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Abstract. The structure of atmospheric surface layer turbulence at low wavenumbers was
analyzed using 56 Hz triaxial velocity and temperature measurements above a uniform dry
lake bed. A key feature of this experiment was the small roughness length of the surface
that resulted in a small roughness Reynolds number. Under near-neutral atmospheric
stability conditions, a -1 power law was observed in both measured velocity and tempera-
ture spectra which is consistent with previously proposed dimensional analysis for rough
and smooth turbulent boundary layer flows. The wavenumber at which the -1 power law
terminates and the -5/3 power law commences was derived as a function of the Kolmog-
orov and von Karman constants. Good agreement between the predicted and the mea-
sured transition wavenumber from -1 to -5/3 was noted for fully rough-flow conditions.
However, this was not the case for other roughness conditions. The similarity theory
constants for the neutral case were determined and they compared favorably with other
laboratory and field studies. For unstable atmospheric conditions, directional dimensional
analysis was used to predict the slopes of the power spectra of temperature and velocity.
It was demonstrated that for moderately unstable conditions, the temperature and vertical
velocity power spectra exhibited a -1 power law, but the longitudinal velocity exhibited

a -2 power law. The agreement between predicted and measured power laws was within
experimental errors. Some differences between the constants determined from this
experiment and other experiments are also discussed.

Much attention has been devoted to. the structure of the
inertial subrange, and numerous experiments in the ASL and

1. Introduction

The exchange of heat and momentum between the Earth
surface and the atmosphere is controlled by eddy motion in
the atmospheric surface layer (ASL). Within the surface
layer, the spectrum of eddy sizes extends over a wide range
and can be divided into three broad categories: (1) produc-
tion scales, in which energy is extracted from the mean flow
and injected into turbulence; (2) inertial subrange scales, in
which energy cascades down to smaller scales through
vortex stretching; and (3) viscous dissipation scales, in
which energy is dissipated by the action of fluid viscosity.
Among the three categories, the production scales are most
responsible for the heat and momentum exchanges between
the atmosphere and the land surface.
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laboratories have investigated its spectral and spatial struc-
ture [Monin and Yaglom, 1975, Chap. 8] as predicted by
Kolmogorov’s [1941] scaling theory. However, no complete
theory has yet been developed for the production scales in
the atmospheric surface layer.

The possibility that production scales in wall-bounded
shear flow possess a universal spectral behavior was first
proposed by Tchen [1953]. He found that the production
range of the longitudinal velocity spectrum is proportional to
K,!, where K, is the one-dimensional wavenumber in the
longitudinal direction. Tchen’s prediction was based on
order of magnitude argument for the velocity fluctuating part
of the Navier-Stokes equation
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where t is time, X, are the space coordinates (X, is the longitudi-
nal wind direction, x, is the lateral direction; and x; is the
vertical direction), u’; are the velocity fluctuations, p’ is the
pressure fluctuation, p is the density and » is the kinematic
viscosity. Primes indicate fluctuations around time averages and
<.> is the time-averaging operator. Tchen [1953] noted that
the interaction between the large-scale eddies and the mean flow
is controlled by the terms involving v’;<U;> and u’; <U;>. He
concluded that the spectrum of u’, is. proportional to K, when
the vorticity of the mean flow is large and interacting with the
turbulent motion. Later, Klebanoff [1954] conducted an experi-
ment to study flat plate boundary layer without pressure gradient.
His results support Tchen’s prediction for the u’; spectrum (E,)
at low wavenumbers, especially for z/§ ~ 0.05, where § is the
boundary layer height and z is the measurement height along the
x3 direction (see also Hinze, [1959], p. 501). It is noted that in
Klebanoff's experiment, E, did not exhibit a -1 power law for z/8
= 0.0011 and z/6 = 0.8. This suggests that the -1 power law
occurs in the prox1m1ty of the wall boundary, yet far enough
away so that viscous effect has negligible influence on the large
scales. Hinze [1959] proposed that at z/6 = 0.05, strong
production of turbulent energy takes place. As z/§ decreases, the
contribution of larger eddies to the turbulent energy reduces at
the low wavenumber end but increases at the high wavenumber
end of the energy spectrum.

Experiment for fully developed turbulent air flow in pipe by
Perry and Abell [1975] focused on the scaling properties of E, in
the overlap region between the "inner flow” and the "outer
flow." The well-known logarithmic mean velocity profilé
originally derived by von Karman [1930] and Millikan [1939]
exists in this region. Perry and Abell [1975] found that E, is
proportional to K;! for low wavenumbers; however, not for
E;(K,). This result was independently confirmed by Korotkov
[1976] using channel flow data. Later, Perry and Chong [1982]
proposed dimensional analysis argument consistent with the
attached-eddy hypothesis of Townsend [1976, pp.150-156] to
explain the behavior of E, at small wavenumbers (see also Perry
and Li [1990]). The attached eddy hypothesis of Townsend
[1976] assumes that the main eddies are persistent, organized and
attached to the wall boundary. The analysis of Perry and Chong
[1982] was successful in linking the logarithmic profile of the
mean velocity and the dependence of E, on K;'. However, they
failed to reproduce the Kolmogorov [1941] scaling for the inertial
subrange. Later, analysis by Perry et al. [1986] assumed that
large-scale coherent eddies are surrounded by a fluid which
contains fine-scale detached .eddies. The motion of these
detached eddies is assumed to be locally isotropic and contribut-
ing little to the turbulent stresses. These detached eddies are
simply the remainder of what were once attached eddies that have
been stretchied, distorted and convected away from the wall
boundary by othier attached eddies (see Perry et al. [1991, 1994]
for a detailed review). Therefore the attached eddies are
independent of viscosity and scale with mean-flow variables,
while the detached eddies scale with the mean turbulent energy
dissipation rate <e> and follow the Kolmogorov [1941] scaling.

Based on the analysis of Perry et al. [1986, 1987], Erm and
Joubert [1991] reconsidered the structure of low Reynolds
number turbulent boundary layer over a smooth flat surface with
zero pressure gradients. They noted that a -1 power law exists
in the u’, and u’; power spectra for z/6 =0.1, analogous to the
spectra of Perry et al. [1986] at large Reynolds number.
However, the -1 power law scaling was not apparent in the
velocity spectra for z/8 > 0.35. Although Erm and Joubert’s
[1991] analysis was restricted to low Reynolds number turbu-
lence, the -1 power law scaling appeared insensitive to the
magnitude of the Reynolds number provided the flow is turbulent
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(the Reynolds number vyals of the order of 1000, defined using
the momentum displacement height).

The -1 power law behavior was also noted in the temperature
(T) spectrum (E;) at low wavenumbers from a large eddy
simulation (LES) performed by Lesieur and Rogallo [1989]. The
LES described a flow domain of 128% collocation points for
decaying isotropic turbulence convecting a passive temperature
admixture. Later LES runs by Metais [1991] and Metais and
Lesieur [1992] confirmed that the temperature spectrum tends to
follow, in the energetic scales, a K, relationship followed by a
K, #3. The occurrence of the -1 power law at small wavenum-
bers was attributed to the straining of the temperature fluctuations
by the velocity gradients [Lesieur and Rogallo, 1989]. The
probability density functions (PDFs) computed from the LES of
Metais [1991] and Metais and Lesieur [1992] demonstrate that the
tails of the u’; PDF are Gaussian (i.e., ~ exp(-X?) and that the
tails of the T’, du’,/dx; and du’s/dx,; PDFs are exponential (i.e.,
~ exp(-X)). The exponential tails observed in the longitudinal
velocity gradient and the temperature PDFs appear to support the
working hypothesis that the temperature fluctuations are strained
by the velocity field. However, the LES simulations of Lesieur
and Rogallo [1989] and Metais [1991] did not exhibit a -1 power
law for the E; spectrum. The LES predictions for E, were
proportional to K, . Further LES runs by Metais and Lesieur
[1992] under stable buoyant conditions produced a temperature
spectrum that did not exhibit a -1 power law and appeared to
follow closely the scaling of the velocity spectrum.

Raupach et al. [1991] and Antonia and Raupach [1993] dis-
cussed the existence of a -1 power law scaling for E; and E; in
rough wall boundary layers but argued against its existence in the
ASL based on the experiment by Kaimal et al. [1972]. They
attributed the general absence of the K, scaling to the buoyancy
effects that are present in the ASL but absent in the outer region
of many laboratory boundary layers. Extensive atmospheric
spectral data have been measured in several major field experi-
ments, one of the largest being in Kansas [1968]. Instrumenta-
tion for the Kansas experiment included three triaxial sonic
anemometers mounted at 5.66, 11.3 and 22.6 m [Kaimal et al.,
1972]. Their experiment confirmed the existence of a -5/3 law
as predicted by Kolmogorov’s [1941] theory for all velocity
components. However, the occurrence of a -1 power law scaling
at the low-frequency end was not réported. These questions
regarding the existence of a -1 power law at the low wavenuimber
end of the velocity and temperature spectra have motivated this
study. In this study we examine the possibility that a -1 power
law exists in the ASL at low wavenumber with possible deviation
due to buoyancy. An experiment involving triaxial sonic
anemometer velocity and temperature measurements was carried
out over a uniform dry lake bed (28 km x 14 km) under different
atmospheric stability conditions. The site is characterized by a
desert climate with surface temperatures up to 65°C during the
day-time. The lake bed consists of sandy soil with an average
momentum roughness length of z, = 0.13 mm. Therefore in
many cases the flow was not fully rough. This adds to the
uniqueness of the experiment since smooth-walled boundary layer
flows in the natural environment have not been rigorously
investigated, yet they play a key role in many climate and meso-
scale models, especially models related to the study of desert
[Peixoto and Oort, 1992]. v

The neutral stability case is considered first to investigate the
mechanism responsible for the turbulent energy production at low
wavenumbers; this allows comparison with previous laboratory
and numerical studies. Then we consider the spectrum at low
wavenumbers and the transition to the inertial subrange for
unstable atmospheric conditions. We also investigate the
applicability of dimensional arguments proposed by Betchov and
Yaglom [1971) and Zilitinkevich [1971, 1973] to the unstable
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surface layer. These dimensional arguments were tested for the
unstable ASL by Kader and Yaglom [1984, 1990, 1991] using an
extensive data set collected at the Tsimlyansk field station of the
Moscow Institute of Atmospheric Physics over a 7-year period.
The formulation of these dimensional arguments is considered
next.

2. Applications of Similarity Theory to Turbu-
lent Fluctuations: General Considerations

Mean flow characteristics of ASL turbulence can be de-
scribed by the following dimensional parameters:(1) the
height above the ground z, (2) the friction velocity u.
(=@1/p)"*), (3) the buoyancy parameter 8 (= gy) and (4)
the sensible H (= c,o<u, T >) and the latent LE (= L,

p<uy q >) heat fluxes, where 7 (= -p<u,’u;’>) is the

surface shear stress, g is the gravitational acceleration, y =
T is the coefficient of thermal expansion (assuming air is
an ideal gas), T is the mean absolute temperature, ¢, and L,
are the heat capacity and the latent heat of vaporization,
respectively, and q and T are the specific humidity and
temperature fluctuations about mean values, respectively
[e.g., Monin and Obukhov, 1954; Monin and Yaglom, 1971,
Chap. 4; Brutsaert, 1982, Chaps. 3 and 4).

As discussed by Monin and Yaglom [1971, p. 457], the
extension of similarity theory to the turbulent fluctuations
requires, in a strict sense, that the joint probability distri-
bution for the dimensionless fluctuations u’,/u., w’,/u.,
w’;/u., T/T. be independent of the space-time origin and
depend only on the normalized time lag and separation
distance. Here, the time lags are normalized by L/u. and
the separation distances are normalized by the Obukhov
length L

3
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where k(= 0.4) is the von Karman constant. This normal-
ization requires that the separation distance be small enough
so that Coriolis effects can be neglected, yet large enough so
that viscous effects can also be neglected.

It is recognized that surface layer similarity theory,
proposed by Monin and Obukhov [1954], is quite successful
in describing mean flow characteristics [see Brutsaert, 1982;
Monin and Yaglom, 1971]; however, only partial success
was reported in describing the statistics of the fluctuating
components [Wyngaard, 1992]. To improve some of the
deficiencies of surface layer similarity theory, a more
generalized dimensional scheme has been proposed by Kader
and Yaglom [1990]. The study by Kader and Yaglom [1990]
based on previous work by Zilitinkevich [1971, 1973],
Betchov and Yaglom [1971], and Kader and Yaglom [1984]
-suggested that the ASL is comprised of three sublayers that
each have a self-preserving turbulence statistical structure.
These sublayers are (1) forced convective (or dynamic), (2)
dynamic convective (or moderately unstable) and (3) free
convective. Within the forced convective sublayer, the
buoyancy parameter § can be excluded from the list of
dimensional parameters. The free convective sublayer
occurs when z > > |L| and u. can be omitted from the list
of dimensional parameters. The dynamic convective
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sublayer occurs at moderate values of { = - z/L and all four
dimensional parameters are important. The term "shear
convection" was used by Zilitinkevich [1973] to describe this
atmospheric sublayer.  The distinction between these
sublayers allows separate universal formulations of the
power spectra and co-spectra (E;) of the velocity compo-
nents 1 = 1, 2, 3; j = 1, 2, 3) for wavenumbers (K,) that
are much smaller than the Kolmogorov dissipation scales and
yet dynamically important.

The scaling behavior of the one-dimensional spectrum at
production scales can be derived from dimensional argu-
ments [Tennekes and Lumley, 1972, p. 264]. The velocity
spectra E,, E, and E; have units of m* s? and scale with u.,
z and L, while the temperature spectrum E; has units of
°C? m and scales with T. and z so that

E(K
# = X,-(Kl Z » ZIL)
e ®
E(K)
— = xAK, z, ZL)
2 K,

where x;(.), x1(.) are dimensionless functions and
= <u, T >/u..

2.1. Forced Convective Sublayer (}z/L|-0)

For the case z < < |L| the stability parameter is no
longer important (near-neutral conditions). Therefore x;(.)
and x;(.) depend only on the product K,z. In addition, if
the large-scale fluctuations are on a scale much greater than
z, then the spectra E;(K,) and E(K,) will not be affected
significantly by moderate changes in z (i = 1, 2, 3). Hence
if K, z is small enough, we can eliminate z from (3) by
requiring

E(K) _ A

we K @
EX) _ By

T% Kz

which yields E(K,) = A; u.2 K," and E(K,) = B; T.2K,",
where A; and B; are constants to be determined from
experiments [Kader and Yaglom, 1984, 1991] and i = 1, 2,
3. Hence the height independence of the large-scale statis-
tics for small z leads to a -1 power law for the temperature
and velocity spectra. This may explain why in Klebanoff’s
[1954] data, a -1 power law was measured at z/6 ~ 0.05
but not for z/6 = 0.0011 or z/6 = 0.8. For z/6 = 0.0011,
viscous effects may have played a key role, while for z/6 =
0.8, z was large and the statistics of the large-scale eddy
motion cannot be independent of height. However, for z/6
= 0.05, z was small enough so that small variations in z do
not affect the statistics of the large scales (whose characteris-
tic length scale is of the order § and are responsible for
much of the turbulent production).

2.2. Free Convective Sublayer (|L|-0)

For the case z > > |L}, u. is no longer important and
the velocity and temperature spectra can be derived using the
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free-convective local scaling w. (=[gz<u;” T >/T]"*) and
T.. (= <u,’T'>/w.) [Garratt, 1992; Stull, 1988]. Hence
the spectra of velocity and temperature scale are

E(K,
—‘("zl)' = X:(Klz)
wx’z ©
E (K,
_ﬂ = xi(K.z)
% 4

where x;°(.) and x;°() are dimensionless functions whose
form for small wavenumbers is considered next. As shown
by Kader and Yaglom [1984], using the height independence
argument for the larger eddies at small z, the spectra for the
velocity components and the temperature scale are

E(K) _ A

S
(%_<u'37"'>z)2/3z"3 (L

©)

E(K,) By
[ irsocn ®”

where A;° and B¢ are constants to be determined from
experiments and i = 1, 2, 3. Hence in dimensional form,
the velocity and temperature spectra reduce to

213
E(K) = Air('g‘.<"/3r>)  oni

-2
E(K) = B;(%) <u >k,

2.3. Directional Dimensional Analysis in the Dynamic
Convective Sublayer

This section reviews the applicability of the concept of
directional dimensional analysis (DDA), as proposed by
Kader and Yaglom [1984, 1990] and Zilitinkevich [1973], to
the turbulent fluctuations for the dynamic convective
sublayer. In this sublayer, u., 8, z and the heat fluxes are
all important parameters. We restrict our discussion to the
description of the velocity and temperature spectra at small
wavenumbers. Within this sublayer the net energy exchange
between the horizontal and the vertical motion is neglected
(i.e., shear production and buoyant production are indepen-
dent). The extent of the dynamic convective layer is 0.14
< |z/L| <1.2 [Kader and Yaglom, 1990]. The de-cou-
pling between the horizontal and the vertical motions permits
the application of DDA to the study of the spectra of
velocity and temperature. DDA differs from the classical
dimensional analysis by assuming that the horizontal and
vertical motions have independent length scales, L, and L,
respectively [see Zilitinkevich, 1973; Panton, 1984, pp. 181-
228]. It is noted that a de-coupling of the vertical and
horizontal energies is clearly unrealistic for a wide range of
scales, especially the inertial subrange scales. The local
isotropy that develops in the inertial subrange cannot be
attained without energy exchanges between the horizontal

KATUL ET AL.: SPECTRA OF TURBULENCE

and the vertical motion (through the pressure redistribution
term). However, for the larger scales, this de-coupling
assumption may be reasonable since buoyancy enters the
dynamics of turbulence through the large-scale vertical
motion and shear enters through the large-scale horizontal
motion; these two production mechanisms are, to a first
approximation, independent.

Using the two independent length scales for the horizontal
and vertical dimensions (L, and L;), the friction velocity u.
(= - <u,’u;” >'?) has dimensions of (L, L;)'? t!. Thus it
is ill- suited as a scaling parameter for either the horizontal
or the vertical motion (it involves both length scales).
Hence we require two velocity scales, one for each direction
of motion. The vertical motion may be scaled by w. (=
[gz<uy’ T >/T]") since it involves L, and is related to
buoyancy; the horizontal motion may be scaled by u.. (=
u.2/w.) since it involves L, and is related to shear. Similar-
ly, T..(= <uy’ T'>/w.) defines a temperature scale and 1.
= (u./w.)’z defines a horizontal length scale. Notice that all
horizontal motion enters the turbulence dynamics through
U.., while the vertical motion enters through w..

As shown by Kader and Yaglom [1991], the general form
of the one-dimensional temperature and velocity spectra can
be defined as

E(K

2R (=12)

ul,

E, (X

B ) ®
wfl‘

EX) _ 4

e L)

i

where x;%(.), X1°(.) are similarity functions to be determined.
Notice that 1. was used to normalize K, since K, represents
wavenumber along the longitudinal direction (x,). The form
of x(), Xr%(.) can be inferred using the following argu-
ments: (1) E; (here i = 1, 2) is independent of the buoyancy
parameter 3(= g T"); and (2) E; and E; are independent of
shear and hence are independent of 1.. Notice the difference
between these arguments and the height-independent argu-
ment previously used. Argument 1 implies that the buoyan-
cy parameter 3 enters the turbulent kinetic energy equation
only through the vertical motion. Also, if we note that u.
enters the vertical motion only through 1., then argument 2
requires that E; and E; be independent of u.. For both
arguments the large-scale eddy motion is dependent on
height. Therefore the velocity and temperature spectra are
given by the following dimensionless forms

E&) _ AUk 1)?
2 1 1% %

ul,

E(X) _ AYKL) )
2 3 1% s

w‘ll‘

M = B':(Kll )1

T,
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where A and B! are constants to be determined from
experiments. In dimensional form, the velocity and temper-
ature spectra become

2
u, _
E(K) = A -;Kf

E(K) = A WK 10)
ap 4
E(K) = B (ij_f.) <u',T'>3K;"

where i = 1 and 2.

The validity of these scaling laws under different stability
conditions will be investigated using measurements of
velocity and temperature. The measurements will also be
used to estimate the similarity constants A;, A, A4, By, B,
and B%.

3. Experimental Setup

An experiment was carried out from June 20 to July 2,
1993, over a dry lake bed (Owens Lake) in Owens Valley,
California. The lake bed is contained in a large basin in the
east of the Sierra Nevada range and west of the White and
Inyo Mountains. The site is located on the northeast end of
the lake bed (elevation = 1100 m). The site’s surface is a
heaved smooth sandy soil extending uniformly 11 km in the
north-south direction and at least 4 km in the east-west
direction.

The three velocity components were measured using a
triaxial ultrasonic anemometer (Gill Instruments/1012R2).
Sonic anemometers achieve their frequency response by
sensing the effect of wind on the transit times of sound
pulses traveling in opposite directions across a known path
distance dy(= 0.149 m in this study). The sonic anemome-
ter is well suited for these experiments since it is relatively
free of calibration nonlinearities, atmospheric contamination
drift and time lag. As shown by Wyngaard [1981], the main
disadvantage of sonic anemometers is the wavenumber
distortion due to averaging along the finite sonic path.
However, this distortion is restricted to wavenumbers in
excess of 2m/d, (= 42.2 m') [see Wyngaard, 1981]. This
limit was challenged by Mestayer [1982] who performed a
comparison between a hot-film constant temperature ane-
mometer and a triaxial sonic anemometer in a wind tunnel.
He noted that sonic anemometer spectral distortion appears
at wavenumbers 3 times smaller than that suggested by
Wyngaard [1981]. Another comparison, which appears not
to confirm Wyngaard [1981] spectral distortion criteria, at
least on the average, was performed by Busch [1973] in the
ASL. He compared X probe measured velocity spectra to
sonic anemometer velocity spectra [Kaimal et al., 1972]
collected during the Kansas experiments. He noted that the
local isotropy was captured by the X probe at much higher
wavenumbers than that reported by Kaimal et al. [1972] u-
sing the sonic anemometers. However, this discrepancy
may be attributed to the fact that Kaimal et al. [1972]
combined spectra from three different heights, while Busch’s
[1973] data were collected at 5.66 m only. For the present
study we restrict our statistical analysis to a maximum
wavenumber of 20 m™, but we display the full measured
spectral range. The triaxial sonic anemometer sampling

‘are captured well by both instruments.
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frequency (f;)) was 56 Hz and the sampling period was 15
min. This yielded 50,400 measurements per velocity
component. The absolute temperature (T) was measured
from fluctuations in the measured speed of sound (c) using

T=_C_
aR,

an

where o = C/C,, C, and C, are the specific heat capacities
of dry air under constant pressure and volume, respectively,
and R, is the gas constant for dry air [see Suomi and Busin-
ger, 1959; Wyngaard, 1981; Katul, 1994]. The influence of
humidity variation on the speed of sound calculations was
neglected since the maximum relative humidity (RH)
recorded during the experiment was 13%. A comparison
between the temperature from the triaxial sonic anemometer
and the temperature fluctuation measurements from a fine
wire chromel constantan thermocouple (0.0127 mm) is
shown in Figure la. In Figure la the thermocouple was
placed at the same height as the sonic anemometer (z = 2.5
m) but 60 cm away. The sampling frequency used in this
comparison was 10 Hz. The main temperature structures
The standard
deviations of the thermocouple and sonic anemometer
temperature measurements were nearly identical (0.84 °C
and 0.82 °C, respectively). In Figure 1b a comparison
between the power spectra of the two temperature signals is
shown. The sonic anemometer temperature spectrum is
shifted by two decades along the ordinate axis to permit
comparison at high frequencies. At the low wavenumber
end of the spectrum, the two sensors are in excellent
agreement. The temperature spectrum from the thermocou-
ple appears to "level off" at high wavenumbers due to the
limited resolution of the thermocouple. The temperature
spectrum of the sonic anemometer did not exhibit this
phenomenon.  Therefore from Figures la and 1b, we
conclude that the sonic anemometer temperature measure-
ments are reliable and can be used to investigate the spectral
properties of turbulence. Further details about this compari-
son can be found in the work of Katul et al. [1994].

During the experiment the sonic anemometer was placed
at various heights above the ground (z ranging from 2.0 m
to 3.5 m above the ground). Some discussion regarding the
adequacy of sonic anemometers to resolve the wavenumbers
in the inertial subrange close to the ground surface is
presented by Monin and Yaglom [1975, p. 457]. They
suggested that the dimensionless frequency f;, z/<U>
should exceed 10 in order to capture the inertial subrange in
the power spectrum. During this experiment the minimum
height (z) and the maximum <U> were 2.0 m and 6.5 m
s, respectively, so that the minimum possible value of f,,
z/<U> = 17. Hence if an inertial subrange exists, the
sonic anemometer should be capable of resolving its associ-
ated wavenumbers at these heights and sampling frequency.

The momentum roughness length z, for the lake bed was
determined from simultaneous measurements of u. and
<U> under near-neutral conditions (defined as |z/L| <
0.1) using

<U>=£‘- z
k \z,

Six 15-min. individual runs (not shown here), with |z/L] <
0.1, resulted in a mean z, = 0.137 mm (+ 0.07 mm). The

12
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Figure la. A comparison between the thermocouple (Tyc) and the triaxial sonic anemometer (Tsp) temperature
measurements (z = 2.5 m). The thermocouple is situated 80 cm west of the triaxial sonic anemometer. The

sampling frequency is 10 Hz.

magnitude of z, is very small so a clear distinction between
smooth and rough boundary layer development may not be
apparent. As shown by Brutsaert [1982, p. 122] and
Schlichting [1955, p. 620], a distinction between "rough" or
"smooth" boundary layer development may be based on the
magnitude of the roughness Reynolds number z,, (= u.
z,/v). For rough surfaces, z,, > 2, while for smooth
surfaces, z,, < 0.13. These criteria are adopted for
classifying the roughness characteristics of the boundary
layer. Differences and similarities between the statistical
description of rough wall and smooth wall boundary layers
is reviewed by Raupach et al. [1991] and Krogstad et al.
[1992]. In a rough-wall boundary layer flow the momentum
roughness length is independent of z,,, whereas for a
smooth boundary layer flow the dependence of z, on z,, is
practically linear (see also Schlichting [1955], p. 122). In
the transition the dependence of z, on z,, is not well
understood and appears to be nonlinear.

Sonic Anemometer
yos | .

103 3
t Thermocouple

e E\/

[
W b
100

1041 3

L Ll

In this study, we focus on eight 15-min. runs representing
a wide range of atmospheric stability conditions. Table 1
summarizes the height, mean meteorological conditions,
roughness Reynolds number, turbulent intensity and the
stability parameter for all eight runs. The roughness
Reynolds number values in Table 1 appear to fall within a
transition region (0.13, 2) where the flow is not fully rough
or smooth. The fact that desert-like surfaces are not fully
rough has important consequences on extrapolating findings
from agricultural or forested surfaces to deserts.

Notice from Table 1 that except for runs 1 and 3, the turbu-
lent intensity (0} in each experiment was less than 0.5 so
that Taylor’s [1938] hypothesis can be used to convert time
to space measurements (see details by Lumley [1965],

Powell and Elderkin [1974], Stull [1988], and Wyngaard and
Clifford [1977]). It is desirable to assess the effect of the
15-min. sampling period on the accuracy of the second
moment statistics.

Recall that in ASL experiments, the

10-3 102

fn (Cycles per Period)

Figure 1b. A comparison between the thermocouple and the triaxial sonic anemometer temperature power spectra.
To permit comparison, the triaxial sonic anemometer power spectrum is shifted by two decades relative to the

thermocouple power spectrum.
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Table 1. Summary of Meteorological and Stability Conditions During the Experiment

Day/Time z L W, U, T,,
Run (PDST) m @ g ms'  ms? °C o
1 173/17:05 25  -0.64 071 0.11 2.17 41.2 1.0
2 179/15:24 2.0 3.3 0.46 0.22 5.04 44.5 2.1
3 179/16:20 2.75 3.1 0.64 0.19 2.0 44.3 1.8
4 179/17:10 3.5 -2.8 0.3 0.18 6.16 43.7 1.6
5 179/21:34 2.0 44.2 0.1 0.26 6.50 31.5 2.4
6 179/21:55 2.75 26.9 0.1 0.26 6.62 32.1 2.4
7 180/07:23 2.75  -46.7 0.1 0.19 4.35 25.1 1.8

8 180/07:42 225  -129 01 0.8 4.09 26.3 1.7 -

The Obukhov length L, the longitudinal velocity turbulent intensity o, (= <u,’?> 2/ <U >), the friction
velocity u., the mean air temperature T, at height z and the roughness Reynolds number Z,, are also shown. The
runs for which the longitudinal velocny time series was detrended are designated by an asterisk.

Ergodic hypothesis is used to estimate the ensemble average
from time averages [see Lumley 1970]. Because of the
steady state approxunatlon the averaging interval in many
ASL experiments is finite and relatively short so that a
significant error may be introduced by approximating
ensemble averages with time averages, especially along the
longitudinal direction (the largest integral time scales occur
along this direction). As shown by Lumley and Panofsky
[1964, p. 37], and Wyngaard [1992], the accuracy (e) due
to the finite sampling period (Pr) can be estimated using
2

. [”‘f ’]’ 13

’ <f2P
where [, is the mtegral time scale and f is any turbulent flow
variable. We note that the above formulation is derived for
a Gaussian-distributed variables. Hence e, is only an
approximation of the true error since the velocity and
temperature for unstable conditions are non-Gaussian. In
Table 2, e, for the longitudinal velocity is presented for all
runs. The I, values were computed from the area under the
auto-correlation function of each time series up to the first
zero crossing [Sirivat and Warhaft, 1983]. For the 15-min.
averaging period, the percent error in the longitudinal

veloclty variance for run 1 was rather large (~23 %). For
all other cases the error was acceptable. In a desert climate
the mean meteorological conditions vary rapidly so that a
long averaging period may violate steady state assumptions.

The 15-min. sampling period was selected to be short
enough to insure some steadiness in the mean meteorologlcal
conditions, while being long enough to insure adequate
convergence of statistical quantities. Hence the runs are
based on 15-min. averaging periods and are discussed
below.

4. Results and Discussion

The power spectra E,, E; and E; were each computed
from 50,400 points by consecutively windowing 16,384
points, cosine tapering 818 points along each window edge,
computmg the power spectrum within each window and
averaging the three windowed power spectra, as discussed
by Shumway [1988, pp. 68-73] and Press et al. [1990]. The
dimensionléss power spectra E® for near-neutral conditions
are shown in Figures 2a, 2b and 2c¢, for moderately unstable
conditions in Figures 3a, 3b and 3c, and for near-convective
conditions in Figures 4a, 4b and 4c. Before considering the
effect of buoyancy on the small-wavenumber turbulence

Table 2. Error Percentage Due to the Finite Averaging Period (P,= 15 min)

“Run Day/Time ~e.(%)
1 173/1705 3.4
2 179/1524 13.8
3 179/1620 20.8
4 179/1710 6.9
5 179/2134 1.3
6 179/2155 0.7
7 180/0723 2.3
8 180/0742 1.9

p. 39).

Acceptable error level varies from 10 to 20% in many ASL field experiments (see Lumley and Panofsky, 1964;
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Figure 2a. Normalized longitudinal (E,) power spectra for
neutral stability conditions for runs 5, 6, 7, and 8. Taylor’s
hypothesis was used to convert time increments to wavenumber
increments. The solid lines indicate the -5/3 and the -1 power
laws.

102

spectra, we first consider the near-neutral atmospheric
stability case.

4.1. Forced Convective Sublayer (Figures 2a, 2b and 2¢)

A near-neutral ASL was assumed for runs 5-8 (see Table
1) for which z << |L|. This case corresponds to the
dynamic sublayer for which the important parameters are u.,
z and T.. In Figure 2a, the occurrence of a -1 power law in
the longitudinal velocity was observed over one decade
followed by a -5/3 power law. The vertical velocity also
exhibited a limited -1 power law (see Figure 2b). Figure 2¢
indicates the existence of a -1 power law at low wavenum-
bers over one decade for the temperature measurements,
which agrees with the Merais [1991] LES simulations. Also,
notice the similarity between the temperature spectrum and
the longitudinal velocity spectrum. This similarity is due to
the passive role of temperature in the dynamic sublayer.
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Figure 2b. Similar to Figure 2a but for the vertical velocity
spectrum.
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Figure 2c. Similar to Figure 2a but for the temperature
spectrum.
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We note that the similarity between temperature and
velocity spectra in the inertial subrange was well established
after the pioneering work of Tsvang [1960]. Tsvang [1960]
used low-inertia resistance -thermometers and a spectral
analyzer to obtain the temperature spectra in the ASL.
These data and many others [see Monin and Yaglom, 1975,
pp. 494-508, for an extensive review] suggest that the local
structure of temperature and velocity are similar within the
inertial subrange. They did not report spectral similarity at
the low-wavenumber end. Experiments by Kaimal et al.
[1972] clearly demonstrated the effects of stability on the
low-wavenumber end of the velocity spectrum but supported
the hypothesized independence of the inertial subrange from
|z/L|. Interestingly, the Metais [1991] LES results for an
isotropic decaying turbulence advecting a passive tempera-
ture scalar revealed a -1 power law in the temperature but
not in the turbulent kinetic energy.

105 R
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Figure 3a. Normalized longitudinal (E;) power spectra in the
dynamic convective sublayer for runs 2, 3, and 4. Taylor’s
hypothesis was used to convert time increments to wavenumber
increments. The solid lines indicate the predicted power laws.
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Figure 3b. Similar to Figure 3a but for the vertical velocity
spectrum.

To validate the -1 power law occurrence and to determine
the similarity constants (A; and B;), we consider the linear
regression model Log(E®) = C, Log(K,z) + C,. The
intercept C, for the spectra of horizontal, vertical velocity
and temperature were used to determine the similarity
constants A;, A, and By, respectively. The results from the
linear regression analysis are summarized in Table 3. The
mean values of A, = 1.1, A; = 0.34 and B; = 0.85 appear
to agree with A, = 0.95, A; = 0.35 and B; = 0.9 reported
by Kader and Yaglom [1991] for the Tsimlyansk Field
Station data (see Table 4). Also, we note that Perry et al.
[1987] obtained a value for A;=0.90 in their laboratory
rough-wall boundary layer.

The transition from the -1 power law to the -5/3 power
law appears to occur over a small range of wavenumbers.
This permits an order of magnitude estimate of the wavenu-
mbers (K.) at which the -1 power terminates and the -5/3
power law commences. By matching the -5/3 Kolmogorov
spectrum and the -1 power law spectrum at K, we obiain
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Figure 3c. Similar to Figure 3a but for the temperature power
spectrum.
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Figure 4a. Normalized longitudinal (E,) power spectra for free
convective stability conditions for run 1. Taylor’s hypothesis was
used to convert time increments to wavenumber increments. The
solid lines indicate the predicted power laws.

K - (fz]mﬁ (14)

4,)

*

where <e> is the mean turbulent kinetic energy dissipation
rate and C¢ is the Kolmogorov constant (= 0.55) (see
Kaimal and Finnigan [1994], pp. 63-64). Here the internal
intermittency correction to the -5/3 power law [e.g. Kolmog-
orov, 1962; Frisch et al., 1978] is neglected. In the
classical statistical theory of atmospheric surface layer
turbulence, one assumes that energy is extracted from the
mean motion and it cascades down through an inertial
subrange until it is dissipated by the action of viscosity.
Therefore a local conservation of energy requires that the
mechanical production (for neutral ASL) is identical to the
dissipation rate so that
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Figure 4b. Similar to Figure 4a but for the vertical velocity
spectrum.
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Figure 4c. Similar to Figure 4a but for the temperature
spectrum.

By substituting (u.’/xz) for the mean dissipation rate, (14)
reduces to

C. )32
K z-= —"(1
A) \k
which is a constant independent of stability. For A, = 1.1,
K.z = 0.88, which is close to the value reported by Kader

and Yaglom (K.z = 1.0). The measured transition from the
-1 to the -5/3 power-laws appears to vary between 0.26 and

(16)

KATUL ET AL.: SPECTRA OF TURBULENCE

1.1 for the longitudinal velocity, as shown in Table 3. It
should be noted from Table 1 that the flow regime for runs
S and 6 is fully rough (z,, > 2), while for runs 7 and 8 the
flow regime is not (0.13 < z,, < 2). This may be the
reason why the transition between the -1 and the -5/3 power
laws are different for runs 7 and 8 (K,;z = 0.26) from the
prediction of (16). The distinction between rough-wall and
smooth-wall boundary layer flows may be important when
comparing similarity constants and transitions from various
studies. As shown by Perry et al. [1987], the constants and
transitions between scaling arguments from wall-similarity

_theory, as extended to variances, may differ between rough-

wall and smooth-wall boundary layer flows (even though the
authors partially attributed these differences to instrumenta-
tion errors). In our case, one may interpret the longer -1
power law for the rough-flow case as being the result of
wider range of eddy size contributing to the mechanical
production.

The measured vertical velocity transition from the -1 to
the -5/3 (K,z = 8) is in agreement with that reported by
Kader and Yaglom (K.z = 6.3). The temperature power
spectra exhibited a transition (K .z = 1.35) from the -1 to the
-5/3 power law and is also consistent with that reported by
Kader and Yaglom (K.z = 1.4). However, for runs 7 and
8 (z,, < 2) this transition occurred at slightly higher
wavenumbers (K z = 4).

4.2. Dynamic Convective Sublayer (Figures 3a, 3b
and 3c¢)

Kader and Yaglom [1991] assumed that directional
dimensional analysis is appropriate for 0.14 < z/|L| <

Table 3. Scaling Parameters of Normalized Velocity and Temperature Spectra E® at Low Dimensionless

Wavenumbers K,z

KL or K;z
Run Variable Range I Slope SEE Constant r
1 U 0.05 - 7.00 278 -1.74 0.27 0.77 0.87
1 W 0.09 - 2.00 44 -1.61 0.26 0.56 0.30
1 T 0.05 - 0.26 30 -0.41 0.21 0.78 0.30
2 U 0.09 - 0.90 20 -2.04 0.20 0.09 0.90
2 A\ 1.00 - 35.0 379 -1.00 0.29 0.38 0.51
2 T 0.09 - 1.85 42 -1.06 0.27 0.23 0.65
3 U 0.16 - 1.70 20 -2.00 0.39 0.18 0.70
3 w 0.16 - 1.70 20 -1.00 0.26 0.35 0.58
3 T 0.16 - 2.03 24 -1.08 0.25 0.28 0.65
4 U 0.01-0.19 28 -2.03 0.29 0.86 0.83
4 w 0.10 - 1.00 11 -1.03 0.22 0.35 0.47
4 T 0.01 -0.18 27 -1.09 0.23 0.32 0.69
5 U 0.01-1.10 164 -1.00 0.12 1.20 0.92
5 w 1.01 - 8.00 802 -1.00 0.26 0.39 0.44
5 T 0.01 - 1.20 181 -1.03 0.26 1.14 0.71
6 U 0.02 - 1.10 123 -1.00 0.29 1.10 0.66
6 w 1.08 - 10.0 1009 -1.07 0.28 0.44 0.50
6 T 0.02 - 1.50 336 -1.01 0.26 0.54 0.71
7 U 0.03 - 0.26 20 -1.08 0.30 1.03 0.45
7 w 0.80 - 8.00 534 -1.09 0.26 0.27 0.50
7 T 0.07 - 3.70 267 -1.10 0.28 0.88 0.68
8 U 0.02 - 0.26 20 -1.09 0.30 1.04 0.45
8 w 0.80 - 8.00 612 -1.08 0.26 0.27 0.50
8 T 0.02 - 4.40 373 -1.10 0.28 0.85 0.72

A regression model of the form log [E®] = C, Log [Kl« or K;z] + C, is used to determine the scaling

exponent.

The number of points used in the regression (n), the range of dimensionless wavenumbers, the

dimensionless standard error of estimate (SEE), and the coefficient of determination r* are also presented.
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Table 4. Comparison of Computed Constants and Values Reported by Kader and Yaglom (1991) (K-Y) Are Also

Shown

Stability Regime Variable Mean K-Y Variable Range of K-Y

N Kz or Kl. v

Forced-Convective A, 1.10 0.95 U 0.26-1.1 1
A, 0.34 0.35 W 8-10 6.3
B, 0.85 0.90 T 1.2-4.4 1.4

Pure-Convective Af 0.77 0.27 U 7 2
Ay 0.56 0.34 w 2 3.5
B; 0.78 0.85 T 0.26 0.4
Dynamic-Convective Al 0.38 0.27 U 0.19-1.7 0.6
A 0.36 0.62 w 1-35 1-10
B, 0.28. - 0.32 T 0.18-1.85 0.32

The computed constants are averaged from various Runs. The measured dimensionless transition limits from

production to inertial subrange is also shown.

1.3, while the free convective dimensional similarity theory
applies to z/|L|, > 2. These stability limits are adjusted
to include von Karman constant in the definition of |L].
Zilitinkevich [1973] presented some data that appears to
agree with the stability limits reported by Kader and Yaglom
[1991]. Figures 3a, 3b and 3c present the imeasured
dimensionless power spectra of velocity and temiperature,
respectively, as well as DDA slope predictions for runs 2,
3 and 4. It appears that a -2 power law scaling exists at the
low-wavenumber end of the longitudinal velocity spectrum
(Figure 3a) for about one decade and an extended -1 power
law scaling for the vertical velocity spectrum (Figure 3b).

To determine the slopes and the constants, we consider
the regression model Log(E®) = C, Log(K,l.) + C,. For
the vertical velocity (Figure 3b) our data did show a surpris-
ingly long -1 power law at the low wavenumber end of the
spectrum, a range not well captured by Kader and Yaglom’s
[1991] data. From the regression results (Table 3), the
coefficient A,® = 0.37 is smaller than the value A,*(= 0.62)
reported by Kader and Yaglom [1991]; however, the two
coefficients are comparable in imagnitude. From the
temperature spectrum (Figure 3b) we determined B! =
0.28, which agrees with B¢ = 0.32 reported by Kader and
Yaglom [1991]. Table 4 summarizes the coefficients
obtained from this experiment and those reported by Kader
and Yaglom [1991].

4.3. Free Convective Sublayer (Figures 4a, 4b and 4c)

We restrict the analysis of the free convective scaling to
one run only (run 1) due to the following: 1. difficulty in
decomposing the time series without any ambiguity into a
mean and a fluctuating part; 2. large integral time scales that
prohibit the use of time averages to approximate ensemble
averages; 3. difficulty in identifying runs with turbulent
intensities not exceeding unity. Typically, the free convec-
tive runs are characterized by large root-mean-square
velocities but low mean horizontal wind speeds. For these
turbulence conditions, distortions at the low-wavenumber
end due to Taylor’s hypothesis can be significant. Even for

run 1 the turbulent intensity is large and the results for this
sublayer should be treated with caution.

Figures 4a, 4b and 4c display the normalized spectra for
the longitudinal and vertical velocity, and temperature,
respectively. We note that z,, for this run is 1.0 and the
flow regime is not fully rough. The estimated coefficients
A (= 0.77), A (= 0.56) are higher than the values
reported by Kader and Yaglom [1991] (A;°(= 0.27), As° (=
0.34)). However, the temperature coefficient B;* (= 0.78)
appears to be in better agreement with their data (B;* =
0.85). In our study (and the study by Kader and Yaglom)
the range over which the -1/3 power law existed in the
temperature spectrum was very narrow to permit an accurate
eéstimate of B;*. We also note that the limits at which the
free convective scaling terminates and the inertial subrange
initiates are in close agreement with the limits reported by
Kader and Yaglom (see Table 3) for temperature. For the
velocity, this was not the case since a -5/3 power law exists
for both inertial and production regimes.

5. Conclusions

This study has focused on the low-wavenumber spectral
characteristics of velocity and temperature in the atmospher-
ic surface layer under different stability conditions. Velocity
arid temperature were measured using a triaxial sonic
anemometer over a dry lake bed. The momentum roughness
length of the lake bed was very small (z, = 0.13 mm) and
the flow regime was not clearly bluff rough.

Under near-neutral conditions both temperature and
velocity spectra exhibited a -1 power law followed by a -5/3
power law, which was consistent with other laboratory and
field studies of boundary layer flows. The -1 power law
was derived using the dimensional analysis method proposed
by Perry et al. [1977] and Kader and Yaglom [1991]. A
key assumption in this analysis was the height independence
of the power spectrum at the low-wavenumber end for small
heights. The similarity coefficients obtained from the
measured velocity and temperature spectra were in good
agreement with earlier values reported by Kader and Yaglom
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[1991] and Perry et al. [1987]. We assumed that the
transition between the -1 power law and the inertial subrange
was very narrow so that matching the inertial subrange
power law to the -1 power law at one wavenumber is
reasonable. This transition wavenumber was derived as a
function of the Kolmogorov and von Karman constants and
agreed well with the measured transition wavenumber for
the fully rough flow conditions. When the roughness
Reynolds number was small, the transition occurred at lower
wavenumbers. This indicated that for fully rough flow
conditions a wider range of eddy sizes were responsible for
the mechanical production of turbulence.

For moderately unstable conditions, directional dimen-
sional analysis was used to predict the power law exponents
for the velocity and temperature spectra. A key assumption
in this analysis was the independence of the mechanical and
buoyant production of turbulence. This independence
permitted the definition of two length scales that were used
to scale horizontal and vertical statistics: It was demonstrat-
ed that the vertical velocity and temperature power spectra
still exhibited a -1 power law; however, the longitudinal
velocity power spectrum followed a -2 power law. The
proportionality constants derived from our experiment
partially agree with previously reported values. Also, the
transition from production wavenumbers to inertial subrange
wavenumbers was consistent with Kader and Yaglom [1991]
data.

We analyzed the velocity and temperature spectra for free
convective conditions. Because of unsteadiness in the mean
meteorological condition and large turbulent intensity, only
one run was selected for analysis. For the velocity time
series of this run, a -5/3 power law was derived for both
production and inertial subrange wavenumbers. The
distinction between the two regimes was not very apparent.
The temperature power spectrum did exhibit a -1/3 power
law for less than a decade of wavenumbers in agreement
with free convective scaling and Kader and Yaglom’s data.
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