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Sensitivity of Watershed Runoff under Humid Conditions
to Potential Climate Variations
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Abstract: A semidistributed watershed model is applied over the Mahantango Creek catchment in Pennsylvania to estima
changes in direct runoff under 22 different climate scenarios. It is shown how different subcatchments of the watershed may re
possible changes in the precipitation and temperature regimes. Subcatchments with the most unfavorable future runoff respon
identified where possible changes in land use management practices may be suggested.
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Introduction

Concern over global warming and consequences for regiona
drologic impacts are growing. A new study by the U.S. Natio
Research Council~NRC! ~2000! states that the Earth’s surfac
temperature has risen by 0.4–0.8°C in the last century, of whi
rise of 0.25–0.4°C has been observed in just the last 20 ye
Increasing temperatures can lead to an accelerating hydro
cycle ~i.e., to increased precipitation and evaporation levels! but
with great regional differences~Karl et al. 1996; Manabe 1997
Brutsaert and Parlange 1998!. Karl et al.~1996! demonstrated for
most parts of the U.S. an increasing trend in annual precipita
over the last century, although some parts~mostly in the west!
have had a decrease in rainfall. Despite all these apparent reg
differences in annual precipitation, an increase in precipita
variability is universally discernible over the contiguous U.
~Houghton et al. 1996!.

A prolonged change in the precipitation and temperature
gimes will certainly have an effect on future watershed run
patterns, which, in turn, will affect soil erosion rates, pollution
industrial and wastewater effluents, and pathogen loading
streams, just to mention a few possible direct conseque
~Fraser et al. 1998!. From a drinking water management stan
point this last prospect is of special concern in light of rec
findings~Graczyk et al. 2000!. Rainfall and runoff have been im
plicated in individual waterborne disease outbreaks in the Un
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Kingdom~U.K. Dept. of the Environment 1990!, Montana~Weni-
ger et al. 1983!, and, the largest one, in Milwaukee, in 199
where an estimated 403,000 cases of intestinal illness and
deaths were reported~MacKenzie et al. 1994; Hoxie et al. 1997!.

Currently, general circulation models~GCMs! can be used to
estimate changes in climatic variables for various increasing C2

scenarios only over large areas, such as continents~Wilks 1992!.
There are downscaling techniques being applied today to con
GCM predictions to regional scale~Easterling 1999!, but these
approaches still lack the temporal resolution needed in hydrolo
impact studies. Also, the high spatial variability of past precipi
tion trends suggests that these models are probably inadequa
the purpose of impact studies, where future expected behavio
climatic variables is needed as input to models dealing with g
erally small geographic areas, such as a particular watershed.
common approach adopted by climate change impact analys
to consider a wide range of possible scenarios of future clim
~Wilks 1992; Katz 1996; Mearns et al. 1997!. A typical way of
achieving this goal is to take existing records of climatic variab
~typically temperature and precipitation records! and adjust them
to reflect possible future climate changes~Wilks 1992!. While in
the last century over the conterminous U.S. annual mean sur
temperatures and precipitation variance expressed a general
creasing trend, there is no guarantee that these trends will
tinue in the near future, even more so because mean annual
peratures in the last century show an actually decreasing t
over large regions within the continental U.S.~Karl et al. 1996!.
As a result, impact studies need to consider both increases
decreases in the mean and variability of climate variables~Mearns
et al. 1997!.

In this paper we use the approach of Mearns et al.~1997! in
constructing mean and variance changes in recorded precipita
and temperature time series for the Mahantango Creek water
in South-Central Pennsylvania within the Susquehanna R
basin. A semidistributed watershed model~Szilagyi and Parlange
1999! is used to transform changes in the climatic variables~pre-
cipitation, temperature! to direct runoff distributed within the
catchment. These simulated mean annual runoff values wil
analyzed and compared between subcatchments to identify ru
response within the catchment with changes in the precipita
and temperature regimes. Finally, subcatchments with the larg
smallest expected changes in runoff response will be identifie
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possibly assist in future land use management planning in
watershed.

Precipitation-Temperature Models

Present day climate is represented by time series of both ho
and daily precipitation as well as daily mean temperature val
These series are considered as representations of a stochast
cess with parameters estimated from the observed values. A
mate change scenario is produced by adjusting the paramete
these stochastic processes in accordance with the assumed
changes in the statistics of these time series~Wilks 1992!. Then
30 years of daily~and consequently hourly! precipitation as well
as daily mean temperature values are generated in the M
Carlo sense to represent both present and altered climates
derived time series will become inputs later in the watersh
model to obtain direct runoff time series distributed within t
catchment. Below we follow Wilks~1992! and Katz and Parlange
~1995! to construct first the daily and then the hourly time seri

Simulation of Daily Values

The model used here is a version of a stochastic simulatio
daily weather variables first proposed by Richardson~1981! and
refined since by several authors~Katz 1996; Parlange and Kat
2000!. The variables are precipitation occurrence and amoun
well as mean temperature.

Precipitation occurrence is assumed to follow a two-sta
first-order Markov chain with transition probabilitiesP01, the
probability that a wet day follows a dry day; andP11, the prob-
ability that a wet day comes after a previous wet day. Th
transition probabilities are allowed to follow a seasonal cyc
which means that different months of the year have different v
ues for the transition probabilities. For each month of the year
probability of a wet day is obtained by~Katz 1996!

Pw5
P01

11P012P11
(1)

while the so-called persistence parameter is given by

d5P112P01 (2)

It is also a function of the month. Precipitation amount~r! on a
wet day is assumed to follow a gamma distribution

f ~r !5
~r /b!a21 exp~2r /b!

bG~a!
(3)

with parametersa ~the shape parameter! andb ~the scale param-
eter!. The shape parameter can be estimated asa5m/b, wherem
is the mean daily precipitation on wet days in a given mon
while the scale parameter is estimated asb5sa21/2, wheres is
the standard deviation of the precipitation amounts on wet day
a given month. The daily weather generator thus has four par
eters for each month.

The maximum likelihood estimate of the transition probab
ties is

P̂i j 5ni j /ni • (4)

whereni j denotes the number of times a transition from statei to
statej occurs, andni •5ni01ni1 ~Katz and Parlange 1995!. Since
these monthly transition probabilities may follow seasonal cyc
we smoothed the logistic transform of the estimated values b
cosine wave in the form~Woolhiser et al. 1993; Katz and Pa
lange 1995!
636 / JOURNAL OF ENVIRONMENTAL ENGINEERING / JULY 2002
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lnS P̂i1

12 P̂i1
D 5Ai1Bi cosS 2p j

12
D 1Ci sinS 2p j

12
D

i 50,1; j 51, . . . ,12 (5)

where the unknown parametersAi , Bi , andCi were obtained via
weighted least squares with the weights given by~Katz and Par-
lange 1995!

gi5ni •P̂i1~12 P̂i1!, i 50,1 (6)

again, a function of the month. The smoothed monthly transit
probabilities were finally obtained by inverting the logistic tran
formation.

For changing the parameters according to the prescribed
mate scenario, the following relationships were utilized:

m~SN!5NPwab (7)

wherem5mean;SN5monthly precipitation sum ofN days; and

Var~SN!'NPwab2F11a~12Pw!
11d

12dG (8)

where Var denotes the variance of the monthly precipitation su
~Wilks 1992!.

The daily mean temperature values were represented by a
order autoregressive process~Wilks 1992!

Ti* ~ t !5rTi* ~ t21!1«~ t !, i 50,1 (9)

whereTi* 5standardized daily mean temperature for wet (i 51)
and dry (i 50) days of the month;t5day of the month;r
5autocorrelation value at lag one; and«5normally distributed
random variable with zero mean and standard deviation,s5(1
2r2)1/2 ~Box et al. 1994!. Note thatr is a function of the month
and assumed to be the same for wet and dry days~Wilks 1992!.
The monthly means and standard deviations in the standardiza

Ti* 5
Ti2mi

s i
, i 50,1 (10)

generally exhibit a well-defined annual cycle; thus their estima
values were smoothed by a cosine wave~Wilks 1992! similar to
Eq. ~5!, except that this time no logistic transformation or weigh
ing was required since each month has roughly the same num
of observations, unlike the number of wet days each month m
have on average in Eq.~4!. For generating daily mean temper
ture values Eq.~9! was used, and the final values were obtain
by inverting Eq. ~10! with the smoothed means and varianc
separately for wet and dry days. The following equation was u
when modification of the interannual variance was requi
~Wilks 1992; Mearns et al. 1997! under a given climate scenario

Var~^T&!'
sd

2~11r!

N~12r!
(11)

where^T&5monthly mean temperature; andsd5standard devia-
tion of the mean daily temperature values for a certain month
the year.

Structure of Hourly Precipitation Generator

Hourly precipitation transition probabilities and amounts are
sumed to be a function of the hour only and not of the mon
Hourly transition probabilities can be treated similarly to da
transition probabilities with the obvious distinction between ho
of the day and months of the year; thus the earlier equati
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remain valid with this in mind. The probability that thehth hour
of the day is wet can be obtained from the following recurs
~Katz and Parlange 1995!:

Pw~h11!5P01~h!1Pw~h!@P11~h!2P01~h!#

h51, . . . ,24 (12)

with Pw(25)5Pw(1), which poses a system of linear equatio
with 24 unknowns.

While on a daily time scale it is generally assumed that
daily precipitation amounts are independent, it is not so w
hourly precipitation amounts. Before modeling hourly intensit
a power transform of the values is generally required to allow
any skewness in their distribution~Katz and Parlange 1995!

r * ~h!5@r ~h!#p for some p, 0,p,1 (13)

where the power transformed intensities (r * ) are assumed to fol-
low a normal distribution. For choosing the correctp value Hin-
kley’s index ~1977! is calculated forp51/2, 1/4, 1/8, . . . , etc.

Hp5
m2md

s
(14)

and thep retained, which results in the index value closest to z
~Katz and Parlange 1993!. Herem is the mean,md the median,
and s the standard deviation of the hourly intensities. An op
mum value ofp50.5 resulted with our data of 5 years of hour
precipitation at Klingerstown in the Mahantango watershed.

The transformed and then standardized intensities withi
given wet spell are modeled as a first-order autoregressive
cess, similar to the mean daily temperature values in Eq.~9!. The
autocorrelation coefficient is assumed to be independent of
hour of the day~Katz and Parlange 1995!.

Before generating intensity values the transition probabilit
were smoothed by a cosine wave, similar to Eq.~5! ~except the
obvious difference that the hours go from 1 to 24!. The hourly
mean (m* ) and standard deviation (s* ) values of the trans-
formed hourly intensities were also smoothed by a cosine wav
the form

m* ~h!5Am* 1Bm* cosS 2ph

24 D1Cm* sinS 2ph

24 D (15)

s* ~h!5As* 1Bs* cosS 2ph

24 D1Cs* sinS 2ph

24 D (16)

The parameters were obtained via weighted least squares u
Eq. ~6! for the transition probabilities and the equationg1* (h)
5n1.(h) for the means and standard deviations in Eqs.~15! and
~16!. A word of caution is that the standard deviations are co
puted about the cosine wave fitted to the mean hourly intens
and not about the individual hourly means~Katz and Parlange
1995!. Note also thatr for the transformed and standardize
hourly intensities is obtained by the smoothed values of
hourly means and deviations.

Figs. 1 and 2 display the observed~smoothed! and modeled
hourly probabilities of dry-to-wet and wet-to-wet transitions
well as precipitation intensities and their standard deviations
the day at Klingerstown, Pa.

Coupling of Daily and Hourly Weather Generators

The watershed model described below transforms the clim
variables into runoff. The model runs on an hourly basis which
why an hourly precipitation generator is needed. To compare
-

g

runoff response of the Mahantango Creek watershed under alt
climate to the one under the present climate, first 30 years of d
precipitation values and then 30 years of daily mean temp
tures, both meant to represent the present climate, were gene
the latter based on knowledge from the daily generated precip
tion time series of whether a day was wet or dry. The present
weather generator used parameters obtained from 5 years of
sured hourly precipitation for the hourly precipitation generati
and 43 years of daily precipitation sums and mean tempera
values measured at Newport, Pa., for the generation of d
weather variables. To link generated hourly precipitation inten
ties to generated daily values, 300 years of hourly precipita
intensities were generated and stored in a file in a daily struct
For each wet day from the daily weather generator the days f
the hourly precipitation file were retrieved that had a daily su
~by cumulating the hourly intensities for the day! equal to the
daily weather-generator-obtained value plus/minus a certain to
ance value. From the so obtained daily values of hourly intens
one realization was picked randomly and considered as the ho
distribution of intensities for the given wet day. This procedu
provided us with a realization of 30 years of hourly precipitati
intensities that was considered to be representative of the pre
day climate.

Fig. 3 displays the observed, fitted, and model-generated
mulative distribution functions~CDFs! of the daily precipitation
amounts in June at Newport, Pa.

Fig. 1. Observed~and smoothed! and modeled~continuous line!
hourly probabilities of daily dry-to-wet and wet-to-wet transition
Klingerstown, Pa.

Fig. 2. Observed~and smoothed! and model-generated~intermittent
line! hourly intensities and standard deviations, Newport, Pa.
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Description of Watershed Model

The watershed model used in this study was published by
ilagyi and Parlange~1999!. Here we summarize the basic comp
nents of the model. For a more complete description, please
to the above publication. The model treats the watershed
cascade of partially parallel nonlinear reservoirs including b
overland and channel flow. Inputs to the model include hou
precipitation intensities, mean monthly temperatures, soil ty
land-use/land-cover type, stream network, and elevation.
model has 19 parameters from which 12 can be obtained thro
Geographic Information System analysis and the application
the Brutsaert-Nieber technique~1977! of estimating aquifer pa-
rameters, both independent of the rainfall-runoff record. T
model outputs are simulated direct runoff, channel flow, infilt
tion, evaporation, interception, soil moisture change, groundw
recharge, and base flow, all on an hourly basis and distribute
space by subcatchments. The subcatchments are obtained th
the Horton-Strahler ordering of the stream network plus con
ering which runoff path a certain subcatchment or stream sec
belongs to. Fig. 4 displays the possible runoff paths a drop of
may travel before reaching the outlet in a fourth-order stre
network, such as the Mahantango Creek watershed. Fig. 5 sh
the spatial distribution of the subcatchments within the Mah
tango Creek basin.

The model was calibrated with one year of data and valida
over four years~Szilagyi and Parlange 1999!. The correlation
between observed and simulated monthly runoff for the outle
above 0.9 for the five years combined. For the purpose of
present study the model is to be repeatedly run for 30 years
time under present and altered climate scenarios, and the resu
direct runoff is to be compared among the subcatchments
between climate scenarios.

Climate Scenarios

The Intergovernmental Panel on Climate Change report~Watson
et al. 1996! highlights that ‘‘changes in the total amount of pr
cipitation and in its frequency and intensity directly affect t
magnitude and timing of runoff and the intensity of floods a
droughts; however, at present, specific regional effects are un
tain. Relatively small changes in temperature and precipitat
together with the nonlinear effects on evapotranspiration and
moisture, can result in relatively large changes in runoff.’’ Sin

Fig. 3. Cumulative distribution functions of observed, fitted, a
model-generated daily precipitation amounts for June, Newport,
638 / JOURNAL OF ENVIRONMENTAL ENGINEERING / JULY 2002
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‘‘the possible role of changes in variability is an important unc
tainty in our knowledge of possible impacts of climate chang
~Mearns et al. 1997!, these changes in variability, although y
mostly unknown, must be included in climate change scen
studies. It is the more so because changes in climate variab
may have a more profound effect on watershed dynamics t
changes in the mean climate~Mearns et al. 1997!.

The climate scenarios considered here belong in one of
categories by considering~1! variance change only;~2! mean and
variance change. In scenario setup we follow Mearns et al.~1997!
with minor modifications. In Category~1! we first change the
daily temperature variance by 0.33, 0.5, 2, and 3 times the b
line variance, which is represented by 30 years of generated
mentioned above. For precipitation, two scenarios are consid
for variance change. In both cases the annual precipitation is
at its baseline level. First the frequency of precipitation and
scale parameter were changed; and in the second precipit
scenario the persistence~d! of precipitation occurrence was mod
fied. In both cases the parameters were changed to bring
monthly variance to 0.46, 0.7, 1.3, and 1.74 times the curr
~baseline! level.

In the second category of scenarios first the annual mean
perature was increased~on a daily basis! by 2 and 4°C with no
change in variability. In the second scenario the variance
doubled on top of the mean increases, while in the third c
scenario the variance was halved. Next, monthly precipitat
was increased by a factor of 1.2 and 0.8 on a daily basis, wh
entails a change in the variance representing an increase in
scale parameterb of the gamma distribution by a factor of abou
1.2 and 0.8. Lastly, monthly precipitation variance was furth
increased/decreased~by further changing the scale parameter! to
2 and 0.5, respectively, of the baseline value. Table 1 summar
the scenarios considered.

Fig. 4. Possible runoff paths for a fourth-order catchment and spa
connectivity of storage elements for Mahantango Creek Waters
Pa: SC, subcatchment; C, channel section~from Szilagyi and Par-
lange 1999!



ahantango
Fig. 5. Horton-Strahler ordered stream network with the corresponding subcatchments marked according to possible pathways, M
Creek Watershed, Pa.~from Szilagyi and Parlange 1999!
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For each scenario considered, 30 years of daily and ho
precipitation intensities as well as daily mean temperature va
were generated. The watershed model was run under each
nario and the direct runoff values of each subcatchment w
retained for further analysis. The analysis of runoff data sta
with the second year’s October, the starting month of the hyd
logic year. This meant 28 years of runoff data to be retained un
s
e-

r

each scenario for comparison and analysis. Excluding the
year’s data in each scenario is necessary because of the unk
initial conditions~e.g., soil moisture, base flow status, direct ru
off for each subcatchment! on the watershed. After running th
watershed model for a whole hydrologic year, more realistic
tial conditions can be expected. This is general practice in mo
initialization.
Table 1. Climate Scenarios Considered

Case Variable changed msc5m Vsc5V

a Daily temperature variance Unchanged 30.33
b 30.5
c 32
d 33
e Monthly precipitation variance Unchanged 30.46
f 30.7
g 31.3
h 31.74
i Persistence of precipitation occurrence Unchanged 30.46
j 30.7
k 31.3
l 31.74
m Daily mean temperature 12°C Unchanged
n 14°C Unchanged
o 12°C 32
p 14°C 32
q 12°C 30.5
r 14°C 30.5
s Monthly precipitation 31.2 31.4
t 30.8 30.9
u 31.2 32
v 30.8 30.5

Note: msc is the climate scenario mean;Vsc is the climate scenario variance, both shown in relation to the baseline valuesm andV.
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Model Results

The weather-generator-simulated mean annual precipitation
the watershed-model-simulated mean annual runoff values
subcatchments under the present day climate are listed in Tab
The weather-generator-simulated hourly precipitation intensi
resulted in mean annual precipitation very close to the obse
value ~1946–1998! at Newport, Pa. Simulated watershed runo
however, is about 9% less than observed mean annual runo
the past 30 years near Dalmatia, Pa. The most likely reason is
the watershed model was calibrated with hourly precipitation v
ues measured near Klingerstown, Pa., within the watershed.
fortunately, long-term precipitation, needed for the daily weat
generator, is not available at this location. The nearest clim
station with long-term, good quality daily precipitation data w
found at Newport, Pa., about 25 km south-west of Dalmatia. P
sible difference in annual precipitation between the two statio
plus the fact that the watershed model was run with a ‘‘fictitiou
series of hourly precipitation could easily explain the observ
discrepancy in mean annual runoff. Note that this runoff conta
the base flow contribution of the watershed, while the direct r
off values of the subcatchments do not. That is why the dist
tion between runoff and direct runoff is used in the table a
throughout the text. Note also that in the Mahantango waters

Table 2. Mean Annual Precipitation and Runoff Values under Pres
Day Climate

Mean annual watershed precipitation Past 30 ye
~mm!

Measured at Newport, Pa.~1946–1998! 1008
Weather generator simulated 1013

Measured runoff~including base flow! from the
watershed

495

Simulated runoff under present climate~including base
flow!

454

Simulated direct runoff under present climate 397

Simulated direct runoff under present climate by subcatchments
Fourth order 360
Third order 390
2a 416
2b 369
1a 427
1b 428
1c 384
1d 413
640 / JOURNAL OF ENVIRONMENTAL ENGINEERING / JULY 2002
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the fourth-order subcatchment has the smallest~360 mm/year!
and subcatchment 1b the largest~428 mm/year! mean annual di-
rect runoff values, a difference of about 15–20%. These dif
ences can be explained by the results shown in Table 3.
fourth-order subcatchment of this watershed has the largest r
ing depth~a function of both vegetation and soil type! and the
largest saturated hydraulic conductivity values, while subca
ment 1b is just the opposite. This means that the former
accommodate more precipitation without producing much run
and can also transfer soil moisture toward the saturated z
faster than the latter. Also of interest is that this difference
direct runoff ~although of changing magnitude! between the two
subcatchments is maintained throughout the climate scena
considered~Fig. 6!.

The largest difference in direct runoff between subcatchme
~Fig. 6! can be found under climate scenarios~Table I! ~e! and~f!,
when precipitation variance was reduced. The subcatchments
duced similar direct runoff responses in cases~g! and ~u!, both
with enhanced precipitation variances.

So far we did not take into account that annual precipitat
may change among climate scenarios. As well as the total am
of direct runoff, the portion of precipitation that becomes dire
runoff under a given scenario can be of interest too. Fig. 7 co
pares these direct runoff ratios. The largest and smallest di
ences between subcatchments stay with the same climate
narios as before.

Another interesting finding comes from Fig. 8, which show
the ratio of climate scenario direct runoff to that of present d
~baseline! conditions. Direct runoff from subcatchments 4 and
move in opposite directions under the scenarios. The subca
ment with the smallest direct runoff~i.e., 4, see Fig. 6! generally
changes the least when future direct runoff is below the base
value, and the most when future direct runoff is above basel
The opposite is true for the subcatchment~1b! with the largest
baseline runoff. This is so because the smallest-runoff-produ
subcatchment has the highest rooting depth and hydraulic con
tivity ~this latter is important in deep percolation! and so only
very large precipitation events can produce runoff, because
the soil can accommodate the most water of all the subcatchm
and also can channel it deeper into the soil, where vegeta
cannot access it for transpiration. A drier climate cannot aff
deep percolation and thus results in small changes in runoff.
wetter climate, however, the soil gets closer to saturation in g
eral, so that even a smaller precipitation event can saturate
soil, resulting in runoff, and leading to relatively large chang
when compared to the baseline level. This exemplifies the imp
tance of the nonlinear effect of soil moisture on runoff generati
d Area,
Table 3. Geographic Information System-Derived Effective Porosity, Field Capacity, Saturated Hydraulic Conductivity, Rooting Depth, an
at Mahantango Creek, Pa.

Subcatchment

Effective
porosity

~%!
Field capacity

~%!

Saturated hydraulic
conductivity
~1026 ms21)

Rooting depth
~m!

Area
~km22!

Fourth 45.5 27.7 2.1 1.53 34
Third 44.9 28.6 1.7 1.52 47
2a 44.4 28.7 1.6 1.42 101
2b 46.3 28.1 1.9 1.46 13
1a 46.2 29.2 1.5 1.24 32
1b 46.4 29.1 1.6 1.21 16
1c 44.4 27.9 1.9 1.53 152
1d 47.6 28.8 1.7 1.20 28
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the same amount of effective precipitation can produce liter
no runoff when the soil is dry, but can result in large runo
response provided the soil is already close to saturation.

The largest difference between subcatchment responses c
found in cases~g!, ~s!, and~u!, all with larger than baseline vari
ance in precipitation plus elevated annual precipitation in the
ter two cases, while the smallest differences are in cases~b! and
~a!, both with reduced precipitation variances.

Summary and Conclusions

The direct runoff responses of the different subcatchments of
Mahantango Creek, Pa., watershed have been simulated un

Fig. 6. Mean annual direct runoff by subcatchments~mm! under
different climate scenarios, ordered by increasing mean annual d
runoff at outlet~solid line!: Letters relate to cases in Table 1; ‘‘bl
marks baseline values

Fig. 7. Mean annual direct runoff by subcatchments as ratio of m
annual precipitation under different climate scenarios, ordered by
creasing mean annual direct runoff at outlet: Letters relate to cas
Table 1; ‘‘bl’’ marks baseline values
be

a

wide range of climate scenarios. The watershed model app
assumed no changes in land cover and land use within the ca
ment. Based on the watershed model results the following ca
stated:
• Subcatchment direct runoff~mm/year! within the watershed

can differ by about 17% under the present climate. This d
ference may increase to 20% when daily/monthly precipitat
variance isreduced;

• Subcatchments with the smallest/largest direct runoff will ha
the smallest/largest direct runoff under all the climate s
narios considered; and

• The relative changes in direct runoff~i.e., the ratio of sub-
catchment direct runoff under future and present day clim
conditions! are generally the smallest for the smallest runo
‘‘producer’’ ~i.e., subcatchment 4! when future direct runoff of
the subcatchment is less than the corresponding baseline v
and largest when future direct runoff is more than the cor
sponding baseline value. The opposite behavior isgenerally
true for the subcatchment with the largest present day di
runoff ~i.e., subcatchment 1b!.
Our semidistributed watershed model indicates that fut

changes in direct runoff can most likely be expected to dif
between different parts of the watershed. The majority of
climate scenarios considered produced subcatchment direct ru
in the Mahantango Creek, Pa., watershed, within 10% of
present day mean annual values. Watershed models such a
one used in this study can be best used for locating areas with
catchment with the largest/smallest expected changes in d
runoff due to climate variations. This type of information can
useful for action plans in land use management, such as plan
future livestock concentrations and thus pathogen loading to
face water in the watershed.
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Notation

The following symbols are used in this paper:
A,B,C 5 parameters of monthly precipitation model;

A* ,B* ,C* 5 parameters of hourly power-transformed pre-
cipitation model (Lp);

a,b 5 shape and scale~L! parameters of gamma
distribution;

d 5 persistence parameter;
f 5 gamma distribution;

g,g* 5 weight parameters;
Hp 5 Hinkley’s index;

h 5 hour of day;
i,j 5 indices;

m, md 5 mean and median values;
ni , j 5 number of times transition from statei to

statej occurs;
Pi , j 5 probability of transition from statei to statej;
Pw 5 probability of wet day in a month;

r ,r * 5 precipitation~L! and power-transformed (Lp)
precipitation amounts;

SN 5 monthly precipitation sum ofN days~L!;
T* 5 standardized daily mean temperature~2!;

t 5 day within month;
V, Var 5 variance;

G 5 gamma value of gamma distribution;
« 5 normally distributed variable;
r 5 autocorrelation coefficient; and
s 5 standard deviation.
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