more realistically quantified through the use of Bayesian

methods. Finally, it is hoped that a unified statistical

modeling approach can eventually be devised, in which

the conventional stochastic models for hydrologic time

series explicitly reflect what we know about the statis-

tical characteristics of hydrologic extremes.
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Appendix A. Maximum likelihood estimation

Eq. (5) for the joint density of the occurrence of ex-

ceedances of a threshold and the amount of excess over

the threshold follows directly from the point process

representation. Here we only provide a heuristic argu-

ment (for a similar derivation, see Chapter 7 in [15]).
The rate parameter of the Poisson process for the oc-

currence of exceedances of the high threshold u is now

written as hk, where the time scaling constant h is chosen

so that k corresponds to the rate for the time period over

which the maximum is being taken. The distribution of

the excess over u is GP with scale parameter r� and

shape parameter c on the ðu;1Þ (i.e., distribution

function in Eq. (4) with x� u in place of x).
The joint density function f ðx; z; k; r�; cÞ can be ex-

pressed as:

� ln f ðx; z; k; r�; cÞ
¼ zfln r� þ ð1þ 1=cÞ ln½1þ cðx� uÞ=r��g
� z ln k þ hk; 1þ cðx� uÞ=r� > 0: ðA:1Þ

The first term in Eq. (A.1) is the negative log density

function for an excess over threshold (i.e., differentiating

GP distribution function in Eq. (4) with respect to x),
multiplied by the indicator variable z (because an excess

value only arises conditional on an exceedance having

occurred). The remaining two terms in Eq. (A.1) con-

stitute an approximate expression for the negative log

probability function of the indicator variable z for the

occurrence of threshold exceedances, except for a term

that does not depend on the parameter k. That is, for the
Poisson process governing occurrences:

� ln½PrfZ ¼ zg�  hk � z lnðhkÞ; as h # 0: ðA:2Þ
The relationships between the parameters, k, r�, and

c, in the point process representation and the par-

ameters, l, r, and c, for the GEV distribution of the

maximum is given by:

ln k ¼ �ð1=cÞ ln½1þ cðu� lÞ=r�; r� ¼ r þ cðu� lÞ:
ðA:3Þ

Starting with the Poisson–GP model, an expression for

the probability of no exceedances of the threshold u (i.e.,

equivalent to the maximum not exceeding u) can be

derived, the GEV distribution function evaluated at u

(but now expressed in terms of the parameters k, r�, and
c). Equating the location and scale parameters (recall

that the shape parameter is identical) gives Eq. (A.3).

Reexpressing Eq. (A.1) in terms of the parameters of the

GEV distribution, by means of Eq. (A.3), yields Eq. (5).
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