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Abstract. A large eddy simulation (LES) code of the atmospheric boundary layer (ABL)
has been developed and applied to study the effect of spatially variable surface properties
on the areally averaged surface shear stress at the land-atmosphere interface. The LES
code simulates the space and time evolution of the large-scale turbulent eddies and their
transport effects in the ABL. We report here on simulations of flow over spatially variable
roughness fields. The dynamics are simulated, and the resulting space-time fields are
averaged to explore the effects of the surface variability length scales on the average
surface shear stress, as used in large-scale models to estimate scalar fluxes, such as
evaporation. We observe asymmetrical response of the smooth-to-rough and rough-to-
smooth transitions, such that the effects of the transitions accumulate rather than cancel.
It is shown that the presence of abrupt changes in surface roughness and the atmosphere’s
response to these patches create a marked dependence of the statistical structure of
surface shear stress on the length scale of the surface patches. An increase in regionally
averaged surface stress for decreasing horizontal patch length scale is found.

1. Introduction

Successful modeling of surface hydrologic and atmospheric
processes hinges on the ability to describe the exchange of
water, heat, and momentum across the land-atmosphere inter-
face. A major concern is how to account for the effect of the
spatial variability of surface conditions on scales smaller than
the model grid cell. The actual total grid cell exchange is an
integration of small-scale exchange processes over the area of
the cell, where the physical integration is provided by the
turbulent mixing in the atmospheric boundary layer (ABL).
There is at present no consensus on what measures of subgrid
surface properties are needed to represent the total exchange.
There is hope that a better understanding of the details of this
physical integration would support improved model develop-
ment [Parlange et al., 1995, 1999; Albertson et al., 1996; Dabb-
erdt and Schlatter, 1996].

To begin to develop a general answer to these questions
demands a vast amount of information describing surface
fluxes distributed in space and time over the study area and the
dynamics of interaction between the surface and the atmo-
spheric motions. Here we approach this through the applica-
tion of a new three-dimensional numerical simulation code
employing the large eddy simulation (LES) technique. The
simulations are performed at a fine scale to examine detailed
processes inside a hypothetical single larger grid cell (e.g., in a
river basin or mesoscale forecasting model). The LES provides
the ability to modify important characteristics (e.g., length
scale of surface patches) such that we can observe their influ-

ences on the turbulence and quantify their effects on the ABL
structure and areally averaged exchange rates. This is a signif-
icant departure from the conceptual modeling and Reynolds
averaged modeling approaches in that the simulation code
represents the space-time dynamics of the turbulent flow and
transport through a time-dependent implementation of the
Navier-Stokes equations on a three-dimensional (3-D) grid
over the study site. Therefore the surface exchange and the
turbulent mixing processes that combine to form the physical
aggregation are represented by the basic equations, rather than
through models. On-line averaging of the space-time fields
provides measures for evaluating net regional effects to aver-
age surface fluxes.

The LES technique has proven useful for simulating bound-
ary layer dynamics for both neutrally and unstably stratified
flows [e.g., Deardorff, 1970a, b; Moeng, 1984; Schmidt and
Schumann, 1989]. Here we focus on the surface shear stress for
the neutral case in recognition of the importance of surface
shearing in the removal of water vapor, heat, and volatilized
contaminants from the land surface. Hence LES is employed in
this study to simulate momentum exchange (i.e., surface shear
stress) across a patchy surface under neutral boundary layer
stratification, to examine how the flow couples the flux pro-
cesses of the adjacent patches, and to identify potential impli-
cations for areally averaged exchange rates.

1.1. Surface Properties in Hydrology and Meteorology

Hydrologic and atmospheric simulations must employ grid
cell level “measures” of surface properties in order to estimate
the total exchange (e.g., momentum, heat, and water vapor)
across the land-atmosphere interface over the surface area of
each grid cell. However, the open question is what measures
are most important for an accurate and parsimonious repre-
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sentation of the averaged exchange processes. We explore here
whether the horizontal length scale of surface variability is an
important variable.

Studies of subgrid heterogeneity in the context of general
circulation models (GCMs) have focused on subgrid patches at
the mesoscale, with length scales of say 10–50 km [Segal and
Arritt, 1992]. However, for physical hydrologic modeling of
large catchments or regional climate analysis we are concerned
with the effect of spatial variability on length scales below, say,
2 km as the grid cells may be of order 102–104 m on a side.
There is a natural gap in scale between the mesoscale patches
(studied as GCM subgrid processes) and the local patches
(scale O 2 km) addressed here, for while the ABL adjusts fully
(i.e., organizes) to each of the mesoscale patches [e.g., Rau-
pach, 1991], the flux from the local patches is integrated or
mixed through the ABL with coupling between patches af-
fected by the boundary layer turbulence [Brutsaert and Par-
lange, 1992; Parlange and Brutsaert, 1993]. The ABL thus rep-
resents the composite effect of the local patches, including the
nonlinear interaction between the patches. The surface layer
flow over the patches serves to couple the flux processes over
one patch to those over the adjacent patch. It is important to
note that there are different mechanisms connecting these
local-scale patches (i.e., turbulent transport) than those active
across the mesoscale patches (i.e., mean circulation).

At present most numerical models of surface hydrologic
processes and atmospheric processes account for the land-
atmosphere exchange through the use of simple statistics of the
surface properties. A first, and rather rough, approach to this
problem has been to apply a simple linear aggregation (aver-
aging) of the surface properties for use in estimating average
grid cell exchange. These average properties are then used to
estimate the average flux, an approach which ignores, by ne-
cessity, all nonlinearity and spatial coupling of the processes. A
second approach, motivated by recognition of the nonlinear
nature of the local exchange processes, has been to compile a
frequency distribution of each surface property within each
grid cell and map these through surface exchange functions in
order to compute an estimate of the total grid cell exchange
[e.g., Avissar, 1991, 1992]. However, this approach assumes
that the individual surface properties (e.g., roughness, temper-
ature, and soil moisture) are uncorrelated and assumes that
the surface patches are independent of each other. In the
context of the scales addressed here there is a significant body
of experimental evidence to the contrary [e.g., Brutsaert and
Stricker, 1979; Parlange and Katul, 1992; Parlange et al., 1999]
since local advection provides a strong coupling between ad-
jacent patches on the land surface for the scales of interest in
hydrology.

Frustrating the efforts to model subgrid surface fluxes so far
is the lack of a general understanding of the physics of land-
atmosphere interaction over heterogeneous surfaces. Rather
than an a priori statistical approach, attention needs to be paid
to the physics and how they scale in order to identify the core
set of surface measures needed to represent the flux from
realistic surfaces. Here we address these questions through
simulations with LES and systematic analysis of the physical
processes that are interacting and combining to form the ag-
gregate exchange. Specifically, we study whether the length
scale of surface variability is a good candidate for inclusion in
aggregation modeling.

In summary, the problem with the existing approaches is that
they ignore the potential effect of surface length scale on

exchange and the dependence between adjacent patches. For
example, two surfaces with the same probability density func-
tion (pdf) of surface properties may have considerably differ-
ent total surface flux over the domain because of coupling
between the patches and effects of length scale of the patches
on the aggregate flux.

1.2. Land-Atmosphere Processes and the Effect of Scale

The portion of the atmosphere closest to the surface reacts
to a change in surface properties through the development of
an internal boundary layer (IBL) just above the surface down-
wind of the change. In an important field experiment, Bradley
[1968] used artificial roughness elements and measured time-
averaged shear stress versus distance from a step change in
roughness with drag plates. His results compared well to the
theory of Panofsky and Townsend [1964]. While Panofsky and
Townsend’s [1964] theory was developed with consideration of
the rough-to-smooth transition, they had assumed that the
reverse arrangement would have an analogous response. How-
ever, Bradley noted that the smooth-to-rough equilibrated
faster than the reversed case, but he did not address possible
reasons. This asymmetric response is central to our problem as
it suggests that the effects of the transitions between the
patches may not “average out.”

Antonia and Luxton [1971] studied the structure of the IBL
after a step change in surface roughness from smooth-to-rough
in a wind tunnel. The IBL was found to grow at a rate con-
trolled by the vertical diffusion of turbulent kinetic energy
(TKE) from the high-production region near the surface. They
found that a new equilibrium surface stress was reached at a
distance well downstream of the transition. In a subsequent
study of the transition downstream of a rough-to-smooth tran-
sition, Antonia and Luxton [1972] found strikingly different
results. Over the smooth surface the transition to a new equi-
librium took much longer, with the rate of growth of the IBL
being markedly less than downstream of the smooth-to-rough
transition. They note that this agrees generally with Bradley’s
[1968] observations. The slow growth of the IBL over the
smooth surface is attributed to influences from both the inner
and outer layers. In contrast to the smooth-to-rough case,
where the upward diffusion of TKE (in the internal region)
controls the growth rate, the IBL growth rate following a
rough-to-smooth transition is damped by the outer region’s
action to compensate for reduced production of TKE over the
smooth wall. Hence the response for rough-to-smooth may be
due to both the internal and outer regions, while the response
in the reverse case may solely be due to the internal region
processes. With the flow over smooth-to-rough and rough-to-
smooth transitions not equilibrated in a similar manner it is
reasonable to foresee that there may be net consequences from
these transitions arising in the regional averaging of surface
exchange.

Several other recent studies have employed Reynolds-
averaged models of the surface layer to address flow over
heterogeneous terrain [e.g., Claussen, 1991; Klaassen, 1992;
Kroon and de Bruin, 1993; Baldocchi and Rao, 1995]. They have
noted the edge effects due to the presence of the upwind field
and postulated how these effects might influence the aggregate
exchange over a larger area. With these Reynolds averaged
approaches the mean fields are solved for with all of the tur-
bulent motion averaged out. Therefore all variability in surface
exchange is brought about by variations in the mean longitu-
dinal velocity, which is caused by the a priori assumptions of
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what happens with the transitions in surface properties. This is
arguably a somewhat circular approach. Here we simulate the
turbulence over heterogeneous land surfaces and observe its
net effects.

There have been several LES studies of boundary layer
turbulence over inhomogeneous surface conditions, such as
those by Hechtel et al. [1990] and Shen and Leclerc [1995].
However, these studies focused on the resulting structure of
the mixed layer turbulence, not on the areal-averaged surface
exchange as in the present paper.

The rationale for the present approach is that the LES
provides physically realistic 3-D representations of the ABL
structure over patchy land surfaces to reveal both spatial and
temporal details of the atmospheric response to surface fea-
tures. This work is motivated by the need for better param-
eterizations of river basin scale surface fluxes and the demon-
strated success of LES to simulate boundary layer dynamics
[Deardorff, 1972; Moeng, 1984; Moeng and Wyngaard, 1984;
Krettenauer and Schumann, 1992; Andren et al., 1994]. More-
over, the physical simulation and analysis of how surface
patches interact with each other through the surface layer
coupling holds promise for providing a physical basis for pa-
rameterizing surface heterogeneity in basin-scale land-
atmosphere interaction. Here we simulate the 3-D turbulent
motion and transport with variation in time and space, such
that the surface stress develops a time and space distribution as
a consequence of both the mean field and the turbulent field.

The specific objectives of this study are to identify spatial
coupling between surface patches, identify the effect of patch
scale on spatially averaged surface shear stress, and explore
possible implications from the momentum case for scalar ex-
change. The case study described here employs modest rough-
ness transitions to demonstrate the physics of how these local
edge effects can manifest themselves in a net sense at the
regional scale. Certainly more extreme roughness transitions,
such as forest to agriculture, would have larger-magnitude
effects; however, the processes remain the same. The stated
objectives are accomplished through use of the LES code de-
scribed in section 2.

2. Large Eddy Simulation
Numerical simulation of turbulence is divided into two basic

classes: (1) direct numerical simulation (DNS) where all scales
of the flow are resolved, from the largest energy-producing
eddies down to the small energy-dissipating eddies, and (2)
LES, where a range of scales is resolved, from the largest
eddies down to an arbitrary cutoff size, below which the dy-
namics are modeled. Resolving the flow implies that the equa-
tions of motion are integrated over a discrete mesh in time and
space. The term “simulation” refers here to the direct integra-
tion of the basic equations, while the term “model” is used to
describe the use of closure models for the unresolved scales.

The direct numerical simulation of ABL dynamics would
require the solution of the governing equations over a grid
capable of resolving the dissipation scale of motion. Order of
magnitude arguments suggest that this would require resolving
Re9/4 degrees of freedom, where Re is the Reynolds number
[McComb, 1990]. As Re can be of order 108 in the ABL, this is
equivalent to a requirement of ;1018 nodes (or modes, if using
spectral methods). Present computing resources limit the size
of practical applications to ;108 degrees of freedom, thus
dashing any hope of simulating all the active scales in the ABL.

Consequently, the numerical efforts described here are limited
to partial resolution of the turbulence through LES. A funda-
mental tenet of LES is that the large scales of motion are the
most dependent upon the gross flow characteristics. These
structures are resolved in the LES, while the eddies smaller
than some scale in the inertial subrange are modeled in terms
of the resolved scales. This is a natural approach; for while the
inertial subrange eddies receive their energy from the larger
scales, they are also rendered statistically independent of the
large-scale motion and any anisotropy that it may possess
through the cascading process [e.g., Batchelor, 1953]. Further-
more, it is the large (resolved) scales that are responsible for
the transport of momentum, heat, and mass.

To account for this incomplete resolution, the equations of
motion and transport must be modified. If the dissipation
scales are not resolved, or otherwise accounted for, the cas-
cading energy would accumulate in the resolved range rather
than continuing down scale and ultimately being dissipated by
molecular action [see, e.g., Leonard, 1974]. The velocity field is
filtered to separate explicitly the resolved from the unresolved
parts. Applying the filter to the governing equations yields
equations for the resolved scales that contain certain terms
involving the unresolved scales. The equations are integrated
numerically with the unresolved scales parameterized by a
subgrid (or subfilter) model, such as the eddy-viscosity model
pioneered by Smagorinsky [1963]. A brief description of the
LES technique in general and this code in particular is given
here. For additional background on the basic equation devel-
opment, see McComb [1990, pp. 118–124], the collection of
papers by Galperin and Orszag [1993], and the description by
Ferzinger [1996].

The flow variables are filtered by the explicit application of
a general filter G to define the resolved field:

u# i~ x1, x2, x3! 5 R Ui~ x91, x92, x93!

z G~ x1 2 x91, x2 2 x92, x3 2 x93! dx91 dx92 dx93 (1)

such that the total instantaneous value may be represented as
the sum of filtered and subgrid components:

Ui 5 u# i 1 u9i (2)

where u# i is the resolved portion of the xi direction velocity
component and u9i is the subgrid or unresolved portion. Both
u# i and u9i vary in time and space. For this effort we restrict
consideration to homogeneous filters, i.e., G( x1 2 x91, x2 2
x92, x3 2 x93) 5 G(Dx1, Dx2, Dx3), such that the filtering
process commutes with differentiation [Aldama, 1990]. The
equations are nondimensionalized by a global boundary layer
length scale zs (e.g., depth of ABL or height of capping inver-
sion) and the friction velocity u*.

The final, dimensionless, filtered equations governing trans-
port of momentum in a neutrally stratified boundary layer
under the Boussinseq assumption are

­ iu# i 5 0 (3)

­ou# i 1 u# j~­ ju# i 2 ­ iu# j! 5 2­ i p# 1 Fpd i1 2 ­ jt ij (4)

with the subgrid stress (requiring closure) represented by

t ij 5 Rij 2
1
3

Rkkd ij Rij 5 u# iu9j 1 u9iu# j 1 u9iu9j (5)
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p# 5
p1

ro
1

1
3

Rkk 1
1
2

u# ju# j (6)

Equation (6) is a modified pressure variable that contains (1)
the Boussinesq kinematic pressure, (2) the trace of the subgrid
stress tensor to account for the difference between Rij and t ij,
and the TKE to balance the extra term on the left-hand side of
(4), which is written in rotational form to conserve kinetic
energy as well as mass [Orszag and Pao, 1974; Ferzinger and
Perić, 1996, p. 156]. The subgrid stress is closed with an eddy-
viscosity model

t ij 5 22nTS# ij (7)

with Smagorinsky’s [1963] formulation for the eddy viscosity

nT 5 C1ql 5 ~Csl !2Î2S# ijS# ij (8)

where S# ij is the resolved strain rate tensor given by

S# ij 5
1
2
~­ ju# i 1 ­ iu# j! (9)

Note that d ij (1 for i 5 j and 0 for i Þ j) is the Kronecker
delta, ­o is the partial derivative operator with respect to time,
­ i is the partial derivative operator with respect to the xi

direction (i.e., ­/­ xi), p1 is the filtered version of the original
static pressure, ro is the reference density used in the
Boussinesq assumption, Fp is the mean streamwise pressure
gradient (constant forcing), the coordinate system is Cartesian
( x1 5 x , x2 5 y , and x3 5 z), with z being normal to the wall
and x being along the mean wind direction, Cs is the Smago-
rinsky constant (taken as 0.2 in this study), l is the mixing
length representative of the scale at which energy cascades
from the resolved to the unresolved scales, and summation is
implied on all repeated subscripts (i.e., ­ j­ ju# i 5 ­1­1u# i 1
­2­2u# i 1 ­3­3u# i). Note that Coriolis effects have been ne-
glected as our focus is on surface layer turbulence, which is
generally insensitive to the Earth’s rotation [e.g., Kaimal and
Finnigan, 1994].

Therefore we have three momentum equations for the three
velocity components, a continuity equation for the pressure,
and nine subgrid momentum flux closure equations for the
nine subgrid momentum fluxes. The pressure field in the mo-
mentum equation is not a thermodynamic variable but rather a
dynamic variable that serves to maintain a divergence free, or
incompressible, velocity field. Consequently, we deduce a pres-
sure field to force the velocity divergence to vanish by taking
the divergence of the momentum equation and applying the
continuity equation. This leaves us with a Poisson equation for
pressure. Hence the system is closed pending prescription of
boundary and initial conditions.

2.1. Numerics

The horizontal directions are treated with pseudospectral
differentiation, and the vertical direction is treated with finite
differences. The pseudospectral numerics are after Orszag
[1971a, b], and the mixed approach with finite differences in
the wall-normal direction is after Moin et al. [1978].

A discrete function may be represented by either its values
in physical space or its Fourier counterpart through the expan-
sion in terms of trigonometric functions

u# i~ x , y , z! 5 O
kx

O
ky

û i~kx, ky, z!ei~kxx1kyy! (10)

where û i is the complex Fourier amplitude associated with the
physical space variable u# i, kx and ky are the wavenumbers in
the x and y directions with summations ranging over the inte-
ger wavenumbers 2Nx/ 2 1 1 # kx # Nx/ 2 and 2Ny/ 2 1
1 # ky # Ny/ 2 (where Nx and Ny are the numbers of nodes
in each the x and y direction), and i 5 =21. For this 2-D
discrete transform it is understood that x and y assume values
only at the quadrature points: x 5 2p(i 2 1)/Nx; y 5
2p( j 2 1)/Ny; and z remains unconstrained. The transform in
(10) is invertible (i.e., u# i N û i) since it is linear and complete
in the sense of a Hilbert space [Canuto et al., 1988]. Recall that
u# i is a filtered field such that it is fully resolved by the number
of modes employed in this finite or truncated expansion (10).

Taking the x and y partial derivatives of each side of (10)
yields

­u# i~ x , y , z!

­ x 5 O
kx

9 O
ky

9

@û i~kx, ky, z!~ikx!#ei~kxx1kyy! (11)

­u# i~ x , y , z!

­ y 5 O
kx

9 O
ky

9

@û i~kx, ky, z!~iky!#ei~kxx1kyy! (12)

where ¥9kxi
is to denote a sum over all wavenumbers except the

Nyquist values (i.e., kx 5 Nx/ 2 or ky 5 Ny/ 2). For conve-
nience we can represent the terms in the square brackets as û9i

x

for (11) and û9i
y for (12); these primed amplitudes are in fact

the Fourier counterparts to the physical space derivatives, i.e.,
­u# i( x , y , z)/­ x N û9i

x and ­u# i( x , y , z)/­ y N û9i
y. The

process for computing the derivatives in physical space is by
taking a known set of u# i( x , y , z), computing the set û i(kx, ky,
z) from the equality in (10), modifying û i to form û9i

x and û9i
y,

and finally, computing the set of ­u# i( x , y , z)/­ x and ­u# i( x , y ,
z)/­ y from (11) and (12). This approach is applied to horizon-
tal planes of nodes (i.e., constant z) taken from the 3-D mesh
of nodes in the flow domain. Second derivatives are also avail-
able from application of the partial derivative operators to (11)
and (12), yielding amplitudes û 0i

x [5 û i(kx, ky, z)(2kx
2)] and

û 0i
y 5 [û i(kx, ky, z)(2ky

2)] for the second derivatives. The
derivatives with respect to the vertical direction are by second-
order accurate, centered finite differencing on a vertically stag-
gered grid that references the vertical velocity component to
midnodes, located between the main nodes that contain the
remaining primitive variables.

The Poisson equation for pressure is solved numerically
using the spectral transform in the horizontal and finite differ-
ences in the vertical with a tridiagonal solver. The time ad-
vancement is by a fully explicit second-order Adams-Bashforth
scheme

ui
t1Dt 2 ui

t

Dt 5
3
2

RHSi
t 2

1
2

RHSi
t2Dt (13)

where RHSi is written for the discrete (numerical) form of
2u# j(­ ju# i 2 ­ iu# j) 2 ­ i p# 1 Fpd i1 2 ­ jt ij and superscripts are
used for time level referencing. This approach has been shown
to be both accurate [Gao and Leslie, 1990] and efficient, with a
computational mode that tends to damp favorably [Haltiner
and Williams, 1980, p. 151].

2.2. Boundary Conditions

The horizontal directions are assigned periodic boundary
conditions such that for any primitive flow variable A we have
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A~ x 1 mLx, y 1 nLy, z! 5 A~ x , y , z! (14)

where Lx and Ly are the domain dimensions in the x and y
directions and m and n are signed integers. These longitudinal
and lateral boundary conditions are implemented implicitly
with the Fourier numerics. The top boundary is positioned well
above the top of the boundary layer and assigned a condition
of vanishing vertical gradients (no stress) and no flow through
the boundary such that at top,

­3 u# i 5 u# 3 5 0 (15)

The bottom boundary is far more critical to the structure of the
turbulence than the sides and top as the mechanical turbulence
is produced as a result of drag at the wall. The surface shear
stress is computed over the bottom boundary as a function of
the prescribed local roughness length zo and near-surface re-
solved velocity by integrating the logarithmic velocity gradient
from z 5 zo to the height of the first node above the wall to
obtain

tw 5 2F Ur k
ln ~ z/zo!

G 2

(16)

where Ur is the local resultant resolved velocity [(u# 1
2 1 u# 2

2)1/ 2]
at height z . Following Schmidt and Schumann [1989], we par-
tition the stress among its x and y components as

t i,3uwall 5 twF u# i~ z!

Ur~ z!G i 5 1, 2 (17)

While it is understood that this type of wall function has its
roots as a relationship between mean values, it is often ex-
tended to instantaneous values in boundary layer simulations
[e.g., Moeng, 1984; Mason and Callen, 1986; Schmidt and Schu-
mann, 1989]. It is used here as a wall-specific subgrid model
that relates instantaneous resolved velocity fields to local in-
stantaneous shear stress. Because the mesh is staggered, with
vertical velocity values assigned to nodes located vertically
offset from the longitudinal and transverse velocity nodes, we
need not employ no-slip boundary conditions for u# 1 and u# 2.
The vertical velocity boundary condition is simply

u# 3 5 0 z 5 0 (18)

The pressure field receives periodic horizontal boundary con-
ditions and vertical boundary conditions from considerations
of the vertical momentum equation written at the wall and the
top of the domain. This code has been successfully validated
[Albertson, 1996] against the results presented by Andren et al.
[1994], who compared four established LES codes for simula-
tion of the neutral ABL.

3. A Suite of Simulations
In support of the objectives described above, three ABL

simulations were performed over patchy surfaces of varying
patch length. By varying the length scale of the patches we
investigate how the scale of the surface heterogeneity affects
the domain-aggregated surface exchange of momentum.

3.1. General Flow Description

While the patch scale varies between the three simulations,
all other gross flow characteristics remain unchanged. The
depth of the simulation domain is 700 m, which is reasonable
for a case such as that studied here without surface heating.

The scaling height was chosen as zs 5 500 m, such that the
horizontal dimensions of the domain are 3140 m (i.e., 2pzs) in
the x and y directions. The domain is spanned by 64 nodes in
the x direction, 32 nodes in the y direction, and 100 nodes in
the z direction. Hence the nominal dimensional mesh spacing
is 50 m in the x direction, 100 m in the y direction, and 7 m in
the z direction. Note that because of the staggered mesh, the
first plane of nodes above the wall for u# 1 and u# 2 is at Dz/ 2 (5
3.5 m).

The initial conditions are a modified logarithmic velocity
profile with a prescribed TKE profile superimposed on the
mean profile. The mean profile is logarithmic in the surface
layer but is forced to reach a zero vertical gradient at zs and
remain at a constant velocity above this height. The dimen-
sionless momentum roughness ( zo 5 0.1 m/zs) was selected
to correspond to an effective roughness [Claussen, 1991] rep-
resentative of the overall effect of the prescribed patchy sur-
face, which is described below. The initial transverse and ver-
tical velocities have zero mean values at all heights. The initial
vertical profile of resolved TKE is again taken from the LES
comparison paper of Andren et al. [1994, Table A.1]. The
instantaneous initial velocities u# i( x , y , z) are obtained by
distributing the TKE randomly between the components and
in space onto the mean profiles. The sole purpose of this initial
TKE profile is as a disturbance field to begin the production of
turbulent eddies and their cascade to smaller and smaller eddies.

A dimensionless time step of 0.0005 was used, which corre-
sponds to a dimensional time step of roughly 0.5 s. The spinup
period was chosen to be 10,000 time steps for each simulation,
corresponding to 5 dimensionless time units or a physical pe-
riod of roughly 1.4 hours. All memory of the initial disturbance
profile is lost through this spin-up period, and the turbulence
moments are dependent on the boundary conditions and the
governing Navier-Stokes equations. The statistics for the com-
parison below were computed over a simulation period of 3000
time steps (e.g., 0.5 hours of physical turbulence), immediately
following the spin-up period. For each of the simulations the
spin-up was satisfactorily long to reach stationary statistics
during the 3000 step analysis period.

3.2. Varying Surface Properties

The simulations are of turbulent ABL flow over surfaces of
patchy roughness, representative of alternating patches of me-
dium height (1–2 m) vegetation (rough) and grass (smooth). In
all cases the patches alternate between smooth and rough,
starting with a smooth patch at x 5 0. The roughness fields are
homogeneous in the y direction (i.e., lateral stripes of constant
roughness). The dimensional momentum roughness length is
0.025 m for the smooth patches and 0.25 m for the rough
patches; the transitions between the patches are perfectly
abrupt. The surface roughness affects the flow through the
boundary flux equation. We reiterate that this is a moderate
roughness transition used strictly to demonstrate a physical
process and its potential for regional scale effects.

3.3. Case Comparison

The sole difference between the three simulations is that
case I has two surface patches (i.e., 1 smooth and 1 rough),
case II has four patches, and case III has eight patches. The
length scales of the individual patches are 1570 m for case I,
785 m for case II, and 390 m for case III. In the following
section we first explore some basic results from the simulations
and then examine the effects of the patchy surface roughness
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on the structure of the flow and on the areally averaged ex-
change rates.

4. Results and Discussion
We are concerned with the surface stress due to the down-

ward flux of momentum to the land surface from the ABL flow.
In the boundary layer this downward flux manifests itself as a
negative correlation between the longitudinal and vertical ve-
locity fields (i.e., u1u3 , 0). We see this relationship in Figure
1a by examining a time series of the longitudinal (U/u* 5 u# 1)
and vertical (W/u* 5 u# 3) velocity components at a single
location ( x , y , z) in the flow. The negative correlation between
these two time series is evidence of the downward flux of
momentum through this point. For example, notice that in the
first 100 s of the time series at this location there is a faster than
average longitudinal velocity while the fluid is generally mov-

ing downward. This case where U9 . 0 and W , 0 is referred
to as a “sweep,” where the high-velocity fluid is carrying mo-
mentum down toward the wall. In the second 100 s there is a
slower than average longitudinal velocity while the fluid moves
upward. This is an “ejection” (U9 , 0 and W . 0) of
low-momentum fluid into the higher regions of the boundary
layer. The net effect of these two events is a downward flux of
momentum. Figure 1a is also instructive in that it depicts the
large-scale nature of the resolved velocity, with the smallest
timescales of the motion being several tens of seconds.

This correlation between the u# 1 and u# 3 fields is depicted
further in the joint pdf of these two variables on the basis of
observations of u# 1 and u# 3 through the full simulation time and
the full horizontal extent at z 5 5Dz in Figure 1b. The corre-
lation between these two fields is marked by the elliptical
nature of the pdf, and the downward direction of the momen-
tum flux is marked by the negative slope of the major axis of
the ellipse. The events captured in the upper left quadrant are
ejections, and the events in the lower right quadrant are
sweeps.

Figure 2 shows the power spectrum of the longitudinal ve-
locity depicting how the resolved longitudinal velocity fluctu-
ations scale with respect to eddy size in the wave (or frequency)
domain. The numerical values on the k axis represent the
number of full waves of size k21 that would fit inside the
longitudinal extent of the domain. The majority of the velocity
variance is, in fact, held by the large-scale motion (low wave-
numbers) that is scaling with the k21 slope as described by
Katul et al. [1995], and the smaller resolved scales (k . 10) do
appear to be approaching the power law scaling k25/3 repre-
sentative of Kolmogorov’s [1941] inertial subrange. Thus the
simulated turbulence meets two important and necessary, but
not sufficient conditions for a fully developed turbulent flow
[see Tennekes and Lumley, 1972].

An instantaneous vertical cross section of the u# 1 field is
shown in Plate 1 to provide a spatial image of the sweep and
ejection process whereby momentum is transported (in a net
sense) toward the land surface. Note the excursions of low-

Figure 1a. (top) A time series of the streamwise velocity
component at a single node in the flow domain and (bottom)
a time series of the vertical velocity component at the same
node.

Figure 1b. A joint probability density function (pdf) of the
departures of the streamwise and vertical velocity components
from their time averages, where ^ & is employed to denote a
time average.

Figure 2. The power spectral density of the streamwise ve-
locity fluctuations (Eu) in the surface layer. The circles mark
the observed spectral density. The solid line marks the pre-
dicted scaling. Here k is a dimensionless wavenumber, with low
values of k implying larger eddies and high values implying
smaller eddies.
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momentum fluid (dark) into the outer regions and the sweeps
of higher-momentum fluid (light) into the near-wall region.
The surface stress is the ultimate representation of this mo-
mentum flux across the surface.

The instantaneous resolved stress (or momentum flux) and
the instantaneous subgrid stress are combined and averaged in
time and over the y direction to provide a time-averaged pic-
ture of how the total downward momentum flux is affected by
the presence of the patchy surface roughness. Plate 2 shows the

structure of the normalized stress (or downward momentum
flux divided by squared friction velocity) over the x and z
directions for the four surface patches of case II. The first and
third patches from the left edge of Plate 2 are smooth, and the
second and fourth are rough. The flux over the leading edge of
each patch is affected through the dynamics of the flow by the
presence of the upwind patch. The near-surface fluid is moving
faster on average over the smooth patches than over the rough
patches, so as it moves from smooth to rough, there is an

Plate 1. An instantaneous x-z cross section of the streamwise velocity field. The dark regions are low-
momentum fluid and the bright regions are high-momentum fluid.

Plate 2. An orthogonal projection of an x-z cross section of Reynolds stress. The smooth patches are noted
by the low-stress surface regions, and the rough patches are below the high-stress regions. The blending out
of these patches through the flow is shown clearly here, with the steady divergence of the stress with height
being rather homogeneous above the so-called blending layer.
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increased stress over the leading edge, which is steadily dimin-
ished as the fluid slows to the rough-patch equilibrium. Over
the leading edge of the smooth patch the fluid is moving slowly
from the effect of the upwind rough surface, causing the re-
duced stress, which is steadily increased as its smooth-surface
equilibrium value is approached.

Having established the general behavior of the simulated
flow, we now examine and compare the three cases in the
context of the stated objectives. The streamwise structure of
the longitudinal velocity u# 1 averaged over y and t at the first
node level above the wall (z 5 Dz/ 2) is shown for the three
cases in Figure 3. There are two important features to note in
Figure 3: (1) how the transition region, in which the velocity is
significantly different from its equilibrium patch value, repre-
sents a relatively larger portion of the total patch size for the
small patches and (2) how the rough patch equilibrates over a
shorter distance than does the smooth patch.

We study this second point in more detail with Figure 4,
where from the case I results we plot the difference between
the time-averaged streamwise velocity and its equilibrium
value for the smooth and rough patches versus distance from
the leading edge of the patch. The circles were obtained by
subtracting from the rough patch series of Figure 3 the value
that the streamwise velocity asymptotes to over the rough
patch; hence in this form it asymptotes to zero; the xs were
obtained similarly but for the smooth patch; the solid line is the
difference between the two derived series. Case I is used here
to show the structure of these series over extended fetch from
the transition. Note from comparing the cases in Figure 3 that
cases II and III are well represented by the left side of Figure
4 since (with respect to near-surface averaged wind velocity)
these two cases are mainly foreshortened versions of the longer
case. This asymmetric trend toward equilibrium was noted in
the wind tunnel experiments of Antonia and Luxton [1971,
1972]. One important qualification needs to be made here:
Antonia and Luxton’s smooth wall is truly “smooth” in the
fluid mechanics sense of the term, whereas we are studying
what is technically a rough-to-rough transition where the mag-
nitude of the roughness changes at the interface. Nonetheless,
their observations are qualitatively similar to the present ones
derived from LES, and their explanations for the asymmetry of

response seems equally relevant to the present case. It is en-
couraging to note that the LES, through simulating the inter-
action of the turbulent boundary layer and the wall, is capable
of capturing this effect. Note from the solid line that the
departure from equilibrium is nearly everywhere greater over
the smooth patch than over the rough patch. With the LES
results it is possible to tie this result to the structure of the
surface stress over the patches and to the relationship between
the areally averaged surface stress and the length scale of the
surface variability. We discuss this below.

Figure 5 shows the corresponding longitudinal structure of
the surface stress for the three cases (averaged over y and t).
Note that the positive nonequilibrium velocity increment DU
over the leading edge of the rough patch translates into a much
larger stress increment than does the slightly larger magnitude
but oppositely signed velocity increment over the smooth sur-

Figure 3. The average streamwise velocity at the plane of
nodes closest to the wall (averaged over y and t): (a) the
two-patch, (b) the four-patch, and (c) the eight-patch cases.

Figure 4. Nonequilibrium near-surface wind speed versus
fetch. The circles (crosses) show the departure of the average
streamwise velocity from its equilibrium value over the rough
(smooth) patch versus distance from the leading edge of the
patch. The solid line is the difference between the smooth
patch values (crosses) and the rough patch values (circles).

Figure 5. The average surface shear stress averaged over y
and t: (a) the two-patch, (b) the four-patch, and (c) the eight-
patch cases.

ALBERTSON AND PARLANGE: SURFACE LENGTH SCALES AND SHEAR STRESS2128



face. This is due to the relationship between the squared near-
surface velocity and the surface stress. Note that with LES we
have the average surface stress arising from a time and space
distribution of surface stress that is derived from the time and
space distribution of the near-surface velocity; that is, it is not
computed as a simple relationship between mean quantities as
with the Reynolds averaged models. This can be quite impor-
tant in light of the quadratic relationship. As with the mean
near-surface velocity, the smaller patch cases appear as fore-
shortened versions of the long patch case. From Figure 5 it is
apparent that the shorter patch cases have a larger fraction of
their surface area in the transition region than the long patch
case, which has an essentially constant stress over the majority
of each patch.

As a minor point, but encouraging with respect to the accu-
racy of the simulation, we observe that the slight decrease in
stress just upstream of the smooth-to-rough transition and the
slight increase in stress just upstream of the rough-to-smooth
transition are in qualitative agreement with the detailed anal-
ysis of the transition region performed with the stream func-
tion vorticity model by Claussen [1987]. On the smooth-to-
rough transition this can be explained by the slower flow region
over the rough surface acting as a barrier to the incoming flow.
Just prior to the rough-to-smooth transition the fluid is begin-
ning to speed up to maintain continuity with the faster flow
over the smooth patch. Although Claussen’s study focused on
the region upstream of the step change, it did note that a new
equilibrium stress was not yet reached by the end of the study
region, a distance of 600zo downstream from the transition
(equivalent to O 150 m over our rough surface).

In Figure 6 we compare the departures from patch equilib-
rium values for the stress over the rough and smooth patches
in case I (as with the velocities in Figure 4). Here we see a
combination of effects: the slower trend toward equilibrium
over the smooth patch is evident along with the accentuated

effects on the stress at the leading edge from the positive
velocity increments (and quadratic stress relationship) over the
rough patch. This gives rise to a difference in the nonequilib-
rium stress series between the rough and smooth series (solid
line) that crosses the origin (unlike the velocity difference that
was everywhere in favor of the smooth patch). The leading
edge has a larger nonequilibrium stress increment over the
rough patch; an equality is reached somewhat downstream of
the leading edge, and finally, the departure over the smooth
surface is greater over the interior region of the patch. In
effect, there is a partial canceling of effects when integrated
over the full large patch.

This is explored with a running integration of the difference
between the nonequilibrium stress with respect to x in Figure
7. For any value of x on Figure 7 the ordinate marks the area
under the solid line in Figure 6 to the left of x . Note that the
maximum integrated nonequilibrium stress difference is found
for a patch length of 200–300 m, and the total effect is realized
by x ' 1000 m such that the net stress difference from equi-
librium does not increase for patch lengths .1 km. These
results are intended to demonstrate the general effects of the
patchy surface on the areally averaged exchange; quantitative
interpretation of the fetch distances should be considered in
terms of a distance variable normalized by zo. They are not
presented in that manner here because of difficulty in inter-
comparing between the smooth and rough patches. For the
present concern of shear stress we note that Taylor’s [1970]
modeling results suggested a transition following a change in
surface roughness extending several orders of magnitude
greater than zo, which is a similar order of magnitude as seen
here.

Figure 8 shows the pdf of the surface stress sampled over x ,
y , and t for each of the three cases. The distributions widen as
the patch size is decreased from case I to case III. This is
explained by the increasing fraction of the domain affected by
transition areas for the smaller patch sizes. Hence there is a
noticeable relationship between the length scale of surface
roughness variability and the statistical structure of the instan-
taneous surface stress.

At its most simple form this relationship results in depen-

Figure 6. Nonequilibrium surface shear stress versus fetch.
The circles (crosses) show the departure of the average surface
stress from its equilibrium value over the rough (smooth) patch
versus distance from the leading edge of the patch. The solid
line is the difference between the smooth patch values (cross-
es) and the rough patch values (circles). Note that as the
surface shear stress is expressed as a negative quantity, the
negative values reflect regions where the stress is greater than
its equilibrium value.

Figure 7. The integration of the solid line from Figure 8 with
respect to x . This depicts the total stress increment due to the
presence of smooth and rough patches as a function of patch
size.
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dence of the average surface stress on the length scale of the
surface patch, as shown in Figure 9. The decrease in patch size
is increasing the magnitude of domain-averaged surface stress
because of the interaction of adjacent patches through the
coupling affected by the surface layer turbulence and the asym-
metric response noted above. Thus we see that as hypothesized
earlier, surfaces with identical pdfs of surface properties but
differing surface length scales are likely to have different are-
ally averaged exchange rates. Note that the surfaces studied
here have only moderate roughness differences between the
rough and smooth regions. Certainly, greater effects can be
expected for more drastic differences in practice.

The presence of patches of surface roughness is also noticed
in the mean vertical component of the velocity. In Figure 10
the air is shown to be moving upward on average over the
leading edge of a rough patch and to be moving downward on
average over the leading edge of a smooth patch. This is due to
the conservation of mass and the (1-D) nature of the surface
variability (i.e., homogeneous in y). The mean wind is slowing
over the rough patch, i.e., ­1u# , 0, which, through the con-

servation of mass (­ iui 5 0), is creating an increase in the
vertical wind velocity with height, ­3w# . 0. The converse is
occurring over the smooth patch. Figure 10 is included to
highlight the implications for scalar flux near the leading edge
of surface patches. Following the transition to a rough patch,
there may be enhanced upward scalar flux because of a com-
bination of increased surface shearing and the mean upward
motion in this transition region. Also, in the leading edge
region of a smooth surface there is a reduced shear stress and
a net downward motion serving to dampen the vertical turbu-
lent flux.

5. Conclusions
Motivated by the need for an improved understanding of the

relationship between the spatial structure of surface properties
and the net exchange across the land-atmosphere interface, we
used a LES code to study the vertical momentum flux in a
neutrally stratified turbulent boundary layer over patchy sur-
faces. The scales of interest were limited to those within a
single grid cell of a typical regional-scale simulation model
(i.e., O 2 km). The coupling of surface patches in this range of
scales is due to the dynamics of the inner region of the atmo-
spheric boundary layer. The simulated boundary layer turbu-
lence was shown to capture the space and time structure of this
flow-induced coupling of adjacent surface patches, including
the presence of important features noted in previous investi-
gations of wind tunnel and ABL experiments [e.g., Bradley,
1968; Antonia and Luxton, 1971, 1972]. Through the simula-
tions we were able to explore the net effects to regional-scale
fluxes from the asymmetrical response of the surface patch
transitions.

Most importantly, through a combination of (1) the different
rates at which smooth and rough surfaces reach equilibrium
velocities and (2) the increased effect of positive velocity de-
partures on surface stress vis-a-vis negative departures, the
simple presence of roughness transitions was shown to increase
the average surface shear stress. The presence of edges and the
corresponding transition regions inside each patch were shown
to create a marked dependence of the statistical structure of
surface stress on the length scale of the surface patches. At its

Figure 8. The pdf of surface shear stress for the two-patch
case (pluses), the four-patch case (crosses), and the eight-patch
case (circles).

Figure 9. Domain-averaged surface shear stress versus patch
scale.

Figure 10. The average vertical velocity at the plane of nodes
closest to the wall (averaged over y and t) for the two-patch
case.
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simplest level this structure manifests itself in a clear increase
of average surface stress with decreased length scale of surface
patches over the range of patch scales studied (even for the
moderate zo differences). Therefore we are able to conclude
that the pdf of surface properties over a model grid cell is an
incomplete representation of the surface properties for an
accurate accounting of the average surface exchange over the
cell. Future models of land-atmosphere interaction may offer
improved performance by also accounting for the length scale
over which the surface properties vary.

It was demonstrated that the maximum stress increment due
to the presence of the edge is found for a relatively small patch
length (200–300 m for the roughness used here) and that the
increment added per edge is constant for patch lengths greater
than some value of the order of a kilometer. The slowing of the
mean wind over the rough surface was shown through the
conservation of mass, to induce a mean upward motion. This
mean upward motion and the increased surface stress over the
leading edge of a rough patch will combine to increase further
vertical scalar flux over this region. For the case of evaporation
over an irrigated cropped surface downwind of a bare arid
region this mechanical effect may be in addition to otherwise
increased evaporation rates from local advection of hot, dry air
over the cool, wet surface.

The implications of the processes demonstrated in this work
are mainly relevant to modeling studies seeking to parameter-
ize the spatial average surface fluxes over large grid cells.
These edge effects would be implicitly included along with
other near-surface flow effects in regional-scale flux observa-
tions made well up in the boundary layer. For either type of
application, modeling or observations, we note that the in-
crease in stress found for this moderate roughness transition is
roughly equivalent to that realized from a 15% change in an
effective roughness value (as defined by an error analysis that
differentiates the log law with respect to zo).

Although quantitative values presented in the final figures
may be limited to the particular example of roughness lengths
considered, the general structure of the results and the basic
relationships between the patch scales and the surface stress
statistics should hold true in a general sense. In fact, we antic-
ipate that the magnitude of the effect would be considerably
larger for the types of roughness transitions often encountered
in practice (e.g., agricultural fields and forests). The effects
demonstrated in this study are supported by the corroborative
evidence found in the experimental literature, reviewed above
for the response of velocity and surface stress fields to rough-
ness transitions. With this fundamental relationship estab-
lished, future studies are planned to explore the effects of
boundary layer depth and density stratification on this relation-
ship.

Acknowledgments. This work was funded by the NASA Earth Sys-
tem Science Fellowship Program and the NSF under EAR 9304331.
Additional assistance was provided by a faculty startup grant from the
University of Virginia. We are thankful for the assistance of W. Koll-
mann, R. Shaw, and several anonymous reviewers.

References
Albertson, J. D., Large Eddy Simulation of Land-Atmosphere Interac-

tion, Ph.D. thesis, 185 pp., Univ. of Calif., Davis, 1996.
Albertson, J. D., G. Kiely, and M. B. Parlange, Surface fluxes of

momentum, heat, and water vapor, in Global Environmental Change,
vol. 45, Radiation and Water in the Climate System, NATO ASI Ser.

1, edited by E. Raschke, pp. 59–82, Springer-Verlag, New York,
1996.

Aldama, A. A., Filtering Techniques for Turbulent Flow Simulation,
Lecture Notes Eng. vol. 56, edited by C. A. Brebbia and S. A. Orszag,
397 pp., Springer-Verlag, New York, 1990.

Andren, A., A. R. Brown, J. Graf, P. J. Mason, C.-H. Moeng, F. T. M.
Nieuwstadt, and U. Schumann, Large-eddy simulation of a neutrally
stratified boundary layer: A comparison of four computer codes,
Q. J. R. Meteorol. Soc., 120, 1457–1484, 1994.

Antonia, R. A., and R. E. Luxton, The response of a turbulent bound-
ary layer to a step change in surface roughness, 1, Smooth to rough,
J. Fluid Mech., 48, 721–761, 1971.

Antonia, R. A., and R. E. Luxton, The response of a turbulent bound-
ary layer to a step change in surface roughness, 2, Rough to smooth,
J. Fluid Mech., 53, 737–757, 1972.

Avissar, R., A statistical-dynamical approach to parameterize subgrid-
scale land-surface heterogeneity in climate models, Surv. Geophys.,
12, 155–178, 1991.

Avissar, R., Conceptual aspects of a statistical-dynamical approach to
represent landscape subgrid-scale heterogeneities in atmospheric
models, J. Geophys. Res., 97, 2729–2742, 1992.

Baldocchi, D. D., and K. S. Rao, Intra-field variability of scalar flux
densities across a transition between desert and an irrigated potato
field, Boundary Layer Meteorol., 76, 109–136, 1995.

Batchelor, G. K., The Theory of Homogeneous Turbulence, 197 pp.,
Cambridge Univ. Press, New York, 1953.

Bradley, E. F., A micrometeorological study of the velocity profiles and
surface drag in the region modified by a change in surface rough-
ness, Q. J. R. Meteorol. Soc., 94, 361–379, 1968.

Brutsaert, W., and M. B. Parlange, The unstable surface layer above
forest: Regional evaporation and heat flux, Water Resour. Res., 28,
3129–3134, 1992.

Brutsaert, W., and H. Stricker, An advection-aridity approach to esti-
mating actual regional evaporation, Water Resour. Res., 15, 443–450,
1979.

Canuto, C., M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral
Methods in Fluid Dynamics, Springer Ser. Comput. Phys., 597 pp.,
Springer-Verlag, New York, 1988.

Claussen, M., The flow in a turbulent boundary layer upstream of a
change in surface roughness, Boundary Layer Meteorol., 40, 31–86,
1987.

Claussen, M., Estimation of areally-averaged surface fluxes, Boundary
Layer Meteorol., 54, 387–410, 1991.

Dabberdt, W. F., and T. W. Schlatter, Research opportunities from
emerging atmospheric observing and modeling capabilities, Bull.
Am. Meteorol. Soc., 77, 305–323, 1996.

Deardorff, J. W., Preliminary results from numerical integrations of
the unstable planetary boundary layer, J. Atmos. Sci., 27, 1209–1211,
1970a.

Deardorff, J. W., Convective velocity and temperature scales for the
unstable planetary boundary layer and Rayleigh convection, J. At-
mos. Sci., 27, 1211–1213, 1970b.

Deardorff, J. W., Numerical investigation of neutral and unstable
planetary boundary layers, J. Atmos. Sci., 29, 91–115, 1972.

Ferzinger, J. H., Large eddy simulation, in Simulation and Modeling of
Turbulent Flows, edited by T. B. Gatski, M. Y. Hussaini, and J. L.
Lumley, pp. 109–154, Oxford Univ. Press, New York, 1996.

Ferzinger, J. H., and M. Perić, Computational Methods for Fluid Dy-
namics, 356 pp., Springer-Verlag, New York, 1996.

Galperin, B., and S. A. Orszag, Large Eddy Simulation of Complex
Engineering and Geophysical Flows, 600 pp., Cambridge Univ. Press,
New York, 1993.

Gao, S., and D. C. Leslie, Accuracy comparison of Adams-Bashforth
and leapfrog in the context of large eddy simulation, Commun. Appl.
Numer. Methods, 6, 1–5, 1990.

Haltiner, G. J., and R. T. Williams, Numerical Prediction and Dynamic
Meteorology, 477 pp., J. Wiley, New York, 1990.

Hechtel, L. M., C.-H. Moeng, and R. B. Stull, The effects of nonho-
mogeneous surface fluxes on the convective boundary layer: A case
study using large-eddy simulation, J. Atmos. Sci., 47, 1722–1741,
1990.

Kaimal, J. C., and J. J. Finnigan, Atmospheric Boundary Layer Flows,
289 pp., Oxford Univ. Press, New York, 1994.

Katul, G. G., C.-R. Chu, M. B. Parlange, J. D. Albertson, and T. A.
Ortenburger, Low-wavenumber spectral characteristics of velocity

2131ALBERTSON AND PARLANGE: SURFACE LENGTH SCALES AND SHEAR STRESS



and temperature in the atmospheric surface layer, J. Geophys. Res.,
100, 14,243–14,255, 1995.

Klaassen, W., Average fluxes from heterogeneous vegetated regions,
Boundary Layer Meteorol., 58, 329–354, 1992.

Kolmogorov, A. N., The local structure of turbulence in incompress-
ible viscous fluid for very large Reynolds numbers (in Russian),
Dokl. Akad. Nauk SSSR, 4, 299–303, 1941.

Krettenauer, K., and U. Schumann, Numerical simulation of turbulent
convection over wavy terrain, J. Fluid Mech., 237, 261–299, 1992.

Kroon, L. J. M., and H. A. R. de Bruin, Atmosphere-vegetation inter-
action in local advection conditions: Effect of lower boundary con-
ditions, Agric. For. Meteorol., 64, 1–28, 1993.

Leonard, A., Energy cascade in large-eddy simulations of turbulent
fluid flows, Adv. Geophys., 18A, 237–249, 1974.

Mason, P. J., and N. S. Callen, On the magnitude if the subgrid-scale
eddy coefficient in large-eddy simulations of turbulent channel flow,
J. Fluid Mech., 162, 439–462, 1986.

McComb, W. D., The Physics of Fluid Turbulence, 572 pp., Oxford
Univ. Press, New York, 1990.

Moeng, C.-H., A large eddy simulation for the study of planetary
boundary layer turbulence, J. Atmos. Sci., 41, 2052–2062, 1984.

Moeng, C.-H., and J. C. Wyngaard, Statistics of conservative scalars in
the convective boundary layer, J. Atmos. Sci., 41, 3161–3169, 1984.

Moin, P., W. C. Reynolds, and J. H. Ferzinger, Large eddy simulation
of incompressible turbulent channel flow, Rep. TF-12, Dep. Mech.
Eng., Stanford Univ., Stanford, Calif., 1978.

Orszag, S. A., Numerical simulation of incompressible flows within
simple boundaries, 1, Galerkin (spectral) representations, Stud.
Appl. Math., L, 293–327, 1971a.

Orszag, S. A., Numerical simulation of incompressible flows within
simple boundaries: Accuracy, J. Fluid Mech., 49, 75–112, 1971b.

Orszag, S. A., and Y.-H. Pao, Numerical computation of turbulent
shear flows, Adv. Geophys., 18A, 224–236, 1974.

Panofsky, H. A., and A. A. Townsend, Change of terrain roughness
and the wind profile, Q. J. R. Meteorol. Soc., 90, 147–155, 1964.

Panton, R. L., Incompressible Flow, 780 pp., John Wiley, New York,
1984.

Parlange, M. B., and W. Brutsaert, Regional shear stress of broken
forest from radiosonde wind profiles in the unstable surface layer,
Boundary Layer Meteorol., 64, 355–368, 1993.

Parlange, M. B., and G. G. Katul, An advection-aridity evaporation
model, Water Resour. Res., 28, 127–132, 1992.

Parlange, M. B., W. E. Eichinger, and J. D. Albertson, Regional
evaporation into the atmospheric boundary layer, Rev. Geophys., 33,
99–124, 1995.

Parlange, M. B., J. D. Albertson, W. E. Eichinger, A. T. Cahill, and
T. J. Jackson, Evaporation: Use of fast response turbulence sensors,
raman lidar and passive microwave remote sensing, in Vadose Zone
Hydrology: Cutting Across Disciplines, edited by M. B. Parlange and
J. W. Hopmans, Oxford Univ. Press, New York, in press, 1999.

Raupach, M. R., Vegetation-atmosphere interaction in homogeneous
and heterogeneous terrain: Some implications of mixed layer dy-
namics, Vegetatio, 91, 105–120, 1991.

Schmidt, H., and U. Schumann, Coherent structures of the convective
boundary layer derived from large-eddy simulations, J. Fluid Mech.,
200, 511–562, 1989.

Segal, M., and R. W. Arritt, Nonclassical mesoscale circulations caused
by surface sensible heat flux gradients, Bull. Am. Meteorol. Soc., 73,
1593–1604, 1992.

Shen, S. H., and M. Y. Leclerc, How large must surface inhomogene-
ities be before they influence the convective boundary layer struc-
ture: A case study, Q. J. R. Meteorol. Soc., 121, 1209–1228, 1995.

Smagorinsky, J., General circulation experiments with the primitive
equations, 1, The basic experiment, Mon. Weather Rev., 91, 99–164,
1963.

Taylor, P. A., A model of airflow above changes in surface heat flux,
temperature, and roughness for neutral and unstable conditions,
Boundary Layer Meteorol., 1, 18–39, 1970.

Tennekes, H., and J. L. Lumley, A First Course in Turbulence, MIT
Press, Cambridge, Mass., 1972.

J. D. Albertson, Department of Environmental Sciences, University
of Virginia, Charlottesville, VA 22903. (jdalbertson@virginia.edu)

M. B. Parlange, Department of Geography and Environmental En-
gineering, The Johns Hopkins University, Baltimore, MD 21218.

(Received June 3, 1998; revised March 5, 1999;
accepted March 12, 1999.)

ALBERTSON AND PARLANGE: SURFACE LENGTH SCALES AND SHEAR STRESS2132


