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Extension of the Heaslet-Alksne Technique
to Arbitrary Soil Water Diffusivities
M. B. PARLANGE,! S. N. PrASAD,? J.-Y. PARLANGE,? AND M. J. M. ROMKENS4

The Heaslet-Alksne technique solved the nonlinear diffusion equation by expansion around the
wetting front for power law diffusivities. Essentially the same technique has been applied when a
well-defined wetting front exists at a finite distance. In this paper, the method is extended for an
arbitrary diffusivity and to the case when there is no well-defined wetting front at a finite distance. Two
illustrations for exponential and power law diffusivities show the excellent accuracy of the method.

INTRODUCTION

The nonlinear diffusion equation reduces to the Bruce and
Klute {1956] equation when the similarity variable ¢ =
xt ~172 exists (x is the distance from the surface where water
is applied, and ¢ is the time). This equation is now so well
understood that any new technique must first pass a test of
simplicity and accuracy for this particular problem before
applying it to more complex situations. In addition, the
Bruce and Klute equation provides a severe test of any
theory since the fundamental difficulty in solving Richards’
equation for general boundary and initial conditions is still
mainly caused by the rapidly increasing soil water diffusiv-
ity.

There are at present two main approaches to obtain
analytical descriptions of liquid movement in porous media.
The double integral technique, initiated by Parlange [1971],
which has been used extensively in recent years, is based on
the observation that even though the soil water diffusivity is
a difficult function, its integral is far easier to handle. Hence
this approach can be seen as similar to the Green and Ampt
[1911] method, and indeed it leads to accurate infiltration
predictions [Haverkamp et al., 1990] which are extensions of
the well-known Green and Ampt equation.

The second approach can be traced back to Heaslet and
Alksne [1961] who described the wetting profile by an
expansion around the wetting front for a power law diffusiv-
ity. A diffusivity of this form has remarkable similarity
properties (e.g., Shampine, 1973; Parlange et al., 1980a, b]
which can be studied systematically using Lie's method
[Bluman and Kumei, 1980; Lisle and Parlange, 1992]. There
have been attempts to generalize the method of Heaslet and
Alksne when the diffusivity does not obey a power law
[Prasad and Romkens, 1982] for all water content, 6, except
when 6 — 0 so that the Heaslet and Alksne expression
remains formally valid near the wetting front. This rather
strong requirement was later relaxed [Parlange et al., 1984]
as long as a well-defined wetting front still exists. This
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remaining condition is still very limiting: For instance, it
prevents us from using the method for those standard
diffusivities which have an exponential dependence on 6
[Reichardt et al., 1972]. In this note, this last constraint of a
well-defined wetting front will be removed.

THEORY

We are solving the Bruce and Klute [1956] equation

1d¢

8 _
D=—E(—1;fo¢d0 (1)

where D is the soil water diffusivity, and ¢ = xt /2, where
x is the distance from the soil surface where water is applied,
and ¢ is the time, 6 is a reduced water content so that 8 = 0
is the initial water content, and 8 = 1 at the surface. If there
is a well-defined wetting front ¢, equation (12) of Parlange
et al. [1984] gives

6 _  _ A 2
2[ D8 di=¢f¢;~¢) =5 (67 ¢)

0

+B(or— @)+ (2

where A is an unknown constant, and ¢; is given by applying
{2) at 8 = 1. Ignoring terms of order B{(¢, — )2, which are
shown in the appendix to introduce small corrections only,

1 ; A
ZJ' Dio dé = ¢f|1— — 3)
0 2

and, by subtraction,
D _ A 5
2| =do=4¢,(1-A)p+- ¢ 4)
g 0 2

The advantage of (4) over (2) is that (4) remains formally
meaningful even if ¢ — = as 86— 0. That is, (2) can be seen
as an expansion around ¢, but ¢ is the wetting front only
if it is well defined, and the expansion is used for ¢ < ¢,. If
not, ¢; is the value of ¢ for some small (unknown) value of
6 which is not zero.

If we differentiate (4) and compare with (1) at @ = 1, it is
clear that

dr(1-A)=§ (5)

where S is the sorptivity,
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S=f'¢d0. (6)
0

Since ¢, is unknown, we rewrite (4) as

2'Dd0‘—s +A 2 7

As long as we keep only two terms in the expression above,
we require two conditions to estimate the two parameters §

and A. One fundamental condition is provided by integrating
(1) or [Parlange, 1975a]

Zled0=Jl¢2d0, (8)
0 0

which applied to (7) yields at once

1 A
2fDdo<1——)=sz. 9)
o 2

Thus, if $2 were known, (9) would provide A. To calculate
$? and complete the determination of the profile, a variety of
choices are available. For instance, Parlange [1975b] sug-
gested the use of

s2=f (1+8) D de. (10)
0

Other expressions are also available and could be used
equally well [Parlange, 1975b; Brutsaert, 1976; Parlange et
al., 1980a, b, 1987; Lockington et al., 1988; Parslow et al.,
1988]. In practice, (10) is quite accurate enough [Elrick and
Robin, 1981].

Let us return briefly to the situation which arises when ¢,
is the finite wetting front and (2), (4) or (7) are identical.
Combining (3), (5) and (9) gives A from

A [ 1D ! 12
= —de/| Dde| -1
o it
) \ 12 -1
-2f—defude -1 (11)
00 0

with §2 obtained from (9). Thus when f{ D/6 d6 exists (i.e.,
is finite), (9) and (11) provide yet another estimate of § which
can be used conveniently instead of (10). Obviously, for this
particular case the result reduces almost exactly to the
carlier one of Parlange et al. [1984]. The analytical form of
the results is slightly changed, as the knowledge that A is
small was used to simplify the results further, but this is not
necessary in general. In fact, the present result of (11) is
slightly more accurate than the earlier one of Parlange et al.
[1984]. For instance, if we apply the present theory when
[Brutsaert, 1968]

D=41D¢n6"[1 —9"/(n+1)] (12)
then the exact solution is
¢ =DYH1-8m. (13)

EXTENSION OF HEASLET-ALKSNE TECHNIQUE

TABLE 1. Soil Water Profile, ¢, for an Exponential Diffusivity,
D =9 x 107* exp [8.366)

[ Numerical Analytical
1.0 0.0 0.0
0.9 0.56658 0.56569
0.8 0.82683 0.82622
0.7 0.95120 0.95127
0.6 1.01244 1.01308
0.5 1.04351 1.04455
0.4 1.05987 1.06114
0.3 1.06893 1.07036
0.2 1.0744} 1.07595
0.1 1.07839 1.08000
0.01 1.08382 1.08555
0.001 1.08776 1.08959
0.0001 1.09156 1.09351
0.00001 1.09534 1.09742
0.000001 1.09902 1.10133

The numerical result is from Braddock and Parlange [1980]. The
analytical results follow (15), (16), and (17).

Remarkably, (11), (9) and (7) yield the exact solution,
whereas the earlier solution of Parlange et al. {1984] did not.
(It can easily be shown that (11), (9) and (7) with two terms
in the expansion yvield the exact solution of (1) only when D
obeys (12)).

It remains to show that the B term in (2) introduces
negligible corrections compared to the A term. This is done
in the appendix.

ILLUSTRATION

We shall now illustrate the accuracy of (7) with two terms
only, when A is obtained from (9) and S is known indepen-
dently, e.g., from (10). Such an approximation is obviously
very simple to apply, and we are now going to check its
accuracy for a standard exponential diffusivity when no
wetting front exists at a finite distance [Reichardt et al.,
1972]. Then

D =D;expné (14)
Equation (7) becomes
2[Efn) — E{n8)] = (S/D}"*)(¢/D}?) + ; oD,  (15)
with, from (10},
SUD;=(expn)2n ' ~n"H —n"t+nt  (16)
and A, from (9),
A=[expmn "= 1-n""Yiexpn)y—1] U7

Note that for an exponential diffusivity the result is fully
analytical, i.e., expressible in terms of tabulated functions,
as suggested by Koussis [1982}). For most soils the value of »
is close to 8.36 [Reichardt et al., 1972]. The value of D; is
clearly irrelevant, but to facilitate comparison with the exact
numerical results of Braddock and Parlange [1980] we shall
take D; = 9 x 10~*. Then the exact value of § is 0.929178,
and the approximate value from (16) is 0.929969, a 1% error,
with A = 0.11938. Table 1 gives ¢(#8) obtained from (15) and
the exact results. We note that, as expected, the error in the
profile position is of the order of the error on §S. We note



TABLE 2. Soil Water Profiles for a Power Law Diffusivity

n=1

n=2

n=3

n=4

n=35

Analytical Analytical

Analytical Analytical

Analytical Analytical

Analytical Analytical

Analytical Analytical

9 Numerical (21) (22) Numerical (21) (22) Numerical 21) (22) Numerical 21) (22) Numerical (21) (22)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.9 0.21495 0.21096 0.21545 0.24119 0.23938 0.24114 0.26019 0.25929 0.26004 0.27411 0.27365 0.27395 0.28428 0.28406 0.28413
0.8 0.41200 0.40781 0.41125 0.44057 0.43970 0.43971 0.45400 0.45422 0.45337 0.45879 0.45856 0.45753 0.45595 0.45661 0.45561
0.7 0.59455 0.59305 0.59196 0.60574 0.60737 0.60412 0.59730 0.59937 0.59634 0.57913 0.58100 0.57853 0.55657 0.55814 0.55618
0.6 0.76506 0.76852 0.76061 0.74184 0.74670 0.73969 0.70106 0.70504 0.69995 0.65597 0.65895 0.65534 0.61238 0.61457 0.61199
0.5 0.92540 0.93562 0.91934 0.85246 0.86072 0.85002 0.77350 0.77909 0.77234 0.70186 0.70559 0.70123 0.64082 0.64336 0.64043
0.4 1.07702 1.09544 1.06971 0.94014 0.95161 0.93759 0.82121 0.82800 0.82006 0.72685 0.73103 0.72624 0.65359 0.65630 0.65321
0.3 1.22106 1.24886 1.21291 1.00671 1.02089 1.00416 0.84983 0.85739 0.84871 0.73865 0.74305 0.73804 0.65833 0.66111 0.65795
0.2 1.35844 1.39660 1.34990 1.05343 1.06967 1.05092 0.86443 0.87240 0.86333 0.74302 0.74750 0.74241 0.65961 0.66240 0.65923
0.1 1.48992 1.53923 1.48140 1.08114 1.09866 1.07868 0.86980 0.87791 0.86870 0.74403 0.74853 0.74342 0.65980 0.66259 0.65942
0 1.61612 1.67726 1.60803 1.09032 1.10828 1.08788 0.87057 0.87870 0.86947 0.74410 0.74860 0.74349 0.65981 0.66260 0.65943
SD7V2 0 0.88749 0.91287 0.87946 0.75305 0.76376 0.75053 0.66516 0.67082 0.66402 0.60213 0.60553 0.60150 0.55412 0.55634 0.55373
n==6 n=7 n=28 n=9 n =10
Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical Analytical
o Numerical (21) (22) Numerical (21) (22) Numerical (21) (22) Numerical (21) (22) Numerical (21) (22)
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0.9 0.29158 0.29151 0.29146 0.29668 0.29669 0.29658 0.30003 0.30008 0.29994 0.30198 0.30206 0.30190 0.30281 0.30290 0.30274
0.8 0.45004 0.45069 0.44980 0.44171 0.44231 0.44153 0.43193 0.43246 0.43180 0.42135 0.42182 0.42125 0.41042 0.41803 0.41034
0.7 0.53260 0.53386 0.53234 0.50883 0.50985 0.50864 0.48611 0.48693 0.48598 0.46486 0.46552 0.46476 0.44521 0.44576 0.44513
0.6 0.57257 0.57419 0.57231 0.53716 0.53839 0.53698 0.50605 0.50699 0.50592 0.47881 0.47954 0.47871 0.45493 0.45552 0.45485
0.5 0.58992 0.59171 0.58966 0.54764 0.54894 0.54746 0.51233 0.51330 0.51219 0.48255 0.48330 0.48245 0.45715 0.45774 0.45707
0.4 0.59634 0.59820 0.59609 0.55084 0.55217 0.55066 0.51391 0.51489 0.51378 0.48332 0.48408 0.48322 0.45753 0.45812 0.45745
0.3 0.59822 0.60010 0.59797 0.55157 0.55291 0.55140 0.51419 0.51518 0.51406 0.48343 0.48419 0.48333 0.45757 0.45817 0.45749
0.2 0.59859 0.60047 0.59834 0.55168 0.55302 0.55150 0.51422 0.51521 0.51409 0.48344 0.48420 0.48334 0.45757 0.45817 0.45750
0.1 0.59862 0.60051 0.59838 0.55169 0.55302 0.55151 0.51423 0.51522 0.51409 0.48344 0.48420 0.48334 0.45757 0.45817 0.45750
0 0.59863 0.60051 0.59838 0.55169 0.55302 0.55151 0.51423 0.51522 0.51409 0.48344 0.48420 0.48334 0.45757 0.45817 0.45750
SD7YE 051599 0.51754 0.51573 0.48477 0.48591 0.48459 0.45861 0.45946 0.45847 0.43626 0.43693 0.43616 0.41689 0.41742 0.41681

The scaled profile #D; ~1 is given as a function of the water content 8. The first analytical result is based on the use of (21) and the second result on (22).
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further that for 6 < 0.1, i.e., in the *‘tail"’ [Parlange and
Braddock, 1980], (15) remains quite accurate.

To complete this illustration we shall revisit the case of a
power law diffusivity, in part because of its historical signif-
icance, since the Heaslet-Alksne method was developed for
that case, and also because it will allow us to compare the
numerical accuracy of using (11) with that of using (10).

In both cases, (9) yields

SUD;=2(n+ 1)7Y1 - AR2) (18)
with
D=D;" (19)
and, from (7),
2n7'(1 — 0") = S¢/D; + AP 2D, 20)
If (10) is used, then the value of
SUD;=@2n+3Nn+ 1) ' n+2)"! (1)

completes the determination of ¢/D/? (A being obtained
from (18)).
If, instead, (11) is used, then

A2 ={[(n+ 1)/n}"? = W2L(n + Y/A]2 =1} (22)
with § being obtained from (18).

Table 2 gives results for n varying between 1 and 10,
although most soils would be well represented with n vary-
ing only between 4 and 8 [Brooks and Corey, 1964). The
exact numerical results, using Shampine’s [1973] technique
are given, as well as the two approximations based on (21) or
(22). We observe that the errors in both cases decrease as n
increases. This is as expected, since the A term, and all
higher-order terms, tend to zero as n increases. However,
even for n = 1, the errors are remarkably and quite
surprisingly small, with a slight advantage (the error is
halved) to the results using (22) over (21). In both cases, as
in the previous example, the error in the position of the
profile and the sorptivity are of the same order.

CONCLUSION

We have extended the Heaslet-Alksne approach to arbi-
trary diffusivities even when there is no finite wetting front.
If there is a finite wetting front, the earlier result of Parlange
et al. [1984] is slightly improved. More importantly, when
there is no finite wetting front and the diffusivity is arbitrary,
a very simple description of the water profile is obtained.
The accuracy of the resuit is also checked for two standard
soil water diffusivities. In all cases, the error in profile
prediction seems to be of the order of sorptivity prediction,
using optimal techniques.

APPENDIX

The fundamental reason for being able to neglect higher-
order terms in (2) is that the estimates of § 2 from (10) or any
other similar expression are consistent with those terms’
being an order of magnitude ¢ smaller than the A term,
where [Parslow et al., 1988],

PARLANGE ET AL.: EXTENSION OF HEASLET-ALKSNE TECHNIQUE

(A1)

e=fl(l—0)Dd0/f]Dd0
0 0

For & to be small, D must increase rapidly with 6, as usual
for normal soils. Then the sorptivity is,

s2=zf'Dda[ -1+ 0N (A2)

0

Note that the approximation given in (10) is consistent with
(A2) if the terms of order £? are strictly zero.

We are now going to show that if we are not interested in
terms of that order, then the B terms are negligible, i.e., B ¢
= O(e?) whereas A = O(¢).

It is clear from (9) that,

A=c¢+0(e?). (A3)

Then let us rewrite (5) keeping the B terms in (2), or

é(1-A+3Bd)=S (A4)

which redefines ¢. If (2) is integrated,

1
sz—zf D de (1 -~ A2)
0

which was zero in (9), is now proportional to B,

|
sz—zj D dg (1 - Al2) =2B¢}. (AS)
0

The left-hand side of (AS) is clearly of order ¢/ O(&?), using
(A2) and (A3). Thus B¢y is only of order & as desired to
neglect the B term compared to the A term.

We may note here that the derivation of (10) was based on
a similar argument and also required the rapid increase of D
with 6. However, it is well known that (10) is remarkably
accurate even when D is not a rapidly increasing function of
8, i.e., the result is more general than the formal proof
suggests. This holds here as well; e.g., Table 2 shows the
remarkable accuracy of the results down to n = 1 when ¢ is
only 1/3.
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