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Abstract. The accuracy of the time compression analysis (TCA) is analyzed by
comparison with a numerical solution. Both the standard TCA and a new modified TCA
are considered for a power law diffusivity and constant surface flux. As expected, the error
of the approximations decreases with increasing power, and the error of the modified
TCA is about half the error of the standard TCA. In a second part, the errors of the two
TCAs are measured using a simple analytical solution instead of a numerical solution. It is
shown that the conclusions remain the same for the analytical and numerical solutions.
The advantage of using the analytical solution is to obtain simple analytical expressions,
showing the influence of parameters. This is done to estimate the maximum error of both
TCAs. A practical estimate of the errors can be obtained from equations which only
require knowledge of the soil water diffusivity. It appears that for real soils the errors of
the TCA are always ,1% and thus are a very reliable tool for practical problems.
Although not studied systematically, it also appears that gravity effects reduce the errors
of the TCA so that the error obtained in the absence of gravity provides a conservative
estimate when gravity is present.

1. Introduction

An earlier paper [Liu et al., 1998] showed that the time
compression approximation (TCA) predicts the cumulative in-
filtration with remarkable accuracy for linear soils. As pointed
out by Salvucci and Entekkabi [1994], knowledge of the cumu-
lative infiltration is most important in practice, whereas others,
like infiltration rates after ponding, are less important.

In the following we first extend the analysis of Liu et al.
[1998], which applies to unrealistic soils, to one with a realistic
soil water diffusivity obeying a power law. For the linear soil,
exact analytical solutions are available. For a power law diffu-
sivity it is necessary to use numerical tools and/or analytical
approximations.

As usually done, when TCA is used, the possibly complex
dependence of the rainfall rate on time is replaced, until pond-
ing, by its average. Hence, if tp and Ip are the ponding time and
the cumulative infiltration at ponding, then the average rainfall
rate q# is

q# 5 Ip/tp. (1)

This points out that the actual rainfall rate could be very
different from q# at any time before ponding, so that infiltration
rates are theoretically, as well as in practice, less meaningful
than their cumulative values. However, the additional errors
introduced by the time variation of the rainfall rate and asso-
ciated problems, like redistribution and hysteresis, are ignored,
even though they can be crucial in practice [Ibrahim and Brut-
saert, 1968; Reeves and Miller, 1975; Smith et al., 1993; Corradini
et al., 1994].

The modified TCA then assumes that Ip is known rather
than the flux at and before ponding, but the cumulative infil-
tration is measured up to ponding time (the flux, which could
then be obtained by differentiation, is known with less accura-
cy).

We may note that in the field the cumulative rainfall is
typically measured. Thus, to obtain Ip, one must have an esti-
mate of the ponding time, which may be somewhat crude given
the large spatial variability of soil properties normally encoun-
tered in the field. However, even for the standard TCA, q#
requires some knowledge of tp (see (4)). It is quite interesting
that in his application of TCA to the study of evaporation,
Salvucci [1997] used the equivalent of the modified TCA for
evaporation, i.e., an average evaporation rate till the actual
start of stage 2.

2. Time Compression Analysis
We consider the case of infiltration into a soil initially at

uniform water content with constant (average) rainfall q# until
ponding. (Again, the additional problems associated with the
time dependence of rainfall are ignored here.) We take a
realistic representation of the soil water diffusivity

D 5 Dsu
a, (2)

where u is the reduced water content (water content measured
relative to its initial value divided by its saturated value). The
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constant a varies between 4 (sand) and 8 (clay) [Brooks and
Corey, 1964]. We shall consider the representative cases, a 5 1,
5, 10. The results for the case a 5 0 are by Liu et al. [1998]. The
approximate analytical results will be based on a method [Par-
lange et al., 1992, 1998] which is more accurate for larger a, i.e.,
values normally encountered in the field. Thus the cases a 5 0
and 1, although not realistic, are important to check the ana-
lytical results when their accuracy should be the worst.

We solve the equation

­u

­t 5
­

­ x F ua
­u

­ xG (3)

with the initial condition

u 5 0, t , 0, x $ 0 (4)

and the boundary conditions

2ua
­u

­ x 5 1, 0 # t # tp, x 5 0, (5)

or

u 5 1, t $ tp, x 5 0. (6)

Here x is a dimensionless distance (distance multiplied by
q# /Ds) and t is a dimensionless time (time multiplied by q# 2/
Ds), which is equivalent to taking q# and Ds equal to one. By
first ignoring gravity, a is the only parameter remaining in the
problem. We are looking at the simplest application possible to
evaluate TCA (both standard and modified), i.e., as done by
Sivapalan and Milly [1989] for the standard method but with
a Þ 0.

The problem is first solved numerically to obtain I(t) by
linearizing the right-hand side of (3) using the transform u 5
* D du and then applying the method of lines [Schiesser, 1991]
with a finite volume discretization on a fine variable spatial grid
and a stiff ordinary differential equation integrator. In partic-
ular, for a 5 0, numerical and exact analytical results [Liu et
al., 1998] are identical for the number of significant figures
given in Table 1a. Tables 1b, 1c, and 1d correspond to a 5 1,
5, and 10, respectively.

The standard TCA gives, for the dimensionless cumulative
infiltration,

I 5 E
0

`

u dx , (7)

Table 1a. Estimates of I(t) for a 5 0

t Iexact I[9] I[12] I[26]

1.000000 9.547269E-01* 9.316409E-01 9.434457E-01 9.489191E-01
2.000000 1.484097 1.463282 1.470826 1.488126
4.000000 2.180562 2.165104 2.170209 2.204621
6.000000 2.702410 2.689638 2.693750 2.741088

10.000000 3.520974 3.510999 3.514149 3.581651
15.000000 4.331751 4.323576 4.326135 4.413441
20.000000 5.013040 5.005947 5.008158 5.111995
25.000000 5.612214 5.605864 5.607838 5.726146
30.000000 6.153313 6.147512 6.149312 6.280643
40.000000 7.113073 7.108045 7.109602 7.263945
50.000000 7.957908 7.953408 7.954800 8.129324
60.000000 8.721281 8.717173 8.718442 8.911154
70.000000 9.423014 9.419209 9.420383 9.629782
80.000000 10.075990 10.072430 10.073530 10.298430
90.000000 10.689150 10.685800 10.686830 10.926270

100.000000 11.269000 11.265820 11.266800 11.519970

I is dimensionless cumulative infiltration, and t is a dimensionless time.
*Read 9.547269E-01 as 9.547269 3 1021.

Table 1b. Estimates of I(t) for a 5 1

t Iexact I[9] I[12] I[26]

5.000000E-01* 4.954358E-01 4.885782E-01 4.929449E-01 4.935538E-01
6.000000E-01 5.712031E-01 5.634329E-01 5.672235E-01 5.684866E-01
7.000000E-01 6.370115E-01 6.294478E-01 6.328431E-01 6.346942E-01
1.000000 8.017018E-01 7.952661E-01 7.979562E-01 8.012950E-01
1.200000 8.946338E-01 8.887879E-01 8.911958E-01 8.953707E-01
1.500000 1.018201 1.013009 1.015122 1.020400
2.000000 1.196076 1.191607 1.193404 1.200250
2.500000 1.350716 1.346724 1.348315 1.356508
2.999999 1.489384 1.485734 1.487175 1.496565
3.999998 1.733759 1.730573 1.731811 1.743287
4.999998 1.947709 1.944829 1.945931 1.959215
5.999997 2.140379 2.137718 2.138721 2.153620
6.999996 2.317083 2.314588 2.315514 2.331887
7.999995 2.481234 2.478870 2.479734 2.497471
8.999998 2.635180 2.632922 2.633735 2.652746

10.000000 2.780616 2.778445 2.779217 2.799426

*Read 5.000000E-01 as 5.000000 3 1021.
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I 5 t t # t*, (8)

I 5 S~t 2 t*/ 2!1/ 2 t $ t*, (9)

2t* 5 S2, (10)

with the dimensionless sorptivity S2 being known exactly. Note
that with this method, t* is different from the exact value of tp,
see Table 2.

For the modified TCA, we take

I 5 t t # tp, (11)

I 5 S~t 2 tp 1 tc!
1/ 2, (12)

where Ip and S have their exact values and tc is given by

S2tc 5 tp
2. (13)

Note that the modified TCA gives a discontinuity for the flux
at tp as encountered by Salvucci [1997, p. 116] at the onset of
stage 2 of evaporation and for exactly the same reason: “The
discontinuity is an artifact of using the time compression ap-
proximation after tD while using the flux boundary condition
solution to predict tD,” where tp in our case is replaced by the
time tD when stage 2 of evaporation begins.

We now apply the analytical method of Parlange et al. [1998,
1992, 1997] as an alternative to the numerical method.

3. Analytical Approximation
Parlange et al. [1998] solved explicitly the problem of con-

stant flux until ponding and the derivation will not be repeated
here. The two necessary results (using the dimensionless vari-
ables previously defined) are

tp 5 2~a 1 2!/~2a2 1 6a 1 5! (14)

E
0

1

xp
2 du 5 2~a 1 2!tp/@~a 1 1!~2a 1 3!# , (15)

where xp(u , tp) 5 x(u , t) at t 5 tp.
It is of some interest to mention that other estimates of the

ponding time could also be used. For instance, Smith et al.
[1993] and Corradini et al. [1994] were careful to use an optimal
estimate of tp valid for a large [Smith and Parlange, 1977],

tp 5 S2~1 1 2a!/4a , (16)

which is equivalent to the first two orders to (14) if S2 is
estimated to the same order. For instance, we can take

Table 1d. Estimates of I(t) for a 5 10

t Iexact I[9] I[12] I[26]

1.000000E-01* 9.925776E-02 9.913861E-02 9.920613E-01 9.921078E-02
1.100000E-01 1.076586E-01 1.075478E-01 1.076100E-01 1.076188E-01
1.200000E-01 1.154486E-01 1.153455E-01 1.154035E-01 1.154159E-01
1.500000E-01 1.361703E-01 1.360836E-01 1.361328E-01 1.361544E-01
1.700000E-01 1.483858E-01 1.483066E-01 1.483518E-01 1.483784E-01
2.000000E-01 1.650222E-01 1.649516E-01 1.649922E-01 1.650255E-01
2.500000E-01 1.895318E-01 1.894712E-01 1.895065E-01 1.895491E-01
3.000000E-01 2.112162E-01 2.111625E-01 2.111942E-01 2.112448E-01
3.500000E-01 2.308728E-01 2.308243E-01 2.308533E-01 2.309110E-01
3.999999E-01 2.489824E-01 2.489380E-01 2.489649E-01 2.490290E-01
4.999998E-01 2.817307E-01 2.816925E-01 2.817163E-01 2.817917E-01
5.999997E-01 3.110501E-01 3.110164E-01 3.110380E-01 3.111233E-01
6.999996E-01 3.378344E-01 3.378043E-01 3.378242E-01 3.379184E-01
7.999995E-01 3.626459E-01 3.626187E-01 3.626372E-01 3.627396E-01
8.999994E-01 3.858652E-01 3.858404E-01 3.858578E-01 3.859679E-01
3.999993E-01 4.077646E-01 4.077418E-01 4.077583E-01 4.078755E-01

*Read 1.000000E-01 as 1.000000 3 1021.

Table 1c. Estimates of I(t) for a 5 5

t Iexact I[9] I[12] I[26]

1.700000E-01* 1.697305E-01 1.691987E-01 1.695651E-01 1.695769E-01
1.800000E-01 1.786473E-01 1.780406E-01 1.783889E-01 1.784154E-01
1.900000E-01 1.870754E-01 1.864638E-01 1.867963E-01 1.868366E-01
2.000000E-01 1.951207E-01 1.945225E-01 1.948413E-01 1.948945E-01
2.200000E-01 2.102751E-01 2.097130E-01 2.100088E-01 2.100855E-01
2.500000E-01 2.311441E-01 2.306303E-01 2.308993E-01 2.310074E-01
3.000000E-01 2.622595E-01 2.618046E-01 2.620416E-01 2.621945E-01
3.499999E-01 2.900558E-01 2.896429E-01 2.898571E-01 2.900484E-01
3.999999E-01 3.154120E-01 3.150307E-01 3.152276E-01 3.154530E-01
4.499998E-01 3.388762E-01 3.385198E-01 3.387031E-01 3.389592E-01
4.999998E-01 3.608176E-01 3.604816E-01 3.606537E-01 3.609381E-01
5.999997E-01 4.011160E-01 4.008112E-01 4.009660E-01 4.013014E-01
6.999996E-01 4.377199E-01 4.374383E-01 4.375802E-01 4.379609E-01
7.999995E-01 4.714906E-01 4.712270E-01 4.713587E-01 4.717806E-01
8.999994E-01 5.029991E-01 5.027500E-01 5.028735E-01 5.033333E-01
9.999993E-01 5.326469E-01 5.324098E-01 5.325264E-01 5.330217E-01

*Read 1.700000E-01 as 1.700000 3 1021.
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S2 . 4/~2a 1 3! , (17)

as first suggested by Brutsaert [1976], as a particular case of the
estimate

S2 . 2~u s 2 u i!
1/ 2 E

ui

us

~u 2 u i!
1/ 2D du (18)

in agreement with the optimization approach [Parlange, 1975].
Table 2 shows the accuracy of (17). Then the two estimates
tp[14] and tp[16] given by (14) and (16), respectively, yield

tp@16#/tp@14# 5 ~1 1 2a!~2a2 1 6a 1 5!/@2a~2a 1 3!

z ~a 1 2!# (19)

and for a large,

tp@16#/tp@14# . 1 1 a22 1 · · · , (20)

showing the agreement of the two expressions to the first two
orders (a0 and a21) as expected. One advantage of (14) over
(16) is that the former can be applied even for a 5 0 (even if
we do not expect the result to be accurate).

On the other hand, the estimate t* of tp given by (10) from
the standard TCA is only correct to order a0. Even for the
unrealistic case of constant D , taking the exact value S2 5 4/p
in (10), the latter yields t*[10] 5 2/p , a 19% error compared
to the exact result tp 5 p/4, whereas (14) gives tp[14] 5 0.8,
only a 2% error. Hence, since (14) is more accurate as a
increases, it is a most reliable estimate; see Table 2.

After ponding, we approximate the profile by (using (8) of
Parlange et al. [1998])

1 2 ua 5 a@qx 1 q2x2/ 2# , (21)

where q(t) is the surface flux. To estimate q after ponding,
(21) is integrated to yield

~a 1 1!21 5 qI 1 q2 E
0

1

x2 du/ 2 (22)

and (see (5) of Parlange et al. [1998])

E
0

1

x2 du 5 2~a 1 1!21~t 2 tp! 1 E
0

1

xp
2 du , (23)

the last integral in (23) being given by (15). Thus

1 5 ~a 1 1!qI 1 q2@t 2 ~a 1 1!tp/~2a 1 3!# . (24)

For convenience, let us call

t̃ 5 t 2 ~a 1 1!tp/~2a 1 3! (25)

and define a new variable y by

~a 1 1!It̃21/ 2 5 y1/ 2 2 y21/ 2, (26)

then from (24),

t̃/ t̃ p 5 $~ y/yp!@~2a 1 3 2 yp!/~2a 1 3 2 y!#2~a12!%1/~2a13!,
(27)

where yp and t̃p are the value of y and t̃ at ponding. Equations
(25)–(27) yield I(t).

4. Results and Discussion
Table 1 gives detailed I(t). Obviously, the two TCA approx-

imations and the analytical approximations of (26) are excel-
lent, with the new modified TCA having about half the error of
the standard one; see Table 2. That is, the modified TCA gives
a significant improvement with no additional work, as long as
Ip is known.

By definition, as t 3 ` , I 3 S(t)1/ 2, in agreement with the
TCA approximations, as long as S is known exactly. The ana-
lytical approximation, on the other hand, gives I 3 2[t(2a 1
3)]1/ 2, in agreement with the estimate of S in (17). Because
this estimate is approximate (see Table 2), it results in the error
apparent as t 3 ` (see Tables 1a–1d). We could, as suggested
by Parlange et al. [1997], modify the analytical approximation
building in the knowledge of S . However, this is not necessary
to understand, from the analysis, the reason for the accuracy of
the TCA approximation and to quantify their errors, as done in
the following.

The fundamental property of any TCA method is that I ;
(t 2 A)1/ 2, where A is a constant. This is in agreement with
(26) as long as y is near constant after ponding. In general,

yp , y , y` (28)

with, from (27),

y` 5 2a 1 3 (29)

and, from (25) and (26),

yp
1/ 2 2 yp

21/ 2 5 ~a 1 1! Î2~2a 1 3!/~2a2 1 6a 1 5! .
(30)

Table 2. Sorptivity, Ponding Times, and Maximum Relative Errors of the TCA Approximations for Cumulative Infiltration
I(t)

a

0 1 5 10

Sexact =4/p 0.8874 0.5541 0.4169
S[17] =4/3 0.8944 0.5547 0.4170
tp exact 0.7854 0.4592 0.16465 0.09056
tp[14] 0.8 0.4615 0.1647 0.09057
t*[10] 0.6366 0.3937 0.1535 0.08690
Maximum relative error [9] 0.024 0.014 0.0035 0.0012
Maximum relative error [12] 0.012 0.007 0.0015 0.00055
«1 [31] 0.0257 0.00971 0.00147 0.000472
«2 [33] 0.007 0.0045 0.0011 0.0004
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Thus the difference between the two values of I for y 5 yp and
y 5 2a 1 3 in (26) gives an estimate of the TCA’s maximum
error, «1, or

«1 .
1
2 F 1 2

2a 1 3

Î2~2a2 1 6a 1 5!G .
1

4~2a2 1 6a 1 5!
,

(31)

which as expected, is maximum for a 5 0 and goes to zero as
a3 `. Table 2 also gives «1 and shows its essential agreement,
especially as a increases with the numerical estimates of the
standard TCA errors. (The error of the modified TCA being
«1/2.) The error is small, not only for a 5 0, decreasing very
rapidly with a, i.e., for real soils.

A cruder way to estimate the maximum error, «2, of the TCA
is to exploit the observation that the standard method error is
twice the error of the modified method. Thus, comparing I in
(9) and the exact I 5 tp at t 5 tp gives 1/2 of the error of the
standard method, or

2«2 5 1 2 S2~tp 2 S2/4!/tp
2. (32)

In particular, in the present case and estimating «2 from the
analytical results, (14) and (17) yield

2«2 5 ~a 1 1!2/~a 1 2!2~2a 1 3!2 , (33)

which provides a rough estimate of the maximum errors of the
standard («2) and the modified («2/2) methods, as shown in
Table 2.

5. Gravity Effects
We are now going to discuss an example showing that gravity

effects reduce the error of the TCA even further. To keep the
discussion analytic and to see the source of errors clearly, we
need to consider a case with gravity, where two analytic solu-
tions are available. The first exact solution applies for any soil
properties when the flux at the surface is proportional to the
surface water content [Fleming et al., 1984]. The second exact
result applies for constant surface flux q# [Rogers et al., 1983;
Sander et al., 1988] but for special soil properties

D~u ! 5 ~1 2 n!/~1 2 nu !2 (34)

and the soil water conductivity

K~u ! 5 K sat~1 2 n!u2/~1 2 nu ! , (35)

where Ksat is the saturated conductivity. As in section 4, we
effectively take q# 5 1 as well as u 5 D(u ) 5 1 at saturation.

At ponding, tp 5 Ip and Ksat are related by [Rogers et al.,
1983; Sander et al., 1988, 1999]

2K sat

n
5 1 2 e2IpKsat/IpK sat/~1 2 n! erfc F2

n

2~1 2 n!
Ip

1/ 2G
1 @1 1 4~1 2 n! K sat/n2#1/ 2

z erfF Ip

K sat 1 n2/4~1 2 n!

1 2 n G 1/ 2

. (36)

The general solution for I when q/us 5 A is constant (q is the
surface flux, and us is the surface water content) is at ponding
[Fleming et al., 1984],

Ip 5 E
0

1 uD~u ! du

Au 2 K~u !
. (37)

In particular, when (34) and (35) hold (37) gives

K satIp 5 ~1 2 n! ln
f

f 2 1 , (38)

f 5 A/K sat. (39)

The two exact solutions in (36) and (38) (for q# 5 1 and q/us 5
A) have not been extended beyond ponding. Thus, at the
difference of the case without gravity we cannot determine the
error of the cumulative infiltration after ponding. This was the
situation encountered by Sivapalan and Milly [1989], and like
them, we shall look at the error in the cumulative infiltration
prediction of the standard TCA when q 5 q# . Although not as
complete as the discussion of section 4, we can still deduce
from it whether gravity effects are helpful or not. We shall
operate in the same manner for the modified TCA looking at
the error of the predicted flux at ponding time.

Table 3 indicates the errors in IpKsat/(1 2 n) from (36) and
(38) for various n. The column heads give the exact values of
IpKsat/(1 2 n); from the tabulated errors, one can reconstruct
the values of f 5 Ks

21 in each case. Clearly, as IpKsat/(1 2 n)
increases, Ksat/q# increases (from ;1022 to ;0.99). Table 3
then shows that the error decreases by a factor of 4, for all n,
as gravity increases. Table 3 also shows that the error decreases
as n approaches 1 (the error is exactly zero for n 5 1, i.e., when
D is a delta function, as the TCA is well known to be exact in that
limit). It is of some interest in that respect to look at the relation
between the values of n in Table 3 and the values of a in section
4. This can be done easily from the calculation of * uD du/* D du,
which approaches 1 for a delta function; we have

E
0

1

uD duYE
0

1

D du 5
a 1 1
a 1 2 5 n21 2 ~1 2 n!n22 ln ~1 2 n!21,

(40)

Table 3. Errors in the Prediction of Ip or tp From (38) and (36) for the Standard TCA for Various Values of
KsatIp/(1 2 n) and n

KsatIp/(1 2 n)

0.01 0.10 0.20 0.50 1.00 2.00 5.00

n 5 0.95 0.27 0.26 0.24 0.20 0.16 0.11 0.00
n 5 0.90 1.09 1.04 0.99 0.84 0.66 0.44 0.24
n 5 0.80 3.66 3.53 3.39 3.00 2.47 1.72 0.84
n 5 0.70 6.66 6.46 6.25 5.67 4.84 3.62 1.72

Errors are in percent.
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so that for n 5 0.7, 0.8, 0.9, and 0.95 the corresponding values
of a are 1.24, 1.95, 3.78, and 6.82, covering the relevant range
of values.

Table 4 makes a similar calculation for the modified TCA; now
taking the same IpKsat/(1 2 n) in (36) and (38), we give the error
in f, from (38), and the exact value of Ks

21, from (36). The same
conclusions obtained from Table 3 can be made here. Note,
however, that the effect of gravity in reducing the error is much
more pronounced (most likely because when gravity effects in-
crease, then, by definition, the flux approaches Ksat).

6. Conclusion
A numerical solution confirms that TCA provides an excel-

lent prediction of cumulative flux after ponding, assuming that
the rainfall rate can be replaced by its average before ponding.
A modified procedure is discussed which halves the error of
the standard method. An approximate analytical solution pro-
vides the means to analyze the reason for the TCA accuracy
and, in particular, yields an analytical estimate of the errors. As
already pointed out by Sivapalan and Milly [1989], the errors
are smaller as the soil water diffusivity increases more rapidly
with water content. The result was quantified for a power law
diffusivity, D ; ua. However, if for a general diffusivity the
first moments, * D du and * uD du , are calculated as we have
done in (40), then a can be defined by the following relation,
which is exact for a power law:

~2 1 a!21 . E
0

usat

~u sat 2 u ! D du/u sat E
0

usat

D du , (41)

where usat is the saturated water content. Then the error of the
TCAs can be estimated from (31) or (33) for a general diffusivity.

Gravity effects seem to reduce the error of the TCA even
further. Even though both standard and modified TCAs have
similar, and small, errors, the latter appears to be slightly more
accurate. More importantly, when a reasonable estimate of Ip

is available, it is more in line with the basic premise of TCA of
[Smith et al., 1993, p. 137] “using I as a surrogate for time.”

References
Brooks, R. H., and C. T. Corey, Hydraulic properties of porous media,

Hydrol. Pap. 3, Colo. State Univ., Fort Collins, 1964.
Brutsaert, W., The concise formulation of diffusive sorption in a dry

soil, Water Resour. Res., 12, 1118–1124, 1976.
Corradini, C., F. Melone, and R. E. Smith, Modeling infiltration during

complex sequences, Water Resour. Res., 30, 2777–2784, 1994.
Fleming, J. F., J.-Y. Parlange, and W. E. Hogarth, Scaling of flux and

water content relations: Comparison of optimal and exact results,
Soil Sci., 137, 464–468, 1984.

Ibrahim, H. A., and W. Brutsaert, Intermittent infiltration into soils
with hysteresis, J. Hydraul. Eng., HY1, 113–137, 1968.

Liu, M.-C., J.-Y. Parlange, M. Sivapalan, and W. Brutsaert, A note on
the time compression approximations, Water Resour. Res., 34, 3683–
3686, 1998.

Parlange, J.-Y., On solving the flow equation in unsaturated soils by
optimization: Horizontal infiltration, Soil Sci. Soc. Am. J., 39, 415–
418, 1975.

Parlange, J.-Y., D. A. Barry, M. B. Parlange, W. L. Hogarth, R.
Haverkamp, P. J. Ross, L. Ling, and T. S. Steenhuis, New approxi-
mate analytical technique to solve Richards equation for arbitrary
surface boundary conditions, Water Resour. Res., 33, 903–906, 1997.

Parlange, J.-Y., W. L. Hogarth, M. B. Parlange, R. Haverkamp, D. A.
Barry, P. J. Ross, and T. S. Steenhuis, Approximate analytical solu-
tion of the nonlinear diffusion equation for arbitrary boundary con-
ditions, Transport Porous Media, 30, 45–55, 1998.

Parlange, M. B., S. N. Prasad, J.-Y. Parlange, and M. J. M. Römkens,
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Table 4. Errors on the Flux at Ponding for the Modified TCA from (38) and (36) for Various Values of KsatIp/(1 2 n) and n

KsatIp/(1 2 n)

0.01 0.1 0.2 0.5 1.0 2.0 5.0

n 5 0.95 0.27 0.24 0.22 0.16 0.09 0.03 0.00
n 5 0.90 1.09 0.99 0.89 0.65 0.38 0.13 0.01
n 5 0.80 3.64 3.35 3.05 2.29 1.42 0.53 0.02
n 5 0.70 6.62 6.12 5.61 4.31 2.75 1.09 0.05

Errors are in percent.
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