
1. Introduction
The relationship between precipitation and large-scale
measures of atmospheric circulation has received much
attention in recent years (e.g. Bardossy & Caspary,
1990; Bardossy & Plate, 1992; Hughes et al., 1993;
Woolhiser et al., 1993; Katz & Parlange, 1993). Some of
the interest relates to quantifying the possible change in
atmospheric circulation within the past two decades,
with associated changes to precipitation occurrence and
intensity (Bardossy & Caspary, 1990; Kiely et al.,
1998). Other interest is due to the fact that General
Circulation Models (GCMs) can provide sea level pres-
sure fields for future climate conditions (e.g. under
increased greenhouse gas concentrations). However,
because of their coarse resolution (e.g. there might be
only one grid point for Ireland), they cannot ade-
quately represent local precipitation. A stochastic pre-
cipitation model, conditioned on a suitable atmos-
pheric circulation parameter/index, could be used in
simulating monthly precipitation distributions. A com-
parison of unconditioned chain-dependent models for
daily precipitation with conditioned models showed
the latter to be an important improvement for the mod-
elled stochastic precipitation process (e.g. Katz &
Parlange, 1993).

It is common in hydrology to fit stochastic models to
the full time series of precipitation amounts. However,
precipitation amount lends itself to splitting (or condi-
tioning) the time series into two (e.g. the part of the
series of lower precipitation amounts associated with
high sea level pressure and the other part of the time
series of higher precipitation amounts associated with
low sea level pressure). A suitable atmospheric circula-
tion index on which to condition precipitation could
include among others: sea level pressure (SLP),
geostrophic wind direction (GWD), sea surface tem-
perature (SST) and a Lamb (1950) type wind direction
classification index. Much use has been made of the ‘El
Niño’ or Southern Oscillation phenomenon as a con-
ditioning index in regions known to be sensitive. The
North Atlantic Oscillation has also been used as a cir-
culation index (Hurrell, 1995). Katz & Parlange (1993),
using precipitation data for California, developed two
conditioned daily models, which differ in terms of the
parameters of the occurrence process and the intensity
process. Each of these daily effects contributes to
changes in the distribution of monthly total precipita-
tion associated with the SLP circulation index. They
showed how a daily conditioned model could be used
to induce an improved monthly model. The induced
model is a combination of both conditioned models
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with different parameters. The induced monthly means
are identical to the unconditional model means, but the
induced model produces a variance for total monthly
precipitation that is different to the unconditional
model variances and is closer to the observed variances.

In this paper we use a daily precipitation set and a daily
SLP set, each of length 54 years (1940–1993), from
Valentia in south-west Ireland. The location of the site
is shown in Figure 1. We also use a daily wind direction
data set (at 850 mb) of length 35 years (1952–1986). We
condition precipitation data by partitioning the time
series of precipitation into two sets. In the case of SLP,
we identify the mean monthly sea level pressure for
each month. For each month (say January) we then
partition the time series into a sub-series associated
with Januarys above the mean January sea level pres-
sure, and a second sub-series associated with Januarys
below the mean January sea level pressure. Obviously,
the Januarys associated with the ‘lows’ produce higher
monthly mean precipitation. We develop two daily
conditioned models: one associated with above mean
SLP and the other associated with below mean SLP.
This ‘conditioning’ process is repeated for each of the
12 months. Following Katz & Parlange (1993) we
aggregate the two daily conditioned models to two
monthly conditioned models. We then use a combina-
tion of both conditioned models to develop an induced
monthly model. In the case of Geostrophic Wind
Direction, we identify a ‘storm window’ for each
month (e.g. the 180–270° quadrant) and partition the
precipitation into a sub-series of those Januarys associ-
ated with a monthly mean wind direction in the ‘storm
window’ and a second sub-series for those Januarys
outside the ‘window’. As with SLP we develop two
conditioned daily models, and aggregate these to two
conditioned monthly models and then combine both
into an induced monthly model.

2. Atmospheric circulation and monthly
precipitation

2.1. Sea level pressure index

Cayan & Peterson (1989) and Weare & Hoeschele
(1983) found, for California, that patterns in atmos-
pheric circulation (as exemplified by SLP) do have a
strong effect on precipitation over much of the state,
during the wet months, October to May. At Valentia,
Ireland, precipitation is spread more evenly throughout
the year, with a mean varying from about 70–90 mm
per month in April, May, June and July to 100–160 mm
per month for all other months. So, because of signifi-
cant precipitation in all months, we would expect that a
model of the precipitation process conditioned on SLP
would be valid throughout the year, and not just the
winter months.

The site of this study is on the south-west coast of
Ireland, where the sea level pressure data is at the same
site (51°52' N, 10°23' W) as the precipitation measure-
ments. We assume stationarity from day to day within
the month, non-stationarity from month to month
throughout the year and stationarity from year to year.
So we allow for seasonal variations while assuming that
the statistical structure is stationary within each month
and does not vary from year to year. The mean
monthly SLP is used to construct an index of atmos-
pheric circulation. By definition we do not allow the
index to vary within the month. The 12 months of the
year are used, and each month has a different mean
monthly SLP. The index is defined as:

I = 0 if monthly SLP < mean (1)
I = 1 if monthly SLP > mean

The mean here is the historic mean for the subject
month over the long term sample of the pressure
record, in this case 54 years (1940–1993). For January,
the value is 1012.5 mb and for July it is 1017.0 mb, as
seen in Table 1.
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Table 1. Mean monthly SLPs (1940–1993) and mean
monthly active storm windows (1952–1986) at Valentia

Month Mean Mean
monthly monthly
SLP active storm window
(mb) degrees

January 1012.5 220–280
February 1013.5 190–280
March 1013.3 210–290
April 1015.5 140–310
May 1015.0 213.5–275
June 1016.8 247.5–290
July 1017.0 262.5–295
August 1015.2 248.7–282
September 1014.8 237.5–266
October 1013.4 228–262
November 1012.7 241–285
December 1012.5 235–280Figure 1. Location map of Valentia, south-west Ireland.



2.2. Geostrophic wind direction index

Using the Lamb (1950) synoptic classification, for sev-
eral stations in Ireland, Houghton & O’Cinneide
(1976) categorised rainfall for magnitudes (both annual
totals and daily means) for 1971–1972. The seven clas-
sifications used are anticyclonic, cyclonic, westerly,
north-westerly, northerly, easterly and southerly. For
Valentia, they identify that annual precipitation is par-
titioned approximately as 30% to cyclonic, 30% to
westerly and about 10% to southerlies. Westerlies con-
tribute most precipitation in the autumn, while the
cyclonics contribute a relatively uniform amount
throughout the year and also a relatively uniform
amount throughout the island of Ireland. Precipitation
bearing westerlies have a distinguishing precipitation
gradient from west to east across the island. Sweeney
(1985) and Sweeney & O’Hare (1992) examined the
categorises of Irish precipitation using an extended (27
categories) Lamb classification system. They found
that cyclonic south-westerlies are the most prolific pre-
cipitation synoptic types for Ireland as a whole. It is
clear from Sweeney & O’Hare (1992) that precipitation
for Valentia is predominantly from the 180–270° quad-
rant (i.e. from the south-west). Obviously, this ‘storm
window’ will vary somewhat for each month of the
year, as shown in Table 1.

In conditioning precipitation with a wind direction
index, it is possible to consider at least two options: the
geostrophic wind direction (GWD) or the Lamb (1950)
type classification. For this study we use the
geostrophic wind direction (at 850 mb) and compose
an index. We choose GWD partly because there is
interest in a perceived circulation change (since the
1970s) towards more frequent westerlies (rain bearing

to Ireland) in Western Europe (as noted by Bardossy
& Caspary, 1990, for December and January) and
as such a change is readily studied in the GWD con-
text. Figure 2 shows the monthly mean wind direc-
tion (versus the monthly total precipitation) at
Valentia, and the concentration is seen to be centred
about 250° or west–south-west. The wind direction
from the 850 mb level was chosen as it was considered
to be above the influence of local orography, as hills
in the region are no higher than about 300 m. Wind
direction data for the 35 year period (1952–1986) on
a six hour time step were used. For the 35 Januarys,
we compute the 35 monthly mean wind directions. For
the same time periods we compute the monthly precip-
itation. When the precipitation is plotted against the
wind direction, we then visually identify an ‘active
storm quadrant’, for each month, containing approxi-
mately half of the events with the largest amount of
precipitation. For January we identify the ‘storm win-
dow’ as 220–280° and for July as 262.5–295° . Table 1
identifies the ‘storm window’ for all 12 months. For
wind direction index notation (consistent with SLP) we
adopt:

I + 0 if monthly GWD is within (2)
the active storm window

I + 1 if monthly GWD is outside
the active storm window

The GWD index is somewhat ‘subjective’ and so,
poor selection of the ‘active storm window’ can lead to
varying results. By comparison, the SLP index is
more objective, and simpler to compute. As with the
SLP index, on the assumption of stationarity, we
do not permit the GWD index to vary within the
month.
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Figure 2. Observed monthly mean wind direction and monthly total precipitation.



3. Summary statistics for unconditioned and
conditioned monthly distributions

Using SLP conditioning to partition the data from
1940–1993, the observed monthly standard deviations
of the unconditioned and conditioned distributions for
the total precipitation for each of the 12 months at
Valentia are summarised in Table 2. Similarly, Table 3
is a summary based on conditioning with GWD for the
period available, 1952–1986.

Figure 3(a) shows the mean monthly precipitation for
the unconditioned and two conditioned distributions
based on SLP. It shows that:

(a) The conditioned mean (I = 0, low pressure) is
always greater than the unconditioned mean.

(b) The conditioned mean (I = 1) is always less than the
unconditioned mean.

Figure 3(b) shows the mean monthly precipitation for
the unconditioned and two conditioned distributions
based on GWD. It shows that:

(a) The conditioned mean (‘within the storm window’,
I = 0) is higher than the unconditioned mean for all
months except June.

(b) The conditioned mean (‘outside the storm win-
dow’, I = 1) is lower than the unconditioned mean
for all months except June.

The differences between the two conditioned means for
the SLP case are greater than the corresponding differ-
ences in the GWD case. For both SLP and GWD con-
ditioning, the conditioned monthly standard deviations
as shown in Figure 4 are always less than the uncondi-
tioned standard deviations. Since the time series record
for the conditioned sets is shorter than that for the
unconditioned time series, we expect the conditioned
standard deviations to be less than the unconditioned.
While the unconditioned mean is simply the weighted
average of the two conditioned means, the uncondi-
tioned standard deviation is not the weighted average
of the two conditioned standard deviations. It is the
standard deviation of a mixed distribution, made up of
the two conditioned distributions.

4. Chain-dependent process model for daily
precipitation

Precipitation is modelled using the chain-dependent
process (Katz, 1977a, Katz & Parlange, 1993), which
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Table 2. Standard deviation of monthly total precipita-
tion from unconditioned, conditioned and induced
models for daily precipitation at Valentia, 1940–1993,
conditioned on SLP. Observations are in parentheses

Month Standard Standard Standard Standard
deviation, deviation, deviation, deviation,

unconditioned induced conditioned conditioned
I = 1 I = 0

(mm) (mm) (mm) (mm)

January 44.9 53.2 45.8 42.0
(57.4) (57.4) (47.5) (51.4)

February 37.4 50.6 42.4 30.0
(58.7) (58.7) (44.8) (48.7)

March 38.3 50.9 42.0 31.1
(59.1) (59.1) (52.2) (43.2)

April 30.0 34.3 32.2 26.6
(34.9) (34.9) (30.3) (27.4) 

May 31.3 41.3 35.8 25.8
(42.2) (42.2) (34.4) (30.8)

June 29.8 31.9 29.7 28.6
(30.5) (30.5) (25.8) (29.3)

July 29.8 38.1 32.7 25.7
(44.2) (44.2) (42.9) (31.1)

August 34.0 44.6 36.7 28.0
(53.1) (53.1) (47.6) (41.1)

September 41.2 57.6 47.7 30.6
(57.4) (57.4) (41.6) (35.7)

October 43.6 60.7 47.8 38.1
(62.1) (62.1) (49.4) (43.3)

November 43.9 51.6 44.6 41.4
(55.2) (55.2) (44.8) (49.4)

December 43.4 52.0 45.6 39.4
(61.3) (61.3) (56.5) (50.5)

Table 3. Standard deviation of monthly total precipita-
tion from unconditioned, conditioned and induced
models for daily precipitation at Valentia, 1952–1986,
conditioned on GWD. Observations are in parentheses

Month Standard Standard Standard Standard
deviation, deviation, deviation, deviation,

unconditioned induced conditioned conditioned
I = 1 I = 0

(mm) (mm) (mm) (mm)

January 42.5 38.0 43.4 41.6
(59.1) (59.1) (58.2) (54.3)

February 37.7 41.3 39.1 34.0
(59.3) (59.3) (52.4) (52.6)

March 41.8 44.1 40.7 39.8
(61.9) (61.9) (62.1) (47.7)

April 30.4 33.4 33.1 25.5
(33.8) (33.8) (27.9) (23.5)

May 29.7 34.7 31.0 25.8
(40.8) (40.8) (33.0) (34.2)

June 29.5 23.8 28.0 31.0
(26.8) (26.8) (32.1) (19.5)

July 29.2 36.5 34.5 21.5
(42.2) (42.2) (37.0) (24.3)

August 35.7 29.2 31.4 39.2
(52.9) (52.9) (54.2) (53.1)

September 40.7 46.3 47.1 33.9
(60.1) (60.1) (40.6) (67.8)

October 41.7 41.1 42.0 39.4
(60.6) (60.6) (65.5) (54.4)

November 45.8 45.6 47.5 41.9
(54.1) (54.1) (47.8) (45.2)

December 42.8 40.6 42.3 42.7
(61.4) (61.4) (61.3) (53.0)



divides the precipitation event into a simple two
component process: an occurrence process or sequence
of wet and dry days, and an intensity process which
defines the intensity in each wet interval.

The occurrence process {Jt : t = 1, 2,…} is defined as:

Jt = 1 if day t is wet (3)
Jt = 0 otherwise

The occurrence process is assumed to constitute a two
state, first order Markov-chain (Waymire & Gupta,
1981). The stochastic model is completely characterised
by the transition probabilities:

Pij = Pr{Jt+1 = j| Jt = i} i,j = 0,1,… (4)

where Pij is the probability that Jt+1 = j given that Jt = i.
For example, P01 is the probability of a wet day follow-
ing a dry day and P11 is the probability of a wet day fol-
lowing a wet day. Clearly Pi0 + Pi1 = 1. The Markov-
chain is defined by the probability of a wet day, π , and
the first order autocorrelation coefficient, ρ (persis-
tence parameter):

π = Pr{Jt = 1} = P01 / [P01 + P10] (5)
ρ = Corr{Jt , Jt +1} = P11 – P01

The intensity process is represented by a series of ran-
dom variables {Xk ;k=1,2,…} where Xk is the amount of
precipitation on the k’th wet day. The distribution is
assumed to have a mean µ and variance σ2. Daily pre-

cipitation distributions are positively skewed, so to
‘normalise’ we use a power transform function (after
Katz & Parlange, 1993):

Xk
* = Xk

p, 0 < p < 1 (6)

where X k
* has a normal distribution with transformed

mean µ* and transformed variance (σ*)2. Typically, the
mean and the variance (µ and σ2) of the untransformed
intensities are functions (depending on the power trans-
form parameter p) of both the transformed mean and
variance (µ* and (σ*)2). The power transform parameter
(typically 1⁄8, 1⁄4, or 1⁄2 ) is obtained by minimising the
Hinkley statistic for the normalised, X* distribution:

mean – mediandp = standard deviation (7)

Here, the mean, median and standard deviation are
computed for the sample of the pth power transformed
data (equation (6)). When we compare the values com-
puted using equation (7), for the trial values of p (1⁄8, 1⁄4,
or 1⁄2), we select the p that minimises the degree of skew-
ness, (i.e. dp ≈ 0). The transformed parameters, µ* and
σ*, are then estimated as sample mean and standard
deviation of the transformed intensities, X*

k

5. Daily model fitting with the SLP index

For the daily precipitation model, the chain-dependent
process is fit to three different time series sets of daily
precipitation amounts (for each month of the year):
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Figure 3. Observed mean monthly precipitation for the
unconditioned and conditioned models for (a) sea level pres-
sure (SLP) and (b) geostrophic wind direction (GWD).

Figure 4. Observed standard deviation of monthly precipita-
tion for the unconditioned and conditioned models for (a) sea
level pressure (SLP) and (b) geostrophic wind direction
(GWD).



(a) the unconditioned model for all (54) years,
(b) the conditioned model for low pressure months

(I = 0), and
(c) the conditioned model for high pressure months

(I = 1).

All three models are assumed stationary within the
month, and the power transform parameter is con-
strained to remain the same for all three models within
the month (Katz & Parlange, 1993).

Table A1 in the Appendix shows the estimated parame-
ters for the unconditioned and two conditioned models
for daily precipitation, for each of the 12 months at
Valentia. For the unconditioned model the estimated
probability of a wet day, p, ranges from 0.606 in May to
0.813 in December, verifying the seasonal differences.
The unconditioned daily mean intensity ranges from 4.1
mm in June to 6.74 mm in October. It is found that:

(a) For the conditioned model (low pressure months),
the probability of a wet day, π, is always higher than
the unconditioned model, although no such clear
trends are apparent for the persistence parameter, ρ.

(b) For the conditioned model (high pressure months),
the probability of a wet day , π, is always lower than
the unconditioned model, and again no such clear
trends are apparent for the persistence parameter, ρ.

Figure 5 is a plot of the seasonal variation of daily statis-
tics: the mean intensity, standard deviation, the occur-
rence (or probability of a wet day) and the persistence
parameter for the unconditioned and two SLP condi-
tioned models. The daily mean is very sensitive to SLP
conditioning as evidenced by the difference between the
two conditioned models of 56% and 58% for the
months of February and September respectively. The
same trend, though less dramatic, holds for the standard
deviation of daily precipitation. For both the mean and
standard deviation the least pronounced differences are
in June. Figure 5(c) shows that the daily occurrences
(probability of a wet day) are very different for the
unconditioned and conditioned models with differences
as high as 42% for August and 36% for May, but as low
as 11% for December. The power transform parameter
was found to alternate between 1⁄8 and 1⁄4. In general, the
untransformed mean depends on both the transformed
mean and the variance. Likewise, the untransformed
variance depends on both the transformed mean and the
variance. Table A1 in the Appendix shows that the trans-
formed daily mean increases (or decreases) when the
untransformed mean increases (or decreases). For the
exact formulae in the simpler case of the square root
transformation see Katz & Garrido (1984).

6. Daily model fitting with GWD index

As with SLP, the chain-dependent process, using
GWD conditioning, is fit to three different time series
of daily precipitation amounts:

(a) the unconditioned model for all 35 years,
(b) the conditioned model for years with I = 0 (months

in the storm window), and
(c) the conditioned model with I = 1.

Table A2 in the Appendix shows the estimated para-
meters for the unconditioned and two conditioned
models for daily precipitation, for each of the 12
months at Valentia. The data set used in the GWD
computations is for 35 years, as compared with the 54
years for the SLP exercise, so we expect some differ-
ences in the unconditioned model results. The daily
mean intensity is sensitive to conditioning and the dif-
ference between the two conditioned models is as much
as 46% for the month of July and 36% for September.
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Figure 5. (a) Daily mean intensity, (b) standard deviation, (c)
probability of wet days (only) and (d) persistence for the
unconditioned and SLP conditioned models.



The same trend holds for the standard deviation of
daily precipitation. For both the mean and standard
deviation the least differences between the two condi-
tioned models are in April and June.

A comparison of Tables A1 and A2, for the SLP and
GWD respectively, indicates that SLP indexing shows
greater distinction between the two conditioned mod-
els (I =0 and I =1) for the mean, standard deviation and
probabilities of wet days, over almost the full year. The
remainder of this paper therefore concentrates on the
SLP models rather than on the GWD model.

Tables A1 and A2 enumerate the four parameters (π, ρ,
µ*, σ* ), some or all of which may be allowed to vary
with the SLP or the GWD index, to produce the best fit
to the time series of daily precipitation. Using the
method of maximum likelihood (e.g. Katz & Parlange,
1993), the optimum number of parameters was found
to be two, πand µ* . In other words, we can at least be
confident that the relative frequency of wet days as well
as the mean and standard deviation of the distribution
of daily intensity (recall from section 5 that varying µ*
changes both µ and σ even if σ* is held constant) are all
affected by the two circulation indices. However, in the
interests of simplicity, we allowed all four parameters
to vary in the fully conditioned models.

7. Induced model for monthly precipitation

7.1. Properties of the induced model

We have seen in sections 6 and 7 the effects of large-
scale atmospheric circulation indices of SLP and GWD
on the magnitude of the occurrence (π, ρ ) and intensity
(µ, σ ) parameters of the daily precipitation models. We
are interested in the aggregation of the statistically gen-
erated daily precipitation to monthly precipitation
using the chain-dependent process (Katz, 1977b). The
non-zero daily precipitation amount time series is rep-
resented by X1 … XN, where N is the number of wet
days ( a random variable) of a total series of T days (a
month). Its distribution is determined by the Markov-
chain model, equations (3) to (5), for the daily occur-
rence process Jt. The total monthly precipitation ST

(sum of the daily intensities), the mean E(ST ), and the
variance Var(ST ) for the unconditioned model can be
computed (Feller, 1968), from:

ST = X1 + X2 + … + XN (8)

E(ST) = Tπµ (9)

Var(ST) ≈ T{πσ2 + π(1 – π) [(1 + ρ)/(1 – ρ)]µ2} (10)

where E is the expected value.

The mean monthly precipitation computed from equa-
tion (9) is similar to that of observed monthly means
(Figure 3). However, the monthly variance computed
from equation (10), and shown in Tables 2 and 3,
poorly estimates the observed values of Figure 3. So
while aggregating the daily mean to the monthly mean

is acceptable, aggregation of the variance is far from
adequate. As the distribution of the individual daily
precipitation intensities is positively skewed (as gov-
erned by the power transform parameter, ) the distrib-
ution of the total monthly precipitation should be to
some extent positively skewed. The shape of the
monthly distribution can be estimated using simulation
algorithms, and is discussed in section 8.

The effects of conditioning are examined using an
induced model based on combining the conditioned
models. This induced model for monthly precipitation
is a combination of the two chain-dependent processes
( Katz & Parlange, 1993). The mean and variance of the
total monthly precipitation is expressed in terms of the
conditional means and variances, given the circulation
index I, as:

E(ST) = E[E(ST|I)] (11)

Var(ST) = E[Var(ST|I)] + Var[E(ST)|I)] (12)

The monthly mean estimated from equation (11) is the
weighted average of the two conditioned means, and
yields a mean similar (not necessarily identical) to the
unconditioned mean, and so serves only as a computa-
tional check. However, the variance from equation
(12), is not a weighted average of two conditioned vari-
ances, because of the second term of equation (12). The
underestimate of variance in stochastic precipitation
modelling is one of its major weaknesses (e.g. Gregory
et al., 1993; Katz & Parlange, 1996b.) and here with a
mixed distribution we are able to arrive at an improved
estimate of the monthly variance. The induced model
for daily/monthly precipitation is treated in more detail
in Katz & Parlange (1996a).

7.2. Results of the induced monthly model

The mean monthly precipitation depends on the prob-
ability of a wet day (π) and on the mean untransformed
daily precipitation (µ). In Table A1, for the SLP model,
π is more important than µ for the months of June,
August and November and µ is the more important for
the other nine months (as defined by the percentage
difference between the πat I = 0 and I =1 and µ at I =0
and I = 1). For example for April, if π is varied between
its two conditional values and µ is held constant at its
unconditional value, substituting into equation (9),
yields a range of 28.2 mm or 35% of the unconditional
mean. However, if πis held constant and µ is varied, the
range is 19.3 mm or 24% of the unconditional mean.
For the GWD model, π is more important than µ
except for the months of January, September and
December.

The four daily model parameters π, ρ, µ and σ2 each make
important contributions to the variance of monthly pre-
cipitation. From Table A1 for the SLP model and Table
A2 for the GWD model, we find that the differences for
intensity parameters µ and σ2 (between I = 0 and I = 1) are
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more significant than the associated differences for
occurrence parameters. This is determined by comparing
the results obtained by substitution into equation (10), by
first holding πand ρ constant at their unconditional val-
ues and allowing µ and σ2 to vary between their condi-
tional values and secondly by holding µ and σ2 constant
at their unconditional values and allowing πand ρ to vary
between their conditional values.

Table 2 compiles the results of the SLP induced model
for the standard deviation for each of the 12 months. It
is seen that the standard deviation of the unconditioned
model underestimates the observed values by up to
36% in at least three months. The conditioned models
also underestimate the empirical standard deviation,
but by values somewhat less than the unconditioned
model. The induced model is an improvement with
those months that were up to 36% underestimates,
now closer to 15% underestimates. The standard devi-
ation for the induced model is plotted in Figure 6, and
an improvement is seen for all months, with five of
the 12 months reproducing the observed standard devi-
ation. This improvement in modelling the standard
deviation is similar to the finding of Katz & Parlange
(1993).

Table 3 compiles the results of the GWD induced
monthly model for the standard deviation for each of
the 12 months. The induced model is only a slight
improvement on the estimates of the monthly standard
deviation. Those months that were up to 36% under-
estimates for the unconditioned model are now about
28% underestimates using the GWD induced model.

Clearly, with regard to modelling the standard devia-
tion of the monthly total precipitation, the SLP index is
a significant improvement over the unconditioned
model and better than the GWD model induced model.

8. Shape and results of the distribution of
monthly precipitation

In addition to the mean and standard deviation of the
monthly precipitation, the distribution can also be

modelled. The distribution of daily total precipitation
is positively skewed (as is monthly precipitation). This
monthly distribution can be estimated by simulation.
Chain-dependent processes because of their structure
are amenable to simulation algorithms. Synthetic
sequences, representing time series of daily precipita-
tion amounts, are generated for both conditioned
chain-dependent processes (I = 0 and I = 1), and then
summed to obtain an artificial monthly total precipita-
tion. The simulation experiment was run 1000 times for
each model, producing empirical conditioned distribu-
tions of monthly total precipitation given the circula-
tion index I.

Figure 7 summarises the result of the SLP simulation
experiment for the 12 months, for I = 0 and I = 1.
The parameters (π, ρ, µ*, σ* and p) with values
from Table A1 are used in the simulation run, for
both I = 0 and I = 1. It is of interest to note that
the monthly mean of the distributions for I = 0 (low
pressure) and I = 1 are significantly different for most
months as shown in Figure 3. The mean monthly dif-
ference is highest at 80 mm for September and October
and lowest at 26 mm for June and 34 mm for April. It
is also clear from Figure 7 that the shape of the distrib-
ution is less positively skewed when I = 0 (low pres-
sure). Because we only have 54 years (i.e. 54 Januarys )
it is not possible to see this effect from the real data.

Figure 8 shows the result of the GWD simulation
experiment for the 12 months, for I = 0 and I = 1. The
parameters (π, ρ, µ*, σ* and p) with values from Table
A2 are used, for both I = 0 and I = 1. Like the SLP
model, the differences between the mean monthly pre-
cipitation are significant but not as significant as with
the SLP model. The greatest difference is for September
at 66 mm and the lowest is for June with 0 mm. It is also
clear from Figure 8 that the shape of the distribution is
less positively skewed when I = 0 (low pressure).
Because we only have 35 years (i.e. 35 Januarys) it is not
possible to see this effect from the real data.

9. Discussion and conclusions

Long time series of daily precipitation at Valentia, on
the south-west coast of Ireland, have been fit with
unconditioned and conditioned chain-dependent pro-
cesses. An occurrence process and an intensity process
define the chain-dependent process. Conditioning has
been done using two different indices of large-scale
atmospheric circulation, namely: monthly sea level
pressure (SLP) and monthly geostrophic wind direc-
tion (GWD), both at the same site. Using SLP, the
mean monthly sea level pressure is first determined for
each month, and then the conditioned models are par-
titioned into two sets: one precipitation data set associ-
ated with higher than the mean monthly SLP and the
second set associated with low pressure. A similar
indexing using geostrophic wind direction is used,
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Figure 6. Comparison of the standard deviation for monthly
precipitation, for the unconditioned and induced SLP model.



where the dominant precipitation bearing wind direc-
tions are confined to an active storm ‘quadrant’, analo-
gous to low sea level pressure.

The length of records used for SLP analysis was 54
years and 35 years for the GWD analysis. However,
there is almost no difference between the SLP and
GWD observed unconditioned monthly means (Figure
3) and no difference between the SLP and GWD
unconditioned monthly standard deviation, as shown
in Tables 2 and 3. There are significant differences (as
much as 32% for October) for the (I = 0) conditioned
standard deviations, between SLP and GWD.
Similarly, there are significant differences (as much as
89% for September) for the (I = 1) conditioned stan-
dard deviation between SLP and GWD.

The two conditioned models produce significantly dif-
ferent parameters of the occurrence (probability of a
wet day) and intensity process (mean of intensity).
Obviously, higher probabilities of wet days and higher
mean intensities are associated with the ‘low pressure’
conditioning. The same holds for the GWD condition-
ing of the active storm ‘quadrant’.

An induced monthly model, composed of combining
both conditioned models, produces a variance which is
much closer to the observed, more so for the case of
SLP conditioning than for the GWD conditioning. The
standard deviation for monthly total precipitation
using the induced model is an improvement on the
unconditioned model.
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Figure 7. SLP conditioned distributions of monthly total precipitation, for I = 0, and I = 1, from simulation of daily time series
based on chain-dependent processes.



This monthly indexing of either SLP or GWD has
potential to be used in precipitation modelling. The
indexing data in terms of monthly SLP can be
obtained from GCMs so this technique could be used
in simulating monthly precipitation statistics. The lat-
ter has application to rainfall/runoff modelling. Since
GCMs can provide SLP fields for future climate con-
ditions with increased greenhouse gas concentrations
in the atmosphere, the conditional SLP model could
therefore have applications in climate change impact
assessment.
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Appendix. Parameters of daily precipitation

This appendix contains Table A1 and Table A2. The
estimated parameters in Table A1 are for the uncondi-
tional and SLP conditional chain-dependent processes
for the time series of daily precipitation amounts for all
12 months of the year. Table A2 shows the corre-
sponding parameters for the GWD case. The data used
to plot Figure 5 is contained in Table A1. A similar plot
to Figure 5 for the GWD case can be created from
Table A2 but is omitted here in the interest of brevity.
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Figure 8. GWD conditioned distributions of monthly total precipitation, for I = 0, and I = 1, from simulation of daily time series
based on chain-dependent processes.



Both tables contain (for the daily model) the parame-
ters of the occurence process (occurrence and persis-
tence) and the intensity process (mean and standard
deviation), for the unconditional and two conditional

models. Also included are the parameters of the trans-
formed intensity process (exponent p, tranformed
mean and transformed standard deviation).
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Table A1. Parameters of unconditioned and conditioned SLP chain-dependent processes for time series of daily pre-
cipitation amounts for all 12 months at Valentia

Month Model Occurrence process Intensity process Transformed intensity process

Occurrence Persistence Mean Standard Mean Standard
deviation deviation

π ρ µ σ p µ* σ*
(mm) (mm) (mmp) (mmp)

Jan. Unc 0.781 0.466 6.740 7.48 1⁄4 1.422 0.454
I = 0 0.842 0.470 7.390 7.52 1⁄4 1.480 0.429
I = 1 0.720 0.438 5.950 7.33 1⁄4 1.352 0.466

Feb. Unc 0.722 0.421 5.820 6.80 1⁄4 1.350 0.457
I = 0 0.782 0.350 7.030 7.74 1⁄4 1.445 0.442
I = 1 0.666 0.444 4.500 5.54 1⁄4 1.246 0.451

Mar. Unc 0.673 0.482 5.500 6.49 1⁄4 1.332 0.450
I = 0 0.743 0.427 6.440 7.08 1⁄4 1.407 0.450
I = 1 0.597 0.482 4.260 5.59 1⁄4 1.235 0.428

Apr. Unc 0.618 0.412 4.310 5.63 1⁄8 1.095 0.194
I = 0 0.680 0.377 4.680 5.95 1⁄8 1.110 0.196
I = 1 0.545 0.428 3.760 5.20 1⁄8 1.072 0.188

May Unc 0.606 0.441 4.570 5.55 1⁄4 1.264 0.433
I = 0 0.711 0.410 5.300 6.22 1⁄4 1.326 0.415
I = 1 0.522 0.420 3.830 4.89 1⁄4 1.201 0.436

Jun. Unc 0.628 0.400 4.100 5.71 1⁄8 1.089 0.193
I = 0 0.718 0.276 4.150 5.69 1⁄8 1.092 0.191
I = 1 0.532 0.427 3.980 5.73 1⁄8 1.074 0.197

Jul. Unc 0.665 0.395 4.170 5.43 1⁄8 1.083 0.201
I = 0 0.761 0.303 4.790 5.92 1⁄8 1.108 0.200
I = 1 0.583 0.408 3.540 4.91 1⁄8 1.055 0.196

Aug. Unc 0.693 0.366 4.880 6.18 1⁄8 1.108 0.203
I = 0 0.798 0.279 5.310 6.66 1⁄8 1.125 0.202
I = 1 0.562 0.355 4.130 5.43 1⁄8 1.079 0.201

Sep. Unc 0.710 0.382 5.920 7.55 1⁄8 1.134 0.211
I = 0 0.797 0.300 6.890 8.79 1⁄8 1.162 0.210
I = 1 0.609 0.377 4.350 5.76 1⁄8 1.095 0.201

Oct. Unc 0.747 0.394 6.550 7.55 1⁄4 1.390 0.475
I = 0 0.843 0.315 7.750 8.33 1⁄4 1.477 0.469
I = 1 0.682 0.387 5.540 6.84 1⁄4 1.317 0.466

Nov. Unc 0.770 0.498 6.430 7.43 1⁄4 1.399 0.449
I = 0 0.868 0.433 6.940 7.76 1⁄4 1.439 0.444
I = 1 0.698 0.494 5.900 7.12 1⁄4 1.360 0.444

Dec. Unc 0.813 0.464 6.420 7.34 1⁄4 1.395 0.459
I = 0 0.852 0.439 7.160 7.71 1⁄4 1.450 0.457
I = 1 0.768 0.467 5.470 6.78 1⁄4 1.323 0.451



Table A2. Parameters of unconditioned and conditioned GWD chain-dependent processes for time series of daily
precipitation amounts for all 12 months at Valentia

Month Model Occurrence process Intensity process Transformed intensity process

Occurrence Persistence Mean Standard Mean Standard
deviation deviation

π ρ µ σ p µ* σ*
(mm) (mm) (mmp) (mmp)

Jan. Unc 0.788 0.447 6.537 7.092 1⁄4 1.412 0.447
I = 0 0.810 0.354 6.997 7.465 1⁄4 1.450 0.453
I = 1 0.765 0.538 6.035 6.650 1⁄4 1.341 0.408

Feb. Unc 0.703 0.431 5.858 6.818 1⁄4 1.351 0.461
I = 0 0.792 0.349 6.582 7.080 1⁄4 1.409 0.453
I = 1 0.619 0.447 5.087 6.410 1⁄4 1.287 0.456

Mar. Unc 0.671 0.510 5.979 6.922 1⁄8 1.154 0.197
I = 0 0.765 0.335 6.543 7.047 1⁄8 1.174 0.195
I = 1 0.582 0.568 5.284 6.738 1⁄8 1.128 0.195

Apr. Unc 0.580 0.411 4.437 5.775 1⁄8 1.097 0.196
I = 0 0.683 0.378 4.883 6.047 1⁄8 1.119 0.190
I = 1 0.471 0.377 3.772 5.416 1⁄8 1.063 0.203

May Unc 0.639 0.395 4.577 5.205 1⁄4 1.282 0.413
I = 0 0.740 0.246 5.146 5.520 1⁄4 1.336 0.406
I = 1 0.553 0.410 3.840 4.812 1⁄4 1.211 0.405

Jun. Unc 0.617 0.402 4.111 5.646 1⁄8 1.087 0.193
I = 0 0.641 0.399 4.052 5.204 1⁄8 1.089 0.194
I = 1 0.592 0.383 4.259 6.109 1⁄8 1.086 0.192

Jul. Unc 0.641 0.386 4.098 5.398 1⁄8 1.079 0.198
I = 0 0.749 0.376 4.671 6.268 1⁄8 1.101 0.201
I = 1 0.528 0.335 3.200 4.296 1⁄8 1.046 0.189

Aug. Unc 0.665 0.398 5.052 6.470 1⁄8 1.114 0.202
I = 0 0.748 0.259 4.740 5.746 1⁄8 1.109 0.197
I = 1 0.586 0.457 5.446 7.177 1⁄8 1.121 0.200

Sep. Unc 0.700 0.385 6.049 7.353 1⁄8 1.143 0.207
I = 0 0.779 0.378 6.969 8.436 1⁄8 1.155 0.209
I = 1 0.633 0.379 5.131 6.238 1⁄8 1.113 0.197

Oct. Unc 0.742 0.387 6.289 7.237 1⁄4 1.377 0.468
I = 0 0.823 0.249 6.746 7.479 1⁄4 1.410 0.467
I = 1 0.674 0.379 5.858 7.010 1⁄4 1.345 0.460

Nov. Unc 0.771 0.507 6.598 7.772 1⁄4 1.409 0.450
I = 0 0.854 0.464 7.017 8.257 1⁄4 1.435 0.452
I = 1 0.684 0.489 6.055 7.211 1⁄4 1.373 0.445

Dec. Unc 0.828 0.392 6.386 7.441 1⁄4 1.389 0.459
I = 0 0.866 0.355 6.838 7.355 1⁄4 1.425 0.459
I = 1 0.782 0.436 5.772 7.525 1⁄4 1.341 0.455
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