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Introduction Kingdom (U.K. Dept. of the Environment 1990Montana(\Weni-
ger et al. 1983 and, the largest one, in Milwaukee, in 1993,

Concern over global warming and consequences for regional hy-where an estimated 403,000 cases of intestinal illness and 54
drologic impacts are growing. A new study by the U.S. National deaths were reportedlacKenzie et al. 1994; Hoxie et al. 1997
Research CounciNRC) (2000 states that the Earth’'s surface Currently, general circulation mode{&CMs) can be used to
temperature has risen by 0.4-0.8°C in the last century, of which aestimate changes in climatic variables for various increasing CO
rise of 0.25-0.4°C has been observed in jUSt the last 20 yearSscenarios 0n|y over |arge areas, such as Contir(wnks 1993
Increasing temperatures can lead to an accelerating hydrologicthere are downscaling techniques being applied today to convert
cycle (i.e., to increased precipitation and evaporation Ievele  GCM predictions to regional scakEasterling 1998 but these
with great regional differencetarl et al. 1996; Manabe 1997,  approaches still lack the temporal resolution needed in hydrologic
Brutsaert and Parlange 199&arl et al. (1996 demonstrated for  jmpact studies. Also, the high spatial variability of past precipita-
most parts of the U.S. an increasing trend in annual precipitation tion trends suggests that these models are probably inadequate for
over the last century, although some partwstly in the west 6 hurpose of impact studies, where future expected behavior of
have had a decrease in rainfall. Despite all these apparent regional|imaic variables is needed as input to models dealing with gen-
differences in annual precipitation, an increase in precipitation erally small geographic areas, such as a particular watershed. One
variability is universally discernible over the contiguous U.S. .t oo approach adopted by climate change impact analysts is
(Houghton et al. 1996 . o to consider a wide range of possible scenarios of future climate

. A prollonged ghange in the precipitation and temperature re- (Wilks 1992; Katz 1996; Mearns et al. 1997 typical way of
gimes will certainly have an effect on future watershed runoff achieving this goal is to take existing records of climatic variables

patterns, which, in turn, will affect soil erosion rates, poIIutio_n by (typically temperature and precipitation recordsd adjust them
industrial and wastewater effluents, and pathogen loading ©+5 reflect possible future climate chang®¥ilks 1992. While in

streams, just to mention a few possible direct consequences ;
S the last century over the conterminous U.S. annual mean surface
(Fraser et al. 1998 From a drinking water management stand-

point this last prospect is of special concern in light of recent temperatures and precipitation variance expressed a generally in-

findings (Graczyk et al. 2000 Rainfall and runoff have been im- creasing trend, there is no guarantee that these trends will con-

plicated in individual waterborne disease outbreaks in the United tinue in ‘h‘? near future, even more so because mean an'nual tem-
peratures in the last century show an actually decreasing trend

over large regions within the continental U&arl et al. 1996.
As a result, impact studies need to consider both increases and
decreases in the mean and variability of climate variatNesarns
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possibly assist in future land use management planning in the p. . o
watershed. In '} =A+B; co{— +C; sin( —)

1-P;, 1
Precipitation-Temperature Models i=0,1;j=1,...,12 (5)

Present day climate is represented by time series of both hourlywhere the unknown parameteks, B;, andC; were obtained via
and daily precipitation as well as daily mean temperature values.weighted least squares with the weights given(Kgtz and Par-
These series are considered as representations of a stochastic préange 199%
cess with parameters estimated from the observed values. A cli- A A .
mate change scenario is produced by adjusting the parameters of gi=ni.Pii(1=Piy), 1=0.1 6)
these stochastic processes in accordance with the assumed futurggain, a function of the month. The smoothed monthly transition
changes in the statistics of these time se(i&flks 1992. Then probabilities were finally obtained by inverting the logistic trans-
30 years of dailyand consequently houplyrecipitation as well formation.

as daily mean temperature values are generated in the Monte For changing the parameters according to the prescribed cli-
Carlo sense to represent both present and altered climates. Thenate scenario, the following relationships were utilized:

derived time series will become inputs later in the watershed

model to obtain direct runoff time series distributed within the m(Sy) =NP,ab (7)
catchment. Below we follow Wilk§1992 and Katz and Parlange  wherem=mean;Sy=monthly precipitation sum ol days; and
(1999 to construct first the daily and then the hourly time series. 1+d

Var(Sy)~NP,ab? 1+a(1—PW)m (8)
where Var denotes the variance of the monthly precipitation sums
(Wilks 1992.

The daily mean temperature values were represented by a first-
order autoregressive proce@tilks 1992

Simulation of Daily Values

The model used here is a version of a stochastic simulation of
daily weather variables first proposed by Richardsb®81) and
refined since by several authdii§atz 1996; Parlange and Katz
2000. The variables are precipitation occurrence and amount as
well as mean temperature. T ()=pTF(t—1)+e(t), i=01 9
Precipitation occurrence is assumed to follow a two-state,
first-order Markov chain with transition probabilitie®,;, the
probability that a wet day follows a dry day; am],, the prob-
ability that a wet day comes after a previous wet day. These ) ¢ >t
transition probabilities are allowed to follow a seasonal cycle, @ndom variable with zero mean and standard deviation(1

_ . 2\1/2 H :
which means that different months of the year have different val- —P°)~ (Box et al. 1994 Note thalp is a function of the month
ues for the transition probabilities. For each month of the year the and assumed to be the same for wet and dry d#jitks 1992.
probability of a wet day is obtained hikatz 1996 The monthly means and standard deviations in the standardization
Pos Lo iMoo
P=— (1) Ti = — i=0,1 (10)
w l+ POl_ Pll |

while the so-called persistence parameter is given by

where T = standardized daily mean temperature for wiet {)
and dry (=0) days of the monthi=day of the month;p
=autocorrelation value at lag one; amd-normally distributed

generally exhibit a well-defined annual cycle; thus their estimated
values were smoothed by a cosine w&Wilks 1992 similar to

d=P1;—Por (2) Eq. (5), except that this time no logistic transformation or weight-
It is also a function of the month. Precipitation amo@nton a ing was required since each month has roughly the same number
wet day is assumed to follow a gamma distribution of observations, unlike the number of wet days each month may
a1 have on average in E@4). For generating daily mean tempera-
Hr)= (r/b)2=*exp(—r/b) 3) ture values Eq(9) was used, and the final values were obtained
bI'(a) by inverting Eg.(10) with the smoothed means and variances

separately for wet and dry days. The following equation was used
when modification of the interannual variance was required
he (Wilks 1992; Mearns et al. 1997nder a given climate scenario:

with parameters (the shape paramejesndb (the scale param-
eten. The shape parameter can be estimatea-as/b, wherem
is the mean daily precipitation on wet days in a given mont

while the scale parameter is estimatecbassa™ Y2, whereo is o4(1+p)
the standard deviation of the precipitation amounts on wet days in Var((T))~ N(i=p) (11)
a given month. The daily weather generator thus has four param-
eters for each month. where(T)=monthly mean temperature; ang= standard devia-

The maximum likelihood estimate of the transition probabili- tion of the mean daily temperature values for a certain month of
ties is the year.

Pij:nij/ni, (4) o
) . Structure of Hourly Precipitation Generator

wheren;; denotes the number of times a transition from stdte
statej occurs, and);. =n;y+n;; (Katz and Parlange 1995Since Hourly precipitation transition probabilities and amounts are as-

these monthly transition probabilities may follow seasonal cycles sumed to be a function of the hour only and not of the month.
we smoothed the logistic transform of the estimated values by aHourly transition probabilities can be treated similarly to daily

cosine wave in the fornfWoolhiser et al. 1993; Katz and Par- transition probabilities with the obvious distinction between hours
lange 199% of the day and months of the year; thus the earlier equations
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remain valid with this in mind. The probability that tieh hour 0.04
of the day is wet can be obtained from the following recursion

0.03}
(Katz and Parlange 1995
002t
Pyw(h+1)=Pg(h)+Py(h)[P11(h) = Pgy(h)]
h=1,...,24 (12) 001,
with P,,(25)=P,,(1), which poses a system of linear equations 0.8
with 24 unknowns.
While on a daily time scale it is generally assumed that the 08¢
daily precipitation amounts are independent, it is not so with 04l
hourly precipitation amounts. Before modeling hourly intensities
a power transform of the values is generally required to allow for 02, s s — 1 20 %
any skewness in their distributidiKatz and Parlange 1995
_ Fig. 1. Observed(and smoothedand modeled(continuous ling
*(h)= P <p<
r*(m=[r(h]" for somep, 0<p=1 (13) hourly probabilities of daily dry-to-wet and wet-to-wet transitions,
where the power transformed intensitie$ Y are assumed to fol-  Klingerstown, Pa.

low a normal distribution. For choosing the corrgctalue Hin-
kley’'s index (1977 is calculated fop=1/2, 1/4, 1/8. . ., etc.

m—md runoff response of the Mahantango Creek watershed under altered
Hpo= - (14) climate to the one under the present climate, first 30 years of daily
precipitation values and then 30 years of daily mean tempera-

and thep retained, which results in the index value closest to zero tures, both meant to represent the present climate, were generated,
(Katz and Parlange 1993Herem is the meanmd the median, the latter based on knowledge from the daily generated precipita-
and o the standard deviation of the hourly intensities. An opti- tion time series of whether a day was wet or dry. The present day

mum value ofp=0.5 resulted with our data of 5 years of hourly weather generator used parameters obtained from 5 years of mea-

precipitation at Klingerstown in the Mahantango watershed. sured hourly precipitation for the hourly precipitation generation

The transformed and then standardized intensities within a and 43 years of daily precipitation sums and mean temperature
given wet spell are modeled as a first-order autoregressive pro-values measured at Newport, Pa., for the generation of daily

cess, similar to the mean daily temperature values in(8qThe weather variables. To link generated hourly precipitation intensi-
autocorrelation coefficient is assumed to be independent of theties to generated daily values, 300 years of hourly precipitation
hour of the day(Katz and Parlange 1995 intensities were generated and stored in a file in a daily structure.

Before generating intensity values the transition probabilities For each wet day from the daily weather generator the days from
were smoothed by a cosine wave, similar to Es). (except the the hourly precipitation file were retrieved that had a daily sum
obvious difference that the hours go from 1 to).2%he hourly (by cumulating the hourly intensities for the dagqual to the
mean (n*) and standard deviationo{) values of the trans-  daily weather-generator-obtained value plus/minus a certain toler-
formed hourly intensities were also smoothed by a cosine wave inance value. From the so obtained daily values of hourly intensities

the form one realization was picked randomly and considered as the hourly
o 2mh distribution of intensities for the given wet day. This procedure
m* (h)=A* +B% cos(ﬁ +C¥ sin( W) (15) provided us with a realization of 30 years of hourly precipitation
intensities that was considered to be representative of the present
2mh 2xh day climate.
o*(h)=A%+B* cos(W +Cx sin(ﬁ) (16) Fig. 3 displays the observed, fitted, and model-generated cu-

mulative distribution functiongCDF9 of the daily precipitation
The parameters were obtained via weighted least squares usinggmounts in June at Newport, Pa.

Eqg. (6) for the transition probabilities and the equatigii(h)
=n;.(h) for the means and standard deviations in E5) and
(16). A word of caution is that the standard deviations are com-

2
puted about the cosine wave fitted to the mean hourly intensities
and not about the individual hourly meafisatz and Parlange §1'9'
1995. Note also thatp for the transformed and standardized €
hourly intensities is obtained by the smoothed values of the =18
hourly means and deviations. 17
Figs. 1 and 2 display the observésimoothed and modeled 0
hourly probabilities of dry-to-wet and wet-to-wet transitions as 0.8
well as precipitation intensities and their standard deviations for _
the day at Klingerstown, Pa. EO‘G I
Eoal
Coupling of Daily and Hourly Weather Generators 0.2 s - s -
0 5 10 hour 15 20 25

The watershed model described below transforms the cIimateF. 5 Ob d h d model tehtermittent
variables into runoff. The model runs on an hourly basis which is 9. 2. servedand smoothedand model-generatehtermitten

why an hourly precipitation generator is needed. To compare theIlne) hourly intensities and standard deviations, Newport, Pa.
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Fig. 3. Cumulative distribution functions of observed, fitted, and
model-generated daily precipitation amounts for June, Newport, Pa.

Description of Watershed Model

The watershed model used in this study was published by Sz-
ilagyi and Parlang€1999. Here we summarize the basic compo-
nents of the model. For a more complete description, please refer
to the above publication. The model treats the watershed as a
cascade of partially parallel nonlinear reservoirs including both ) _
overland and channel flow. Inputs to the model include hourly Fig. 4. Eqs&ble runoff paths for a fourth-order catchment and spatial
precipitation intensities, mean monthly temperatures, soil type, connectivity of storage elements for Mahantangq Cre_ek Watershed,
land-use/land-cover type, stream network, and elevation. ThePa SC, subcatchment; C, channel sectivom Szilagyi and Par-
model has 19 parameters from which 12 can be obtained through@ng9e 1999
Geographic Information System analysis and the application of
the Brutsaert-Nieber techniqu&977 of estimating aquifer pa-  “the possible role of changes in variability is an important uncer-
rameters, both independent of the rainfall-runoff record. The tainty in our knowledge of possible impacts of climate change”
model outputs are simulated direct runoff, channel flow, infiltra- (Mearns et al. 1997 these changes in variability, although yet
tion, evaporation, interception, soil moisture change, groundwatermostly unknown, must be included in climate change scenario
recharge, and base flow, all on an hourly basis and distributed instudies. It is the more so because changes in climate variability
space by subcatchments. The subcatchments are obtained througiay have a more profound effect on watershed dynamics than
the Horton-Strahler ordering of the stream network plus consid- changes in the mean climat®learns et al. 1997
ering which runoff path a certain subcatchment or stream section The climate scenarios considered here belong in one of two
belongs to. Fig. 4 displays the possible runoff paths a drop of rain categories by considering) variance change only2) mean and
may travel before reaching the outlet in a fourth-order stream variance change. In scenario setup we follow Mearns €1887)
network, such as the Mahantango Creek watershed. Fig. 5 showsvith minor modifications. In Categoryl) we first change the
the spatial distribution of the subcatchments within the Mahan- daily temperature variance by 0.33, 0.5, 2, and 3 times the base-
tango Creek basin. line variance, which is represented by 30 years of generated data
The model was calibrated with one year of data and validated mentioned above. For precipitation, two scenarios are considered
over four years(Szilagyi and Parlange 1989The correlation for variance change. In both cases the annual precipitation is left
between observed and simulated monthly runoff for the outlet is at its baseline level. First the frequency of precipitation and the
above 0.9 for the five years combined. For the purpose of the scale parameter were changed; and in the second precipitation
present study the model is to be repeatedly run for 30 years at ascenario the persistenéd) of precipitation occurrence was modi-
time under present and altered climate scenarios, and the resultindied. In both cases the parameters were changed to bring the
direct runoff is to be compared among the subcatchments andmonthly variance to 0.46, 0.7, 1.3, and 1.74 times the current
between climate scenarios. (baseline level.
In the second category of scenarios first the annual mean tem-
perature was increasddn a daily basisby 2 and 4°C with no
Climate Scenarios change in variability. In the second scenario the variance was
doubled on top of the mean increases, while in the third case
The Intergovernmental Panel on Climate Change refWetson scenario the variance was halved. Next, monthly precipitation
et al. 1996 highlights that “changes in the total amount of pre- was increased by a factor of 1.2 and 0.8 on a daily basis, which
cipitation and in its frequency and intensity directly affect the entails a change in the variance representing an increase in the
magnitude and timing of runoff and the intensity of floods and scale parametds of the gamma distribution by a factor of about
droughts; however, at present, specific regional effects are uncer-1.2 and 0.8. Lastly, monthly precipitation variance was further
tain. Relatively small changes in temperature and precipitation, increased/decreaséhy further changing the scale paramegtier
together with the nonlinear effects on evapotranspiration and soil 2 and 0.5, respectively, of the baseline value. Table 1 summarizes
moisture, can result in relatively large changes in runoff.” Since the scenarios considered.
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Fig. 5. Horton-Strahler ordered stream network with the corresponding subcatchments marked according to possible pathways, Mahantang
Creek Watershed, P&rom Szilagyi and Parlange 1999

For each scenario considered, 30 years of daily and hourly each scenario for comparison and analysis. Excluding the first
precipitation intensities as well as daily mean temperature valuesyear’s data in each scenario is necessary because of the unknown
were generated. The watershed model was run under each scanitial conditions(e.g., soil moisture, base flow status, direct run-
nario and the direct runoff values of each subcatchment wereoff for each subcatchmenbn the watershed. After running the
retained for further analysis. The analysis of runoff data started watershed model for a whole hydrologic year, more realistic ini-
with the second year’s October, the starting month of the hydro- tial conditions can be expected. This is general practice in model
logic year. This meant 28 years of runoff data to be retained underinitialization.

Table 1. Climate Scenarios Considered

Case Variable changed Mgc=M Vo=V
a Daily temperature variance Unchanged x0.33

b x0.5

c X2

d X3

e Monthly precipitation variance Unchanged x0.46

f xX0.7

g xX1.3

h X1.74

i Persistence of precipitation occurrence Unchanged x0.46

j x0.7

k x1.3

| X1.74
m Daily mean temperature +2°C Unchanged
n +4°C Unchanged
0 +2°C X2

p +4°C x2

q +2°C X0.5

r +4°C x0.5

S Monthly precipitation xX1.2 xX1.4

t x0.8 X0.9

u x1.2 X2

v X0.8 X0.5

Note: mq, is the climate scenario meaWy, is the climate scenario variance, both shown in relation to the baseline valaedV.
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Table 2. Mean Annual Precipitation and Runoff Values under Present the fourth-order subcatchment has the small@0 mm/year
Day Climate and subcatchment 1b the largé$28 mm/year mean annual di-
rect runoff values, a difference of about 15-20%. These differ-

Mean annual watershed precipitation T;T:])SO years ences can be explained by the results shown in Table 3. The
fourth-order subcatchment of this watershed has the largest root-
Measured at Newport, Pa1946—1998 1008 ing depth(a function of both vegetation and soil typand the
Weather generator simulated 1013 largest saturated hydraulic conductivity values, while subcatch-
Measured runoffincluding base flowfrom the 495 ment 1b is just the opposite. This means that the former can
watershed accommodate more precipitation without producing much runoff
Simulated runoff under present climefacluding base 454 and can also transfer soil moisture toward the saturated zone
flow) faster than the latter. Also of interest is that this difference in
Simulated direct runoff under present climate 397 direct runoff (although of changing magnitugbetween the two

subcatchments is maintained throughout the climate scenarios

Simulated direct runoff under present climate by subcatchments ) .
consideredFig. 6).

Fourth order 360 . L
. The largest difference in direct runoff between subcatchments
Third order 390 . .
2a 416 (Fig. 6) can be found under climate scenari@able ) (e) and(f),
when precipitation variance was reduced. The subcatchments pro-
2b 369 o . .
1a 427 duced similar direct runoff responses in cagsgsand (u), both
with enhanced precipitation variances.
1b 428 . . T
1 384 So far we did not take into account that annual precipitation
1d 413 may change among climate scenarios. As well as the total amount

of direct runoff, the portion of precipitation that becomes direct
runoff under a given scenario can be of interest too. Fig. 7 com-
Model Results pares these direct runoff ratios. The largest and smallest differ-
ences between subcatchments stay with the same climate sce-

The weather-generator-simulated mean annual precipitation andharios as before.

the watershed-model-simulated mean annual runoff values by Another interesting finding comes from Fig. 8, which shows
subcatchments under the present day climate are listed in Table 2the ratio of climate scenario direct runoff to that of present day
The weather-generator-simulated hourly precipitation intensities (baseling conditions. Direct runoff from subcatchments 4 and 1b
resulted in mean annual precipitation very close to the observedmove in opposite directions under the scenarios. The subcatch-
value (1946-1998 at Newport, Pa. Simulated watershed runoff, ment with the smallest direct runofi.e., 4, see Fig. 6generally
however, is about 9% less than observed mean annual runoff inchanges the least when future direct runoff is below the baseline
the past 30 years near Dalmatia, Pa. The most likely reason is thavalue, and the most when future direct runoff is above baseline.
the watershed model was calibrated with hourly precipitation val- The opposite is true for the subcatchméhb) with the largest

ues measured near Klingerstown, Pa., within the watershed. Un-baseline runoff. This is so because the smallest-runoff-producing
fortunately, long-term precipitation, needed for the daily weather subcatchment has the highest rooting depth and hydraulic conduc-
generator, is not available at this location. The nearest climatetivity (this latter is important in deep percolatjoand so only
station with long-term, good quality daily precipitation data was very large precipitation events can produce runoff, because here
found at Newport, Pa., about 25 km south-west of Dalmatia. Pos- the soil can accommodate the most water of all the subcatchments
sible difference in annual precipitation between the two stations, and also can channel it deeper into the soil, where vegetation
plus the fact that the watershed model was run with a “fictitious” cannot access it for transpiration. A drier climate cannot affect
series of hourly precipitation could easily explain the observed deep percolation and thus results in small changes in runoff. In a
discrepancy in mean annual runoff. Note that this runoff contains wetter climate, however, the soil gets closer to saturation in gen-
the base flow contribution of the watershed, while the direct run- eral, so that even a smaller precipitation event can saturate the
off values of the subcatchments do not. That is why the distinc- soil, resulting in runoff, and leading to relatively large changes
tion between runoff and direct runoff is used in the table and when compared to the baseline level. This exemplifies the impor-
throughout the text. Note also that in the Mahantango watershedtance of the nonlinear effect of soil moisture on runoff generation:

Table 3. Geographic Information System-Derived Effective Porosity, Field Capacity, Saturated Hydraulic Conductivity, Rooting Depth, and Area,
at Mahantango Creek, Pa.

Effective Saturated hydraulic

porosity Field capacity conductivity Rooting depth Area
Subcatchment (%) (%) (10" ms™h (m) (km™?)
Fourth 455 27.7 21 1.53 34
Third 44.9 28.6 1.7 1.52 47
2a 44.4 28.7 1.6 1.42 101
2b 46.3 28.1 19 1.46 13
la 46.2 29.2 15 1.24 32
1b 46.4 29.1 1.6 121 16
1c 44.4 27.9 1.9 1.53 152
1d 47.6 28.8 1.7 1.20 28
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Fig. 8. Mean annual direct runoff by subcatchments under different

Fig. 6. Mean annual direct runoff by subcatchmeititsm) under imat nari ratio of present db | rdered by in
different climate scenarios, ordered by increasing mean annual directcrI aiﬁ s:;:a anloi:sal?jilf otrpnesftfe t 3 \t/_aLu?ts,ror ?a? ¢ y In- in
runoff at outlet(solid line): Letters relate to cases in Table 1; “bl” creasing mean annu ect runoft at outiet. Letiers refate fo cases

] Table 1; “bl” marks baseline values
marks baseline values ’

the same amount of effective precipitation can produce literally ide range of climate scenarios. The watershed model applied

no runoff when the soil is dry, but can result in large runoff assumed no changes in land cover and land use within the catch-

response provided the soil is already close to saturation. ment. Based on the watershed model results the following can be
The largest difference between subcatchment responses can bgiated:

found in casesg), (s), and(u), all with larger than baseline vari- + sypcatchment direct runofinm/yeay within the watershed

ance in precipitation plus elevated annual precipitation in the lat- g1 differ by about 17% under the present climate. This dif-

ter two cases, while the smallest differences are in céseand ference may increase to 20% when daily/monthly precipitation

(@), both with reduced precipitation variances. variance isreduced

e Subcatchments with the smallest/largest direct runoff will have
the smallest/largest direct runoff under all the climate sce-
narios considered; and

The direct runoff responses of the different subcatchments of the® The relative changes in direct rundife., the ratio of sub-

Mahantango Creek, Pa., watershed have been simulated under a catchment direct runoff under future and present day climate
conditiong are generallythe smallest for the smallest runoff

“producer” (i.e., subcatchment)avhen future direct runoff of

Summary and Conclusions

048 ———————F+—+ T+ . . .
* 4th order u the subcatchment is less than the corresponding baseline value,
|| + 3d and largest when future direct runoff is more than the corre-
0.46 O 2a 2} g
X 2b sponding baseline value. The opposite behaviogdaserally
0aal| 3 12 2 . true for the subcatchment with the largest present day direct
¥ 13 sRBEal v runoff (i.e., subcatchment 1b
c 042} a RRAR B x Our semidistributed watershed model indicates that future
§ " KO % changes in direct runoff can most likely be expected to differ
Z%a 0.4 g@ ggg $ Q*Q between different parts of the watershed. The majority of the
& ) BafT, \;$;§ climate scenarios considered produced subcatchment direct runoff
5038 g$$$v " in the Mahantango Creek, Pa., watershed, within 10% of the
& BHB+$ o x X KO v present day mean annual values. Watershed models such as the
0-36 svng e REF FREE one used in this study can be best used for locating areas within a
gk, F * catchment with the largest/smallest expected changes in direct
v
0347 OY ¥ ] runoff due to climate variations. This type of information can be
032l ¥ * ; useful for action plans in land use management, such as planning
o future livestock concentrations and thus pathogen loading to sur-
P I face water in the watershed.
T vtnprijeogmdkblecbaghitflsu

Fig. 7. Mean annual direct runoff by subcatchments as ratio of mean
annual precipitation under different climate scenarios, ordered by in-
creasing mean annual direct runoff at outlet: Letters relate to cases i
Table 1; “bl” marks baseline values
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Notation

The following symbols are used in this paper:

A,B,C = parameters of monthly precipitation model;
A* ,B* ,C* = parameters of hourly power-transformed pre-
cipitation model (P);
a,b = shape and scal@.) parameters of gamma
distribution;
d = persistence parameter;
f = gamma distribution;
g,9* = weight parameters;
H, = Hinkley’s index;
h = hour of day;
i,j = indices;
m, md = mean and median values;
n;; = number of times transition from statdo
statej occurs;
Pi; = probability of transition from statéto statej;
P, = probability of wet day in a month;
r,r* = precipitation(L) and power-transformed.f)
precipitation amounts;
Sy = monthly precipitation sum oN days(L);
T* = standardized daily mean temperat(re);
t = day within month;
V, Var = variance;
I' = gamma value of gamma distribution;
e = normally distributed variable;
p = autocorrelation coefficient; and
o = standard deviation.
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