
THÈSE NO 3350 (2005)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE à LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS

Institut des systèmes informatiques et multimédias

SECTION D'INFORMATIQUE

POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

PAR

Magister en informatique, Université Comenius, Bratislava, Slovaquie
et de nationalité slovaque

acceptée sur proposition du jury:

Lausanne, EPFL
2005

Prof. D. Thalmann, directeur de thèse
Prof. B. Faltings, rapporteur
Prof. A. Nijholt, rapporteur
Prof. P. Petta, rapporteur

collaboration with agents in vr environments

Jan CIGER

2

Acknowledgments

During my four years at LIG/VRlab I had the pleasure to work with many smart people and to learn
a lot from them. I wish to thank to all of them for their wisdom and patience while I was working on
this dissertation. It is impossible to name everybody I have worked with, but I want to at least express
my thanks:

To professor Daniel Thalmann for giving me the opportunity to conduct this research and for the
great work conditions and learning opportunity in his laboratory during these four years.

To Josiane Bottareli and Zerrin Celebi for their help with various administrative problems and
issues.

To all my colleagues from the laboratory I have worked with, but my special thanks go to Bruno
Herbelin, Tolga Abaci and Branislav Ulicny for their collaboration, keen advice, friendship and sup-
port during the more difficult times.

To the great EPFL students I have enjoyed to work with. Their help with the implementation of
the case studies for this thesis and their patience with my pedagogical “skills” is really appreciated.
I wish to thank namely to Karim Krichane for his excellent work on the “Virtual Guide” application,
Thibault Genessay for giving a more user-friendly face to my agents with the problem-solving user
interface and Fabrice Hong for the “Natural language interface” application.

To Miguel García Arribas, who was less a student and more a fellow researcher, collaborator and
a friend. He has also implemented the “City riot” application.

To my family for the support and encouragement to go ahead with my studies.

Finally, I want to thank to Silvia for her love, support and patience during those four long years.

3

4

Abstract

Virtual reality is gaining on importance in many fields – scientific simulation, training, therapy and
also more and more in entertainment. All these applications require the human user to interact with
virtual worlds inhabited by intelligent characters and to solve simulated or real problems.

This thesis will present an integrated approach to simulated problem solving in virtual reality
environments, with the emphasis on teamwork and the ability to control the simulations. A simulation
framework satisfying these goals will be presented.

A unified approach to the representation of semantic information in virtual environments based on
predicate calculus will be introduced, including the representation of the world state, action semantics
and basic axioms holding in the simulated world.

Afterwards, the focus will be on the collaboration model based on task delegation and facilitator-
centric architecture. A simple but efficient facilitator design will be presented.

The issues of the collaborative problem solving will be examined. A new technique using propo-
sitional (STRIPS-like) planning with delegated actions and object-specific planning will be described.

A control technique for virtual characters/objects will be detailed, enabling run-time exchange of
control and control sharing over a virtual entity between multiple autonomous agents and/or human
users.

Finally, a set of case studies will be shown, illustrating the possible applications of the techniques
developed and described in this dissertation.

5

6

Version abrégée

La réalité virtuelle prend une importance grandissante dans de nombreux domaines d’application –
simulations scientifiques, formation, thérapie et aussi de plus en plus pour les divertissements. Toutes
ces applications poussent l’utilisateur à interagir avec un monde virtuel et lui permettent de résoudre
des problèmes simulés ou réels.

Cette thèse présente une approche de la résolution de problèmes simulés en environnements
virtuels, approche axée sur l’intégration des outils de collaboration en équipe et de contrôle de la
simulation. Une plateforme de développements satisfaisant ces objectifs y sera présentée.

Nous présenterons une méthode de représentation de données sémantiques dans les environ-
nements virtuels basée sur la logique des prédicats permettant la description de l’état du monde
virtuel et de la sémantique des actions ainsi que la définition d’axiomes de base valides dans ce
monde simulé.

Puis, notre attention se portera sur le modèle de collaboration basé sur la délégation de tâches
avec une architecture centrée sur un facilitateur. Un modèle simple mais efficace d’un tel facilitateur
sera présenté.

Nous examinerons ensuite la résolution collaborative de problèmes et présenterons une nouvelle
technique utilisant la planification propositionnelle avec délégation des actions et planification par
objets.

Une technique de contrôle des personnages/objets virtuels sera détaillée afin de préciser com-
ment il est possible d’échanger le mode de contrôle pendant l’exécution et comment plusieurs agents
autonomes et des utilisateurs humains peuvent se partager le contrôle d’une entité.

Enfin, nous présenterons plusieurs cas d’étude illustrant les applications possibles des techniques
développées et décrites dans ce mémoire.

7

8

Contents

Abstract 5

Version abrégée 7

Table of contents 9

List of figures 13

1 Introduction 15
1.1 Motivation . 15
1.2 Objectives of the research . 16
1.3 Contribution . 17
1.4 Plan of the thesis . 17

2 Related work 19
2.1 Definitions of the frequently used terms . 19
2.2 Semantic information in VR environments . 19
2.3 Agent-based systems . 22

2.3.1 Multi-agent systems . 22
2.4 Collaboration . 23

2.4.1 Purpose . 24
2.4.2 Theories . 26
2.4.3 Technologies . 28

2.5 Action planning . 32
2.5.1 Iterative techniques . 33
2.5.2 Propositional STRIPS-like planning . 35

3 Symbolic representation of a virtual world 41
3.1 General problems . 41

3.1.1 Environment representation . 41
3.1.2 Partial observability . 43
3.1.3 Task representation . 44
3.1.4 Action semantics . 45

3.2 VR-specific challenges . 48
3.2.1 Gap between geometry and semantic information 48
3.2.2 Animation and its semantics . 49
3.2.3 Real-time response . 49

9

3.3 Human-agent communication . 50
3.4 Summary . 50

4 Model of Collaboration 51
4.1 Agent-agent collaboration . 51
4.2 Delegation . 53

4.2.1 Role of the facilitator in OAA-like system 54
4.2.2 Facilitator design . 55
4.2.3 Matching requests with offered services . 58
4.2.4 Global world state . 61

4.3 Teamwork . 61
4.3.1 Forming teams . 62
4.3.2 Contract Net and team forming . 63
4.3.3 Roles in the team . 65

4.4 Human-agent collaboration . 65
4.5 Summary . 69

5 Collaborative problem solving 71
5.1 Role of the planning in problem solving process . 71
5.2 Problems of the planning approach . 73
5.3 Planning with delegation and teamwork . 73

5.3.1 Delegated actions and speculative planning 74
5.3.2 Generic plans . 76
5.3.3 Planning with delegated operations . 78
5.3.4 Multi-stage planning in teams . 81

5.4 Object-specific planning . 82
5.5 Summary . 85

6 Multi-agent simulation framework 87
6.1 Overall architecture of the implementation . 87

6.1.1 Basic technologies . 89
6.1.2 Ghosts & puppets framework . 90

6.2 Facilitator . 97
6.2.1 Implementation . 97

6.3 Agents . 100
6.3.1 Objectives . 100
6.3.2 General design . 101
6.3.3 Beliefs . 102
6.3.4 Sensing . 104
6.3.5 Actions . 104
6.3.6 Application of the effects . 107
6.3.7 Axiom enforcement . 108

6.4 Action Planning . 109
6.4.1 Planning by agents . 109

6.5 Fail-safe execution . 112
6.6 Summary . 113

10

7 Case studies 115
7.1 “Box world” . 115

7.1.1 Eye tracker experiment . 117
7.2 Virtual guide . 118

7.2.1 Interaction . 121
7.2.2 Evaluation . 122

7.3 Natural language interface . 123
7.3.1 Interaction . 123
7.3.2 Evaluation . 124

7.4 User interface for problem solving . 124
7.4.1 Interface . 124
7.4.2 Introspection . 124
7.4.3 Action scheduling . 126
7.4.4 Action pre-validation . 128
7.4.5 Task delegation . 129
7.4.6 Evaluation . 130

7.5 Declarative “story specification” for VR exposure therapy 130
7.5.1 Evaluation . 134

7.6 City riot . 134
7.6.1 Architecture . 135
7.6.2 Interaction . 137
7.6.3 Technical notes . 140
7.6.4 Evaluation . 141

8 Conclusions 145
8.1 Summary of the research . 145
8.2 Summary of the contributions . 146
8.3 Future work . 146

8.3.1 State consistency . 147
8.3.2 Sub-teams . 147
8.3.3 Agent autonomy versus controllability . 147
8.3.4 Facilitator improvements . 147

A Extended smart objects 149
A.1 Jukebox from the bar environment . 149

B Example actions 155
B.1 move action . 155
B.2 delegated-move action . 156

C “Cut street” order from the “City riot” application 159
C.1 Domain description (operators) . 159
C.2 Problem description (initial state, beliefs, goal specification) 162
C.3 Resulting plan . 165
C.4 Corresponding action in the virtual environment . 166

Bibliography 167

11

12

List of Figures

2.1 Virtual human operating a smart object – a drawer 21
2.2 Types of collaborative multi-agent systems . 23
2.3 Planning graph structure . 36

3.1 Two level information organization . 44
3.2 Imperative task specification example . 44
3.3 Declarative task specification example . 45
3.4 Situation calculus description for preparepush action using the possibility, effects

and successor-state axioms. 47
3.5 Operator version of the preparepush action . 47

4.1 Diagram of an Open Agent Architecture system . 53
4.2 Capabilities of an e-mail agent . 55
4.3 Compound goal being decomposed by the facilitator 55
4.4 Predicate calculus solvables . 55
4.5 Request processing in the simplified OAA system 58
4.6 Unification example . 59
4.7 Sequence diagram of the Contract Net protocol . 63
4.8 Sequence diagram of the team forming protocol . 64
4.9 The user’s involvement in the collaboration environment 67

5.1 Diagram of the planning process . 72
5.2 Regular versus delegated version of the move action 76
5.3 Simple world topology . 79
5.4 Action splitting to explicitly increase cost . 80
5.5 Planning with object-specific actions . 84
5.6 The dance operator . 85
5.7 The object-specific power-up-jukebox operator 85

6.1 Architecture overview . 88
6.2 The puppet protocol . 92
6.3 Smart object manipulation . 94
6.4 Puppets . 95
6.5 Activity diagram for the facilitator . 98
6.6 Autonomous agent class diagram . 101
6.7 Ghost agent activity diagram . 103
6.8 Activity diagram of the plan-and-execute action . 110

13

6.9 Activity diagram of execute-plan action . 111

7.1 Warehouse scenario . 116
7.2 Museum scenario . 117
7.3 Gaze tracking experiment . 118
7.4 User with the virtual guide . 119
7.5 User interface for the Virtual Guide scenario . 120
7.6 Virtual museum exposition . 120
7.7 Semantic information for the museum . 121
7.8 Translation from written English to task specification 123
7.9 User interface for problem solving . 125
7.10 Autonomous agent with introspection class diagram 126
7.11 Object browser . 127
7.12 The bar scenario . 131
7.13 Action scheduler . 132
7.14 The “dance” action . 133
7.15 Definition of semantic information in Blender . 134
7.16 Police blocking a street from rioting crowd . 135
7.17 Architecture of the scenario . 136
7.18 User as the crowd leader . 137
7.19 Graphical user interface for high level control . 138
7.20 Barrier established to cut the street . 139
7.21 Social forces model for the crowd . 140
7.22 System setup for the City Riot simulator . 141

C.1 Result of the plan execution in the virtual environment 166

14

Chapter 1

Introduction

I’m sorry, Dave, I’m afraid I can’t do that. . .

HAL 9000 in “2001: A Space Odyssey”, 1968

The technology is advancing in huge steps and computers are getting more and more powerful
every day. However, one fundamental challenge remains – how do the humans communicate and col-
laborate with the machine? More often than not the process could be described by the quote from the
famous movie by Kubrick and Clarke – the user asking the machine to work and the computer’s fail-
ure to do so, accompanied by an incomprehensible error message. HAL was at least communicating
in a human language, the ordinary computers are still not.

The man–machine interaction is a vast topic being worked on by many. The evolution of user
interfaces took us from wires and pins on machines like ENIAC1 to the WIMP paradigm2 and virtual
reality of today. Interaction is only one side of the story – the user wants the machine to work for
him. The collaboration between these two entities, bridging the gap between the “meatspace”3 and
the virtual world on the other side will be the main topic of this document.

1.1 Motivation

With the advances in the technology, virtual reality simulations are gaining importance. What was
completely unfeasible only few years ago is possible today and will be probably in routine use few
years in the future. Virtual reality is often deployed to simulate situations which are either dangerous,
expensive, unpredictable or simply impossible to perform in the real world. Typical examples are
military training, training of machinery operators, emergency situation simulations and many others.
All these applications frequently require the user to correctly interact with the virtual world and to
solve simulated or real problems.

Unfortunately, most virtual reality systems are built as single-purpose applications, without the
flexibility or capabilities required for problem solving. It is rarely possible to “let the user loose” in
the system, have him/her work at own tempo and find their own way to solve a given problem if the
system knows how to respond only in few fixed ways to few pre-defined challenges.

1Where the programs were literally “hardwired”.
2WIMP – windows, icons, menus, pointing device.
3meatspace: <jargon> The physical world (as opposed virtual reality) where you might spend facetime with the carbon

community, 15.01.1999, The Free On-line Dictionary of Computing, c©1993-2004 Denis Howe.

15

Another aspect is extensibility of the simulations – except in trivial cases, it is almost never
possible to insert a new object into the application and expect the rest of the system to seamlessly
work with it, without changes. Such extensions usually require complex modifications in many parts
of the simulator which need to be made aware of the change.

Both problems – the inflexibility and problematic extensibility of the virtual reality applications
are caused by a general lack of high-level semantic information – metadata. This also makes it very
difficult to apply known problem solving techniques to the virtual worlds, e.g. planning, state space
search, constraint solvers etc. which can only work with high level information.

Virtual reality applications often try to simulate the real world and populate the virtual environ-
ment with simulated characters (e.g. virtual humans) with various degrees of intelligence. Such
simulations often require the user to interact with the virtual characters present in the scene but unless
some communication and collaboration formalism (“common language”) is in place, such interac-
tions can be only very limited in scope.

1.2 Objectives of the research

With the focus on the virtual reality field, there are several main objectives of this work which will be
explored in the subsequent chapters.

First, the work introduces unified representation of the semantic information in the virtual world
based on propositional logic. This approach is known from the artificial intelligence, however it
was usually applied only to the active parts of the simulation (e.g. intelligent agents) as a part of
their behavior system. This work will introduce an extension of the smart object technique originally
developed by Kallmann [51] towards high-level reasoning where the objects in the virtual world
are completely self-contained – they include geometric information, basic semantic information for
animation purposes and the newly added high level semantic information (metadata) required for the
interaction and reasoning about them. Such extension enables the seamless extensibility of the virtual
environments because the active parts of the simulation can learn the required information at run time
directly from the objects.

The second objective is to introduce a method for human–intelligent agent collaboration enabling
the flexibility required by the typical virtual reality applications. This objective consists of several
sub-goals:

• Different modes of control. Enabling the user and application designer to use different modes
of control (e.g. first-person direct interaction, direct orders to the virtual characters, indirect
control by proxy, such as an agent directing a team working on the user’s behalf). Letting the
user to select the preferred mode allows for individual problem-solving styles. It also provides
an important fallback mechanism for cases when the autonomous characters do not behave
in the desired way – direct intervention of the user can help solve a problem which may be
unsurmountable otherwise. This thesis will present a technique allowing for such mode change
at run-time of the simulation.

• Task delegation. It is often beneficial to let the computer do the work for user. The task could
be either too boring or too difficult to be performed by a human. In either case, enabling the
user to offload part of his workload to the simulation system allows him to focus on his core
activity – e.g. a main training objective while letting the machine handle the rest of the work, for
example already accomplished training phases. A facilitator-based technique will be presented
that enables the user to delegate tasks to the intelligent agents for solution.

16

• Automatic sub-task solving. To achieve a realistic behavior it is not enough to let the user
to only delegate the task to the simulation system but the simulator has to be able to solve it
autonomously in order to be really useful. This goal can be achieved by employing known
artificial intelligence techniques, such as planning. Two extensions to the common planning
techniques based on the Graphplan algorithm will be presented, specifically planning with del-
egation and object-specific planning.

• Teamwork. Work in a team is a typical part of the every day’s life and it is often desirable
to introduce similar capability to the virtual reality systems. Many tasks are difficult to solve
without collaboration of some kind and in some cases the collaboration and coordination itself
is a goal – typical example is tactical training for military or police units. A simple teamwork
model fitting the most common scenarios will be examined and described.

The final objective of this thesis is to demonstrate how a flexible and reusable framework for
human–intelligent agent and agent–agent collaboration in virtual environments can be built, end-
to-end from the low level animation issues to the high level artificial intelligence framework. The
existing approaches focus either on the low level graphics and interaction issues (typically virtual
reality research) or only on the abstract high level artificial intelligence problems, leaving a large gap
between the two which makes it difficult to apply the results of the both fields in the same application.

1.3 Contribution

The main contribution of this thesis is a new approach to the human–intelligent agent collaboration
and problem solving suitable for use in the virtual environments. In the course of this work several
new solutions to the related topics were found and will be covered in this document:

• Method enabling change of mode of control, allowing the user to share control of the virtual
characters with the intelligent agents.

• Knowledge and semantic data representation in the virtual environment, based on the proposi-
tional logic, with the intent to enable high-level reasoning about the data by intelligent agents.

• Collaboration architecture based on task delegation, facilitation and planning with the focus on
problem solving and teamwork for both human – intelligent agent and agent – agent cases.

• Several enhancements to the known planning approaches, specifically integrating the delegated
actions and object-specific planning into the standard planners.

1.4 Plan of the thesis

This document is organized into several chapters:

• In the chapter 2, related work relevant to this research will be reviewed.

• Chapter 3 will be dedicated to the symbolic representation of the virtual world, required for any
subsequent high-level manipulation.

• Chapter 4 will examine the proposed collaboration model for the collaboration between both
humans and intelligent agents and among the agents themselves.

17

• In the chapter 5, the document will focus on the aspects of collaborative problem solving in the
virtual environments, with the emphasis on the issues of planning.

• The chapter 6 will be dedicated to the implementation of the proposed approach and demon-
stration of the functionality of the individual components.

• Chapter 7 describes six case studies which were used to validate the results of this work.

• Finally, in the chapter 8, the contributions of the presented work will be summarized and the
directions for the further research outlined.

18

Chapter 2

Related work

This chapter makes an overview of the terminology, concepts and related work relevant to the topic
of this thesis. It is divided into several sections roughly corresponding to the parts of the thesis.
In the first part the background information on semantic information in the virtual environments is
presented, introducing concepts such as smart objects. The next part provides basic information
on agents and multi-agent systems. Afterwards, an overview of the collaboration techniques and
their accompanying theories is presented, together with the overview of the related technologies and
applications known from the published works. The final part will focus on planning, planners and
their applications in the virtual reality simulations.

It is assumed that the reader is familiar at least to some extent with the discussed topics and
therefore the terms and topics are not discussed in exhaustive manner.

2.1 Definitions of the frequently used terms

• Agent. There is a no clear definition for the term agent. According to Russell and Norvig [91],
“an agent is anything that can be viewed as perceiving its environment through sensors and
acting upon that environment through actuators.”

Another definition can be found in Jennings [49]: “An agent is an encapsulated computer sys-
tem that is situated in some environment and that is capable of flexible, autonomous action in
that environment in order to meet its design objectives.”

The second definition is more general, because not all agents have to change their environment
or have sensing capabilities. However, the important points are flexibility and autonomous
action.

• Intelligent agent. In the virtual reality simulation context, agents are often described as intelli-
gent to emphasize the AI functionality. They are frequently embodied as virtual characters.

• Virtual human. A humanoid character in the virtual environment, frequently controlled either
by an agent or representing the user in the virtual world. In the latter case it is called an avatar.

2.2 Semantic information in VR environments

Virtual reality applications often require the virtual characters to be able to manipulate the objects
in their environment. Such interactions can be arbitrarily complex. Traditional solutions are pre-

19

designed or pre-recorded (e.g. by motion capture) animations. Another, more general solution is to
shift the responsibility for the animation at least partially to the object, leading to the smart object
concept [51].

The idea of smart objects is based on augmenting the basic geometric information such as poly-
gonal mesh by a set of semantic data enabling the virtual character to properly manipulate the object.
Such semantic data can be for example hand positions for grasping, various important positions on the
surface of the object (e.g. denoting locations of buttons operating model of a machinery) or symbolic
information describing the general properties of the object – e.g. its weight, color, shape etc. The
virtual character – smart object interaction is usually handled by the sets of predefined animations,
most often in a scripted form.

There is a number of works in the literature that have addressed similar issues. The Improv system
described by Perlin and Goldberg [80] consists of an Animation Engine, used for the motion gener-
ation aspects and a Behavior Engine, used for describing the decision-making process through rules.
The Behavior Engine allows scripting in a language close to normal English, making it accessible for
the non-programmers as well.

Parametrized action representation [8] by Badler et al. describes an action by specifying infor-
mation about the pre- and post-conditions of an action, its execution steps and which objects are
concerned by it. The actions can prescribe chaining of the actions allowing for complex behaviors.
The actions come in two forms – uninstantiated (UPAR) and instantiated (IPAR). The uninstantiated
actions do not specify the virtual character nor the objects involved in the action, essentially repre-
senting whole class of possible actions. Instantiated actions are essentially UPARs extended with the
references to the virtual character, objects involved and termination conditions. Collection of UPARs
represents all the actions possible in the system.

On the animation front, virtual human – object interaction techniques were specifically addressed
in the object specific reasoner (OSR) [62, 63]. The primary aim of this work is to bridge the gap
between high-level AI planners and the low-level actions for objects, based on the observation that
objects can be categorized with respect to how they are to be manipulated. OSR differs from the work
presented in this document in that Levison uses a “top-down” approach. Generic actions are gradually
refined by the agent using object taxonomies into executable actions. The agent classifies the object
into a category (e.g. a crate belongs to the “containers” category) and then uses that information to
decide what to do with it. (e.g. containers can be opened by hands).

More recently, Vosinakis and Panayiotopoulos have introduced the Task Definition Language
[110], aimed at filling the gap between higher-level decision processes and an agent’s interaction
with the environment. This language supports complex high-level task descriptions through combi-
nation of parallel, sequential and conditionally executed sequences of primitive actions. The primitive
actions can be of two types – either predefined with fixed duration or goal oriented, where the termi-
nation condition is given for the action.

The smart objects paradigm has been introduced for interactions of virtual humans with virtual
objects by Kallmann [51]. With smart objects, all the interaction features of an object are contained
in the object specification itself. Apart from the properties of the object itself (e.g. animation de-
scription, geometry etc.), they include semantic information aiding the interacting agents to perform
the animation – such as expected hand positions, position and the orientation of the virtual human
relative to the object. Another distinct feature of smart objects is the availability of interaction plans
– scripts defining the animation sequence for a particular interaction – e.g. a virtual human opening a
drawer or operating an elevator (see fig. 2.1).

20

Figure 2.1: Virtual human operating a smart object – a drawer

Smart objects as introduced by Kallmann have a very important property – they allow easy
reusability of already defined objects. This property stems from the fact that the smart objects are
self-contained and the animation control is decentralized, alleviating the need for complex update of
the agents in the simulation whenever a new object is added to the virtual environment. Kallmann’s
work was continued and extended by Abacıtowards automatic motion generation, such as automated
grasping, inverse kinematics or motion planning – see [4].

Unfortunately, the smart objects, as introduced by Kallmann and Abacı, are targeted strictly to-
wards the animation – the semantic information contained within them is animation-oriented and
geometric in nature. There is no explicit support for higher-level reasoning and symbolic description
of the properties of the objects in their implementation.

Work by Farenc [24] presents a technique for adding semantic information into the simulated
urban environment. The author calls the resulting virtual city an “informed environment”. The infor-
mation is organized in hierarchical manner by space partitioning. For example the block of buildings
is subdivided into buildings and streets. Streets are further subdivided into sidewalks and roads.
Roads are divided by junctions and into segments. Each segment in turn contains information about
objects contained in it, such as crosswalks, bus stops, signs, benches etc.

The hierarchically organized information is then used by intelligent agents (pedestrians) navigat-
ing in the simulated city in several ways. The inherent space partitioning enables fast queries about
the objects and properties of the agent’s surroundings. Another use of the information is to make
informed decisions by the agents, such as that it is allowed to walk only on sidewalks and crosswalks,
but not in the middle of the road. Embedding the information directly into the environment allows
for large decentralization of the simulation and simpler agents. However the preparation of the fully
augmented geometric model is very time consuming and difficult due to the sheer amount of the data
– for example typical model of a city quarter as used by Farenc can contain several thousands of
primitives of many types (such as polygons modeling sidewalk pieces, benches, trees, bus stops, etc.).

21

2.3 Agent-based systems

This section will focus on the notion of agency, agents, multi-agent systems and their role in the
virtual reality simulations.

As defined before, an agent is an autonomous entity exhibiting qualities of agenthood – perceiving
its environment and acting on it through actuators. In the context of this work most agents will be
considered as standalone software entities, intelligent and embodied, represented in the virtual world
in the form of a virtual character (having an avatar).

However, several important agents encountered in this thesis will be non-embodied, serving in
auxiliary roles – such as various planners, brokers or user interface agents. These do not have direct
visual representation in the virtual environment but they provide important services to the rest of the
system.

2.3.1 Multi-agent systems

According to Luger [64], the field of distributed artificial intelligence (DAI) has its origins at MIT
around 1980. A group of researchers around Rodney Brooks worked on the concept of multiple
problem solvers working together to solve a single task. Their goal was an attempt to explore how
different problem solvers could be coordinated together while working on a single task.

The distributed problem solving does not require centralized store for knowledge1. Such decen-
tralization allows for specialization of the problem solving components, where each of them focuses
on solving a single particular aspect of the problem.

Second aspect of DAI is that the solvers are situated in their environment, enabling them to offload
parts of the problem solving process into their environment. The individual solver does not need to
know the progress toward the final goal.

Luger defines multi-agent system as a “computer program with problem solvers situated in in-
teractive environments, which are each capable of flexible autonomous, yet socially organized action
that can, but need not be, directed towards predetermined objectives or goals.”

The key properties of a multi-agent system are:

• Situatedness. Each solver (agent) works in a defined environment, from which it can receive
input and can change it using actuators.

• Autonomy. Each agent works on its own and independently from the rest of the system. It has
control over its own actions and its internal state. This property distinguishes agents from e.g.
objects in the object oriented programming domain – objects are rarely autonomous. Agents
have typically their own threads of control and exist standalone, the same is usually not true
about objects.

• Flexibility. Each agent is both reactive and proactive, that means that it not only reacts to the
inputs it receives from the environment but also can be goal driven and opportunistic, respond-
ing to the changing environment by creating alternatives for its behavior. For example an agent
controlling a hostile video-game character can anticipate the moves of the player before they
actually happen and adapt its behavior accordingly.

• Social behavior. Agents are social because they can interact with other agents, software compo-
nents or humans. The agent is only a part of a larger system which is solving a given problem.

1Even though it can be beneficial to have it as will be shown in the later chapters of this document.

22

These four properties of a multi-agent system bring also many challenges and drawbacks. For
example, how can the agents communicate among themselves and coordinate their activities? How
should they perceive the environment? Because they are situated and the knowledge about the en-
vironment is decentralized, they have their own beliefs about the state of the world which may be
inaccurate and/or outright wrong. These problems were addressed by the researchers in the past and
some of these works will be reviewed in the next section.

2.4 Collaboration

According to a dictionary to collaborate means “to work together, especially in a joint intellectual
effort.” Collaboration is a key activity in multi-agent systems where multiple agents work together
on finding a solution to the problem. However, collaboration may be also between an agent(s) and a
human user where the machine helps the human to solve a specified task.

Multi-agent systems

Independent

Discrete

Cooperative

Communicative Non-communicative

Deliberative Negotiating

Emergent

Figure 2.2: Types of collaborative multi-agent systems

Doran et al. in [18] classifies the multi-agent systems into several categories depending on the
type of collaboration, as seen in figure 2.2. The main division is into independent and cooperative
systems. The independent systems can be separated into two categories:

• Discrete – agents in such a system do not collaborate at all.

23

• Emergent – the collaboration is not conscious effort by the agents which only try to follow their
own goals. The agents appear to cooperate, however from the agent’s viewpoint they do not.

The cooperative systems can be divided into communicative and non-communicative. Commu-
nicative agents communicate by intentional sending of messages to each other, non-communicative
cooperate by observing each other and reacting to each others’ behavior.

The communicative systems can be further subdivided into:

• Deliberative – deliberative agents try create a common plan of action, that may or may not
involve coordination.

• Negotiating – negotiating agents are similar to deliberative ones, however there is an aspect of
competition (e.g. the agents compete among themselves to get first to the ball in the simulated
Robocup competition and then establish a plan how to score a goal.)

The focus of this work will be on deliberative agents, which plan and coordinate together their
actions.

There are several published types of applications of multi-agent systems with focus on collabo-
ration, either between the agents and the human users or among the agents themselves. Furthermore,
the research on collaborating agents led to the development of multiple collaboration theories and
important platforms which will be reviewed in the following subsections.

2.4.1 Purpose

Multi-agent collaborative systems serve different purposes. They are most often found in various
military simulations (e.g. STEVE or STEAM-based helicopter pilots), emergency response training
(works by M. Tambe), robotics (e.g. RoboCup competition and its simulated variant), team collabo-
ration training and many others.

The work of Rickel and Johnson are of particular relevance. In [88, 89, 90] intelligent agent
system STEVE is described. It is intended for task demonstration and training purposes in various
domains. The system is capable of spoken communication with the student and demonstrating various
activities based on a predefined script of a lesson. The system adapts to the users skills and the student
is able to advance at his/her own speed. For example, it is possible to skip parts of the training the
user is already familiar with. Alternatively, the student can request repeating and new demonstration
of an activity together with an explanation why and how the activity should be performed. Originally
the system supported only single agent tutoring a single student, however the later versions support
also team work training with multiple STEVE agents and multiple human participants in the virtual
environment where the team of human trainees has to work together with their virtual coaches to
troubleshoot a simulated problem.

From the technical point of view, STEVE is an immersive application utilizing HMD2 and data
gloves for the human operators. In addition, the application deploys one or multiple instances of
the STEVE agent. All communication is conducted verbally, using speech recognition and synthesis
equipment. The agents consist of three main modules – perception, cognition and motor control.
The perception module tracks the activities of the human users and other agents and provides this
information into the cognition module. The cognition module is implemented in Soar [59], which
will be discussed in more detail later. The cognition module drives the agent’s reactions to the actions

2Head Mounted Display

24

of the users and other agents and generates motor control actions which are then performed by the
agent’s avatar.

The knowledge in the STEVE system is represented in the form of predefined tasks connected
together by causal links. Each task is defined as a plan (i.e. a sequence of either primitive or composite
actions) and the causal links define that the task is a pre-requisite for another task. The agent then
builds and maintains a partially ordered worst case plan on how to successfully accomplish the task
from the current state of the virtual world by keeping track of which pre-requisites were accomplished
already and which are still not. Such planning enables it to react to the unexpected actions of the
human trainees without having to script all possible contingencies.

Another similar system was described by Evers and Nijholt in [23]. The Jacob system demon-
strates a collaborative system where the autonomous agent is used to demonstrate and tutor the human
user on performing a simple task – solving the “Towers of Hanoi” puzzle. The focus of the project was
to explore the possibilities of using a multi-modal agent-based system in virtual reality environment.

The idea of enabling multimodal communication and interaction in order to offer the user multiple
ways of achieving the goal and to adapt to user’s preferred way of working was voiced in [77] by
Nijholt and Hulstijn. The work is focused on the communication and interaction aspects between
(possibly collaborating) agents and human users in virtual reality scenarios.

Many of the works by Milind Tambe belong into another category of collaborative systems. He
focuses on the theoretical aspects of the collaboration process, with many applications in different
domains, such as military helicopter pilots (the “helo” domain) mentioned in [73] or emergency
response training and coordination described in [92, 104] and RoboCup [103]. The results of this
group include creation of the frameworks like STEAM [101] and TEAMCORE [86, 105, 104].

Works by Tambe and his team try to perform a quantitative analysis of the teamwork, team form-
ing, allocation of the roles and collaboration inside of the heterogeneous teams combining software
agents, humans and robots. Some of their work analyzing the teamwork aspects was published in
[73, 84]. Research was also done by this team in the field of team reformation in case of agent’s
failure in order to improve the robustness of the system, such as helicopter being shot down by the
enemy or situation changing in an unexpected manner. The results of this research were published in
[74].

Another interesting domain where collaboration in a multi-agent system is desirable is the RoboCup
soccer competition. Teams of simulated robots compete against each other in soccer matches. Good
description of this problem domain can be found in [103]. The agents have to collaborate together in
order to score a goal and prevent the opposing team from scoring. This domain is interesting from
the research point of view, because it is clearly defined with fixed rules and easy to simulate. The
problems faced by the competition participants are well described by Marsella et al. in [65], where
the authors analyze the behavior and performance of two fielded teams.

In the United States, NASA is performing lot of research on collaborative systems with the focus
on space flight. The research is done on training systems where humans are trained in simulated en-
vironments for complex assignments related to the spacecraft operation (such as the training system
described in [72]). Another area where NASA is evaluating collaborative is live spacecraft opera-
tion. A life support control system based on collaborative agents and agent-human collaboration is
described in [67].

A different type of collaborative agent was described by Doyle and Hayes-Roth in [19]. Their
system is text-based, implemented using a MUD technology which originated in multi-user text ad-
venture games popular in late 80-ties and beginning of 90-ties of the last century. The autonomous
agent Merlyn is a wizard acting as a guide to the user visiting this environment. Since the environment

25

is text-based, the environment designers are relieved from the tricky animation problems required to
achieve a believable presentation of the agent.

2.4.2 Theories

Collaborative agents have been and still are subject of extensive research. There are several estab-
lished theories and formalisms used to describe the collaboration process in the multi-agent system.
The following list is not attempting to be exhaustive, however it tries to list the most important and
influential works in this field:

• Joint intentions/commitments

• Joint actions/responsibilities

• Communicative multi-agent team decision problem

• Shared plans

• Delegation

Most of the works on collaborative agents have roots in the BDI3 logic or assume that the agents
are BDI controlled. BDI was introduced in 1987 by Bratman in [12]. He postulates that the behavior
of an autonomous agent can be controlled by three main tenets beliefs, desires and intentions. Beliefs
of an agent express its knowledge about the world and its internal state. Desires are high-level goals,
such as a desire to stay alive or to not be hungry. Finally, the intentions pose short term goals for the
agent which has to elaborate the ways how to achieve them – for example an agent can intend to go
to the dentist, leading to planning process to work out how the intention could be satisfied.

In order to formalize the issues of collaborating agents and the related coordination issues, the
theory of joint intentions/joint commitments was elaborated mainly by Jennings in his numerous
publications. Jennings defines the principle of commitment and convention in [47].

In the BDI scenarios, an agent has frequently an intention to achieve something. Jennings argues,
that what is important is actually the commitment to perform the task i.e. the agent could intend
many things, but only if it is committed to perform them is it interesting. The commitments act also
as a filter for possible actions – an agent will not commit itself to a task which conflicts with other
commitments without good cause.

The notion of “good cause” when to abandon a commitment was formalized by conventions. The
convention formally defines when is it admissible for an agent to abandon a commitment. Ideally, an
agent should never abandon its commitment, however the circumstances may change and the agent
may be forced to do so – for example to react to an unexpected threat.

The extension of individual behavior to multi-agent collaborative systems is based on the notion
of joint commitments. The difference between individual commitment and joint commitment is that
joint commitments concern more than a single agent. The basic concept is that in order to collaborate,
the agents have to commit themselves (pledge) to perform the collaborative task.

The theory of joint responsibilities and cooperation knowledge levels defining how participants
of the groups cooperating on solving a problem should behave in order to successfully achieve the
goal was published in [46, 45]. Integration of the joint intentions inside of a BDI architecture was
described by Jennings in [48]. He discusses how to implement a Belief, Desire and Joint-Intention
system for collaborating agents.

3Belief-Desire-Intention.

26

The formal model of collaborative problem solving based on joint commitments and conventions
was elaborated by Jennings and Wooldridge in several landmark works [112, 113]. Finally, the impact
of agent-based software engineering with the emphasis on the collaborating agents was discussed in
[49].

The joint intentions/commitments theory was a basis for many agent frameworks, such as STEAM
or later TEAMCORE by the team of Milind Tambe. STEAM is a multi-agent simulation architecture
based on the joint intentions theory. It was implemented using SOAR rules and publishes in [100],
together with the typical domains – helicopter pilots and RoboCup soccer competition. Tambe further
elaborates on the collaboration topic in [102], where he analyzes roles of the team members, possible
team work failures and the recovery techniques.

In [86], published by Pynadath et al., the problem of building a meaningful team is analyzed.
The premise is that in a typical multi-agent system, the agent have different capabilities, are built
using different technologies and techniques. The authors analyze, how to effectively describe the
capabilities of individual agents and how to utilize this information to form a team suitable for solving
a task at hand. The result of this work is the concept of team-oriented programming (TOP) which was
implemented on top of the TEAMCORE agents. The authors demonstrated successful team creation
and cooperation among multiple agents given the specification of the desired goal and organization
hierarchies.

The work [52] by Kaminka and Tambe describes a monitoring system for multi-agent systems
to detect collaboration problems, particularly disagreements between the agents. The authors present
the scalable YOYO algorithm for this purpose. Another paper [83] by Pynadath et al. tackles the
monitoring problem by the concept of overhearing – non-intrusive monitoring of the agents by lis-
tening in to the routine communication between the agents and using a plan recognition approach to
identify the ongoing activity.

In [106] Tambe and Zhang elaborate on the problems specific to persistent teams implemented us-
ing the STEAM framework. Persistent teams pose specific challenges compared to short-lived teams,
such as hierarchy, adaptation to environment over time using the gained experience or establishment
of standard operating procedures. The authors introduce teamwork model for persistent teams using
the Markov decision process.

The complexity and optimality issues of the multi-agent teamwork process were analyzed by
Pynadath and Tambe in [84]. The authors analyze the performance of the multi-agent system using
the COM-MTDP model (communicative multi-agent team decision problem). This model allows
evaluation of both the optimality of the teams performance and the computational complexity of the
agent’s decision problem. They present examples of using their model to analyze systems based on
the joint intentions theory.

Grosz et al. described in [38] their work on SharedPlans. The work discusses how a shared plan
among multiple participating parties can be elaborated during the discourse between the participants,
taking into account their current mental state and their goals. In order for the two (or more) parties
to successfully collaborate, several basic conditions have to be met (based on the joint intentions
theory):

1. The parties have to have a common goal (for example to find an itinerary for a flight satisfying
a set of constraints).

2. Have agreed on a sequence of actions (recipe) how the goal is to be accomplished.

3. Are each capable of performing their assigned actions.

27

4. Intend to perform their assigned actions.

5. Are committed to the overall success of the collaboration (not only their own part).

The shared plan idea was implemented by Rich and Sidner in their work on the COLLAGEN
system [87]. COLLAGEN is a prototype to facilitate collaboration of an autonomous agent with
human user, such as airplane ticket booking using natural language and shared plans approach.

The theory which is closest to the work presented in this thesis (collaborative agents based on
delegation) was published by Ioerger and Johnson [44]. In particular, they formally define the hier-
archical model of responsibility (who is responsible for satisfying a particular goal) expressing the
delegation hierarchy. Afterwards the authors introduce the formalism for delegation – the canDel-
egate predicate describing the conditions when the task can be delegated. The main conditions are
twofold: the delegate has to be capable of performing the delegated task and the delegating agent
has to have some authority over the subordinate. This work provides formalism for describing ex-
isting systems using delegation-based collaboration – such as Open Agent Architecture (described in
[68, 14]) and also this thesis.

2.4.3 Technologies

The efforts on collaborating agents produced many technologies to facilitate the exchange of infor-
mation among the cooperating agents and to coordinate the team efforts. This section presents a short
summary of the most influential technologies currently in use.

Blackboards

Blackboard systems implement an idea of shared information store accessible to all collaborating
parties. Such shared store is called blackboard. In a typical blackboard system, the participating
agents watch the blackboard for data they can process. Once such data are posted to the blackboard,
the agent processes them and writes back the results for other agents to use or can alternatively post
a query for other agent to answer. Frequently, there is no other coordination or negotiation going on
among the agents apart of the sharing of the data posted to the blackboard.

One of the first blackboard systems published in literature was LINDA by Gelernter and then
FLiPSiDE by Schwartz [94]. The latter describes a programming logic system for distributed ex-
pertise in financial domain. The system is used to monitor the state of the portfolio, to monitor the
market situation and to plan and execute the trading operations.

Another well known blackboard system is ACORN developed by Marsh et al. [66, 114]. ACORN
introduces concept of café where the agents can share information by a process the authors named
mingling. The mingling process is essentially a key-phrase matching algorithm used to determine
whether the shared information is of relevance to the participating agent. Another option to exchange
information is by posting to the blackboard using a given set of rules.

Negotiation, conflict management

Negotiation is a key collaboration concept. The collaboration participants negotiate creation of the
team, establish common goals and elaborate plans for team actions. Negotiation process is also
necessary to reconcile differing views of the world by individual participants. There are several
technologies which try to address the negotiation issue. They are frequently part of larger frameworks,
such as STEAM.

28

CONSA (COllaborative Negotiation System based on Argumentation) described by Jung and
Tambe in [50] tries to address the problem of intra-team conflict resolution in the STEAM multi-
agent framework. The conflict resolution in the CONSA framework consists of four distinct stages:
proposal generation by a team member, opening, argumentation and termination stage. The poten-
tially conflicting fact is proposed by one team member. During the opening stage, each team member
is expected to identify, whether the proposal conflicts with his beliefs or not. In the argumentation
stage, the resolution of the conflict is proposed and the agents evaluate it, potentially continuing the
argument with better proposals. In the termination stage there are several possible outcomes. If there
is an accepted proposal for conflict resolution, the process terminates and the solution is accepted.
Otherwise the process either fails if no solution was found and accepted or succeeds, if the conflict
was identified as irrelevant.

Lander in her dissertation [60] elaborates a negotiation-based technique for distributed search,
where an agent proposes a solution and other team members work on extending it further towards
finding a global solution.

The Electric Elves system developed by Pynadath, Tambe et al. and published in [85] is a multi-
agent scheduling system based on the Teamcore framework (descendant of the STEAM system). The
users are equipped with personal agent proxies which maintain their schedule and current location
using handheld mobile devices (Palm Pilots and GPS). The agents allow automatic coordination of
activities such as scheduling meetings to be performed with minimal human involvement.

Partial global planning (PGP) by Durfee et al. (published, for example, in [20, 21]) originated
in the domain of distributed sensor networks where the individual sensors represented as BDI-like
agents have to efficiently collaborate together to establish a high-level interpretation of the sensed
information. This process has to frequently occur in the presence of incomplete or noisy data and
without a central coordinating authority which poses a single point of failure and potential perfor-
mance bottleneck. The solution proposed by Durfee et al. is a system, where the individual nodes
(agents) process the information in parallel and exchange abstract information in order to combine
their local views of the situation into the global one.

Partial global planning brings together several techniques, such as contracting, planning, orga-
nizing and result sharing into a hybrid system where the individual agents are building their own
views of the global state (partial global plans) and then use negotiation techniques to exchange them,
propose changes and resolve coordination issues arising while solving the main problem.

Decker and Lesser created generalized partial global planning (GPGP) [16] algorithm by extend-
ing the original PGP into a whole domain-independent family of coordination mechanisms. These
mechanism are selected for use depending on the task being solved. Another addition was the intro-
duction of deadlines into the scheduling, specifying hard constraints until when the scheduled tasks
have to be performed. Also the communication between the agents is happening at different levels
of abstraction, leading to smaller amounts of information being exchanged compared to GPG where
whole partial plans were exchanged each time.

Finally, there is an important standard relevant to the presented work – the FIPA4 Contract Net
interaction protocol published in [29]. This protocol describes a general negotiation process, where
the agents are trying to elaborate a common conclusion – such as creation of a common action plan
or bidding process to award contract for completion of a particular sub-task.

4Foundation For Intelligent Physical Agents, http://www.fipa.org/.

29

http://www.fipa.org/

Agent communication languages

Multi-agent systems frequently employ agents developed using different technologies and standards.
The resulting heterogeneous systems require a standardized means of exchanging information and
requesting services among the agents, typically in the form of a communication language.

From the theoretical point of view, the link between language and social activity was made in
speech act theory [95] using the concept of illocutionary act – a particular kind of social interaction
performed in uttering of some sentence, such as promising, informing etc. One of the most important
devices to determine the illocutionary force of the message in a particular (human) language is the
lexicon of speech act verbs. In the case of English, such lexicon contains verbs such as promise or
warn.

In the case of an agent communication language the counterpart of the speech act verbs lexicon
is the catalogue of performatives (types of communicative actions) specifying the ones deemed im-
portant for the multi-agent system, such as inform, query or request. One such catalogue is the FIPA
Communicative Act Library (CAL), available as a standard [28].

One agent communication language commonly in use is the FIPA Agent Communication Lan-
guage [27] built on top of the FIPA Communicative Act Library and the associated standards, such as
FIPA Interaction Protocols [30] and FIPA Semantic Language content Language [32].

Another commonly used agent communication language is KQML5, described in [15, 57, 26].
KQML allows to manipulate existing knowledge of an agent by the means of received messages

– requests to perform a certain action, such as to query a state of an agent or to notify an agent about
a change. The transmitted messages have their type identified by performatives, such as ask-one,
tell, etc. denoting the primitive message type.

KQML is content agnostic, however it is commonly used together with the FIPA KIF6 content
language standardized in [31]. Both languages are popular choice for sharing and exchanging knowl-
edge among the agents in the multi-agent systems. KQML and KIF inspired many developers of
multi-agent systems (e.g. RETSINA [99]) and KQML and KIF-like syntax is commonly used with
various extensions.

An effort to provide a standardized method to design new agent communication languages was
presented by Serrano et al. in [97, 96]. They present a meta-model based on the analysis of the
relationships between role of the agent, interaction between agents and the associated communicative
action. This meta-model is known as RICA (role/interaction/communicative action). New agent
communication languages can be produced from the RICA meta-model by specialization.

Delegation

The concept of task delegation as a collaboration technique in multi-agent systems is known for a long
time. It mirrors closely the hierarchical management/command structures common in armed forces
or organizations where the responsibility for the task is delegated from a superior to the subordinate
(delegate).

Compared to the contracting approaches (such as Contract Net), task delegation does not have to
employ negotiation process (such as bidding). The task is delegated directly to one or multiple agents
which become responsible for its completion.

From the theoretical point of view, Ioerger and Johnson described in [44] a formal model of
responsibilities in the multi-agent systems with the emphasis on systems allowing task delegation.

5Knowledge Query and Manipulation Language.
6Knowledge Interchange Format.

30

One of the main ideas with relation to delegation is the concept when is it possible to delegate a task
– if and only if the delegating agent has some form of authority and the delegate is able to perform
the delegated task in some way (even by sub-delegating it further).

One of influential works in this area is Open Agent Architecture (OAA) developed at SRI during
the nineties of the last century. There are many publications describing this framework, for example
[14] or more recently[68].

The central concept in the Open Agent Architecture is the facilitator, providing services to other
agents. The original OAA facilitator serves as both matchmaking and data storing service, brokering
communication in a distributed collection of autonomous agents. It is also able to subdivide larger
tasks to smaller pieces to be resolved by multiple agents.

TAEMS7 framework was developed by Decker [17] as a mean to quantitatively describe and rea-
son about the interrelationships between tasks. In case that the tasks are worked on by differing agents,
the relationships are coordination relationships and are important to the design of the coordination
algorithms.

This framework represents the structure of the task at multiple abstraction levels. The highest
level is a task group which contains all tasks having explicit interrelationships. A task is a set of
lower level sub-tasks or executable methods. The components of task have explicitly defined effects
on the outcome of the encompassing task. The lowest abstraction level are executable methods –
schedulable entities, such as piece of code with its data, fully instantiated plan or even an instance of
human activity.

TAEMS tries to be independent from any particular agent structure, the only basic properties
required from an agent are beliefs (state) and actions (executing methods, sensing, communicating).

The TAEMS framework provides facilities useful for agent coordination by defining how agent
actions and tasks relate to each other, as well as a calculus for describing various plan alternatives that
can be chosen at run-time by an action scheduling component.

RETSINA8 is a multi-agent framework created by Sycara et al. [99]. The architecture has three
types of agents – information agents providing access to data stores, interface agents tasked with
communication with the user and task agents aiding user (or other agents) perform tasks by formulat-
ing problem-solving plans and executing them using communication and information exchange with
other agents.

Agents in RETSINA are distributed and directly activated based on the top-down elaboration of
the current situation – as opposed to e.g. Open Agent Architecture, where this activation is performed
indirectly by the brokering agent/facilitator. Agent locating is performed by matchmaking agents
acting as yellow pages – directories of agents advertising certain capabilities. The organizational
structure is formed dynamically, dependent on the needs of the task being solved.

Planning in RETSINA is achieved using hierarchical task networks (HTN). Each agent has a
current set of goals, current set of task structures and a library of task reduction schemas. The task
reduction schema specifies how to perform a task by prescribing a sequence of sub-tasks/actions to
be performed and the corresponding information-flow relationships between them (e.g. passing the
output of one task as an input to the following task).

DECAF9 is an agent toolkit created by Graham et al. [36]. The framework provides the basis for
design and implementation of multi-agent systems usable by non-researchers by providing specialized
tools (such as the Plan Editor) to program agents.

7Task Analysis, Environment Modeling, and Simulation.
8Reusable Task Structure-based Intelligent Network Agents.
9Distributed, Environment-Centered Agent Framework.

31

Planning in the DECAF framework is managed using the hierarchical task networks (HTNs) sim-
ilar to the RETSINA framework. The agents consist of set of potential objectives or goals and a
collection of actions that may be planned and executed to achieve these goals. The goals are rep-
resented as complete task reduction trees (HTNs) using the annotations from TAEMS task structure
description language. The leaves of the tree are basic agent actions (primitive tasks). The complete
plans to solve the goal may contain hundreds of the primitive actions and are created using the Plan
Editor.

Communication between the agents in the DECAF framework is achieved using the KQML agent
communication language. Legacy systems unable to communicate in KQML are wrapped using proxy
agents to connect them to the framework.

Another delegation-based multi-agent system used for military simulations is MOKSAF, de-
scribed by Payne et al. in [78]. The goal of the MOKSAF architecture is to explore collaboration
in mixed human/agent teams. The framework makes use of the Matchmaker, which is a special agent
matching the incoming requests with the services advertised by the other agents and KQML to com-
municate among the agents.

2.5 Action planning

The issue of action planning is closely related to the problems of autonomous problem solving. The
goal of planning is to find a sequence of actions transforming the given initial state of the system into
the desired goal state.

Planning is a difficult and often intractable problem, if the problem being solved is large. There-
fore there were attempts to simplify the problem. One of the alternative approaches is GOLOG,
created by Lespérance et al. and described in [61]. GOLOG attempts to be a middle ground be-
tween low-level imperative programming and high-level planning-based solution. It is a specialized
programming language permitting creation of agents where many problems conventionally left to
planners are addressed using non-determinism.

A similar approach to GOLOG was used by Funge in his work [33], where he introduced cognitive
modeling language (CML). CML allows high-level description of the goal for the virtual character,
but letting it automatically search for suitable action sequences in order to satisfy it.

Another common approach how to reduce the complexity of the planning is to use a hierarchical
planning system. The high level plan is typically generated by an agent in the upper parts of the
hierarchy and refined/specialized by the agents in the lower ranks responsible for their particular tasks.
The advantage is that the high level agents do not have to plan down to the details required by the low
level agents for performing the assigned task. One example of such hierarchical planning system was
described by Baxter and Hepplewhite in [9], where it was used to drive a military simulation.

Another application of hierarchical planning in the teamwork context in the multi-agent simu-
lation system was demonstrated by Alonso and Kudenko in [6]. They describe an application of
STRIPS-like planning in a military simulation.

The next sections will attempt to provide an overview of the main approaches to action planning
and action selection used in development of autonomous agents. The techniques can be divided into
two main groups, each of them will be described separately.

32

2.5.1 Iterative techniques

The main trait of iterative techniques is that the decision making process to identify next action(s) to
take is repeated during each simulation frame of the agent. Alternatively, the plan can be partially
created at the beginning and iteratively refined and updated according to the current situation.

BDI

BDI agent model was mentioned in the section 2.4.2. From the planning point of view, BDI agents
are typically iterative in nature – they make their decisions during every simulation frame and use
the library of pre-created plans to address various situation which can arise during the lifetime of the
agent. BDI agents using propositional planning instead of the pre-built plan libraries are possible
(such as the work of Meneguzzi et al. [71]), but are not common.

Examples of BDI agents using iterative action planning are well known, for example KGBot for
Unreal Tournament by Kim [53] and coalition forming collaborative agents described by Griffiths
and Luck in [37]. Another famous applications of iterative BDI agents are games like The Sims and
Black&White by Electronic Arts.

Rule-based systems

Rule-based (also known as production) systems are a popular technology for implementation of au-
tonomous agents. They consist of three main parts:

• Working memory

• Rules

• Decision mechanism

The working memory contains a short term knowledge, representing the internal state of the agent
and its beliefs about itself and the surrounding environment. The rules define the basis of the behavior
of the agent, usually in the form if precondition then effect. The decision mechanism
is used to decide which of the applicable rules (rules, where the precondition is satisfied) is to be fired.

One well known example of a rule-based system is SOAR10, originally developed by Newell in
the late 1980s and published in [59]. SOAR goes beyond a simple rule-based system which just
selects and fires rules. It is able to reason about the operators (actions to take) themselves in order to
identify the best one to apply and it is able to automatically generate sub-goals for resolving impasses,
whenever it is unable to make decision directly.

SOAR is also frequently interpreted as a model of human cognition and used for cognitive mod-
eling. Another view of SOAR is as a specialized programming language for artificial intelligence.

SOAR is used as a basis of many multi-agent simulation frameworks, such as TEAMCORE[105],
STEAM[101] and many others. In [102], Tambe describes how a SOAR architecture can be used for
creation of agent teams using team operators.

Other than that, SOAR was used also in game environments, such as the famous SOARBot which
was used together with the Quake II engine [58], Unreal Tournament and Descent III games to sim-
ulate a computer opponent for a human player. SOAR was also frequently utilized in the RoboCup
competition to implement agents simulating a robotic soccer team.

10http://sitemaker.umich.edu/soar

33

http://sitemaker.umich.edu/soar

ItPlanS

The ItPlanS planner is a special case between iterative systems on one side and propositional planners
on the other. It was developed by the group of Norman Badler at the University of Pennsylvania and
deployed in the famous SodaJack system. The planner was published many times, for example in
[34, 63].

SodaJack is an application of a Jack animation system developed at the university of Pennsylvania
to a simple domain, where a virtual human character is manning a soda stand and is expected to
dispense products to visitors. The Jack animation platform is driven by a hierarchical planing system,
utilizing three different planners – ItPlanS as a high level planner, one specialized planner to locate
relevant objects and knowledge and a specialized planner for object specific reasoning.

ItPlanS planner works in an iterative manner – building and expanding the produced plan as
required, depending on the results of the previous actions and the current state of the agent’s environ-
ment. For example, if the agent is asked to serve soda, it has to retrieve the cups first. The cups can be
in different places – such as in the cupboard, on the counter, etc. The planner first generates a task to
search for the cup in the cupboard (for example). Once the cup was found, a new plan for next action
is generated to continue towards the goal. If the cup was not found, a new search task is generated to
search elsewhere.

The advantage of the ItPlanS approach is that the system can be very responsive, there is little
delay caused by the planning. At any given moment there is a plan of what to do, even though it
may not be complete (fully specialized). The disadvantage of this approach is that the plan is never
completely known in advance, potentially leading to poor behavior. For example, the agent will first
search for the cup, finding it in the cupboard. Then it realizes that an ice-cream scoop is also required
and will start searching for it again, inspecting the cupboard from scratch instead of retrieving both
the cup and the scoop together the first time.

Procedural Reasoning System

Procedural reasoning system (PRS) developed by Georgeff [43] is a BDI-like reasoner merging the
advantages of reactive and goal-oriented reasoners. PRS also features guaranteed response times
which are important in real-time control systems.

The information in PRS is represented by a set of beliefs, set of current goals, library of plans/procedures
containing sequences of actions called knowledge areas (KA) and an intention structure containing a
partially ordered set of plans selected for execution.

The interpreter manipulates these structures – it selects the appropriate KA based on the beliefs
and goals, puts them into the intention structure and finally executes them. Selection of the KAs
may be triggered either because of some event in the environment activating the triggering part of the
KA (a precondition saying when to trigger the KA) or because the KA provides solution to some of
the current goals. This property ensures fast response to changes in the environment while allowing
means-end reasoning for problem solving.

The procedural reasoning system was deployed in several real-world applications, such as fault
isolation in the space shuttle propulsion systems. Another application of PRS was network traffic
management for telecommunication networks, where the reasoner helped with managing congestions
and network disruptions by re-routing traffic.

The advantage of PRS and PRS-like systems is the combination of quick response (reactivity) to
external events, similar to rule-based systems while retaining the capability for means-end reasoning.

34

The disadvantage of the techniques using fixed plan libraries is their extreme domain-specificity.
The plan libraries encode a domain-specific knowledge, such as the correct fault isolation procedures.
However, if the reasoner does not have a suitable plan available in the library, it will be unable to
solve the problem, even though it is solvable by a correct (but unknown to the reasoner) sequence of
primitive actions.

2.5.2 Propositional STRIPS-like planning

Propositional planning is a very old topic in the artificial intelligence field. It is being researched since
early seventies of the twentieth century, with many works published. Propositional planning found
many applications in robotics, autonomous agents, industrial process control, spacecraft control and
many others.

In propositional planning the problem is described in terms of predicates representing assertions
about the world state. The possible actions are defined in terms of operators, using notions of pre-
conditions and effects to describe when it is possible to perform them and what are their effects on
the world state.

The planning problem (transforming the initial state to the desired goal state by a sequence of
operator applications) is defined using the initial state of the world, the desired goal state and the
permitted operators. This approach was pioneered by Fikes and Nilson in their seminal paper [25],
which described the STRIPS planning system driving the SHAKEY robot.

During the past decades, many STRIPS-like planners were developed. The original system was
extended over time to allow things such as quantifiers, conditional effects, basic arithmetic, uncer-
tainty, temporal planning and many others. Many algorithms were developed, among the most notable
ones – UCPOP [79], Prodigy [109], Graphplan [10]. Most of these planners spawned whole families
of derived planners, for example Sensory Graphplan [7, 111], FastForward and Metric FastForward
[41, 42], AltAlt [76] and many others are all derivatives of the original Graphplan planner published
by Blum et al., using the same planning graph data structure albeit in different ways.

Of particular relevance to this thesis are two planners from the Graphplan family – Sensory Graph-
plan by Weld et al. and Metric FastForward by Hoffmann. These two planners were used as a part of
the multi-agent simulation framework described in the chapter 6.

Propositional planning is highly complex task, typically exponentially increasing in complexity
with the amount of information the planner has to process during the planning process. To lower the
load on the planner, it is possible to remove the facts which are not relevant to the problem being
solved by pre-processing. Such approaches were described in [22] by EL-Manzalawy and by Nebel
et al. in [75].

In order to be able to compare the performance of different planners the need for standardized
benchmarks was identified. These benchmarks are standardized problems to be solved by the plan-
ners, both synthetic and realistic. To be able to use the same set of problems with all planners, the
planning community created common planning domain description language (PDDL) which is sup-
ported to various degrees by most of the propositional planners available. PDDL evolved through
several versions, from the original created by McDermott to the most recent version 2.2 and the a new
language Opt. The specifications for all these languages are publicly available at [69].

The main differences between different PDDL revisions are capabilities to model different types
of problems which were added or removed – such as durative actions (actions having continuous
effect over a period of time) or handling of numeric fluents.

35

The feature subsets of PDDL important for this thesis are STRIPS (containing STRIPS-like oper-
ators) and ADL, which includes also disjunction and quantifiers in preconditions and goals and also
conditional and quantified effects.

Graphplan

Graphplan is a very influential planner developed by Blum and Furst and published for the first time
in [10] in 1997. Graphplan had a very good performance compared to the other planners at the time
when it was developed (such as UCPOP and Prodigy) and many planners were derived from it.

A B C D

A1 A2 A3 A4 A5

A B G F U

A8 A6 A7

Step n

Step n+1

Propositional level

Action level

Propositional level

Action level

A Propositions (preconditions, effects)

A8 Operator instances (actions)

Arrows connect preconditions
to actions requiring them or effects
to actions producing them

Figure 2.3: Planning graph structure

Graphplan works by analyzing a data structure named planning graph. A planning graph is a
leveled graph where levels consisting of proposition nodes and action nodes alternate (see fig. 2.3).
The first level is propositional one, with propositions describing the initial state of the world. Next
level is action level, where all possible actions (with preconditions satisfied by propositions of the
previous propositional level) are present and connected by edges with the propositions satisfying
their preconditions. Next propositional level is created from the effects of the actions. The planning
graph in figure 2.3 is simplified, the required no-op actions propagating effects unchanged from level
to level are omitted for readability.

The graph building process is repeated until the graph levels off – two consecutive propositional
levels are identical – or the last propositional level contains all propositions needed to satisfy the goal
and they are not mutually exclusive (mutex).

36

The search for the plan is performed as backward-chaining search starting at the last propositional
level and searching for actions producing the required propositions. The search then progresses to the
preconditions of these actions in a previous propositional level and again actions are searched for
which satisfy these preconditions. The search finishes when the first propositional level (initial state)
is reached and the path to get there is the plan.

Original Graphplan produces partial-order plans, where the plan is divided into separate time
steps with fully specified order, but the actions inside the time steps are unordered. The order of
actions in the single step is not defined and they can be executed in arbitrary order because they are
non-conflicting (non-mutex, it is ensured by the planning algorithm).

The speedup of Graphplan compared to the UCPOP or Prodigy comes mainly from propagation
of the mutual exclusion relationships between the propositions and actions. Obviously, if two propo-
sitions are mutex (e.g. A ∧ ¬A), then two actions which require these two propositions to hold at the
same time for their preconditions to be satisfied cannot be executed in the same step – they are mu-
tex as well, because they have conflicting needs. Another criterion used by Graphplan to determine
whether two actions are mutex is to test whether an effect of one removes an effect of the other – in
that case the effects are conflicting and the actions are mutex.

An important technique used by Graphplan to speed-up the search for the plan (the most time
intensive part, the graph building is fast) is memoization – a dynamic programming technique used
to remember the combinations of nodes at a particular level which pose a dead end for the search. It
helps the search to avoid the already explored branches not leading to the goal.

Sensory Graphplan

Sensory Graphplan (or SGP) is a partial order planner produced at the University of Washington as
an extension to the classical Graphplan. Its design was published in [7, 111]. SGP is a planning
graph based planner (property inherited from Graphplan) which extends the classical STRIPS-like
Graphplan to handle uncertainty and sensing actions.

Classical STRIPS-like planners handle the predicates expressing the current state of the world in
a strictly binary manner – the predicate evaluates to either true or false. Sensory Graphplan allows the
predicate to be defined as uncertain (unknown), enabling an escape path from the problems caused
by the closed world assumption – if a predicate is not defined inside the agent’s state it does not have
to mean that it is false but only that no information about it is not available.11

SGP uses the information about uncertainty of predicates to perform two actions during the plan-
ning process:

• Insert a sensing action intended to determine the truth value of the uncertain predicate at the
execution time.

• Fork the planning graph into two parallel worlds, depending on the outcome of the sensing
action (one branch for the “true” case and the other for the “false” case).

Plans generated by SGP are known as conditional or contingent plans. According to [91],
“Conditional planning deals with bounded indeterminacy by constructing a conditional plan with

different branches for the different contingencies that could arise. Just as in classical planning, the
11Strictly speaking, this would mean that SGP is using open world assumption. This is not completely true because of

the implementation of the planner derived from standard Graphplan. If a predicate in the initial state is not defined and
neither declared explicitly as uncertain, the planner will not find the corresponding node in the planning graph during the
search and it will treat it as being false.

37

agent plans first and then executes the plan that was produced. The agent finds out which part of the
plan to execute by including sensing actions in the plan to test for the appropriate conditions.”

The generated partial order plan carries additional context information with each planned action
to enable the agent to verify the conditions determining which branch of the plan to execute. In case
of SGP planner, the actions carry information about the planning worlds (states) where the action
must not be executed.

Uncertainty and sensing are very common issues in VR domains and their support directly in the
planner is a very useful property – e.g. an agent is able to “discover” that the state of a door needs to
be checked before attempting to open it (and potentially failing to do so if the door was open already).
Such problem can be handled easily by the planner if the state of the door is declared as uncertain.
The planner will also generate the corresponding sensing action in the plan.

Another advantage of Sensory Graphplan is the fact that it generates partial order plans. Partial
order plans allow for sets of mutually independent actions to be executed without defined order (even
in parallel). Such partial ordering is important when working with teams – in practice, it is desirable
that the team leader dispatches the orders and the independent actions are performed in parallel, not
sequentially. For example, moving twenty team members sequentially to a distant location will take
a lot of time, whereas a partial order plan may call for moving them there in a single planning step –
the actions are independent (non-mutex, the planning algorithm ensures this by the way of how the
planning graph is traversed when searching for the plan) and can be scheduled in parallel.

The large disadvantage of Sensory Graphplan is its general slowness and resource consump-
tion. SGP uses the same brute-force backwards chaining search algorithm as standard Graphplan
but adding the extra complexity of conditional planning graphs, essentially doubling the size of the
space to be searched for each uncertain predicate (exponential complexity). This limits its usability
to simpler problems, such as the “Virtual guide” scenario described in section 7.2.

Metric Fast Forward

Metric-FF (or Metric Fast Forward) is a total order planner developed by Jörg Hoffmann from Max
Planck Institute in Saarbrücken, Germany. The planner is based on planning graphs as well (same as
SGP and Graphplan), however there are few important differences. Metric-FF was a top performer
in the numeric track of the 3rd International Planning Competition organized in 2002. The planner is
based on an older FF planner, described in [42]. Metric-FF itself was published in [41].

Metric-FF extends the original STRIPS-like FF planner to handle ADL domains and arithmetic –
supports features like typing, disjunctive preconditions, equality, quantifiers, conditional effects and
expression evaluation. The current implementations of both Metric-FF and the agent framework do
not support/use all of these features, but equality, conditional effects and expression evaluation are
used to achieve a more realistic simulation.

The FF family of planners works by building the planning graph in a similar manner as the original
Graphplan, however the search phase is completely different. Graphplan uses a backward-chaining
search producing a partial-order plan, whereas the FF family uses an A∗ algorithm to search from the
initial state towards the goal state (forward search).

The A∗ algorithm uses a heuristics to guide the search towards the most promising nodes of the
graph first, strongly increasing the chance that the goal node will be found without having to do a
full graph search. In the FF and Metric-FF planners the heuristics is computed using a simplified
version of Graphplan, which does not consider the del-effects of the actions. To compute the value of
the heuristics, Graphplan is invoked from the current state and builds the planning graph toward the

38

goal state. The length of the resulting planning graph (number of planning steps until the goal state
appears in the planning graph) is used for the value of the heuristics, giving a lower bound on the
needed plan length to achieve the goal state.

The huge advantage of using the Metric-FF planner is the raw speed and low memory consump-
tion. On large problems, Metric-FF is typically orders of magnitude faster than SGP. Another advan-
tage is the support for numerical variables and basic arithmetic, allowing to easily plan for a car with
a limited amount of fuel or to simulate BDI-like states of an agent (e.g. thirst) and to plan with them
(e.g. to decrease thirst the agent needs to drink).

Metric-FF is a total order planner, meaning that the ordering of the actions in the resulting plan is
completely specified and fixed. This poses practical problems for handling teams of agents, because
if the order is to be respected, all actions have to be executed sequentially. Taking the example from
the previous section, an member of a team of 20 agents could start moving only after the previous
one arrived to his destination, which is obviously not desirable (1 minute real time per agent to get in
position means 20 minutes total for just the movement of the agents). The solution is to allow limited
parallelization of the plan in certain special cases, where it is known that no inconsistencies will be
created.

Such limited parallelization process was used in the “City riot” scenario described in the section
7.6. Because the move and recruiting actions were known to be non-interfering, it was possible to
reorder the plan in such way, that the team members are recruited at the beginning of the plan, then
the movement of the agents (policemen in this case) is performed in parallel and then the rest of the
plan is done sequentially again. However, this is not a generic solution and does not work in every
case. Conversion of a total order plan into a partial order plan is not always possible in general case
and it is a hard problem in itself.

39

40

Chapter 3

Symbolic representation of a virtual
world

In order for the machine to be able to meaningfully reason about the virtual world, it has to be encoded
in a suitable form. What is typically available in a virtual reality simulation system is usually too low
level for meaningful reasoning – for example geometric data (e.g. meshes) or animation sequences,
either as keyframe animations or procedurally generated.

To enable the desired reasoning capabilities, the system designer has to provide a higher level
symbolic information about the parts of the system. This information can be expressed in many
different ways, however for simplicity and to be able to harness already existing tools, this thesis will
focus on data representation derived from the propositional calculus and first order logic. This choice
follows also from the intended focus on automated problem solving using propositional planning
where the planning domain description has to be provided in this form.

First order logic is a mature field and its applications in artificial intelligence are well known,
therefore the described applications will assume certain level of reader’s familiarity with the topic.

3.1 General problems

Virtual worlds can range from very simple containing only few geometric objects to extremely com-
plex, e.g. simulating artificial life. Regardless of the complexity, there are few general problems
which are common to all of them if they have to be represented in symbolic form.

3.1.1 Environment representation

First of all, the state of the virtual environment has to be represented in a symbolic form. One of the
common forms is to use predicate calculus. To meet the requirements of this work, several extensions
will be also described here.

The definition of predicate calculus is quite extensive and well known. Informally, the predicate
calculus is a representation language with a formally defined syntax, formal semantics and a set of
sound and complete inference rules. The full definition was omitted for brevity, but can be found for
example in [64].

In the virtual environment (world), we have several kinds of information that needs to be somehow
represented:

41

• State/property of an entity (e.g. “the sky is blue”)

• Qualitative relationships between entities (“place A is connected with place B”)

• Quantitative values (“agent Martin has two teammates”)

• General rules holding in the world (“agent cannot be in two places at the same time”)

To represent this information, several approaches will be used. For the first two points, the natural
choice is to use predicates. Predicates are usually written in literature in the form blue(sky), where
blue is a predicate symbol and sky is an entity for which the predicate holds.

For the purposes of this work, another notation will be used: (blue sky). The format is one of
a tuple of symbols, where the first element of the tuple denotes the predicate symbol and the remaining
elements are arguments. The reasons are mainly technical, tuple representation is easier to process by
common tools.

The quantitative values cannot be expressed by predicates because these can have only two values
– either true or false. To express a property which can change in different situation and is represented
by a numeric value (e.g. amount of energy of a robot or the number of teammates), we need to use
the concept of numeric fluents. Numeric fluents are expressed in the form of n-ary functions over the
real numbers domain (Objectn → R) associating the objects with the numeric value. An example
could be (THIRST)1 function returning the measure of simulated thirst for the current agent or
(distance ?x ?y) returning the distance between two points.

The current state of the world can be represented as a set of predicates assumed to be true and a
set of numeric fluents with their current values. For simplicity, a technique known as closed world
assumption will be used – essentially any predicate missing from the predicate set will be assumed to
be false. This technique has an obvious drawback – there is no way how to distinguish between an
information which is unknown and false.

However, for the representation of the global state of the world this is sufficient, because the state
of every object and agent has to be defined. In case of local beliefs of individual agents this convention
has a consequence that if the agent has incomplete information (partial observability), it will assume
the missing predicates to be false. This fact has an impact on agent design such as the necessity
to ensure that sensing retrieves sufficient information from the environment before attempting other
activities (e.g. planning) because otherwise the actions could fail due to missing information.

Finally, what is missing is the expression of the “rules of the game” or axioms which have to
always hold in the virtual world. Typically, axioms express a fundamental relationship between pred-
icates – for example an agent can be near an object, which implies that it has to be in the same room
as the object. Thus, when the agent moves to another room, the predicate for being near has to be
falsified as well. In practice, such rule can be written as:

∀agent∀object∀place(near(agent, object) ∧ at(object, place) ∧
¬at(agent, place) ⇒ ¬near(agent, object))

The implication holds in only in one direction. The reason is that the predicates at(agent, place)
and near(agent, object)∧ at(object, place) could be resulting from the effects of multiple different
activities of the agent. In general, from the fact that the agent is not near to some object it is not

1All capitals notation, because the function directly returns a state variable. To make it easier to distinguish predicates
from state variables, the latter will be written in all capitals.

42

possible to conclude that the agent is not in the same room as the object – it may be, but it didn’t ap-
proach the object (and therefore the near(agent, object) predicate evaluates to false). The purpose
of the axiom is static verification of the consistency of the given world state and not to ensure that the
agent’s activity was performed properly.

The same axiom can be written in the PDDL notation:

(implies (and (near ?agent ?object)
(at ?object ?place)
(not (at ?agent ?place)))

(not (near ?agent ?object)))

The PDDL version lacks the universal quantification. This is not an error, it is intentional. The
universal quantification is implicit here because of how the expression is evaluated – the evaluation
process tests all possible substitutions for the variables ?agent, ?object and ?place (instantia-
tions of the axiom) by default, without having to explicitly specify it. The process will be described
in more detail in the section 6.

3.1.2 Partial observability

The virtual world is represented using the techniques described in the previous section. Using the
predicate calculus it is possible to model the state of the environment. However, the symbolic repre-
sentation as described above does not take into account the possibility that the individual agents living
in this environment may have differing views of their surroundings. The shared global state would
mean that all agents have the knowledge about everything in the world – the world/problem would
be fully observable. Such representation does not faithfully model the reality, there is no reason why
one agent has to know about the properties of an object never seen before or not even known to exist.

To address this issue, a two level data hierarchy is used, as seen in figure 3.1. There is a global
state of the world, which consists of the set of predicates and numeric fluents representing the current
situation of the virtual environment. This information is assumed to be always valid, it forms a
reference basis for all further operations.

The second level consists of the beliefs of the individual agents. The beliefs are again a set
of predicates and numeric fluents representing the state of the environment but from the viewpoint
of the agent. This distinction is important, because beliefs may be incomplete (if the agent never
encountered some object) or even outright incorrect (stale information – for example because another
agent or user changed the world state without the agent in question being aware of it).

Such problems with the possible incompleteness or staleness of the information have to be ad-
dressed by the agent implementation – for example by providing sensing capabilities, cognitive abil-
ities or by implementing communication between the system components such that the agents can
notify each other about the changes.

Finally, the figure 3.1 shows also the user on the same level as the remaining agents, perceiving
the world only as partially observable. For the experiments in human–agent collaboration this is
interesting because the user should have comparable capabilities to the agents he/she is collaborating
with. If the user has “god-like” skills, the whole concept of collaboration is meaningless – why to
collaborate with an agent if the user can achieve the task using his/her special powers not available to
others.

43

Global state of the world

Local beliefs

User Agent 1 Agent 2

Global state queries/updates

Local beliefs

 queries/updates

Figure 3.1: Two level information organization

3.1.3 Task representation

To be able to meaningfully collaborate we need to symbolically represent tasks given to the collabo-
rating agents. A naive way of achieving this is to use an imperative approach – “move to the room X”
or “bring object Y”. The imperative variant of task representation usually takes a form of delegated
action which will be described in more detail in the section 4.2.

The imperative task specification typically looks as in figure 3.2. Each task specification is a
tuple consisting of at least two components – a keyword (also known as functor) denoting the action
to be performed and the name of the agent which has to perform it. If there are more than two
components, the remaining components are parameters for the task. The actions are primitive and
cannot be decomposed further (as opposed to e.g. HTNs in RETSINA).

(move A X Y) ; asks the agent A to move
; from place X to place Y

(drink gino coffee) ; tells the agent gino
; to drink the coffee he holds

Figure 3.2: Imperative task specification example

44

This approach is valid, however there is a major limitation – by using an imperative form, the
agent is told not only what to do but also how to do it – keywords “move”, “bring”, etc. are tied to
the specific animation(s) such as walking. That is not always desirable because it limits the possible
ways of solving the task by the agent.

Often a more practical approach is to declaratively specify a desired final state. This can be done
by logical expression containing predicates describing the desired goal state. In this way the agent
is being told only what to do but not how. Essentially, it is equivalent to saying “I do not care how
you do it but do it”. In the most common case, some planning system is used to create a sequence of
actions (plan) leading to the desired goal state.

If we wanted to express the same tasks as the two shown in figure 3.2 in a declarative way, we
need to specify the desired state instead. Of course, only the relevant parts of the state need to be
specified, not a full set of predicates and numeric fluents. An example is given in figure 3.3

(at A Y) ; we are asking the agent A
; to be at place Y

; We are asking agent gino to get rid of the coffee
; but in such way that he shouldn’t be thirsty anymore -
; drinking eliminates thirst. This ensures that the agent
; will not simply put the coffee away but drink it instead.

(and (not (have-consumable gino coffee))
(not (thirsty gino)))

Figure 3.3: Declarative task specification example

The second example is very simple, however at the execution stage a very complex behavior can
be generated – e.g. in order for Gino to get his coffee, he has first to summon a waiter, make an order,
the waiter has to go prepare the order and bring it back. Only after all this happens, is the agent able
to consume his coffee.

If we wanted to produce the same behavior in an imperative fashion a whole plan would be
necessary, specifying exactly each step to be taken. It would also have the disadvantage that actually
the user/agent defining the task may not even be aware of what are the proper or possible actions to
perform. The advantage of using the declarative task specification is very clear here.

The disadvantage of using declarative task specification is that the task may be performed in a
non-obvious or unpredictable manner. The execution of the task may lead to un-anticipated side
effects (such as the waiter from the example above moving objects around or depleting some scarce
resource). Also, the goal specification may be non-intuitive if the desired behavior is complex. These
problems have to be mitigated by careful design of the actions.

3.1.4 Action semantics

The final part of the data representation puzzle is the representation of the possible actions themselves.
Actions were mentioned already in the previous sections, however not their representation.

45

The usual way how to approach the problem of representing the possible actions of the agents is
to use the approach pioneered by Fikes in his STRIPS planner (see [25]). His ideas were generalized
later and incorporated into the PDDL specification.

To represent the possible actions, every interaction of the agent with the environment has to be
described in terms of its preconditions and its effects on the state of the agent/object when the action
is performed. Fortunately, such information can be easily encoded using the situation calculus. A
detailed description of it and its use to describe possible actions by an intelligent agent can be found
e.g. in [91].

For the purposes of describing the semantics of the actions we need three axioms of situation
calculus. The possibility axiom:

Preconditions ⇒ Poss(a, s)

determines when is it possible to perform an action. The predicate Poss(a, s) denotes that the
action a is possible to execute in the situation (state) s. The effect axiom:

Poss(a, s) ⇒ Changes that result from taking action

denotes what happens when the action is executed. The change to the situation s after executing
action a is denoted as Result(a, s). Finally, in order to resolve the representational frame problem,
the successor-state axiom is used:

Action is possible ⇒
(Fluent is true in result state ⇔ Action′s effects made it true

∨ It was true before and the action left it alone)

The successor-state axiom defines that the fluent (predicate) becomes true in the result state if and
only if the right side holds as well. The successor state is therefore fully defined as a function of the
current state and the action being performed.

This is a different situation than the axioms used to ensure the state consistency in section 3.1.1.
There the implication holds only in one direction, because the state could have been modified in
arbitrary amount of steps (actions), not just a single one as with successor-state axiom. Alternatively,
the change could have been a consequence of the activity of another agent and was only perceived by
the agent applying the axiom to its beliefs.

In our case each possible action can be formally expressed using the situation calculus, as shown
in figure 3.4. The figure describes a “preparepush”operation, where agent X prepares itself to move
an object Y, if the given conditions are satisfied in some state of the world.

The formalism can be interpreted as describing a whole class of actions which can be obtained by
substituting for the variables X, Y, P – a schema.

Practical implementation of the situation calculus formalism in the PDDL and STRIPS notations
is the notion of an operator. An operator is a data structure, which consists of several components:

• Name of the operator

• List of formal arguments

• Precondition expression

46

place(P) ∧ at(X, P, s) ∧ at(Y, P, s)
∧ agent(X) ∧ object(Y) ⇒ Poss(preparepush(X, Y), s)

Poss(preparepush(X, Y), s) ⇒ pushing(X, Y,Result(preparepush(X, Y), s))

Poss(preparepush(X, Y), s) ⇒
(pushing(X, Y,Result(a, s)) ⇔ a = preparepush(X, Y)

∨ (pushing(X, Y, s) ∧ a 6= preparepush(X, Y)))

Figure 3.4: Situation calculus description for preparepush action using the possibility, effects and
successor-state axioms.

• The effects expression

Some older systems split the effects into two clauses – “add” and “del” effects. The names
stem from the usage – “add” effects are added to the resulting state after the action was performed
(becoming true) and the “del” effects are removed, making them false. Because of the closed world
assumption, this split is not needed anymore – to signify a “del” effect, it is possible to declare it
as negation. Predicates which are false are simply not stored, achieving the same result as the “del”
effects clause.

An example of such operator is shown in figure 3.5

(:action preparepush
:params (?X ?Y)
:precond (and (at ?X ?P)

(at ?Y ?P)
(agent ?X)
(object ?Y)
(place ?P))

:effect (pushing ?X ?Y))

Figure 3.5: Operator version of the preparepush action

The name of the operator specifies the name of the action this operator represents. The formal
arguments are substituted for when instantiating the operator. Such an instantiated (specialized) op-
erator is called action.

The precondition expression declares when is the use of this operator (or precisely – its instances)
admissible. The precondition expression has to evaluate to true, given some argument substitution
(instance) and some state of the world.

Finally, the effects specify what will be the impact of performing the action on the current
world state. There are many options available in PDDL 2.1, however the most useful ones are:

47

• Add-effects ((thirsty ?who))

• Del-effects ((not (thirsty ?who))

• Conditional effects
(when (thirsty ?who) (agitated ?who)),
this is equivalent to the construct:
if (thirsty ?who) then (agitated ?who))

• Effects on numeric fluents
((when (<= (energy ?robot) 50) (recharge-needed ?robot)),
or (decrease (energy ?robot) 10))

The full syntax can be found in the specification [69].

3.2 VR-specific challenges

There are several challenges that are specific to the virtual reality systems and cannot be easily handled
using only the generic data representation. They stem from the intrinsic properties of a virtual reality
simulation system and how it is usually built.

3.2.1 Gap between geometry and semantic information

Virtual reality systems are usually created as computer graphics applications, with minimal consider-
ation given to the semantic information. The typical data entity encountered there is a triangle mesh
representing some geometric shape. There are also non-visual systems, using only haptics or audio,
but these are special cases of limited interest in the context of the presented work.

These low level data entities are usually supplemented by a parallel set of structures containing
high level information, such as object properties represented as predicates or something similar. Such
a design is very typical, the high level information is only loosely coupled to the underlying geometric
information for various reasons – usually efficiency of storage and retrieval of the information play
major role.

Such a design frequently leads to consistency problems – the weak link between the low level
geometric data and high level symbolic representation does not really allow to represent an object in
the virtual world as a single whole. Several data structures have to be modified whenever the state of
the object changes.

To illustrate the issue, let us consider a real-world car. Whenever the car moves, the amount of
fuel available in the tank is reduced, the temperature of the engine grows and the location of the car
changes at the same time. All of this happens “automatically”, because it is driven by the elementary
physical principles based on which the car works.

In comparison, let us assume that there is a car in the virtual environment. Typically, it would
be represented as a geometry (e.g. a mesh or set of meshes) and an assortment of symbolic data.
However, when the virtual car is moved, the simulator has to update all the data by itself. Even worse,
the geometry can be affected (deformed, moved, etc.) by an external influence (user, physics engine
etc.) without notifying the car simulator of the change. Suddenly the geometry of the object (what
the user sees) is in a different state than the symbolic representation (model) of the car, they are out
of sync.

48

This problem illustrates the need for a “bridge” between the low and high level information,
which will tie these representations of the object together. One such mechanism will be described in
the section 6.1.2.

3.2.2 Animation and its semantics

Actions of the virtual characters and objects are usually visualized in the form of animation, which is
most often defined in the low level terms of key frames and time series of positions and orientations.
This representation is sufficient to replay the animation (to perform the action), however to be able to
reason about its consequences, more information is necessary.

In the section 3.1.4, representation of the action semantics was introduced. This approach can be
very well used to describe the properties of an arbitrary animation which is changing the state of the
simulated world, not only of the actions performed by the agents themselves.

Unfortunately, no action description is perfect. Typically, when performing animations in the
virtual world, there can be side effects which are not taken into account in the semantic description
of the action. For example, the moving car can crash into a fence and topple it over. In general,
such events are impossible to take care of in the semantic description of the action because it would
become too unwieldy and complex. However, the inhabitants of the virtual environment have to take
the changed situation into account somehow, otherwise the symbolic representation of the world and
the real state of it would be out of sync, possibly leading to incorrect behavior as described in the
previous section.

This problem is fundamentally intractable unless every possible side effect is accounted for, which
is impractical. Moreover, the agents can expect to know only about side effects of actions initiated by
themselves, but not by other agents or users.

A partial mitigation of the problem can be the introduction of the sensing capabilities for the
agents (to “discover” that the side effect occurred and the agent’s beliefs are out of date) and ro-
bust recovery from the failed actions. If the action failed because of a side effect of another action
“breaking” something, the agent has to be able to recover from the situation and potentially update its
strategy how to achieve the goal (e.g. by re-planning).

3.2.3 Real-time response

The final challenge of the virtual reality applications is the problem of interactivity and real-time
response. VR applications are usually designed as real-time simulators, where an immediate response
to the stimuli given by the user is required.

This requirement has an impact on the world representation as well. Easy-to-use, simple but
expressive systems have the advantage. The list-based prefix representation employed by the PDDL
standard is a good candidate for this, because fast parsers and interpreters are readily available, with
low overhead.

Another impact of the real-time constraint is on the design and implementation of the reasoners,
which have to generate answers in reasonable time. This disqualifies a lot of AI research projects –
their products are simply too complex/slow. Fortunately, there are planners available for the PDDL
representation, which are fast enough for the envisioned application – collaboration with autonomous
agents having moderate amounts of beliefs (≈ few hundreds) and limited amount of possible actions
(≈ 10 . . . 50). In particular, modern forward-chaining planners such Hoffmann’s FastForward and
Metric-FastForward [42, 41] can satisfy this requirement.

49

3.3 Human-agent communication

Human – agent communication assumes that there is some sort of “common language” between the
two communicating parties. It has to be neither too low level, because that is too cumbersome for the
human to use nor too high level, because it is difficult to process by the machine. Some intermediate
form is necessary.

A suitable solution for the “common language” can be based on the formulas of the predicate
calculus. It is neither too low level and it is high level enough for the humans to use directly if
needed. The communication is achieved by sending messages composed of various predicate calculus
expressions representing tasks and state of the world.

Predicate calculus is high level enough to be used as a base for various translators, which can
translate the tasks and requests from the user(s) into something machine-comprehensible. Several
examples of such translators will be shown in the next chapters:

• Translation from the natural language

• Graphical user interface allowing dynamic introspection and symbolic interaction with the sys-
tem

• Random “story” generator to create a meaningful behavior in the scenario

All these examples have one feature in common – they use a common communication channel
based on predicate calculus to communicate with the agents. To provide an easier interface for the
user, the symbolic representation is translated from/into a different form – such as a natural language
or graphical symbols. The high level task description allows to achieve this easily.

3.4 Summary

This chapter discussed the high level representation of the virtual world suitable for automated rea-
soning. The main contribution is the addressing of the problem of the task specification using both
imperative and declarative definition.

The second topic of discussion was the introduction of the explicit state representation and action
semantics using the predicate and situation calculus and numeric fluents. The actions are represented
symbolically by mapping them to the STRIPS-like operators.

50

Chapter 4

Model of Collaboration

collaborate

1. To work together, especially in a joint intellectual effort.

2. To cooperate treasonably, as with an enemy occupation force in one’s country.

The American Heritage R©Dictionary of the English Language, Fourth Edition Copyright
c©2000 by Houghton Mifflin Company.

The quote presents two meanings of the word “collaboration”, however for the purposes of this
thesis, only the first meaning is relevant. Collaboration as a joint effort between the machine and
human is the main topic of this document.

In the following sections, the focus will be on both human-agent and agent-agent collaboration.
The contributions of the delegation-based model will be described, together with the facilitator-based
architecture used to implement it.

In the second part of this chapter the notion of teams and teamwork will be discussed. A team-
forming protocol derived from the ContractNet protocol will be introduced and roles of the team-
members will be discussed.

4.1 Agent-agent collaboration

Collaborative agents are a very large topic with many theories and technologies being developed and
used. Some of these theories and the corresponding technologies were presented in the chapter 2.

The work presented in this thesis was heavily influenced by the work of Martin et. al. on the
Open Agent Architecture (OAA), presented in [68, 14]. Open Agent Architecture has its roots in the
older, blackboard-based systems but introduces new elements: facilitator, delegation and ICL – the
inter-agent communication language. Martin positions his framework in [68] somewhere in-between
the traditional agent-based systems built around KQML (see [26]) on one hand and heavily structured
multi-agent systems using approaches such as BDI on the other hand.

According to Martin, the KQML-based systems leave too much structure implicit or unspecified
(KQML is primarily a knowledge exchange language, not a programming framework), on the other
hand systems using approaches like BDI impose too much specificity on the system developer. The
structure of the system has to be known to the agents in a lot of detail in order for them to be able
to cooperate in a meaningful way. Martin addressed this issue by the introduction of an information
broker – the facilitator.

51

From the point of view of this thesis, the idea of facilitator-based “delegated computing” has
several advantages compared to the other frameworks, such as DECAF or RETSINA. First and fore-
most, the agents are kept relatively simple, there is no need to provide explicitly any facilities for
collaboration except the basic communication mechanism for dealing with the facilitator – a mean to
submit requests to the facilitator and a queue for incoming replies. No coordination framework (e.g.
for bidding for tasks or to deal with various location and matchmaking agents) is needed for agents
providing basic services, such as access to various data stores or path planning.

Another advantage of facilitator-based system is the possibility of collaboration by broadcasting
– often it is not necessary to enter into full fledged collaboration with an agent but to broadcast the
request for help instead and expect somebody to deal with it. This interaction is typical for requesting
services such as path planning between two points (the agent has no reason to care who performs
the task) or asking somebody to open the door in the virtual environment (similar to calling for
help without addressing anybody specifically). In the facilitator-based system, such feature is easily
implemented by delegating the task to the facilitator which will delegate the task to all suitable agents
having required capabilities.

The Open Agent Architecture as developed by Martin doesn’t have an explicit notion of teamwork
or collaboration between the agents. The agents are collaborating by virtue of delegating specific sub-
jobs to the specialized agents, however there is no notion of a team. In fact, as will be described in the
next section, the agent does not even need to be aware of the identity of the agent it is collaborating
with, which has profound effects on the design and implementation of the agents.

In the extreme case, the collaboration can be purely emergent, each participating agent is simply
processing input given to it and returning results to the originator of the request without an explicit
intent to collaborate. Such model is very close to the model seen in the blackboard architectures,
where agents are watching the blackboard for the tasks assigned to them and writing back the results
of the processing of these tasks, without having any notion of the collaboration or even awareness of
the surrounding/cooperating agents (“broadcasting”, see above).

The technology developed by Martin in his OAA framework is useful for solving many practical
problems, however it is not sufficient if we consider virtual reality simulation where the collaborating
agents are represented by virtual humans. Application of the OAA principles to virtual humans could
lead to unrealistic behavior, such as agent A asks agent B to open a door for him (e.g. because agent
A is encumbered by something), B complies and after passing through the door, the agent A asks
another agent C to close that door again. This is not what human would do – most likely he would
ask the same agent/human to close the door again, not a different one (which may be far away, for
example).

The reason for such unrealistic behavior is that OAA-style of collaboration is ultimately “state-
less” – the framework has no notion of explicit collaboration and the agent doesn’t remember (or even
know as explained above) who its collaborators are. Such approach works well for “one-off” tasks,
where the requesting agent does not need to the collaborating agent for anything else later.

Unfortunately, unless we restrict ourselves to very simplistic cases, even simple collaboration in a
multi-agent system requires some notion of a team and its state. Let us consider for example a police
unit trying to protect a building from a crowd of rioters. The unit has a hierarchy with a commander
– team leader and the subordinate team members – individual policemen. If there was not any notion
of a team, any meaningful cooperation would be impossible, because the commander has to know
where and what every member of its team is doing. With the standard OAA approach, he may not
even know who the members of his unit are!

52

One of the innovations of the presented work is the extension of the OAA concepts with the
explicit notion of teamwork and collaboration. To achieve this goal, OAA is extended by using a
ContractNet protocol to form explicit teams, while keeping the other advantages of OAA.

4.2 Delegation

In the Open Agent Architecture, the central role is played by the process known as delegation. The
basic idea of the delegation process is to commit another agent to the given task, typically the task is
delegated to a specialized agent able to solve it.

In OAA, Martin introduced a special form of delegation – delegation via the facilitator (a special
agent acting as a broker). The main reason why the facilitator was introduced is that it allows the
system to act as an all knowing “oracle” – each agent can delegate the tasks to be solved to the
facilitator without having to know the identities of the agents which are going to solve the task.
Figure 4.1 shows a typical architecture of a OAA-based application.

Facilitator

Agent
Agent

Agent User interface
agent

Agent
Agent

Agent

Delegated requests/replies

Delegated requests/replies

Direct inter-agent
communication

U
se

r
 in

te
ra

ct
io

n

Figure 4.1: Diagram of an Open Agent Architecture system

The figure shows three main parts. There is the facilitator, the agents providing services and
finally the agents providing user interface. All of these agents are supposed to communicate with
one another mainly via the services of the facilitator, to avoid the necessity of having to “hardwire”
the identities of the cooperating agents. However, the direct communication between the agents is

53

not forbidden, it is still possible for the agents to talk directly to each other without the use of the
facilitator’s services.

4.2.1 Role of the facilitator in OAA-like system

The facilitator plays a central role in any OAA-derived system. It fulfills two main goals:

• Central data storage (similar to a blackboard)

• Matching the incoming requests to the capabilities of the agents and delegating the tasks to the
agents for execution.

The agents communicate with the facilitator by the means of solvables. Solvables consist of three
main parts – the goal (functor), the parameters and the permissions. The goal specifies what has to
be done. The parameters specify additional information (e.g. a destination for moving or an e-mail
address for sending a report). Finally, the permissions specify restrictions placed by an agent on how
other agents can use its services – for example restricting access only to certain agents or only to
certain mode of usage, such as read-only.

There are two types of solvables available:

• Data solvables

• Procedural solvables

Data solvables represent pieces of information stored in the facilitator and retrievable and modifi-
able by the agents at runtime. Declaring a data solvable to the facilitator amounts to writing a piece of
data into a shared blackboard. Essentially, it is possible to emulate a blackboard-based system using
the data solvables.

Procedural solvables represent capabilities advertised by the agents, such as the ability to manip-
ulate object, the ability to walk, ability to block streets, etc. In essence, each agent declares the actions
it is able to perform, together with the required arguments and potentially additional information to
the facilitator. The capabilities are used to resolve the delegation requests from the other agents.

Martin used a special ICL1 language based on Prolog for this purpose. For example, a simple
e-mail agent may provide two capabilities (interface) and one data solvable shown in fig. 4.2, in ICL
syntax.

The solvables are declared using three components, as described above. First is the goal (e.g.
send_message), then arguments, where +, - indicate input and output parameters respectively.
Finally, there is indication of type of the solvable (procedural or data), the callback function to call in
case of a procedural solvable and permissions.

The fundamental interface to the OAA facilitator is the oaa_Solve procedure. The argument to
this procedure is an event specifying the goal and the corresponding parameters. The second optional
argument may contain a set of constraints, specifying certain meta information for the facilitator –
such as that the calling agent is interesting only in a single solution or that the solutions should be
restricted only to certain agents. The result of calling this procedure is composed out of the results
returned by the agents the task was delegated to.

An important feature of the OAA facilitator is the ability to decompose compound tasks into
simpler ones and to delegate the sub-tasks to different agents. For example, figure 4.3 illustrates how
a request “Fax it to Bill Smith’s manager” can be translated into ICL and decomposed.

1Interagent Communication Language

54

solvable(send_message(email, +ToPerson, +Params),
[type(procedure), callback(send_mail)],
[])

solvable(last_message(email, -MessageId),
[type(data), single_value(true)],
[write(true)]),

solvable(get_message(email, +MessageId, -Msg),
[type(procedure), callback(get_mail)],
[])

Figure 4.2: Capabilities of an e-mail agent

oaa_Solve((manager(’Bill Smith’, M), fax(it,M,[])),
[strategy(action)])

Figure 4.3: Compound goal being decomposed by the facilitator

The stanza manager(’Bill Smith’, M) specifies that a Bill Smith’s manager has to be
retrieved and substituted for variable M. The second part specifies, that it has to be faxed to the
person identified by the content of M. Both tasks, finding Bill’s manager and faxing the document
may be handled by different agents and the facilitator handles the decomposition and re-assembling
of the request transparently. In case of the original OAA, the facilitator was implemented using the
built-in features of Prolog, in this case mainly unification. How a similar decomposition process can
be implemented will be described in detail in the section 6.2.

4.2.2 Facilitator design

The original Open Agent Architecture facilitator was developed at SRI in Prolog with bindings to a
few other languages. The design of the ICL language shows this heritage clearly. In order to provide
a better match for the world representation described in the previous chapter, a new facilitator was
implemented by the author of this thesis which simplifies certain aspects of the original design.

(at gino frontyard) ; data solvable
(move gino ?from ?to) ; procedural solvable

; compound task solvable from the previous section
(and (manager ’Bill Smith’ ?m) (fax ?a it ?m))

Figure 4.4: Predicate calculus solvables

55

First of all, the original ICL language was replaced by the predicates of predicate calculus writ-
ten in the prefix form, as introduced in the chapter 3. The notion of data and procedural solvables
was retained, however the solvables are now represented by predicate expressions denoting semantic
relationships between entities. The figure 4.4 illustrates how such solvables can be specified.

The differences in between the original OAA facilitator and the proposed facilitator design can be
summarized as follows:

• No permissions.

• No callbacks or handlers.

• The facilitator does not assemble the results to be returned to the delegating agent.

The word “permissions” implies some security mechanism, however in the original OAA design it
was used also to simply specify, whether the solvable is writable or read-only. In the presented design
the solvables can be only declared or undeclared (deleted). There is no value to change, if e.g. a value
expressed by some solvable changes, the old solvable has to be removed and new one declared. Such
design simplifies the implementation of the facilitator (no need to track the value changes) without
impact on the functionality.

For the purposes of this thesis the issue of security and access restrictions was not considered. Of
course, in case of industrial deployment of such system, the security layer will have to be added.

The original OAA facilitator by Martin requires that for each procedural solvable a handler is
defined, i.e. a function that has to be called to process the subtask (such as retrieve a value from a
database) and return a partial result. This design was deemed unsuitable for the purpose of this thesis
because it doesn’t play very well with the predicate calculus expressions used to express solvables
and delegated tasks. Predicates can evaluate to either true or false, however a function can return an
arbitrary value, such as number or a string – such expression could be used only in special cases, such
as as a predicate argument and care would have to be taken to reject invalid expressions (e.g. (and
(3 (at gino house)))). Such requirement would complicate the processing a lot.

To be able to remove the handlers, it is necessary to find a replacement solution such that the dele-
gation ability of the facilitator is retained. We propose to achieve this goal by restricting the procedural
solvables to be always in the form (functor agent arg1 arg2 arg3 ...). The functor
specifies the action to be performed, agent is the identification (name) of an agent which declared this
capability (solvable). It is possible for multiple agents to define the same action/capability, however
they will always differ at least in the name of the declaring agent – “owner” of the solvable. The
request dispatch/delegation will be then performed simply by matching the incoming requests against
the table of declared solvables. The matched solvables/capabilities directly determine which agent is
to receive the delegated task. This is a service commonly known as yellow pages or match-making.
The implementation details of this process will be described in the chapter 6.2.

In the original design of Martin, whenever the agent delegated a task to the facilitator for solution,
the facilitator was responsible for delegation of the possible sub-tasks to the collaborating agents, then
collecting the results and assembling the final result form which was returned to the originator of the
request. Moreover, the process could have been influenced by one or more strategies which are used
to further constrain the solution – e.g. if three agents return differing results for a query and the
originator requested only a single result, the strategy specifies how the final result should be selected.

Such approach leads to very complex processing because the facilitator has to track each request,
all its sub-requests which were delegated to other agents for processing and also all the replies to
these sub-requests. In a distributed multi-agent system with many agents this is a non-trivial task

56

without becoming a bottleneck. Finally, the facilitator has to support complex strategies, because the
originator of the request has little influence on how the final result is composed. The only way how
it could influence this process is by specifying the strategy when delegating the task to the facilitator
for processing.

To address this complexity we propose an alternative solution. If we observe that the main com-
plexity of the facilitation task stems from having to track and recombine the solution requests and the
replies to them, there is a natural response possible – to charge the originator of the delegated task
with the job of processing the replies. We can achieve this easily by attaching a “return address” in the
form of an unique identifier of the delegating agent to each request. During the delegation of the sub-
tasks to be solved the facilitator delegates this “return address” together with the tasks to be solved to
the agents and the agents send their results directly to the source of the original task. The facilitator
does not have to keep track of the replies to the requests (potentially to many requests from multiple
agents at the same time) and does not become a bottleneck easily. The throughput of the facilitator
will be limited only by the speed of the matching process and the available network bandwidth.

The schematic diagram 4.5 illustrates this process in case of a task delegated to the facilitator
by the user interface agent (for example a natural language translator or some sort of a GUI). The
behavior of the system would be exactly the same if it was a regular (non-UI) agent delegating the
task.

This approach has two advantages and one drawback. The first advantage is that the facilitator
does not have to be concerned with the tracking of the sub-tasks and their results. It simply determines
which agents are to be involved in the solution of the particular task and delegates the job to them. The
facilitator’s reply to the originator of the task is only information whether the task was successfully
delegated for solution or not and how many replies are to be expected. In case of a data solvable
query, the facilitator returns the solution directly.

The second advantage is that the agent which originated the request can directly deal with the
results received and apply whichever post-processing algorithm it desires. The complex strategies
used by original OAA facilitator can be replaced for the most part by the combination of this process-
ing on the originator’s side and simple constraints on the facilitator’s side (e.g. “return only single
result” or “return N results”). It is assumed that most agents will not need the full complexity of the
original OAA strategies to select from the received results and will implement only the ones required
depending on the role the agent is playing in the system. However, the original OAA facilitator has
to support all of them in case one agent requests the strategy.

The drawback mentioned is the partial loss of the task decomposition capability which the original
OAA facilitator has. For example, if the example from figure 4.3 is considered, the task of retrieving
the manager of Mr. Smith cannot be meaningfully implemented by an agent and delegated to it.
The reason for this is that the agent which originated the request has no means how to meaningfully
determine how the request was decomposed by the facilitator. It would receive a list of Mr. Smith’s
managers from agents able to resolve the manager() goal and the results of faxing something to
them from agents able to resolve the fax() goal, however without any information how to combine
these values into a meaningful result.

Fortunately, this functionality loss is not a major issue. First, in cases similar to the fig. 4.3 ex-
ample, the manager() part of the compound goal can be easily handled by a data solvable which
is then resolved by the facilitator directly (similar to a database look-up), without the need for dele-
gation to another agent. Compound goals involving independent actions to be performed by multiple
agents are still handled without problem – such as moving two agents to the same place and asking
another agent to close the door.

57

Figure 4.5: Request processing in the simplified OAA system

Second, if a true task decomposition is required for solving more complex problems, a more
powerful mechanism can be deployed – an action planner. In such case the originating agent will
receive a plan specifying how to solve the declared goal, potentially including collaboration with
other agents and/or additional information retrieval. A collaborative problem solving approach based
on this mechanism will be described in detail in the chapter 5.

4.2.3 Matching requests with offered services

In order for the facilitator to be able to fulfill its delegation and compound goal decomposition role,
it has to be able to match incoming requests with the offered (and presumed available) services.

58

As described in the previous sections, the agents declare their capabilities in the form of proce-
dural solvables and their state in the form of data solvables which in turn have the form of predicate
calculus predicates. The declared predicates are presumed to hold (to evaluate to true), as described
in chapter 3 .

To match and decompose the incoming request, it is necessary to have an algorithm/function
which can determine whether two expressions are matching. The unification-based technique pre-
sented in this section is state of the art technique well known from literature but adapted to the specific
requirements of the proposed facilitator implementation.

The algorithm commonly used to perform the matching is known as unification. The basic idea of
unification is that the two expressions are recursively compared. If the expressions contain variables
then such substitution for them is sought that makes the two expressions equal.

The unification algorithm takes two expressions (sentences) and returns an unifier for them if one
exists:

UNIFY (p, q) = θ where Subst(θ, p) = Subst(θ, q)

Subst(θ, z) = result of applying substitution θ to expression z

The unifier placing less restrictions on the variables in the resulting substitution is called more
general. For every unifiable pair of expressions there is exactly one most general unifier that is
unique up to renaming of the variables. The algorithm to compute the most general unifier is well
known and is available in literature, for example in [64, 5, 91].

The problem with the algorithm to compute the most general unifier is its complexity – it is
quadratic with regards to the lengths of the terms being matched because of the occurs check. The
occurs check is required to verify whether the variable being matched against a term occurs itself
inside the term. If it does, it is not possible to construct a consistent unifier. This has negative impact
on the performance of the facilitator in case that complex expressions with many terms have to be
matched.

To demonstrate the unification process for matching an incoming request in the facilitator on a
practical example, let us consider the expressions in the figure 4.6:

(at gino door) ; declared state (data solvable)
(move gino ?from ?to) ; declared capability
(move carlo ?from ?to) ; declared capability

(move ?a ?p table) ; agent request

; compound request
(and (at gino ?place) (move carlo ?somewhere ?place))

Figure 4.6: Unification example

The first three expressions are typical examples of declared solvables which the facilitator may
know about – symbolic position of an agent and capabilities two agents. Let’s assume that the request
(imperative task) (move ?a ?p table) was submitted to the facilitator for processing.

To determine what has to be done the expression is unified with all known solvables. The
data solvable (at gino door) can be rejected as non-matching outright, because it has differ-

59

ent length2. For the second declared solvable it is possible to observe that if we substitute the variable
?a with gino, ?from with ?p and ?to with table, the expressions would be equal. This sub-
stitution is customarily written as {gino/?a, ?p/?from, table/?to}. The notation X/Y means that
X is substituted for the variable Y . This substitution of the variables is also commonly referred to as
binding.

There may be multiple unifications possible. For example the following substitution:

{carlo/?a, ?p/?from, table/?to}

leads to a valid match as well, but for a different agent. It means, in this case, that two different agents
have the requested capability and both may be asked to realize the task, depending on the possible
further constraints the requesting agent specified.

The last example of a compound goal is more complex. To resolve the compound goal the fa-
cilitator has to recursively process each sub-expression of the original goal and combine the results.
Let’s ignore the logical connective for the moment and try to match only the sub-expressions (or in
other words to establish whether they are known to be true in the world given by the solvables known
to the facilitator). The first sub-expression (at gino ?place) can be obviously matched only
against (at gino door) with substitution {door/?place}.

The second sub-expression (move carlo ?somewhere ?place) can obviously match only
(move carlo ?from ?to), with the variable substitution:

{door/?place, ?somewhere/?from, door/?to}

The substitution has to be consistent, once a variable is bound to an expression, every instance of
that variable in the whole compound expression has to be substituted with the same expression –
in our case the first sub-expression established the binding {door/?place} and therefore the second
sub-expression cannot bind its instance of ?place to anything else than door to stay consistent.

The consistency requirement across the compound expressions allows to express complex task
specifications. The last example is essentially equivalent to saying “Carlo, move from wherever you
are to the place where Gino is.”

The logical connectives which were ignored until now determine how the results of the sub-
expression evaluation are combined. A common approach used to process the compound expressions
is the stream or filter method, described in a well known book by Abelson et al. [5]. The discovered
set of substitutions (unifications) is treated as a stream passing through a chain of filters formed by
the logical connectives. At each node of the chain and for each substitution (frame), the matcher goes
over the known solvables and either extends the frame with new variable bindings or indicates that a
match failed.

The frame is then further processed depending on which logical connective is represented by the
chain node. The proposed facilitator is able to process expressions containing the logical connectives
and, or, not and to evaluate equality predicates (>, >=, =, <, <=).

• and – logical conjunction. The frame passes through a node for each sub-expression in series.
It must generate a match at each step, otherwise it is discarded.

• or – logical disjunction. The substitution has to pass through sub-expression nodes in parallel
and at least one has to generate a match, otherwise the frame is discarded.

2When interpreted as a length of a list in LISP sense.

60

• not – negation. The frame must not generate a match, otherwise it is removed from the stream.

• Equality predicates – the predicate is evaluated, if it evaluates to false, the frame is discarded.

After the whole expression is evaluated, the stream of substitutions is inspected. If it is empty,
an error is reported to the calling agent because there is no way how to resolve its request. If there
are some matches, then each of them is processed in turn and delegated to the other agents for final
resolution (for the procedural solvables) or simply returned to the caller (in case of data solvables).

The implementation details of a facilitator using the described expression evaluation process will
be described in section 6.2.

4.2.4 Global world state

In order for the facilitator to be able to answer queries about data solvables and to delegate the requests
to the agents it has to have the required information in the first place. It is achieved by having the
agents declare (upload) all necessary information about their capabilities and their state in the form
of the solvables represented as predicates, as described in the chapter 3.

The information contained in the facilitator defines a global state of the simulated world and the
agents are expected to update it whenever their status changes. In this way the facilitator plays also
a role of a global blackboard which each agent or user wishing to interact with the system can easily
query for information to complement their own beliefs – such as enumerate all agents, find out where
an agent is and what is its state or what are the properties of some objects.

The main disadvantage of using the facilitator in this way as a combined broker/data storage
system is that a very careful consideration has to be given to the amount of data being kept there.
Since the processing of the incoming requests requires that the expressions of the request are matched
against every declared solvable3, the time to resolve each request will grow with the size of the
database. The increase is not linear, because complex expressions may require multiple unification
passes over the database. Martin et. al. in their work on Open Agent Architecture acknowledge
the possibility of the facilitator becoming a bottleneck for the system and propose a solution using a
multi-facilitator setup, where multiple facilitators are used to satisfy the requests of the clients.

4.3 Teamwork

The facilitator enables the agents to delegate tasks to another agent. This mechanism forms a basis of
a collaboration scheme, where the agents can utilize the capabilities of specialized agents to perform
complex tasks. Unfortunately, as described before, it is not sufficient for practical purposes to have
only pure delegation-based collaboration. The inherent statelessness of this approach causes problems
in simulations where it is important to know the identities of the collaborating agents and to coordinate
a team of agents.

To supplement the facilitator-based system and to allow the teamwork as usually understood by
humans – i.e. a team of several members committed to certain task is formed and its leader is co-
ordinating the efforts of the team members towards the desired goal, a new team facility has to be
provided.

3Some optimizations are of course possible, e.g. pre-filtering solvables based on their functors.

61

4.3.1 Forming teams

It could be considered that the agents collaborating by the means of delegation through the facilitator
are a team of cooperating agents. However, this is not the case, because the agents do not even have
to be aware of each-others existence by default. To form a real team the decision to do so has to be a
conscious effort (intention) of the agent.

Most cooperative systems do not address the issue when to form a team and neither how to form
it. Usually the team is either defined a priori – for example in [73] or in [38] or it is expected that the
team somehow exists and the issue does not have to be dealt with.

In cases where the work is concerned explicitly with the team creation, the described approaches
focus on agents built on BDI frameworks (such as [93], or various joint intentions/commitments
models described in the related work section). Such team building models were described by Shehory
and Kraus in [55, 98].

These two cases represent two extremes – the first one is the situation where the teams are “hard-
wired”, simplifying many issues in the process. Unfortunately, such approach work only for special-
ized applications. The second extreme is the case of fully autonomous agents trying to fulfill their
own goals. This case leads to complex negotiations and deliberation schemes needed to bring the
agents into a single team and to align their motivations towards the common goal.

Neither of these two cases fits the OAA-derived model well. The main idea of OAA-based sys-
tems is the added level of indirection represented by the facilitator to avoid having to explicitly “hard-
wire” the inter-agent relationships into the system. The first case, where the teams are pre-defined, is
therefore excluded because it goes squarely against this idea.

The second case with a complex deliberation process does not fit the facilitator-based model very
well neither. The deliberation processes are designed for fully equivalent agents which are acting on
their own towards their own goals. The delegation model, where one agent delegates task to another
one, implies a certain hierarchy (which can be created on the fly and be different each time), thus
negating the needs for the complex deliberation. For example, since the delegating agent asks for
a specific goal to be satisfied, there is no point in negotiating something like a joint intention to
determine what has to be done by the team.

Somewhere in-between these two extremes are frameworks such as GPGP [16], RETSINA [99]
and DECAF [36]. All these frameworks represent the tasks using the TAEMS [17] formalism. These
frameworks provide dynamically created teams of agents which are formed on as-needed basis de-
pending on the task being solved. However, the frameworks rely on the formal description of the tasks
using the hierarchical TAEMS task structures which encode also the information about the required
task decomposition, such as that in order to perform a task X the agent has to first acquire information
a,b and c and task Y has to be performed.

The production of the TAEMS data is quite laborious for real-world applications with many possi-
ble tasks and highly domain specific. To minimize this problem it is desirable that the agent should be
able to decompose the task autonomously and find the solution with minimal human input, given only
the set of primitive actions it is able to perform. Therefore the decision was made to use the simple
OAA-like model with facilitator-based task delegation and augment it using propositional planning.

To summarize the situation:

1. The team goal is explicitly given.

2. There is an implicit hierarchy in the team involved in solving the problem.

3. The team has to be created dynamically, not predefined.

62

4. The data to support reasoning should be easily obtainable and not laborious.

A solution tailored to fit these requirements can be devised using a standard protocol maintained
by FIPA4 – the Contract Net interaction protocol.

4.3.2 Contract Net and team forming

Contract Net belongs to the family of interaction protocols developed by FIPA in an effort to standard-
ize the information flow and the inter-agent communication in multi-agent systems. Other popular
standard maintained by FIPA is for example KIF (knowledge interchange format).

 Initiator Participant

 In case of refusal protocol ends

 In case of rejection protocol ends

Call for proposals

Proposal/Refusal

Accept proposal/Reject proposal

Result

Figure 4.7: Sequence diagram of the Contract Net protocol

Contract Net is basically a variation of a three-way handshake well known from computer science.
Figure 4.7 illustrates the idea of the protocol. The initiating agent sends out a request for proposals
soliciting offers for collaboration or for solution to the particular problem. The participating agents
answer either with refusal if they are not interested in collaboration or with a solution proposal. The
choice of the answer is up to the agent and is made depending on the internal beliefs and state of the
agent (e.g. a member of one team will refuse to join another team).

The initiator can either accept the proposal or refuse it. There could be more “strings attached”,
such as response deadlines or different types of answers, but the basic idea is as described. The full
specification of the protocol can be found in [29].

The three-way handshake presented by Contract Net lends itself well to the task of forming teams
to solve complex goals. However, for that purpose it needs to be slightly modified. The modified
scheme is in figure 4.8.

The team forming protocol works as follows:

1. The initiator (the future team leader) broadcasts request for help (a team forming proposal).
This is done by delegating a (join-as-teammate ?a) goal to the facilitator.

4Foundations of Intelligent Physical Agents, http://www.fipa.org/

63

2. The prospective team members which are willing to join the team answer with the proposal to
join team (joining-team AGENT), making their identity available to the team leader.

3. The team leader selects the suitable team member(s) from the pool of candidates and asks them
to commit to the team by delegating them solvable (commit-to-team AGENT TEAMLEADER)
(acceptance of the proposal). The remaining agents are rejected by sending them the proposal
rejection goal (reject-teammate AGENT).

4. Finally, the team members confirm their commitment to the team.

The rationale for this three-way handshake is simple. The team-forming agent needs to have
an option to pick suitable team members based on certain criteria – such as distance from itself or
special capability requirements (even though capabilities are handled specially for the most cases).
The special commitment step is needed to “lock” the agent to the team. Otherwise the agent would
be available for other team leaders forming their own teams and that is rarely desired.

 Team leader Team member

 In case of error protocol ends

 In case of rejection protocol ends

join−as−teammate()

(joining−team, ...) / (error, ...)

commit−to−team() / reject−teammate()

(committed−to−team, ...) / (error, ...)

Figure 4.8: Sequence diagram of the team forming protocol

Finally, there is one more change which is not visible from the sequence diagram of the negotia-
tion. It does not make sense to recruit team members which are unable to solve the problems which the
team leader is going to delegate to them. To avoid this problem, the required capabilities are specified
as solution constraints during the solicitation step. In this case the facilitator is able to filter out un-
suitable candidates (which didn’t declare the required capabilities) and the (join-as-teammate
...) proposal is delegated only to agents which have reasonable chance to function in the team
being created.

The only problem which remains to be addressed is the issue how to determine in advance which
capabilities will be required. Usually, the required capabilities are calculated from a plan created by
the team leader (utilizing an action planner). The plan consists of sequence of actions to be performed
by the team. It is possible to extract actions for each participating agent, generating the minimal set of
required capabilities necessary for the team member to have. This process will be analyzed in more
detail in the chapter 5, because there are some specific issues to be resolved before an usable plan can
be generated.

64

4.3.3 Roles in the team

There are two implicit roles in the teams created by the modified Contract Net protocol – the team
leader role (the initiator of the team forming) and team member role (all other collaborating partici-
pants). The team is designed as hierarchical with two levels – the explicitly specified leader and the
team members.

The role of the leader is a very important one – the leader coordinates all activity of the team by
distributing work to be done to the team members. This collaboration scheme contrasts with schemes
which are leader-less and the agents distribute the work among themselves by deliberation (if there is
some kind of team plan – e.g. the multi-agent STEVE variant in [89] or [38]) or simply try to further
the common goal by independent actions and observing and reacting to the actions of the others (as
the simulated dinosaurs in [33] by Funge).

The hierarchical structure with explicitly established roles may seem as artificially limiting, how-
ever that is the structure which is probably the most common one in human society (manager ↔
employee, military chain of command, etc.) and the most natural to simulate.

An added benefit of having a hierarchical structure with an explicitly defined leader is a simple
fitting of such system to the agents collaborating by delegation – it naturally occurs that the delegating
agent can act as a team leader and the other agents as team members. In the team established by the
Contract Net-based process described above the role assignment (team leader vs team member) stays
stable during the existence of the team, with the leader coordinating the team efforts.

It would be possible to allow exchange of roles (a regular team members becomes leader), how-
ever for practical purposes this is not necessary because the team can be always reformed. An agent
can seek to become a team leader when it has a problem to solve which cannot be solved by the agent
itself. Because in all likeliness this problem is substantially different from the problem the original
team was formed for, the cleaner and more orthogonal solution (single team for a single purpose) is
to form a new team even though it may contain the same agents as the old one and with new role
assignment.

The only exception is the case when an existing team leader delegated a sub-task to the agent
which is unable to solve it alone and requires a sub-team to be created. This issue was not addressed
in the current framework and remains open for future research.

4.4 Human-agent collaboration

Human-agent collaboration is understood as a cooperative activity, where human user(s) is working
in concert with the collection of (software) agents to solve a particular problem.

We have identified several partial problems in the human-agent collaboration which are addressed
in the presented work:

• Establishment of the place and role of the user in the agent hierarchy.

• Communication of the task from the user to the agent or vice versa.

• Communication of the task results to the originating agent/user.

• Provision of human-oriented interface (e.g. by means of the translators mentioned in the pre-
vious chapter).

65

The user’s place in the system can be a complex matter. There are multiple possibilities how
the user can be involved in running of the simulation. For the purposes of this work three variants
(interaction levels) were identified which represent three fundamentally different ways of interacting
with a VR system. They are enumerated here in from the most low level one towards the most high
level one.

1. Direct interaction with the VR environment. The user does everything alone (by direct manip-
ulation, using tools or commands to the simulation system).

2. Team work with one or multiple collaborators. The team members can be either other human
users or autonomous agents, either embodied or not. The user’s activity is mixed, some tasks
are performed directly, however other tasks are delegated imperatively to the other collaborating
team members.

3. High level team work. The user only declaratively specifies the goal and shifts the burden of
figuring out how to do it and the performance itself to the other agents/human users. These can
potentially form collaborating teams to address the user’s request.

Most of the existing VR systems implement only one of the first two interaction levels, for exam-
ple [3], [54], [56], [88], and many others. The third mode is rare in virtual reality applications because
managing automatic task decomposition and reasoning on high-level tasks delegated to the machine
for processing is a non-trivial problem for people without background in artificial intelligence. Au-
thor is not aware of a VR application enabling the user to delegate whole problem solving tasks to the
teams of autonomous agents, at most it is possible to delegate single orders, such as “walk to place
X” or “perform task Y”.

Moreover, most applications implement only exactly one of these levels. Very rarely is it possible
for the user to choose the method he wants to use to solve a particular problem, which is an important
problem to address. There is no “one size fits all” solution. Giving the user the choice how to approach
a problem and permits to utilize better the user’s creativity. From a technical standpoint the advantage
is also clear – each interaction level/mode acts also as a sort of backup for every other. If some mode
is unusable or impractical for whatever reason it may still be possible to use the others. Typical issues
which render some mode unusable are lack of precision in hardware used for interaction (such as
trackers, gloves, haptic hardware), it would take too long/too much effort to complete a task by direct
interaction (e.g. complex manipulation tasks without proper tactile feedback) or it is impractical (e.g.
positioning guards in strategic places by having to tell every single one where to go and what to do).

It is important to note that there is no “mode switching” in the application. All three interaction
levels have to be available all the time at the same time in order to be truly useful to the user. Let’s
imagine that a trainee in a police training system has a task to secure a perimeter around a certain
building with his squad. He has these options available:

• Direct interaction. The trainee can directly control each member of the simulated police squad
and station him to the correct place at the perimeter.

• Teamwork mode. The trainee coordinates the squad members by issuing them orders to get
them placed into the proper places.

• High level mode. The trainee orders the squad commander to secure the designated building.
Everything else is automated – the squad commander figures out whom to send where and how
exactly is the goal to be fulfilled.

66

In both the teamwork mode and the high level mode the user has the option to intervene, either
by issuing a direct command or by direct interaction, regardless of the “main” level he chose to solve
the problem.

The direct interaction level is the lowest control level reasonably possible in a VR system. The
user is allowed to directly control the virtual characters (to “drive” them using some kind of input de-
vice, such as keyboard, mouse, joystick, etc.) and to directly examine and manipulate objects present
in the VR system. Such direct control poses special challenges on the symbolic world representation
because the direct manipulations are not tracked by corresponding changes to the world state. This
introduces inconsistencies with which the agents and other users have to be able to deal with. Typical
consequence of such an inconsistency is an action plan failure because the agent used out-of-date
information to build the plan. These consistency problems can be mitigated by enabling the agents
to better perceive their environment, for example by frequent sensing or by direct notification of the
changes by the system.

In order to be able to take control of the virtual characters and object in the virtual environment
a new “ghost and puppet” framework was designed by the author. It allows sharing and/or switching
the control of the virtual character or object with an autonomous agent. Alternatively, it is possible
to use multiple control mechanisms (such as a keyboard + mouse combination vs. a motion tracker)
to control the same entity in the virtual world. The implementation details of this framework are
described in the section 6.1.2.

The teamwork mechanisms needed for the other two interaction levels can be easily adapted from
the collaboration framework for the autonomous agents, as described in the section 4.2. We propose
to use the task delegation as the main collaboration mechanism, as used by the framework. This
maps very well to the typical usage scenarios for the human users – the user either delegates some
parts of the task assigned to him/her to the team members or alternatively receives some work to be
performed. Examples of such interactions are human asking for information from an autonomous
agent (e.g. virtual receptionists Karen in [77]) or autonomous agent looking for advice from the
human (e.g. [40]) or asking him to perform some task (e.g. [90]).

Natural language
 translator

Joystick
 translator

Speech output
translator

Facilitator interface

User interface agent

Simulation system

Local beliefs

U
se

r
in

te
ra

ct
io

n

Delegated goals
Execution results

Figure 4.9: The user’s involvement in the collaboration environment

67

From the team building point of view, the Contract Net-based mechanism from section 4.3.2 can
also stay the same for the human users building teams to solve problems. After the team is formed
the human can either delegate imperative goals to the team members or form a team-oriented plan
containing the actions to be executed by the other team members.

Of course, the human user needs some human-oriented interface to the rest of the system, mainly
the facilitator. These interfaces are provided by various translators mapping the actions of the user
to queries and tasks descriptions for the facilitator and the other agents. In the opposite direction a
similar translation may be necessary if the user is supposed to receive collaboration requests or results
of the tasks he delegated to the other agents. Typically, such human–simulation system interface will
be implemented as a specialized agent, providing translation services for the human user on one side
and providing a standard agent-like interface for the rest of the system to interact with. A diagram of
such an agent is in figure 4.9.

The translators could be compared to the interface agents in RETSINA [99, 35], they have both the
same goal – to provide translation of the human input to the machine understandable form. However,
there is the difference that in RETSINA the interface agents are using KQML to talk to other agents
in the system. Translators typically communicate directly only with the facilitator and the requests of
the user are translated into goal specifications to be delegated to the agents.

The human user can participate in the team in two distinct roles:

• As a team leader, the user is responsible for establishing a high level plan how to solve a given
problem and for coordinating the team members by delegating them sub-tasks necessary for
achieving the solution.

• As a regular team member, the user is responsible for solving whichever task which is delegated
to him by a team leader (either another human user or even an autonomous agent). The complex
part here is that in order for the delegation protocol to work as designed, the agent representing
(“connecting”) the human user to the system has to properly declare the user’s capabilities. In
the case that no capabilities are declared (advertised), the user will be never delegated any task.
The solution is to use the translators which have pre-defined capabilities associated with them,
such as a gamepad-driven translator declares the capability to navigate the virtual environment.

The last interaction level differs from the normal team work mode in the way the user interacts
with the agents in the system. In the regular team work mode, the human user is a part of a col-
laborating team. In the high level mode, the user interacts with the whole teams through their team
leaders. The desired goal is achieved by delegating tasks to the team leader who either completes it
or proceeds to use the capabilities of the team members to solve it. The activity of the user essentially
corresponds to “I want X done, arrange it!” Such way of solving a problem is useful for example for
training, where the trainee wants to skip parts he/she is proficient in already and focus only on the
new task.

Another example is given in the section 7.5, where a system for declarative “story” creation is
described. The “story” is created by the user by specifying events that should happen during the
course of the scenario – for example somebody ordering a coffee. It is not important to the user
who orders the coffee or what is necessary to achieve that, only that the coffee has to be ordered. The
agent managing the scenario delegates the request to one of the agents in the virtual environment. The
agent solves the given task, managing the issues of summoning a waiter (forming a team), ordering
the coffee and having it delivered (tasking the team member) autonomously. The net effect for the
user is that the desired goal was achieved, without requiring the user to manage the progress of the

68

solution himself. Typically, user working in the high level mode will have a global overview of the
current situation (such as a commander coordinating several smaller units).

To make the role of the interfacing agent simpler, it is possible to allow the full observability of
the system for this agent, putting the user into elevated position in the hierarchy of agents. Such extra
privileges allow the user access to various information the other agents do not have – such as the
declared state, position or other information published by the agents to the facilitator in the form of
data and procedural solvables.

By default, the agents have only partial observability of the environment. They have only infor-
mation which is either internal (produced by them – e.g. their state) or information they acquire by
some other means (e.g. sensing, querying the facilitator). Opening up the access to all available in-
formation (full observability) for the user can be necessary in certain cases – for example to facilitate
creation of a translator which converts the information into graphical map of the current situation or
a graphical interface providing the user with detailed information on the agents and the state of the
world. A translator with only partial observability would provide incomplete and potentially false
information in this case. Another problem could occur if the human user is able to see a situation in
the virtual environment which the translator agent is not aware of – the human and the agent do not
possess the same senses. Delivery of contradictory information (e.g. the output of the translator vs.
what the user sees) is confusing to the user and should be avoided.

4.5 Summary

This chapter presented the proposed collaboration model between autonomous agents and between
the autonomous agents and the human users based on task delegation. The model is derived from
the Open Agent Architecture with the extensions for supporting explicit teams and different control
levels.

A new design for the facilitator agent was shown together with the comparison to the standard
OAA facilitator. The two roles (global state keeping and service matching) for the facilitator were
analyzed and their implementation described.

69

70

Chapter 5

Collaborative problem solving

The ideas presented in the previous chapters allow us to express the state of the world in the symbolic
form and to perform basic collaboration based on task delegation. However, for the task delegation to
be truly useful for solving practical problems the goal has to be subdivided into smaller parts that the
agents can deal with. It is usually achieved by planning.

Planning can be defined as a problem solving task, which tries to find a totally or partially ordered
sequence of transformations which transform the initial state of the system into the desired goal state.
This definition outlines the two types of planners – total order and partial order, which both have
application in a collaborative system.

This chapter will focus on the role of the planning in the problem solving process and the problems
encountered there. Afterwards, the attention will be given to the problems specific for team planning,
where the delegation process has to be considered. The final part of the chapter will be dedicated to
the problems of object-specific planning, especially in connection with smart objects.

In direct relation to planning are various contingencies that may occur, such as planning failures
(plan not found, planner ran out of memory, etc.) or the possibility of the environment changing while
the planning is performed. The possible sources of such contingencies will be noted and analyzed.

One possible approach how to deal with contingencies would be to use continuous planning
where the agent analyzes and updates the plan continuously during its lifetime, possibly adding and
removing goals and updating the perceived state of the world. An example of such continuous iterative
planner is ItPlanS described in [34, 63]. The disadvantage of such approach is that the plan is never
fully known before executing it (essentially the plan is changing while being executed), making it
difficult to determine in advance e.g. the required size of the team needed to accomplish a certain
task. This problem led to the decision to work with a standard propositional planner instead and
handle the contingencies using fail-safe action execution and re-planning. The implementation details
of the contingency handling will be described in the section 6.5.

5.1 Role of the planning in problem solving process

The fundamental goal of a problem solving system is to find a solution to the given problem – usually
in the form of a plan. The plan is a sequence of actions which have to be performed in certain order
to achieve the desired final state of the system (the specified goal). The plan can be also understood
as a path in a graph consisting of all possible states of the world (simulation system) from the initial
state to the desired goal state. This state-space graph search for the path from the initial state to the
goal state is the basis for most of the planners currently in use.

71

Facilitator

User interface
agent

Agent

Planning agent

Planner

1. Problem statement
2.

 D
el

eg
at

ed
 ta

sk

3.
 P

la
nn

in
g

re
qu

es
t

4. Delegated planning
request

5. Generated plan

6.
 R

es
ul

t o
f

th
e

pl
an

 e
xe

cu
tio

n

Figure 5.1: Diagram of the planning process

The figure 5.1 shows how the planner is integrated into the problem solving process. First, the
problem to be solved has to be specified. Typically, this is done either by the user via his user
interface agent or by another agent which needs something solved. The problem is specified in the
form of a declarative task/goal specification, as described in the section 3.1.3. The ontology used
for defining the goals is application-specific, even though common actions and terms can be reused
(such as “move”, “pick-up”, “push”, “agent” etc.). The vocabulary contains terms defined during the
development of the particular scenario.

The formulated task specification is delegated to the facilitator for resolution. The facilitator in
turn delegates this task further to some agent for solution. The agent creates a planning request out
of the current state of the system as it perceives it (using its local beliefs), its capabilities in the form
of STRIPS-like operators and the desired goal state. Once the planning request is prepared, it is
delegated to the facilitator for dispatching to the planning agents.

Typically, only one planning agent is used, however it is possible to employ multiple planning
agents to either have several different planners available for different types of tasks or as a form of
load balancing in systems with many agents and large quantity of the planning requests.

Once the planning agent receives the full task description as created by the delegating agent, it
creates a problem description for the planner itself. The exact format of the problem description varies
with the planner but most of the STRIPS-like planners use some subset of the PDDL language for
specifying it. The job of the planning agent is to play an intermediary between a 3rd-party planner
and the facilitator-based agent system.

72

After building the problem description and calling the planner to compute the plan, the results
are sent back to the agent originating the request (in accordance to the simplified delegation scheme
introduced in the section 4.2.2. The agent then executes the plan one step at a time, both executing
the actions in the virtual environment and applying the prescribed effects of the executed actions to
the state of the world – both local (agent’s beliefs) and global represented by the solvables declared
in the facilitator. The actions are executed as a three step process – the preconditions are checked
(the environment may have changed since the plan was built), the action is executed and only if
the execution was successful the beliefs/world state is updated. In case that the preconditions are
not satisfied, failure is reported and the agent then deals with it – for example by replanning or by
reporting the failure further.

The final step of the problem solving consists of reporting the results (outcome of the plan ex-
ecution) to the originator of the task – in the described example it is human user but it can be an
autonomous agent as well.

5.2 Problems of the planning approach

Usage of the propositional (STRIPS-like) planning in the teamwork environment with task delegation
brings on an unique set of challenges and problems which are typically not present nor addressed in
the planning community. Examples of such problems are:

• How to handle task delegation? When is it beneficial to ask another agent for collaboration and
when is it simpler/cheaper to do it alone (assuming that it is possible).

• How to deal with the limited knowledge? For example the agent at the planning time may
not know what are the identities of the collaborating agents. Thus, it cannot plan for them.
However, the plan is supposed to carve out the sub-tasks for the collaborating agents, if needed.
Therefore the identities of the agents need to be known. This is a conflicting requirement.

• How to deal with the effects of the delegated tasks on the world? The planner does not know
how the other agent is going to perform the task, thus it can assume only very little about
the effects of its work. This leads to interesting problems with side effects of actions and
inconsistencies.

• Is it possible to use object-specific information in planning? The advantages of such approach
are limits on the amount of knowledge needed by the agent itself to be able to solve the problem
(some relevant information is provided by the objects themselves) and focus on information
relevant to the task at hand – for example agent going to manipulate a box will most likely need
information about the box, the information about water being wet is probably irrelevant in such
case.

The points outlined there will be now addressed in detail in the following sections.

5.3 Planning with delegation and teamwork

Task delegation and team work create special challenges for the planning process. Typically, the
planners are used only for action planning for single agent, not for collaborating teams. In order to be

73

able to use regular STRIPS-like planners in the collaborative environment, special formalism for the
collaborative/team actions has to be established.

Another issue that has to be addressed is the problem of forming/disbanding teams. The planner
has to be able to form or disband team as needed during the planning process because it is not suffi-
cient to assume that the team is pre-formed before the planning starts. Such teams may very well be
completely unusable for the particular task because they may have too few members or members with
essential capabilities missing. In the most general case (assuming that there are no readily available
“recipes” for specific tasks providing this information) the agent forming the team has no means to
know before the plan is created how many agents and with what capabilities it will need for perform-
ing it. This information becomes available only during the planning process when the planner arrives
to a situation where an action requires an agent to perform it but there is no suitable (satisfying pre-
conditions) agent available according to the state at that planning stage. In such situation new team
member needs to be recruited.

A better approach is to let the planner to decide how and when to form the team because the
team formation has to be driven by the task requirements. This is a big difference from the systems
which use pre-defined teams – in such cases the agent has to work with what it has in the team and its
flexibility in finding the solution is limited.

5.3.1 Delegated actions and speculative planning

The formalism of the delegation process is based on the concept of delegated actions. From the point
of view of the planner, the delegated action is an atomic operator, same as a regular action described
in the chapter 3. However, there is a large difference from the agent’s point of view. Regular actions
(instantiated operators) in the plan are supposed to be executed by the agent itself. The delegated
actions are always intended for somebody else to execute, having several consequences both on the
planning stage and on the execution stage:

• The preconditions of the operator corresponding to the delegated action are usually weaker
because the agent doing the planning has very limited or no knowledge about the agent who
will the action be delegated to. Therefore, the preconditions cannot be as restrictive as for the
regular actions.

Furthermore, the preconditions explicitly rule out the agent doing the planning as a possible
executor of the action. The goal is to delegate the action for execution by another agent if and
only if it is not possible for the delegating agent to perform it. From the practical point of
view it is not useful to have agents which are not doing anything only delegating the assigned
work further. Therefore delegating to self should not happen – the planner should use normal
(non-delegated) action instead and this is achieved by this restriction.

Finally, the last condition for the delegated action to be possible is that the delegating agent
has to be a team leader. The reason for this seemingly artificial restriction is also clear – if the
restriction was not in place, the agent A could delegate the task to agent B which in turn can
delegate the same task to agent C etc. Such behavior, while valid, is obviously not desirable as
the user is rarely interested in the agents “playing ping-pong” with the task.

• The effects of the operator are limited. Only the effects which are desired and known are
present. However, performing the action at the execution time can have other, unknown in

74

advance, side effects which cannot be accounted for at the planning time.1 There are several
reasons for this, the most common one is that the agent which received the delegated action
for execution has a different perception of the virtual world than the delegating agent (since
they do not share their beliefs). There are various consequences of this fact – for example the
delegated action may have a side effect (additional action executed) which is required in order
to account for the change in the environment the team leader was not aware of. This side effect
may cause a failure of the remaining actions in the plan at a later stage, because it may have
done other changes to the environment which were not accounted for in the original plan.

Alternatively, the receiving agent could have used the services of the planner too to determine
how to perform it. That means that several actions will be executed instead of just one and the
delegating agent has no means to know this at the planning time.

Both of these issues mean that the planning with delegated actions is a best-effort case. The
information the planner has at disposal at the moment when the planning is performed can never be
complete enough to warrant that the plan generated will not fail during the execution stage. Such
planning is speculative and optimistic – the planner attempts to work with incomplete data (therefore
speculative) and assumes that the actions declared as possible are truly possible (that may not be the
case at execution time, therefore optimistic).

Figure 5.2 shows two planning operators – a regular move action and its delegated-move
delegated counterpart. The differences outlined in the previous paragraphs are clearly visible – the
delegated action does not have the restriction that the two places between which the movement is
done have to be connected (by a walkable space, for example). The rationale is that the delegating
agent does not care about such detail, it is the responsibility of the receiving agent to figure out how to
move between the two places. It may require, for example, that a door has to be opened or an obstacle
removed.

Such additional action will change the world state and produce side effect which the delegated
action cannot account for. If it was a regular move action, such side effects could not occur – they
would have to be effects of some previous regular action in the plan because otherwise the regular
action would not be applicable. For example, because the door is opened by some action, the two
places become connected and it is possible to generate the move action in the plan because the
corresponding precondition is satisfied.

The special symbol self is an instance of a protoagent, symbolically denoting the agent per-
forming the planning. The concept of protoagents will be described in the next section.

1The HTN-based planners distinguish also between primary and secondary effects. Primary effects are used to achieve
the goals, secondary ones are used only during precondition testing but cannot be used to achieve goal. The difference
with side effects is that the secondary effects are known at planning time, however the side effects will be known only at
execution time of the plan – the planner has no information about them and cannot use them during the planning process.

75

(:action move
:parameters (?who ?from ?to)
:precondition (and (at ?who ?from)

(not (= ?from ?to))
(place ?from) (place ?to)
(agent ?who)
(not (busy ?who))
(connected ?from ?to)
(= ?who self))

:effect (and (at ?who ?to)
(not (at ?who ?from)))

)

(:action delegated-move
:parameters (?who ?from ?to)
:precondition (and (at ?who ?from)

(not (= ?from ?to))
(place ?from)
(place ?to)
(agent ?who)
(not (busy ?who))
(not (= ?who self))
(teamleader self))

:effect (and (at ?who ?to)
(not (at ?who ?from)))

)

Figure 5.2: Regular versus delegated version of the move action

5.3.2 Generic plans

In order to be able to use the delegated actions to offload work to the other agents, the planner needs
to know the identities and capabilities of the agents available for collaboration. In the facilitator-based
system described in chapter 4 this information may not be generally available to the agent. The idea
of “delegated computing” is to exactly avoid the need for the agent to know this kind of information
in order to simplify the agent and to improve its domain independence.

In such a system the required information can be gained in two ways:

• The team is pre-formed.

• The agent learns the identities of the team members at the execution time, after forming the
team using the Contract Net protocol.

76

The first case is not desirable, as described before (the teams should be dynamically created in
order to be able to adapt to different tasks). The second case does not work until the plan is created
and executed which is too late for the planner. To address this catch-22 situation, new concept of a
protoagent is proposed.

Protoagents are placeholder agents. The closest analogy to a protoagent is a formal parameter
to a function call – the parameter is used inside the function, however its real value is determined
at run-time, when the function is called with the real values substituted for the formal parameters.
Protoagents are used in a similar way – the planner plans using protoagents in place of the real
identities of the agents involved. The plan which gets created by the planning agent is therefore
generic, independent from the agents available. At the execution time, the protoagents are replaced
by the identities of the agents which are forming the team – the generic plan is instantiated and
executed.

The protoagent together with the required capabilities (the actions the protoagent is asked to
perform in the given plan) describe the role of the agent in a team. The purpose of the protoagent
itself is only to define the identity of the team member for the planner and later to map it to the identity
of a real agent.

The generic nature of the produced plans allows also plan reuse – the same plan solving certain
goal can be reused in a different situation by a different team of agents without change (assuming
that the current state of the world matches the initial state required by the plan). Such plan reuse can
significantly save planning time for frequently occurring tasks, because the plans can be cached and
reused as needed instead of generating them each time anew.

There are several rules governing the use of the protoagents. These rules define the collaboration
rules that the planner can utilize in order to solve the given goal. All these rules are implemented in
the form of special STRIPS operators and preconditions/effects added to other operators.

1. Protoagents are named AI, I ∈ [0, 1, ...n), n is usually some small positive integer defining
the upper limit of the possible team size. In PDDL syntax the protoagents are written as A1,
A2, A3,

2. Protoagent self denotes the agent which requested the computation of the plan.

3. The predicate (agent self) evaluates always to true (i.e. this agent is always “recruited”
and available).

4. A regular action can be instantiated only for the protoagent self.

5. The fact (agent ?a) is defined for the protoagent A by the operator (recruit-help
?who ?protoagent), where ?who is the team leader (usually self).

6. The fact (agent ?a) is negated/undefined for the protoagent A by the operator
(disband-team ?who ?protoagent), where ?who is the team leader (usually self).

7. Delegated action operators can be instantiated only for a protoagent for which the predicate
(agent ?a) evaluates to true in the given state of the planner.

The interesting cases are the last three rules. Rule 5 says, that a protoagent can be “changed”
into an agent by using a (recruit-help ...) operator and conversely the rule 6 says that
this change can be reversed by a complementary operator (disband-team ...). These two
operators implement the Contract Net team forming protocol from the point of view of the planner.

77

The complex three-way handshake from the section 4.3.1 is hidden behind the (recruit-help
...) operator. For the planner this is an atomic operation which produces one agent ready to use in
the planning process. The protoagents are the “material” for this process. At the execution time, the
agent executing such plan will try to form team or to add new team member to its existing team.

Rule 6 indicates that a delegated action operator can be instantiated only for such protoagent,
which was made into a full agent. That is possible if and only if the protoagent was “recruited”
before. The rationale is that the sub-tasks should be delegated only to valid team members, not to
arbitrary agents. From the implementation point of view, this constraint ensures that the agent’s
identity will be known at run time in order to delegate the sub-task to it.

5.3.3 Planning with delegated operations

From the planning point of view, the delegated operations introduce several interesting problems. As
explained in the section 5.3.1 already, the planning process becomes both speculative and optimistic
because of the ultimately incomplete information that is available to the planner.

Apart of having to deal with the consequences of having an incomplete information, the issue of
deciding when to delegate a task to the collaborating team members and when to tackle the problem
alone still remains. This task is of great importance if a reasonably working team is to be achieved.
In our case, this decision has to be made at the planning time, when the solution for the solved task is
being found.

The problem can be reduced to a graph search problem, where we are looking for the best path
between the start and the end node. The notion of being the “best” is usually defined using a cost
function f(n) for the graph node n. A typical example of this approach is the A∗ algorithm frequently
used for path planning (finding of the shortest path between two points). In A∗ the cost function has
the form:

f(n) = g(n) + h(n)

Where g(n) is the cost of the path in the graph from the start node until the node n and h(n) is an
estimated cost of the path to the end (goal) node. The estimate is computed using a heuristics – for
example in the 2D path planning case the Euclidean distance between the node n and the goal node
is frequently used.

In this context the propositional planning process can be described as a search in the space of all
possible actions, where the nodes of the graph are instances of the planning operators (actions) and
the edges of the graph are linking together possible actions. This is a very simplified description, for
the full definition of the planning graph approach to planning see [10].

This simplified description still suffices for the purpose of introducing the total cost of the plan
as its length – amount of steps needed to transform the initial state into the goal state. The steps are
considered to have unit cost.2 Most propositional planners are trying to find a shortest plan possible
for the given initial state and the given goal.

By exploiting this property, it is possible to tell the planner which actions are preferred – such as
that it should prefer always the non-delegated actions compared to the delegated ones. To practically
achieve this, one has to ensure that the cost of the plan generated for the preferred action is shorter

2Of course, all action do not have the same cost (resource usage, duration, etc.) and this approach can lead to un-
realistic plans (e.g. a single but very expensive action gets scheduled instead of multiple but cheaper ones). Planning
with resources/time can be simulated by using numeric fluents, examples of this approach are well known in literature
(e.g. the numeric variants of the Depots, Satellite domains available at http://planning.cis.strath.ac.uk/
competition/).

78

http://planning.cis.strath.ac.uk/competition/
http://planning.cis.strath.ac.uk/competition/

than for the other actions leading to the same goal. In most of the simple cases, the delegated action
is more expensive in terms of the plan length because of the team creation overhead. There has to
be at least one extra action for recruiting the team member compared to the non-delegated action.
This automatically ensures that the non-delegated actions will be preferred by the planner if there is
a choice.

However, one has to consider the possibility of when the cost of the delegated action becomes
lower than a cost of equivalent sequence of non-delegated actions. Let’s assume a simple virtual
world having a topology as shown in figure 5.3.

Figure 5.3: Simple world topology

In this world, the cost to get from place A to place D is 3 because three steps are needed. The plan
looks like this:

(move self A B)
(move self B C)
(move self C D)

However, let’s assume, that it is possible for the agent to summon a car with a driver (recruit it
into a team) and then tell it to drive him to the destination (delegated action). The resulting plan may
look like this:

(recruit-help self a1)
(delegated-drive a1 self A D)

This plan is one step shorter than the original plan which used only non-delegated actions. That
means that this plan will be generated by the planner instead of the original three-step one, because
the search will be able to finish sooner (the plan is shorter, the A∗ heuristics guides the search to the
shortest branches first). A real world meaning of this is that if the cost of moving between places in
the virtual world is more than two steps (a break even case), the agent will prefer to be driven around
instead of walking if a car is available. This is actually desired behavior in this case.

Of course, the cost of performing the delegated-drive action by the agent a1may be higher
than original three step plan using only the non-delegated actions. However this cost is hidden from
the planner because the team leader does not care how this action is performed. That also means that
care has to be exercised when designing the delegated actions in order to avoid absurd situations –
such as the execution of the delegated action costing much more than the non-delegated option (e.g.

79

in terms of execution time, used up fuel, etc.). This is obviously a domain-dependent issue that cannot
be addressed in generic way. By default, the delegated actions cost at least one unit (step) more than
non-delegated ones because of the agent recruiting step necessary to create the team before being able
to delegate the task.

Original delegate-drive action, cost 1.

(:action delegated-drive
:parameters (?who ?passenger ?from ?to)
:precondition (...)

:effect (and (at ?who ?to)
(not (at ?who ?from)))

)

Collection of delegated-drive-step-? actions, cost 2

(:action delegated-drive-step1
:parameters (?who ?passenger ?from ?to)
:precondition (...)

:effect (delegated-drive-step1 ?who ?passenger ?from ?to)
)

(:action delegated-drive-step2
:parameters (?who ?passenger ?from ?to)
:precondition

(and (delegated-drive-step1 ?who ?passenger ?from ?to)
...

)

:effect
(and (at ?who ?to)

(not (at ?who ?from))
(not (delegated-drive-step1 ?who ?passenger ?from ?to)))

)

Figure 5.4: Action splitting to explicitly increase cost

If necessary, the cost of an action can be artificially increased by inserting synthetic3 actions – the
problematic action can be split into two, where the first one retains the preconditions of the original
action and has a synthetic effect creating an intermediate state. Then a second action is introduced,
which requires this intermediate state in its preconditions and has the effects of the original action.
This process can be repeated as needed, in effect assigning an explicit cost to the action (with the
default cost of an action being 1), even though the planner itself does not support action costs. This

3Synthetic in the sense that these actions do not serve any other purpose except of increasing the length of the plan.

80

process is illustrated in the figure 5.4, where a simplified action delegate-drive is split in order
to increase its cost by 1.

The advantage of using action splitting over explicitly introducing costs as e.g. numeric fluents is
in the wider choice of planners. Not every planner supports numeric fluents (e.g. original Graphplan
or pure STRIPS-only planners in general), but the action-splitting approach will still work without
modification. This technique is valuable especially in cases when the planner available has other
useful features but is missing support for numeric fluents – such as being partial-order planner or
ability to generate contingent plans (e.g. Sensory Graphplan).

5.3.4 Multi-stage planning in teams

Delegated actions allow distribution of the workload among the collaborating agents formed in the
team. The action planning process from the team leader’s point of view was described in the previous
section already. From the team leader’s point of view (and from the planner’s point of view as well) the
delegated action is an opaque black box promising to change the world state as declared by its effects.
This information, together with the delegated actions’ preconditions, is sufficient for the planner to
create the high level plan for the team leader. However, this information does not specify at all how
the team members are supposed to perform the assigned tasks. This responsibility is delegated to
them together with the assigned task.

In order to solve the delegated task the delegate has to determine how to do so. In fact, the task
being delegated is specified in exactly the same form as the task the team leader received – in a
declarative form specifying the desired state of the world. It is only natural to use the same process to
solve the delegated problem – namely to use the planner in the same way as the team leader did. This
leads to new planning stage and the process may repeat in case that the delegate needs to delegate
another sub-task of the given goal further.

For practical reasons, the applications described in the section 6 consider only three level hierar-
chy maximum – the task originator (may be human user or another agent), the team leader and the
team members. The tasks can be delegated from the originator to the team leader and then sub-tasks
from the team leader to the team members. The limit is arbitrary, there is no theoretical reason why
the team members couldn’t become team leaders of their own teams solving the assigned sub-task, but
it would create lot of complications in the implementation with little practical benefit in the common
VR domains (collaboration with single or multiple virtual humans, delegation of a task to the team of
virtual humans).

In order to be able to generalize the structure to more than three hierarchical levels, changes
would have to be made in the task delegation and team forming process. For example, the agent
could play multiple roles – team member receiving tasks from the team leader, team leader of its own
sub-team and team member of a sub-team formed by another agent. It would be necessary to ensure
that there are no “conflicts of interest” between the activities of these teams (i.e. no conflicting goals)
and a conflict resolution process would need to be introduced. Furthermore, it would be necessary
to have an ability to abandon commitments. In the presented architecture, the commitment is very
simple – the agent commits to the team activity regardless of what it will be (the agent commits
blindly). However, in order to resolve conflicts, the agent would need either to know in advance what
tasks are to be performed so that it could decide whether or not to commit to performing them (e.g.
by detecting a conflict with another set of tasks from another team leader) or to have an ability to
abandon commitment if a conflict is detected. This could in turn cause plan failures (the plans are
assuming that the task will be performed, not abandoned) and the agents would have to be able to deal

81

with this additional workload. This extension is considered for the future, but was not implemented
for this thesis.

Planning schemes with similar hierarchical work distribution are known in literature as hierar-
chical planning and are usually used to limit the amount of work the planner has to do at each level
of the hierarchy. However in most cases the hierarchy is fixed a priori – for example the chain of
command in military simulations. In the described system, the hierarchy is dynamic and created as
needed, totally depending on the current state of the world and the task being solved.

The multi-stage planning performed by the delegates can bring problems to the team leader, un-
fortunately. Usually, there is little or no coordination of activities between the team members solving
different tasks except by the team leader executing the high level plan. Because the actions of the team
members may have side effects which the team leader cannot predict, conflicts may occur. These have
to be resolved at run time, usually by sensing the changed environment and re-planning. In most cases
it will be sufficient to re-plan the failed sub-task only, in the worst case the whole high-level plan has
to be re-planned, potentially failing again.

In order to avoid the expensive re-planning as much as possible, it is possible to pass on infor-
mation from the team leader to the team members which can help them to solve their assigned tasks.
However, there is no general way how to determine which information will be useful for the agent in
advance, before he creates the plan, thus this remains to be addressed in case-by-case application spe-
cific manner. There is no way how to completely prevent the task failures and the ensuing re-planning,
however.

5.4 Object-specific planning

In the previous sections, the agents were using a planning system combined with delegated actions to
solve given tasks. For such a setup to work properly there are two main requirements:

1. The agents know the possible actions (operators).

2. The agents have enough information about the current world state to know which operators are
applicable.

These two requirements are really basic but they can put a large strain on the planning system.
It is possible to have many actions available (the prototype has more than 30) and many predicates
describing the current state (the bar scenario in the section 7.5 contains around 500 predicates in the
beliefs of each agent and this is still a small scenario). Such large amount of information that has
to be processed by the planner leads to long planning times and undesirable delays in the animation
while the system is “thinking”.

To mitigate this problem, there are two possible solutions – either a faster planner or reduction of
the information to only the data relevant to the task. Ideally, both paths should be pursued.

Reduction of the irrelevant predicates from the initial state is possible and was described in liter-
ature (e.g. in [22, 75]). The goal is to discover which initial facts are relevant to the solved problem –
in other words which allow the operators contributing to the goal to be applied – and remove the rest
from the initial state. This approach often allows for dramatic speed-ups, especially for planners like
Graphplan where the size of the data structures grows exponentially with the size of the initial state.

Another option how to reduce the complexity of the planning is to not have the irrelevant operators
(actions). If it would be possible to let the agent learn the actions specific to objects on the fly at run
time, it would need only few generic actions, like moving or picking up objects and the remaining

82

specialized actions could be “learned” only when needed. This is a main idea behind object-specific
planning – the plan is created using object-specific actions which are not used for anything else and
retrieved at run time.

In order to enable the object-specific planning, the information about object properties and object-
specific actions has to be somehow tied to the object. This issue was solved by extending an existing
smart object framework to encode also the semantic information needed by the planner together with
the corresponding animation code. The description of the basic smart object concept can be found in
[51, 4].

Smart objects provide not only the geometric information necessary for displaying them on the
screen, but also semantic information needed for animation purposes. This information is stored in
the form of sets of attributes attached to the geometry of the object – such as important places on or
around the object (e.g. where and how to position the hands of the virtual character in order to grasp
it), animation sequences (e.g. a door opening) and general, non-geometric information associated
with the object (e.g. weight or material properties).

Smart objects also contain “interaction plans”, which are essentially scripts containing the ani-
mation of the action itself. These scripts coordinate the human and object animations to create the
intended result, which could be a virtual human pushing a crate, opening a door, etc.

In order for the smart objects to be usable for planning, it is necessary to extend the animation-
oriented data with semantic information conveying the knowledge what can be done with the smart
object, what are the requirements and what are the consequences of such actions. This matches very
well the definition of the planning operators and the extension is therefore straightforward – for each
object-specific action that can be performed on the smart object, the following information is added
using a set of predefined attributes:

• Name of the operator

• Operator definition

• Animation script for this operator

On top of this information a set of predicates and numeric fluents expressing properties specific to
the object may be added. This additional information is added to the agent’s beliefs when the object
is queried.

The operator definition define the operator in terms of its arguments, preconditions and effects,
as described in the chapter 3. By examining the attributes of the smart object, the agent is able
to discover the object-specific operators and properties and add them to its beliefs. The semantic
information embedded in the object plays a role of an “operation manual”, defining to the agent how
the object works and what is it capable of.

The planning process using the object specific information works as depicted in the figure 5.5:

1. The agent collects the information from the smart object and adds it to its beliefs.

2. The problem description in the PDDL form is built by the agent, as with regular planning.

3. The planning is performed, now using the specific information retrieved from the smart object
as well.

4. The plan is executed. In case that an object-specific action is encountered in the plan, the
corresponding animation script is retrieved from the object and executed.

83

Figure 5.5: Planning with object-specific actions

To illustrate the process, let us consider an example of a virtual character operating a jukebox in
a bar. This scenario is present in the case study described in section 7.5 and the associated animation
issues are described in the section 6.1.2. The virtual character wants to dance in the bar. One of the
preconditions of the dance operator (fig. 5.6) is that jukebox has to be powered on. According to the
algorithm outlined in the figure 5.5, the agent will first collect the information from the smart object,
in this case jukebox. The jukebox object contains the object-specific action shown in figure 5.7.

The problem description is built, using the operator retrieved from the jukebox smart object.
Standard planning is performed and new plan is generated which will use the object-specific action
from the smart object to achieve the goal. Upon execution, the object-specific action is performed
using the generic action mechanism, described in the section 6.1.2.

Object-specific actions have several advantages. They reduce the amount of operators the agents
have to know about and reduce the amount of irrelevant information about objects in general. The
object-specific information is retrieved only when needed. Another advantage is that the smart objects
are completely self-contained. They contain all information that is necessary for the agents to use
them, both from the high level planning point of view and from the low level animation side as well
(see [4, 51]). This property enables better reusability of data because it is sufficient to load a new
smart object into the virtual environment and the agents will automatically “learn” how to use it.

Compared to other works, such as Perlin’s Improv, Badler’s Jack [34], work of Vosinakis [110]
or work of Levison [62], the smart object approach moves part of the processing and information to

84

(:action dance
:parameters (?who ?jukebox ?where)
:precondition (and

(agent ?who)
(place ?where)
(dance-place ?where)
(jukebox ?jukebox)
(at ?who ?where)
(powered-on ?jukebox))

:effect (increase (THIRST) 20)
)

Figure 5.6: The dance operator

(:action power-up-jukebox
:parameters (?who ?what)
:precondition (and

(agent ?who)
(near ?who ?what)
(machine ?what)

; (machine ?m) -> can be turned on/off, more
; general than jukebox

(not (busy ?who))
(not (powered-on ?what)))

:effect (powered-on ?what)
)

Figure 5.7: The object-specific power-up-jukebox operator

the objects being manipulated. The agents do not need to have and maintain information about all
the objects in the scene, the information is decentralized. The extension described here adapts this
approach to high level reasoning-related information too.

5.5 Summary

The most important contribution presented in this chapter is the concept of delegated actions and
their integration into the planning process. The delegated actions allow the agent to reason about the
actions of its team members and plan for them.

A concept of generic plans was introduced together with the new notion of protoagents addressing
the problem of team planning in OAA-like system where the identities of the collaborating agents are
not available a priori. These two concepts provide a powerful tool to the agent, enabling it to reason

85

about actions of a team before the team is actually formed and without any modifications to the
planner necessary.

Finally, the idea of object-specific planning was proposed exploiting the distributed semantic
information stored in the smart objects. Object-specific planning enables the agents to reason about
objects never before encountered and to learn new “skills” at run-time by examining them.

86

Chapter 6

Multi-agent simulation framework

The previous chapters focused on the theoretical aspects behind the work presented in this thesis
document – how to represent a virtual world, how to establish collaboration between the human user
and the autonomous agents (or the agents themselves) and finally how a problem can be solved using
teams of collaborating agents.

This chapter will present results of this research in the form of a multi-agent simulation framework
based on the presented principles. This framework was used to implement six case studies to evaluate
the feasibility and usability of the techniques proposed in this document.

6.1 Overall architecture of the implementation

The overall design of the implemented simulation framework is depicted in the figure 6.1. The system
consists of several key components which are linked together using CORBA interfaces:

• Visualization and animation engine

• Puppet abstraction layer

• Ghosts

• Facilitator

• Grid agent

• Location agent

• Planning agent(s)

• Application-specific agents

The visualization and animation engine is responsible for displaying and animating the virtual
world and its presentation to the user in some form – for example using HMD1, large projection screen
or computer display. The current implementation uses either VRlab’s VHD++ framework (described
in detail in [82]) or the Delta3D engine2. Both engines were equipped with CORBA interfaces to
expose their functionality to the external components.

1Head Mounted Display.
2Available from http://www.delta3d.org/.

87

http://www.delta3d.org/

Visualization/Animation engine

Puppet Puppet Puppet Puppet

GhostGhost Ghost Ghost

Facilitator
Planning

agent

Grid
agent

Location
agent

Application spec.
agent

Application spec.
agent

Planning
agent

Figure 6.1: Architecture overview

The puppet abstraction layer is responsible for shielding the rest of the framework from the ani-
mation engine specific issues, such as how to trigger animation actions, how to move objects in the
scene etc. At the same time it integrates the primitive atomic actions offered by the 3D engine into
higher level actions – for example an action for opening a door by a virtual human character may
consists of several animation primitives (move to the door, grasp the handle, pull the handle, un-grasp
the handle) which are combined into a single logical action.

The ghosts are the core of the simulation, they are used to implement the behavior of the individual
agents. In the most common case the ghost represents an agent controlling a single puppet which in
turns animates a single virtual character in the virtual environment. Such arrangement represents
a single virtual character having both the body (geometry in the animation engine), motor control
(puppet) and mind (the ghost). Another typical use for a ghost is an agent which implements part of
an interface for a human user used to control the user’s avatar in the virtual environment.

The puppet abstraction layer and the ghosts form an important subsystem in the described frame-
work. Their design and inner workings will be described in detail in the section 6.1.2.

The facilitator is the central part of the framework, enabling collaboration between the agents and
keeping the state of the virtual world. Because of its central role in the system, the implementation of
an efficient facilitator is of great importance. The facilitator will be described in detail in the section
6.2.

Grid and location agents provide auxiliary services to other agents, such as resolution of symbolic
names of places into coordinates and path planning in the virtual environment. They are implemented

88

in the form of agents and not just services in order for the other agents to be able to use the task
delegation to dynamically find them through the facilitator and to delegate the specialized tasks to
them (such as path planning, environment queries etc.). They perform similar role as task agents in
RETSINA [99].

Planning agents are similar to the grid and location agents in the way they communicate with the
rest of the system (high-level communication through delegation via the facilitator). They provide the
reasoning capabilities to the other agents participating in the system. Planning is used to build plans
solving problems encountered by the agents and also to prescribe how to collaborate with others in
the process. The basic concepts were described in the previous chapters, the section 6.4 will focus on
the implementation details of the planning subsystem.

The final component are various application-specific agents implementing application-specific
services, such as various user interfaces, monitoring agents or provide access to specialized resources.
These agents are not really part of the framework because they are application dependent and specific
to each setup.

6.1.1 Basic technologies

All mentioned components except the 3D engine were implemented in the prototype version of the
simulation framework using Python language. Python3 is a high level, loosely typed language allow-
ing fast implementation of complex applications compared to lower level compiled languages such
as C++ or Java. It could be argued that its semi-interpreted character (the code is compiled into byte-
code and interpreted afterward, similar to Java) makes it unsuitable for time-critical applications such
as VR simulation platform, however in practice this is a non-issue. The bottlenecks are frequently
elsewhere, Python is very rarely a problem – e.g. if a virtual character has to walk a longer distance
it will take the same time regardless whether the order to walk was given by Python or C++ code, but
the Python code will be much simpler and faster to write.

As mentioned before, the individual components are communicating together using CORBA in-
terfaces. Even though the inter-agent communication is essentially message-based (requests and
replies are sent and queued as encoded PDDL expressions using immediately returning CORBA
calls), it was implemented on top of CORBA method calls, using standards such as COS Event Ser-
vice for message passing.

There were multiple reasons for selecting CORBA over a homegrown solution or some other tool,
namely:

• Multi-process communication – CORBA objects are typically standalone processes, enabling
simpler implementation of the agents and system components and minimizing risks of unde-
sired interactions between components which are frequent in monolithic systems.

• Network transparency – CORBA allows seamless distribution of the objects over the network.
This feature was very important at the design stage because it allows to harness the computa-
tional power of multiple machines without having to do any change to the application itself.
The simulation system can be scaled up or down as needed by adding or removing computers,
from a single laptop running everything to a large cluster of networked machines.

• Language independence – CORBA is available with almost every major programming lan-
guage, making the system easy to extend with heterogeneous components written in different
programming languages.

3http://www.python.org/

89

http://www.python.org/

• CORBA is an industry standard – even for a research project this fact is valuable because it
means that the tool is proven and well supported by development tools.

The implementation uses omniORB4 implementation of the CORBA standard, together with its
excellent Python bindings. This implementation is interoperable with other ORBs, we have success-
fully tested Java ORB or MICO5. The omniORB implementation was chosen mainly because of the
availability of supported Python bindings and its simplicity for both C++ and Python.

6.1.2 Ghosts & puppets framework

The ghost and puppets framework is one of the most important components of the simulation system.
Its role is to act as a bridge between the low level animation code and high level artificial intelligence
software. There are few examples in the literature how such functionality can be implemented because
it falls outside of the scope of a typical animation or AI research.

Some attempts at such interface between low level animation and higher level reasoning can be
found in the work of Blumberg [11], Perlin [80, 81], Terzopoulos [33, 108] and others. However, ex-
cept of Blumberg, none of them deals with issues such as controllability or control sharing. Blumberg
in his thesis [11] outlines multiple control levels possible for the virtual character, together with the
possibility to integrate external control, such as input of the movie director. Compared to his work,
the work presented here focuses more on the high-level issues, such as reasoning and team work, not
so much on the animation and behavior problems he was addressing.

A new design was created with several goals in mind:

• Controllability – the ability of the user to control the simulation has priority over autonomy
of the agents. Controllability and determinism of the simulation is a frequent requirement
especially in the training scenarios. Fully autonomous agents work well for artificial life simu-
lations, however they make the scenario difficult to control.

• Control sharing – the ability for multiple agents to control the same object. This ability is useful
especially for human avatars where some part of the functionality is controlled by the human
user and some parts are controlled by an autonomous agent. For example, a human user may
wish to control the camera while his avatar is walking under the control of an agent towards
next objective.

• Information access – it has to be possible to interrogate the internal state of the objects in the
virtual world. This is typically achieved in a low level, animation engine dependent way and a
suitable abstraction is needed.

• 3D engine abstraction – different problems have different solutions and different needs. There
is no “silver-bullet” solution for everything, thus the ability to swap the animation engine for
another one is an advantage.

Some engines are suitable for high-detail simulations with few agents (such is the case of
VRlab’s VHD++), but for example for crowd simulations containing thousands of agents a
specialized solution is required.

4http://omniorb.sourceforge.net/
5http://www.mico.org/index.html

90

http://omniorb.sourceforge.net/
http://www.mico.org/index.html

Puppets: Puppets are a special type of software agent acting as an intermediary between the high
level AI and low level animation system. The name “puppet” comes from an important property – the
puppet does not have autonomous behavior (i.e. it is a software agent but not an autonomous agent
in the AI sense). It is always controlled by some external entity – a ghost. A ghost can assert control
over the puppet – possess it. This control assertion analogy gave the name to the framework.

The protocol driving the process of exchange of control over one puppet is very simple. Figure
6.2 documents it. One of the ghosts has the control over certain part of the puppet. Each puppet may
consists of several parts which can be controlled by different agents. The reason for such subdivision
is division of work – for example a vehicle may require several agents to collaborate to operate it or
a large crate may need two agents to move it because of its weight.

Once the other ghost tries to take control (possess) the same part of the puppet, it will get an
exception, reporting failure. The ghost may now opt to notify the incumbent one about its desire
to take the control. A properly behaving ghost is required to periodically test, whether there is a
notification flag set in the puppet and relinquish the control if it is the case.

This design is not really optimal, ideally an asynchronous mechanism such as events or callbacks
should be used instead of polling. Polling was implemented because it didn’t require any additional
external event broker at this stage. In hindsight, proper event-based implementation would have been
better, even though the practical performance impact is low – the control is exchanged rarely and the
single check per simulation frame is not costly.

Moreover, the mechanism does not protect against rogue ghosts not behaving properly (not freeing
the puppet on demand). The ghosts have to be cooperative, the protocol cannot protect against this.
The main reason for making the protocol cooperative like this was the issue of consistency – if the
ghost gets removed from control of the puppet in the middle of an action, it could leave the puppet
and the underlying engine in undefined state (e.g. in the middle of an animation). Complex state
saving and restoration would be necessary, both on the side of the puppet and on the side of the 3D
engine where this is really difficult to do – e.g. stopping an iterative inverse kinematics process in
the middle and then restarting it later without seeing artifacts and taking into account the potentially
modified posture of the character is very complex task. Not to mention that the character could have
been performing multiple animations at the same time, not only one, making the problem untractable
in practice. As a workaround for this problem, the ghosts will release the control of the puppet if
and only if the action they were performing is finished, never during the duration of the action. This
has practical consequences, e.g. the character will not react to the request for taking over control
immediately but only after it finished the current action.

Finally, after the control is released, the other ghost can take over and perform some actions.
During this period the original ghost is waiting and periodically trying to take the control back (≈
every 5 seconds). This succeeds only when the ghost in control releases the puppet and then the
original ghost can continue with the original task it was performing.

This schema is especially useful in case that a human user wants to intervene because the au-
tonomous agent (ghost) controlling the puppet is misbehaving in some way. The user can use a
special ghost to remove the original agent from control, take the puppet over and for example move
the virtual character to the desired place or perform some action. After releasing the control the
original ghost can take over and continue with the original activity.

The described control swapping scheme satisfies the goals of control sharing and also of control-
lability – the user is always allowed to intervene (by replacing the ghosts) in case that he/she desires
to and has always the option to influence the scenario as needed. This is an important feature for
many training scenarios.

91

 Ghost 1 Ghost 2 Puppet

possess("ghost1", part)

success

checkNotification("ghost1")

notification present

unpossess("ghost1", part)

possess("ghost2", part)

possess("ghost2", part)

failure, possessed already

notify()

success

unpossess("ghost2", part)

possess("ghost1", part)

success

sleep

Figure 6.2: The puppet protocol

92

The information access goal is achieved both by the puppet and by the ghost. The API exposed by
the puppet allows to interrogate the internal state even when not in control of the puppet. The puppet
can also provide specialized APIs exposing the internal information from the animation system to the
agents – such as position, orientation, animation state, etc.

The puppets act also as an abstraction layer with regards to the animation engine. A typical
animation engine provides a set of low level animation primitives, such as object movement (trans-
lation, rotation), keyframe animation, inverse kinematics and procedural animation. These animation
primitives frequently need to be combined together to achieve a meaningful animation of a character
performing some action. The puppet is responsible for this task as well – it combines the primitive
animations and builds high-level actions from them.

There are two mechanisms how the high level actions can be built:

• Regular actions – created by combination of the low level primitives described above.

• Generic actions – using object-specific scripts and data, typically defined by the smart objects.

The object-specific animations are typically created together with the smart object during the
design process. The in-house developed animation engine VHD++ supports smart object use in the
simulations, usually in places where a complex animation is necessary – typically object manipulation
(as in figure 2.1). The object-specific animations are defined in the form of Python scripts using the
object-specific data – such as points and direction vectors or grasping information – to perform a
complex animation.

Figure 6.3 depicts a virtual human operating a jukebox. The goal for the virtual human is to turn
the jukebox on by pushing a button on the front panel. Even for this simple task the animation is quite
complex:

1. The virtual character has to approach the jukebox correctly (from the front, facing the panel,
stop at the right distance). This is achieved by using the procedural walking engine available in
VHD++. The approach direction and the stopping point are defined as attributes of the smart
object and the script takes them into account to arrive at the jukebox in the correct way.

2. The button has to be pushed by the index finger, therefore another animation primitive is
performed to put the hand into a “grasping” posture (hand in the fist form, index finger out-
stretched). The correct posture needed to achieve this is again part of the smart object and the
script has to retrieve it before invoking the animation primitive.

3. Finally, the button has to be pushed down. This is achieved by inverse kinematics while the
hand is held in the correct posture. The animation of the body and the arm is achieved proce-
durally using inverse kinematics, with the position of the buttons being part of the smart object
definition.

It is obvious that a relatively simple action from the reasoning point of view – turning on a jukebox
– is a complex animation problem. If such action had to be implemented by the puppet for each
different object that the agent may encounter in the virtual environment, it would become intractable
very quickly. The concept of generic actions is the solution here.

The generic action simply provides an interface to the ghost to invoke object-specific animations
without having to know about them in advance. In the typical case, the ghost has to know only that
it needs to power the object up, which is usually determined by object-specific planning described in
section 5.4.

93

Figure 6.3: Smart object manipulation

The action is invoked with the ’power-up’ and ’jukebox’ as arguments. The real animation script
is retrieved by the puppet from the smart object using these parameters as a key for looking up
the necessary data and executed. The animation scripts are usually low level scripts intended to
be executed by the animation engine, therefore they are uploaded using CORBA interfaces into the
embedded Python interpreter in VHD++ for execution.

This scheme allows the puppet to contain only general actions such as locomotion and leave the
object-specific issues to smart objects. In this way the complexity of the code and the development
time is greatly reduced because the puppet developer has to care only about animation specific to the
puppet, not to deal with object-specific issues.

The figure 6.4 contains the class diagram showing the relationships between the various com-
ponents of the puppet interface. The base is the class Puppet, implementing the control sharing
protocol. Every puppet needs to be a subclass of Puppet in order to be controllable by a ghost.
Then there are several interfaces which define specific behavior, for example machine (for objects
which can be powered up and down), movableObject (for objects which can be moved in some
way, mostly interactively, e.g. by a gamepad) and the genericAction interface used to implement
the generic actions.

94

Figure 6.4: Puppets

95

The class diagram is given only as an abbreviated example for space reasons. The real applications
usually contain additional puppets for different active objects and use more interfaces as well, however
the principle remains the same.

Ghost: The previous section mentioned the role of the ghost in the ghost & puppets framework as
the core of the agent implementation. The main role of the ghost is to provide the “brains” for the
agent. The ghost can be in control of one or several puppets, using their capabilities to express its
actions in the virtual world.

As depicted in the figure 6.2, ghosts are not uniquely tied to the puppets. The control of a puppet
can be shared or swapped between several ghosts using the described protocol.

An important role of the ghosts is to provide not only autonomous behavior to the virtual charac-
ters/objects and to monitor their state, but also to provide an interface for the human user to be able
to interact with the simulation. Several control levels are possible and thanks to the dynamic control
swapping, it is possible to use them interchangeably during the run time of the application. Such
flexibility enables the user to use the application in the style which suits him best and to compensate
the shortcomings of the individual control methods.

For the purposes of this thesis, three distinct control levels were implemented:

• Direct control – the user takes control of the puppet which becomes his avatar. A ghost im-
plementing this control mode is typically acting as a translator from, for example, gamepad
input by the user into the motion and actions of the virtual character in the virtual environment.
The gamepad input is processed and the corresponding puppet functionality is invoked – for
example to move one step in a certain direction.

A more complex example of such direct control ghost will be described in the section 7.1, where
a combination of an eye-tracking device with a gamepad was used to control virtual humans in
a multi-modal manner.

Another example is a multimodal control ghost in the “Virtual Guide” in section 7.2, where the
user controls the actions of his avatar using the first-person view by a multi-modal combina-
tion of a handheld computer (PDA) and a special mat acting as directional control (similar to
gamepad).

• Direct control by giving orders – the user controls the simulation by giving orders in some
form and not by “driving” the virtual characters directly. The ghost is responsible for receiving
the orders from the user in the preferred form (such as voice, typed text etc.) and transform
them into tasks that the other agents are able to process. In the described framework the tasks
are represented in the form of either an imperative or declarative task specification (see 3.1.3),
usually a tuple.

Ghost using this control level was implemented as a natural language interface for processing
typed English in the section 7.3. It is also possible to interact in this way using the graphical
user interface described in the section 7.4.

• Indirect control by proxy – whereas in the previous point the user was issuing orders directly
to the agents, in this mode the interaction is performed via proxy. The orders are issued to a
designated agent – a team leader – which then coordinates a group of others trying to execute the
order. The user does not have to control each of the virtual characters himself. This interaction
level is usually used for high-level tasks, where the problem is delegated to the team for solution
and the user is not really interested in being involved in the process of solving it.

96

An example of such control arrangement is shown in section 7.6, where the user controls a
simulated police force trying to maintain order in a city. The user commands the force by
issuing orders to leaders, which in turn coordinate actions of the policemen.

6.2 Facilitator

The facilitator is a corner stone of the described framework. It has two main roles, as described in
section 4.2.1:

• Central data storage (similar to a blackboard)

• Matching the incoming requests with the capabilities of the agents and delegating the tasks to
the agents for execution.

The facilitator implementation fulfills these two roles by using few key concepts – unification,
simplified solvables and minimal request tracking to keep the processing simple and fast. The facil-
itator is a central agent in the framework and almost every request passes through it, therefore the
processing has to be very efficient to prevent it from becoming a bottleneck.

6.2.1 Implementation

The theoretical ideas behind the design of the facilitator were described in the section 4.2.2. It was
implemented as a standalone agent using Python and omniORBpy library providing the CORBA
binding for Python.

The facilitator processes the incoming requests according to the activity diagram in figure 6.5.
The facilitator agent offers three main entry points via its CORBA interface:

• Declaration of a new solvable. The solvable can be either a data solvable describing a state or
a procedural solvable defining a capability of the agent declaring it. Data solvables declared by
the agents define a global state of the world.

The predicate defining a new solvable is presumed to be true, false predicates are not stored
(closed world assumption). For efficiency reasons the internal knowledge base is maintained as
hash table implemented using a Python dictionary.

• Un-declaration of an existing solvable. The solvable is removed from the internal knowledge
base and the subsequent queries will assume it to be false.

• A delegation/state query request. Delegation and state query requests are invoked using the
solve(solvable, constraints, originator) function.

The first two entry points are very simple – the corresponding solvable is either added or removed
from the knowledge base. While adding the solvables, the CORBA reference to the calling agent is
recorded as well, so that the declared solvable can be traced back to the declaring agent. This has no
use for the data solvables, however it is very important for the procedural (capability) solvables. The
recorded references are used to dispatch the delegated tasks to the agents declaring certain capability.

After modifying the knowledge base, the consistency is verified using a process of axiom enforce-
ment to eliminate contradictions (inconsistencies).

97

Waitforrequest

DeclaresolvableUndeclaresolvable Unify
Applyconstraints

Delegate
ReturntaskID

Simulationstatemodification?
Query?

Delegationtask?Datasolvablequery?

Figure 6.5: Activity diagram for the facilitator

The axioms are essentially rules expressed as implications. The premise is matched against the
content of the knowledge base and for each match the consequent is added to the current state. The
process will be described in detail in the section 6.3.7 in the context of an agent.

The delegation/query request is the most complex one. In fact, there are two distinct function-
alities being provided by the same function – queries of the global state whether some solvable is
defined (ergo, whether the corresponding predicate is true) and task delegation requests. These two
tasks may seem unrelated, however there is deep interconnection between the two.

As seen in the figure 6.5, the solution process first tries to find all matches of the incoming solvable
against the knowledge base. The matching is performed using unification, as described informally
in section 4.2.3. The result of this step is the list of matches (unifications) with different variable
bindings.

The unification can return three possible results:

• Result is NONE, meaning that no match was found and the incoming solvable does not unify
with anything in the knowledge base. This result means that the queried solvable is either
unknown to the facilitator (presumed to be false) or in case of a procedural solvable asking for
a certain capability, the requested capability is not declared (and provided) by any agent.

• Result is an empty unification. This is a special case to deal with expressions starting with
negation. The classic implementation of the unification algorithm uses a stream-based approach
where the intermediate unifications are passed through a sequence of filtering nodes. Each

98

filtering node corresponds to one logic connective of the original expression. In the case of the
not connective, the original expression is negated and the negated expression is checked for
matches using the bindings from the previous steps. If a match is found, the original expression
does not match and the tested variable binding is rejected.

This procedure assumes that there is some variable binding in the stream already. However,
what may happen if the negation is the first sub-expression being evaluated is that there is
nothing to return yet even though the expression matches (the negated one does not, since the
stream is still empty). Returning NONE would signify that the unification failed, therefore a
special empty unification which does not define any variable bindings was established for this
purpose.

This issue with not is an inherent problem stemming from filter-like implementation of the
logical connectives. It is also described in [5].

• Result is a list of unifications (stream). In this case the searched information was found and is
passed over to further processing.

The next step after determining the matching expressions from the knowledge base and their
corresponding variable bindings is to apply the agent-specified constraints to narrow the working set
of the unifications for further processing.

The current implementation of the facilitator is able to apply two kinds of constraints – numerical
limit on the amount of results to be used and the capability constraint.

The number of the results returned/processed can be limited. The calling agent can specify the
number of results to be returned using the no_results keyword. By default, all results (unifica-
tions) are used. In case a smaller amount is requested, a random pick is made by the facilitator.

The required capabilities of the agent the task will be delegated to can explicitly specified. This
constraint is typically used while forming teams. It is expressed using the has_capability key-
word and is usually used to tell the facilitator that the recruit-help call should recruit only
agents having certain capability – for example being a driver or a barman. Without this constraint the
team leader would have to recruit blindly and then reject the unsuitable agents from joining the team.
Such approach is very inefficient because the facilitator has the required information already and can
delegate the call to only relevant agents in the first place.

The final working set (stream) of unifications – in our case the list of matching expressions to-
gether with the corresponding variable bindings is passed to the final – delegation – stage. The
facilitator iterates over all unifications in the list and in case that the match was for a procedural
(capability) solvable, the task is delegated to its owner (the agent which declared it) together. Each
request is assigned a task ID, which is passed along to both the originator of the request and to the
delegate. The role of the ID is obvious – it allows the originator to match the incoming asynchronous
replies from the delegates with the original request and corresponding reply from the facilitator.

In case that the delegation request from the facilitator to the agent fails (e.g. because the agent
crashed and didn’t remove its capabilities from the knowledge base of the facilitator), the error is
handled by the facilitator. If it is still possible to satisfy the original request, the information about the
failed agent is removed from the knowledge base and the processing continues. If it is not possible to
satisfy the request (e.g. because the failed agent was the last one able to do so), error is reported to
the delegating agent and the information about the offending agent is cleaned up.

Finally, in both cases that the query being solved was a delegation request or that it was a simple
data solvable query, the unifications are returned to the request originator together with the assigned

99

task ID as a return value of the facilitator’s solve() call. For data solvable queries, the results are
directly contained in the unifications being returned.

This facilitator design has proved as quite efficient and scalable, thanks to the limited processing
the facilitator has to perform. The largest case study “Riot in the city” described in section 7.6 uses
approx. 50 distinct agents driving more than 1000 virtual characters and vehicles on the screen which
have to communicate via the facilitator in some manner in real time. On average, every agent declared
≈ 10 capabilities and ≈ 80 data solvables. Despite of this heavy utilization the facilitator was never
a simulation bottleneck.

As an experiment, the most time consuming part of the processing which is the unification (espe-
cially in the “Riot in the city” case where the knowledge base contains many entries) was compiled
into a C extension for Python using Pyrex6. The speedup was un-noticeable in practice, because the
delegation and facilitator querying is only very small portion of the time spent by the agents while
reasoning.

6.3 Agents

Software agents are the driving force behind any agent-based simulation. They are understood as
autonomous software units interacting with their environment and frequently provide services to other
agents or human users.

From implementation point of view, there are many relevant technologies for implementing agents,
however for practical reasons outlined at the start of this chapter, the CORBA-based implementation
was chosen. It is not unique choice, a similar CORBA-based systems are common in the industry.
One such event-based system was described in [70].

6.3.1 Objectives

The objectives of the software agents present in the simulation are twofold:

• Source of autonomy in the simulation – the agents are the source of the autonomous decisions
and actions in the multi-agent simulation. A typical example is a ghost agent driving a virtual
character in the simulation.

• Provide services for others. Typically, agents providing services are not embodied and do not
represent characters and objects of the virtual world – for example a “grid” agent or a “location”
agent used in the case studies in the next chapter which provide geometry information and path
planning service to the remaining agents. The facilitator agent belongs to this category as well.

The ghost agents are a special type of a software agent. As written before, they are a part of
the ghost & puppet framework allowing them to establish control over the puppets representing the
virtual characters and objects in the virtual world. Consequently, the ghosts are embodied type of
agents and the virtual characters are their avatars.

In the collaboration context, the ghost is the atomic component – the ghosts are the agents forming
teams and working together to solve given problems. There are other agents playing auxiliary roles
(such as the planner or the facilitator), however the ghosts, either autonomous or user-controlled, are
the only agents truly participating in the intentional collaboration.

6http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

100

http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/

6.3.2 General design

Most of the agents are designed using the same pattern. There is a main loop, which controls the
processing done by the agent. In most cases, the agent simply waits until there is a new task to
perform in the internal job queue. When that happens, the loop is unblocked and various activities are
performed – the task is processed, sensing is performed, some autonomous or idle activity is planned
etc.

 «FacilitableAgent»

 +executeID(in long id, in FacilitableAgent originator, in string solvable): void

 +receiveReply(in long id, in string data): void

 «BeliefGhost»

 +observe_solvable(in tuple solvable): bool

 +check_solvable(in tuple solvable): list

 +wait_for_solvables(in tuple solvable): list

 +declare_add_effects(in list effects): void

 +undeclare_del_effects(in list effects): void

 ...

 HumanGhost

 +initialize()

 +run()

 +exit()

 BarmanGhost PoliceGhost GuideGhost

Figure 6.6: Autonomous agent class diagram

The tasks to do can come from two main sources – they can be either external, delegated from the
facilitator or internal, created by the agent itself. The internal tasks are usually either autonomously
generated actions (autonomous behavior) or as a special case – the idle task when there is nothing
else to do.

The embodied agents driving human characters in the virtual environment are specializations of
a generic HumanGhost class. This Python class implements a basic functionality common to all
ghosts driving virtual characters, such as sensing, maintaining own set of beliefs, performing actions
and interface to the facilitator.

The application-specific ghosts/agents fulfilling specialized roles in the scenario are derived from
the HumanGhost, overriding the required functionality, such as adding new beliefs or special han-
dling of certain situations.

The class diagram showing the relationships between the ghost classes is in figure 6.6. There is
the already mentioned generic HumanGhost class, three examples of specialized ghosts which are
used in the case studies described later and two interfaces.

The FacilitableGhost interface defines the methods the agent has to implement in order to
be able to receive delegated tasks and results of the task delegated by it to other agents.

101

The BeliefGhost interface defines common functionality used by agents keeping their own
beliefs about the virtual world. The belief-related functionality is not specific only to the ghosts,
however it is most commonly used with them.

Figure 6.7 depicts the activity diagram of a typical ghost agent. Other, non-embodied, agents use
a similar design, except that many activities that do not make sense in the non-embodied case (such
as sensing) are not implemented. The reception of tasks from the facilitator and the replies to the
delegated request is processed asynchronously using a separate thread of execution not depicted in
the figure. The received data are queued, either in the job queue (delegated tasks) or reply queue
(results of the delegated requests) where they will be picked up later.

The activities of each agent/ghost are driven by a main loop processing tasks (jobs) until the
ghost is commanded to shut down. Jobs can consists either of single actions (delegated or normal) or
a whole plan to be executed (e.g. as a result of delegated action which formed it during its execution).

Each iteration of the loop consists of several steps:

1. Sensing – the agent tests the state of the virtual environment.

2. Autonomous behavior – schedules actions to satisfy own desires, such as barman may want to
keep the bar clean, customer wants to quench his thirst, etc.

3. Action execution – performs the action with the highest priority from the job queue. This is
a complex step, because the correct actions has to be instantiated and the state of both agent’s
beliefs and the global world state in the facilitator has to be properly kept consistent. Moreover,
the action execution has to be fail-safe – in case that the action can fail in an undesirable
way, the failure has to be properly handled to prevent problems in the simulation. The action
priority can be set by the scenario designer, however by default external (delegated) requests
have higher priority than internally generated tasks.

4. Result reporting to the task originator – in case that the action was a delegated one, the result
of the action (success/failure) has to be reported back to the originator of the request. In case
that the task contained a plan to be executed, the result of the plan execution is reported. Result
reporting is of utmost importance when team leader is coordinating several agents performing
independent tasks.

5. Puppet notification check – at the end of each iteration of the main loop the ghost agent has to
verify that nobody else is requesting control of the puppet. If the notification flag is raised, the
ghost has to release control and try to reacquire it at the start of the next iteration.

Overall, the design of the ghost agent is a complex issue with many factors. The following
subsections will focus on the specific issues concerning the parts of the design.

6.3.3 Beliefs

Agent’s beliefs are the local knowledge the agent has about the virtual environment. The beliefs may
(and frequently are) differing from the global state of the virtual environment kept by the facilitator.
There are multiple reasons for this discrepancy, mainly the fact that the environment is dynamic
with multiple agents which can change the state of the environment “behind the back” of the agent.
Therefore an important part of the agent’s workload is to keep its beliefs as consistent and up-to-date
as possible.

To facilitate this goal, the agent’s beliefs are stored in a Python dictionary (hash table) and can be
modified in four different ways:

102

Figure 6.7: Ghost agent activity diagram

103

• Initialization – a priori knowledge about the environment and the agent itself is stored in the
belief table at the beginning of the simulation.

• Action execution – after each action is executed, its effects are applied to both local and global
(facilitator-maintained) state.

• Sensing – sensing updates the local beliefs with the perceived information from the environment
around the agent.

• Axiom verification – after each change to the beliefs, the axioms have to be verified and dis-
covered inconsistencies corrected.

All belief modification has to be done in a consistent way in order to avoid problems when the
information is needed – such as when using the action planner. During the course of the simulation,
this is normally ensured by the actions themselves.

There are two types of beliefs which are kept by the agent – symbolic information in the form of
predicates (such as (open door)) and numeric fluents (such as (= (THIRST) 40)). Symbolic
predicates are used to describe discrete information (such as door state), fluents express continuous
values (team size, thirst etc.). From the agent’s point of view, the fluents are represented simply by a
table of numeric variables having symbolic names.

The agent’s beliefs including both fluents and symbolic predicates form its state.

6.3.4 Sensing

Sensing is the agent’s capability to perceive the surrounding environment and to learn the properties
of it – to update its beliefs about the world.

There are many ways how to implement sensing capability, however in our case the sensing
is meant to update the symbolic beliefs of the agent. Therefore, sensing should produce symbolic
information. For simplicity, a very rudimentary sensing capability was implemented, where each
room7 of the virtual environment has a list of solvables to test for attached. These lists can be modified
by the agents at run time and tell the agent to check whether the facts from the lists are defined or not
while staying in the room corresponding to the list.

For example, a barman agent delivers a cup of coffee to a customer agent at a table. He signals
the delivery by adding the solvable (at coffee table) to the list of solvables to test for the
room “table”. Once that happens, during the next observation cycle the customer agent will try to
evaluate this expression in the context of the world state – it queries the facilitator to test whether the
expression is true or not. In case that it is true, the expression is added to the agent’s beliefs as well –
he learned that there is a coffee there.

6.3.5 Actions

Actions are the most basic means for the agents to modify the state of the virtual environments.
Usually, they have a corresponding animation associated (in case of the ghost agent the puppet is
responsible for the animation), however there are actions without animation as well. Such actions are

7Room does not necessarily mean a room as in a house, it can be any space defined geometrically and tagged as such
– such as the main square in the city. The purpose of rooms is to define topology of the world – which place is accessible
from where – and to symbolically name the them.

104

used to modify the internal state of an agent, for example when performing an action plan created by
the planner.

There are four distinct action types:

• Normal actions

• Internal actions

• Delegated actions

• Object-specific actions

Normal actions are used to perform animations – such as walking, pushing an object or operating a
jukebox. Apart from the animation part, every action also changes the state of the virtual environment,
e.g. the agent changes the declared position or an object has its state changed – such as a jukebox is
turned on.

Internal actions are a special case without an associated animation. This typically also means that
there is no interaction with the puppet and the ghost agent only changes its internal state – beliefs and
potentially the global state in the facilitator as well (e.g. declares itself busy).

Delegated actions are used to implement the collaborative features as described in the chapter 4.
They are the actions of the delegate, not the delegating agent. The delegated action is used when
an another agent (a team leader) delegates the task via the facilitator to the agent. The incoming
delegated task is inserted into the job queue and processed during the next iteration of the main loop.

Object-specific actions are retrieved during the process of object-specific planning from the smart
objects. The dynamic nature and built-in introspection capabilities of the Python language are used to
extract the relevant information from the smart objects and to make it available to the agent. Object-
specific actions are tied to specific animations, such as opening a door, operating a jukebox etc.

All actions are implemented using a functor technique – every action is implemented as an inde-
pendent executable class, providing information about:

• Action’s Name

• Arguments

• Preconditions

• Effects

• Auxiliary information (used fluents, predicates, etc.)

This information corresponds to the information required for describing the task semantics using
the operators8 from the section 3.1.4 and is in fact used for generating the data necessary for the
action planner as well.

Every action class is providing methods to verify its preconditions with regards to the agent-
provided state and to execute it. Execution of each action is usually a four step process:

8There is an unfortunate terminology clash here, because strictly speaking, “action” in the symbolic sense means an
instance of an operator, whereas here the term “action” is used to describe the operator itself together with the animation
information attached, as customary when speaking about agents. In most cases it is clear from the context which meaning
of “action” is intended.

105

1. Preconditions are verified using the agent-provided state. In case that the preconditions are not
satisfied, the execution is aborted and an action failure is signaled.

The precondition verification itself is implemented using unification over the current state of
the agent (its beliefs), not the global state stored in the facilitator, in order to preserve the partial
observability principle, as described in the section 3.1.2.

2. The action is performed. Path planning may be requested, additional information may be re-
trieved from the other agents in the system – the facilitator, location agent providing geometri-
cal information or others. Finally the animation primitives provided by the puppet are called in
order to perform the desired action, such as walking, object manipulation, etc.

3. The effects of the action are applied to the agent’s and world’s state. The declared add-effects
are added to both facilitator and agent’s beliefs and the del-effects are removed. In case that
a failure occurred during the action execution (exception from the puppet, animation problem,
collision, etc.) the ghost agent is responsible for recovering to a meaningful state.

Each action is implemented in such way that should a failure occur, the agent and the world
are left in a consistent state – if possible, the failed action is undone and the effects reverted. If
such solution is not possible or not desirable, the state has to be updated to match the current
situation – for example if the move action failed during movement towards the goal because
the visualization engine reported collision with an unexpected obstacle, the action has probably
moved the agent out of the initial position. Therefore the state will be updated to reflect the
current position of the agent – which is probably different from both the starting position and
the goal position.

Such error recovery requires reasonable granularity of the actions. If the actions are too high
level, the recovery will be very complex, because lot of the state has changed during the ex-
ecution. If the actions are too low level (e.g. mirroring the animation primitives provided by
the visualization engine), the recovery will be easier because the impact of each action will be
more limited. However the performance will suffer because even a simple task will require
very long and detailed plans. This is again a domain-specific issue which has to be carefully
balanced by the scenario designer.

4. The results of an action are reported to the caller (the ghost agent) as a return value of the
action functor. Both success and failure are reported, in the failure case the reason for a failure
is provided as well (e.g. obstacle, no path to goal, unknown object to manipulate, etc.). The
reports are provided in a form of a pair, where the first element is either success or error
and the second element contains the reason for the failure, such as nopath (no path was
found), precond (precondition not satisfied) and others. For example, a path planning failure
is reported as (error nopath). The ontology is defined in a semi-formal way as dictionary
reference for the scenario designer.

Actions are implemented separately from agents, they are not a fixed part of the agent code.
To increase flexibility and to allow easy reuse of common actions between the scenarios (such as
move or pick-up), agents discover and load all actions except the object-specific ones during the
initialization dynamically, using the dynamic compilation capabilities of Python.

The delegated actions are a special case. Their implementation is usually done using the planner,
which is given the effects of the delegated action as a goal state. The rationale for this is that the
delegated action can express a high-level goal (such as “move to a place X”) without regard on the

106

constraints placed on the agent (e.g. not being able to move through obstacles). The planner is used
to solve this problem by creating an action plan to achieve the desired state.

The object-specific actions are the second special case – they are loaded whenever the agent has
to solve a problem using a planner. In that case, the smart objects potentially relevant to the plan-
ning goal are identified using a simple goal analysis heuristics (see section 6.4.1 for implementation
details) and scanned whether they contain any object-specific actions. In the affirmative case, the
actions are downloaded and dynamically compiled, in the same manner as the other actions during
the initialization. This capability enables the agent to “learn” new skills at run-time, by investigating
the smart objects.

6.3.6 Application of the effects

After each action is performed, it is necessary to update both the local state of the agent (its beliefs)
and the global state tracked by the facilitator to reflect the changed reality of the virtual environment.
To achieve this task, the effects declared inside of each action have to be applied to both the local and
global state.

There are two different kinds of effects which have to be distinguished:

• Local effects – effects need to be applied only to the state of the agent executing the action and
to the facilitator. No other agents are involved.

• Remote effects – effects need to be applied both to the local agent, to some remote agent and
to the facilitator.

• Induced effects – effects forced by the state change of the agent while forming/dissolving teams.

The local effects are the simpler case – each action apart from the delegated ones has a set of
effects declared, which are applied to the current state (the add-effects are added to the table of
beliefs, the del-effects are removed from the same), both for the local (agent’s) state and to the global
(facilitator’s) state.

The remote effects are more complicated. In traditional systems which do not use task delegation
there is no need to consider this case. However, in case that a team leader agent delegates a task to
a teammate, both agents have to apply the results of the action – the team member performing the
task applies all the effects from all actions which he performed during the execution of the delegated
action and the team leader applies the effects declared by the delegated action to account for the state
change made by the team member. It is obvious, that two sets of effects may be different, typically
because the team member has to perform work which the team leader does not know about – there
are hidden side effects.

The side effects are a potential cause for inconsistencies in the beliefs of the agents, let’s consider
this simple example:

1. The team leader asks agent Gino to open a door for him to pass through.

2. Gino needs to approach the door in order to open it and obstructs it in the process.

3. After the door is opened, the team leader has only information that the door is open and the
(outdated) information that he is able to pass through the door.

4. The team leader fails to pass through the door because there is an obstacle – Gino.

107

The problem in this example stems from the limited information available when a delegated ac-
tion is performed. The delegating agent cannot make any assumptions on what the delegate will do
during the course of performing the delegated task, leading to inconsistency. The agents re-sense
their environment before executing the next action and the impact of this problem is reduced (not
fully eliminated – the agent may not sense (“see”) all changed performed by the side effects).

Induced effects are a special case when dealing with the protoagents and team creation by the
team leader. When a new team member is recruited, all symbolic information associated with the
corresponding protoagent has to be applied to the new agent as well. For example the team leader
has protoagent A1 designated as a barman by having a predicate (barman A1) in his beliefs. After
recruiting a new team member Gino to take up the role of this protoagent, the information that Gino is
the barman has to be inserted into team leader’s beliefs – the effect of Gino being declared as an agent
in the team leader’s beliefs induces the effect that he is a barman. A similar process is performed
when the team is being disbanded – the additional information about the disbanded agent has to be
removed from team leader’s beliefs.

6.3.7 Axiom enforcement

It is important to ensure that the consistency of the world representation used by the agents is main-
tained. The previous sections described the possible problems already and how they can be addressed.
However, from a practical point of view, it is beneficial to have a possibility to check and strictly en-
force some fixed constraints – such as that the agent can be only in one place at a time or that in order
to be near to some object, the agent has to be in the same room (semantically) as the object is. Such
constraints are useful from two points of view:

• Constraints help discover bugs in the action implementation – if a constraint is violated, there
is most likely a hidden problem somewhere in the action effects that needs to be fixed, because
it may lead to more serious issues.

• It is not possible to check for every possible dependency between two (or several) actions. For
example if an agent is near a jukebox, expressed by (near gino jukebox), moving the
agent away from the room with the jukebox should delete also this predicate (the agent is not
near the jukebox anymore). However, that requires that the effects of the move action explicitly
take this issue into account. There could be many such predicates that need to be removed from
the agent’s beliefs when an action is performed and the problem grows to intractable state rather
quickly. The solution is to let the constraint checker to handle such “common sense” issues.

Such constraints – or axioms – are tested and enforced after performing any action that can modify
the state of an agent. A similar step is performed by the facilitator as well, whenever a data solvable
is added to or removed from the global state.

Mathematically, axioms are formulas which are universally valid in the given domain. In the
presented case, the notion of axiom is being used in a slightly different context – an axiom is a rule,
which enforces an universally valid concept, such as that an agent can be only in a single place at any
given time.

The axioms are expressed, as described in the section 3.1.1, in the form of a logical implication
A ⇒ B, where A and B are predicates. From the implementation point of view, the axioms are tested
and applied as a two step rule:

108

1. The premise of the axiom is matched against the current state of the agent (either the beliefs of
a ghost agent or the state of the facilitator).

2. If a match is found, the consequent is applied to the state (unless it was there already).

From the formal point of view, it is possible to treat these axioms as a special STRIP-s like
operators, by rewriting an axiom A(−→x) ⇒ B(−→x) as an operator with arguments −→x , precondition
A(−→x) and effects B(−→x) (similar approach as used to support derived predicates in planners, see
Thiébaux et al. [107]). Then it is possible to use situation calculus to describe formal semantics of
the axiom application on the world state, as described in the section 3.1.4 already.

The derivation process is known as modus ponens. Let A and B be predicates. Predicate A holds,
because a match was found in the state of the agent. A ⇒ B holds as well, because it is an axiom
defined for the scenario. By applying modus ponens, it can be inferred that B holds as well – therefore
it needs to be applied to the local state.

It was mentioned in the section 3.1.1 that the universal quantification is implicit for the axioms,
due to the way how the expression is evaluated. In the described case, the matching is performed
by unification which always returns all possible matches – essentially simulating the effect of the
universal quantification.

6.4 Action Planning

Action planning allows the agents to solve complex problems and to collaborate using the delegated
actions. There are many possible ways how to approach this problem, however for the purposes of
this thesis a STRIPS-like system was selected.

The implemented framework is using two different action planners in the form of the planning
agents – Sensory Graphplan and Metric Fast Forward planner described in the sections 2.5.2 and
2.5.2. They are both STRIPS-like planners, however each of them has different properties and is
better fit for different scenario.

6.4.1 Planning by agents

The agents invoke the planning agents to create plans using one of the two available planners to solve
the problems given to them in the form of goals. They use two special actions for this purpose which
do not have any preconditions nor effects declared. These two special actions are plan-and-execute
and execute-plan. The plans are built using the local beliefs and capabilities of the agent invok-
ing the planning, the required data (state & operators) are passed as a part of the problem specification
to the planning agent.

Whenever the user or another agent requires an agent to solve for a certain goal, the task is
delegated to the agent in the declarative form as an argument of the plan-and-execute action,
as described in the section 3.1.3. The facilitator matches the action against the agents offering it and
dispatches it to the correct recipient. This process was depicted in the figure 5.1.

Upon receiving this special task, the agent starts executing the planning process, as shown in the
activity diagram in figure 6.8. The processing consists of multiple steps:

1. Object analysis – in case that smart objects are used, they are examined for relevant object-
specific actions and properties. The relevant smart objects are identified using a simple goal
analysis – every object mentioned in the goal specification is tested whether it is a smart object

109

Figure 6.8: Activity diagram of the plan-and-execute action

and in the positive case it is examined for object-specific actions and properties which are then
added to the beliefs of the agent. Additionally, the objects from the sensing list for the current
room are examined in the same way.

The object analysis heuristics is not perfect, with certain goals it is easily possible to miss the
relevant object. Problematic goals are such which do not explicitly mention the object needed
to perform the action – for example goal (light-on living-room) does not mention the
object light-switch needed to turn the lights on and the agent has to discover the object
by other means – such by sensing the room and examining every object it has found.

However, the described heuristics works well enough for practical purposes because usually
the object to be interacted with is in the same room as the agent (and therefore likely to be on
the sensing list) or it is frequently specified in the goal statement.

2. The PDDL domain is built – this step constructs the domain for the planner consisting of dec-
larations of the operators and possible predicates. These data are retrieved from the action
functors of the agent.

3. The PDDL problem statement is built – in this step the initial and goal state are created for the
planner, consisting of the lists of predicates defining the initial state and the goal expression.

4. Planning is performed – the agents do not plan themselves, the planning task in the form of the
PDDL domain and problem statement is sent to a centralized planning agent which acts as a
front-end to the actual planner. The benefit of such centralized approach is that the planner can
be easily offloaded to a specialized machine (such as a high performance cluster) and shared
among many agents.

110

5. Plan post-processing – during the post processing stage, the plan is simplified and cleaned
up. Actions which were split for the cost adjusting purposes (as described in section 5.3) are
merged into a single action again and the now unneeded intermediate steps are removed.

6. Required action extraction – in order to be able to recruit team members which are able to
execute the created plan, each protoagent has a list of actions it has to be capable of performing
attached. The list is built by extracting the actions the protoagent has to perform from the plan
and it will be used during the plan execution to constrain the team member recruitment to only
suitable agents. For example, if the plan calls for protoagent A to serve drinks as barman, only
agents having this capability will be recruited for this protoagent.

7. The plan is executed using the execute-plan action.

Figure 6.9: Activity diagram of execute-plan action

Execution of the plan is shown in figure 6.9. It is again a multi-step process, however rather
simple. The algorithm assumes, that the plan is a partial order (parallel) plan coming together with
the corresponding world description from the SGP planner. In case that the M-FF planner is used,
every planning step contains only a single action and there is only a single world.

In the case of total order plans, where parallel execution is desired, one additional pre-processing
step is added. All recruiting actions are moved to the beginning of the plan, and then the total order

111

plan is iteratively collapsed into several planning steps where each step contains multiple independent
actions to be executed in parallel. The collapsing process keeps the plan partially ordered, the actions
can be only either collapsed into a single planning step or a new step has to created. It is not allowed
to invert the order of the actions.

The decision whether it is possible to collapse an action in the current planning step or whether a
new planning step has to be created depends on whether the action is mutually exclusive with some
action present in the planning step already. If the action is mutex, it cannot be collapsed into the
current planning step and a new one has to be created.

To determine whether two actions are mutex or not is possible using the same technique the
original Graphplan planner uses – the actions are tested, whether their effects are conflicting (such
as producing both A and ¬A in the current state) or whether they have competing needs (one action
undoes the precondition of the other). These tests are described in detail in [10].

The collapsing of the plan is an action which is not always possible. The problems are caused
typically by the tendency of the total order planner to emit an action into the plan only at the moment
when it is actually required, thus producing chains of sequentially dependent actions. Such plans are
impossible to convert to partial-order plans. This fact is also a reason why the recruiting step has to
be moved to the start of the plan, to “free” the following actions on the protoagents.

The collapsed plan is then executed in a slightly different manner – all delegated actions present
on the same level are delegated to the facilitator at once (not sequentially) and the execution proceeds
to the next planning step only after all the actions present in the current planning step are completed.

The “Substitute protoagents with names” step in the figure 6.9 is used to replace the protoagents
used by the planner with the agents which were recruited for them, because the protoagents are
specific to each agent – protoagent A1 may denote different team member for agent Gino than A1 for
agent Carlo.

6.5 Fail-safe execution

The described multi-agent system enables complex simulation, however there are many possible fail-
ure modes. Apart of the ones which are intrinsic to distributed design of the framework (connection
failures, networking issues, etc.), there are problems which stem from the dynamic nature of the sim-
ulation and limited agent’s knowledge about its environment – such as problems with side effects of
delegated actions or action failures because of stale information.

It is important to ensure that the agent will remain in a consistent and usable state regardless to
what happens during the action execution. This requirement ensures basic robustness of the system
(i.e. one failed action will not block the whole scenario). To provide this capability a concept of safe
execution was created.

An action is said to be safely executed if it is executed inside of a specially crafted sandbox –
a wrapper which tests whether there is an action-specific failure handler provided and executes the
action using this failure handler.

The failure handlers are special functions registered by the application developer for any action
where the default behavior (returning the failure code) is not sufficient or desirable. The failure
handler can, for example, arrange for re-planning in case of a failure or ensure that the action will
be retried until it succeeds instead of failing. They are completely separate functions from the action
functors. The main reason is flexibility – different agents may have different needs how to handle
failures.

112

Apart from failure handlers, the action execution safety is ensured by using atomic state updates
in both facilitator and local beliefs and using the axiom enforcement. Each action can apply its effects
if and only if the action was successful. In case of failure, the state recovery needs to be done – both
by the action code and also by the potentially attached failure handler.

All these techniques try to ensure that the framework is kept in a consistent state, regardless
of problems that may occur due to the limited knowledge of the agents and the side effects of the
delegated actions.

Of course, some failures still do occur, for example if an impossible task was assigned to an agent
or if the situation changed in an unexpected way. However, such failures are realistic. They occur in
the real world as well and it is impossible (and probably undesirable too) to try to prevent them.

6.6 Summary

This chapter presented the design and implementation of the proposed collaboration framework for
autonomous agents based on the task delegation and action planning. Autonomous agents are using
the framework to collaboratively solve the tasks assigned by the user or their respective team leaders.

The problem solving process is a complex task consisting of several important steps:

1. The task has to be formally specified, either in an imperative or declarative manner.

2. The task is delegated to the facilitator agent by either an autonomous agent or by an agent
representing the human user.

3. The facilitator has to find agents which are capable of performing the requested task and to
dispatch the specification to them.

4. The receiving agent(s) either executes the task directly (imperative specification) or use the
action planner in the form of a planning agent to find a solution of the task (declarative specifi-
cation).

5. If necessary, the agent will build a team of agents with the required capabilities to be able to
execute the created plan. The agent becomes a leader of a team of agents working together.

6. The team members are told to solve sub-problems, using delegated actions. The delegated
actions could lead to another round of action planning by the delegates, naturally implementing
a hierarchical planning scheme.

7. The team leader oversees the progress of the sub-goals and coordinates further actions as
needed until the problem is solved.

Consistency of the logical representation of the simulation environment is of great importance.
Several mechanisms were presented which are used to improve the situation – sensing, effect appli-
cation and axiom enforcement.

The virtual characters and objects in the virtual environment are controlled by the ghosts & pup-
pets framework. The puppets implement the low level basic animation features (such as walking or
keyframe animation). The ghost concept is an agent abstraction for asserting control over a puppet
(“possessing” it). The ghost agents are used to implement the majority of the autonomous agents
controlling virtual characters in the scenario.

113

The user is represented by a special ghost(s) which translate the user’s input into task specifica-
tions usable by the described framework. The user can work on several levels, using either direct or
indirect control over the scenario and adapt his work style to his needs and preferences.

There are multiple special, non-embodied agents performing auxiliary roles in the simulation.
The most notable one is the facilitator, which is used to maintain the state of the simulation and
to match the offered services with the requested tasks. Facilitator uses the unification algorithm to
evaluate queries about the state of the world and also to delegate the requested tasks to agents able to
perform them.

Finally, the implementation of object-specific actions was introduced, allowing the scenario de-
signer to create “pre-packaged” smart objects which are readily usable by any agent supporting them,
greatly enhancing the reusability of the data between the scenarios.

114

Chapter 7

Case studies

The processes and frameworks developed during the course of this thesis and described in the previ-
ous chapters were tested and evaluated using multiple case studies. These case studies demonstrate
various capabilities and properties of the described framework in real applications.

Each case study will be examined from several points of view:

• User input (interaction mode, how is the user involved)

• Collaboration style (ad hoc tasks, problem solving, team formed/no team, etc.)

• Evaluation

The user’s involvement in the simulation will be examined – how the user interacts with the
scenario and which interaction styles are available. Some scenarios use direct interaction, where the
user is controlling the simulation by direct input (such as by using joystick). Other case studies use
indirect input or a combined setup with both direct and indirect control.

The collaboration style will be examined as well. The user can collaborate with the other agents
either in an ad hoc way – by sending direct orders (imperative task specification) or in a more orga-
nized way – by forming a team and using the problem solving capabilities of the agents.

Finally, for each case study there will be a short evaluation summarizing the observations made
during the development and use of the scenario, mainly from a usability point of view.

7.1 “Box world”

The “Box world” scenario was designed mainly as an initial test bed for the development of the
collaboration and problem solving framework. The scenario contains two (or more) virtual characters,
several crates and two places (rooms) separated by a door. The goal for the virtual characters is to
move the crates from one room to another. There is a constraint imposed on the virtual characters
that the agent moving a crate is unable to open the door (is encumbered). Alternatively, the crate to
be moved is too heavy/large for a single character to move. Therefore, two or more virtual characters
have to work together to solve the given problem.

Two variants of this scenario exist – the original one with a warehouse (fig. 7.1) and a more recent
one, taking place in front of a virtual museum (fig. 7.2). The difference is mainly in how the crates are
handled – the museum variant uses object-specific planning and object-specific actions to move the
heavy large crate by coordinating two virtual humans, whereas the older scenario with the warehouse
used a “hardwired” approach with fixed actions.

115

(a) Initial state (b) Opening a door

(c) Moving the crate

Figure 7.1: Warehouse scenario

The user is represented in the virtual environment as two ghost agents translating his input to
orders for the virtual characters. There are all three interaction levels possible:

• Use the gamepad ghost to take control of one of the virtual characters or even crates and move
the crates directly.

• Collaborate with the other virtual characters directly by giving imperative orders (task specifi-
cations). The user is able to either move the crates and have the other autonomous agents open
the door for him or vice versa.

• Work on the high level by asking the agents to solve the problem themselves. In this variant the
user utilizes a simple GUI to type in the correct task specification directly and delegate it via
the facilitator to the agents.

116

(a) Initial state (b) Moving the crate

Figure 7.2: Museum scenario

Apart of testing the task delegation, the ghost & puppet framework and the basic collaboration
concepts, the “box world” scenario was used also for development of the object-specific planning.
Using the object specific actions embedded into the smart object representing the large crate, the
agent is able to discover that the crate is too heavy and that two people are necessary to move it. The
agent is then able to recruit a teammate to help him to move the box.

The box pushing animation was implemented using inverse kinematics – the box is translated in
sync with the forward motion of the agents and their hands are held in position using the IK. The full
description of the approach can be found in [1, 2].

7.1.1 Eye tracker experiment

As an experiment, an alternative control ghost was implemented and tested in the “box world” sce-
nario. The user is able to control the virtual characters using the VisionTrak eye tracking system. The
system was published in [13].

The system was used mainly to verify the ability to process real-time data from the eye tracking
and magnetic tracking systems using the multi-agent framework and to evaluate the utility of eye
tracking for interaction and monitoring.

The user uses a multimodal setup with the eye tracker and a gamepad to drive the virtual characters
in the warehouse, as seen in fig. 7.3.

The eye tracking system was used to implement a “go there!” metaphor. The system has two
modes:

• Indirect, order mode – the user picks an object or place by gaze and asks the virtual character
to approach the picked target by pushing a button on the gamepad.

• Direct mode – the virtual character follows the gaze direction.

The selection of the virtual character to control is achieved by gaze and the user’s ghost agent will
take control of the puppet driving the virtual character when the selection is confirmed by pushing a
button on the gamepad.

117

Figure 7.3: Gaze tracking experiment

The eye tracker interface was a bit of disappointment for various reasons. While it was well pos-
sible to take control of the virtual character using the ghost interface and the multi-agent framework
performed well, prolonged utilization of the system proved to be very tiring for the user. Moreover,
the hardware itself has frequent robustness and accuracy problems. Ideally, the system should be used
only in a passive, monitoring role, not as an active input device.

7.2 Virtual guide

The virtual guide scenario puts the user in front of a virtual museum/gallery. The goal is to explore
the museum with the help of a virtual guide – a robot – which is able to guide the visitor to various
places of interest and provide the user with information about the works on display.

The guide is able to find the user in the museum (for example if one gets lost) and to guide the
visitor to the desired destination using gestures and synthesized voice. If the user gets lost or the
robot loses contact with the user’s avatar then the robot returns to pick the user up again and resume
guiding. The robot delivers short information about objects of interest being passed on the way to
the destination and explanation about the destination itself, once there. The information is provided
using synthesized voice generated using the Festival system1.

1http://www.cstr.ed.ac.uk/projects/festival/

118

http://www.cstr.ed.ac.uk/projects/festival/

Figure 7.4: User with the virtual guide

Figure 7.4 shows the user operating the virtual guide installation. The system consists of a large
back-projection screen, loudspeakers for speech output and multi-modal input system utilizing a tac-
tile mat and a handheld computer (see fig. 7.5).

The tactile mat is used for navigation by the user – by stepping on the arrows, the user is able to
move in the desired direction. In our case, the XBoxTM mat was used with a USB converter, in order
to be able to utilize it with a regular PC.

The handheld computer with a touchscreen displays a menu with pictures of the works displayed
in the virtual gallery and a buttons used to instruct the guide. The handheld computer is connected by
a Bluetooth link to the simulation machine in order to retain the freedom of movement of the user.

Figure 7.6 shows examples of works in the virtual museum – the pictures and the statue are
reproductions of the works of the Colombian artist Fernando Botero, which were “installed” in the
virtual museum.

From the implementation point of view, the system utilizes two ghost agents driving two virtual
characters. One ghost–puppet pair drives the robot guide and the second one is user control ghost
agent and an invisible avatar of the user carrying the camera. The rest of the framework is standard
– one planning agent with the Sensory Graphplan planner, one grid agent for path planning and
facilitator are used.

To localize the user the guide agent uses the information made available to the facilitator by the
user’s ghost agent. Then the path planning agent (a “grid” agent) is used to compute a path to the user
and the guide will follow it until it arrives at predefined minimal distance from the user (≈ 1m).

119

(a) Tactile mat (b) Sharp Zaurus PDA with user interface

Figure 7.5: User interface for the Virtual Guide scenario

(a) Horse statue (b) “Mona Lisa”

Figure 7.6: Virtual museum exposition

In order to be able to symbolically express the goals of the user and the orders to the guide agent,
the environment had to be augmented with semantic information defining the names of the places,
which places are linked together (in the navigation sense) and where are the objects of interest. Part
of the semantic information for the museum is shown in figure 7.7.

The semantic information in the application consists primarily of geometrical information defin-
ing several large “rooms” which are used to describe the position of the agent in coarse terms (such as
“I am at the horse” or “I am inside”) and topology information, describing the connections between
the rooms. There is a missing link between the “frontyard” and “lobby” rooms, the omission is in-
tentional, because there is a front door separating these two rooms which defaults to the closed state.
Upon opening the door, the link between the rooms will be created dynamically.

The yellow points highlighted in one of the rooms define arrival/exit points – these points are used
by the agent as start/end points for path planning to/from the room.

The locations of the artworks are described by named points – sets of 3D coordinates with a name
associated representing points of interest. The approximate location of each artwork is specified by

120

Figure 7.7: Semantic information for the museum

saying in which room the artwork is. Therefore the path planning process is actually a two-level
problem – the agent has to find the way to the correct room (determine which rooms have to be
traversed), this is usually done as a part of the action plan described below. The second part is to find
the geometrical path between the rooms and once in the room with the goal, to find a path to approach
the goal.

The reason for the two-level planning approach is that the agent is able to take into account that he
has to open/close doors or to deal with the human visitor. A pure path planning approach would not be
sufficient for this purpose because most path planners do not work well with a changing topology of
the world (updates of the adjacency graph used for path planning due to the added/removed obstacles
are very expensive operation).

7.2.1 Interaction

The user interacts with the scenario in two ways:

121

• Directly – the user is able to explore the environment by navigating the scene using the tactile
mat.

• Hybrid mode – the user can summon the guide and ask it to see a certain work using the
handheld computer (by picking the work of interest from a list of images on the display).

The hybrid mode is implemented as a team-based collaborative process, where the guide agent
and the user (represented by his ghost agent) work together to find the desired art work. User forms
a team recruiting the help of a guide (there could be multiple guides available) and delegates the
task description specifying that he wants to be near certain artwork. The guide uses the planner as
described in the previous chapters to find an action plan satisfying this request and starts to execute
it. The plan usually consists of three main stages:

1. Find the user and approach him – the guide agent has to discover the location of the user in the
virtual environment and has to come to pick him up.

2. Guide the user towards the requested goal – the guide is showing the way to the user, which
is supposed to follow manually using the tactile mat. If the user falls too far behind or gets
lost, the guide agent localizes the user again and returns back to him to pick him up again.
This process is triggered by evaluating the distance between the user and the guide using a path
between their respective positions – if the distance is longer than a pre-defined threshold, the
guide will return to the user.

3. Approaching the goal and delivering some commentary – the guide brings the user to the ob-
jective and delivers information about it.

7.2.2 Evaluation

The virtual guide scenario performs surprisingly well, even though the interaction between the user
and the virtual guide may seem on the first glance unnecessarily complex. Nevertheless, the more
complex solution using task delegation and planning has a large advantage in flexibility. With minimal
changes, it is possible to deploy multiple virtual guides guiding both human users or autonomous
agents and the system will accommodate the change without problem.

It is also possible to add or remove the points of interest, even at run time – thanks to the dynamic
approach used by the guide agent, the data will be picked up and used automatically. The only re-
quired change is to update the user interface on the handheld computer with new data – for simplicity
of the implementation, the data have to uploaded to the handheld machine manually at the moment.

However, while extending the scenario and adding new data, the limits of the used planner became
quickly apparent. The SGP planner is unable to cope with too many connections between the rooms
and too many objects in general. The final application uses five rooms visible in the figure 7.7, four
connections and five artworks available for the user to visit. The guide agents uses 14 operators
for navigation, guiding and to interact with environment (open/close doors, move objects). In this
configuration and using compiled LISP version, the planner takes approx. 10-15 seconds to build the
plan, which while still being interactive, is not realtime and pushes the limits of the planner already.
The problem seems to be the very slow backward-chaining search inherited from original Graphplan
and the plan forking approach to contingent planning used by SGP authors. To mitigate this wait for
the human user, an additional voice announcement was added informing the user that the guide was
summoned and will arrive shortly.

122

7.3 Natural language interface

Human users do prefer to communicate with the machine on their own terms, using familiar language.
An experiment was performed to create a natural language interface to control the autonomous agents
in the simulation.

The facilitator-based system permitting to delegate tasks to the agents is a very good candidate
for supporting a natural language interface. The tasks are delegated in a form of logical expressions
which can be mapped to the natural language. In this case, the mapping was implemented for limited
form of English language. The interface is implemented as a translator agent.

Figure 7.8: Translation from written English to task specification

Figure 7.8 shows an example of such translation. The user typed an order for the specific agent:
“Gino, go to the horse!”. This order will be translated to (plan-and-execute gino (at
gino horse)). It is also possible to give orders for multiple agents or for everybody at once – such
as “Everybody go to the lobby!” translated into (plan-and-execute ?a (at ?a lobby)).

The translation process is done in several steps using word taxonomies, expression normalization
and knowledge about the construction of valid English sentences, such as that each sentence has a
verb, a subject performing the action and usually a complement determining the object the action is
being performed on or giving additional information about the action. These sentence constructs are
identified and used to build a goal specification for the agent.

7.3.1 Interaction

The user interacts with the system by typing English sentences which are then translated on the fly
into the goal specifications for the system. The user interface agent communicates directly with the
facilitator and delegates the built statement to the it for processing and delegation to the agents. Both
facilitator and the agent(s) the task was delegated to report the task status back to user in order to
indicate whether it succeeded or failed and what was the reason for the failure.

The described user interface works on a high level using direct orders to specific agents. The
agent tries to build a plan to satisfy the given goal and then operates according it. Depending on the
goal given and the resulting plan, it is possible that the agent will create a team to satisfy it, however
this all happens without user’s intervention.

123

7.3.2 Evaluation

Unfortunately, the usability of the described translator is not very good, because of the amount of data
that has to be prepared for every scenario – the word typing (e.g. “gino” is a “person”, “go” is a verb
etc.), normalization of certain expressions (such as “pick up” has to be a single keyword pick-up
in order to match the verbs with available actions) and the sentence patterns used to generate the
task specifications. These data have to be prepared for each scenario anew and care has to be take to
ensure that they are consistent with the rest of the system (the action names match, the agent names
match, etc.). Moreover, the algorithm used is not very robust, it manages to recognize certain types
of sentences very well, but fails badly on others.

The result of this experiment shows that there is a potential for a natural language input translator,
but some more work is needed. The performance and usability would improve a lot by integrating
a proper natural language processing engine and ideally making it get the required information from
the facilitator directly instead of having to define everything manually.

7.4 User interface for problem solving

Interaction with the complex simulation system consisting of many agents can be a daunting task with-
out an appropriate interface. Usually these interfaces are designed in an ad hoc application/scenario
specific manner, such as the specialized interface to the City Riot scenario presented in the section
7.6.

On the other hand, it is useful to have a generic interface which can be used even if there is no
scenario-specific one or if it is too restrictive. The interface has to allow visualization and inspection
of the current state of the simulated world, specification of the tasks to be done and at least some
basic sanity checking for the tasks being specified by the user. Such tool is especially useful during
the development of the scenario and in the debugging process.

This case study intends to demonstrate how a user interface can exploit various capabilities of
the collaboration framework presented in this thesis to provide a meaningful but completely scenario-
independent tool to the user.

7.4.1 Interface

The interface presented to the user consists of several windows, as seen in figures 7.9 and 7.11. The
start screen offers four main tools available to the user – the object browser, scheduler, the shortcuts
window (also called the “wizard” window) and the expression editor.

The user interacts with the running simulation using either imperative orders or goal specifica-
tions. These are built using the facilities provided by the interface and dispatched to the facilitator for
delegation to the agent(s) to be executed.

7.4.2 Introspection

The ability to inspect the state of a running system is the key to any meaningful interaction in a
collaborative environment. Without this ability the user would be unable to know what are the agents
capable of and what is their current state such as whether they are free/busy or their location.

This functionality is implemented using introspection – the ability to examine running objects in
the Python language. Python has excellent introspection capabilities, however in this case they need
to be extended in two ways:

124

(a) Start screen (b) Shortcuts screen

(c) Expression editor (d) Scheduler

Figure 7.9: User interface for problem solving

• The state of the agent and its capabilities need to be examined. Python introspection works on
lower level, for example the names of the functions can be retrieved or currently defined vari-
ables can be examined. Therefore, the required higher-level functionality (such as enumeration
of agent’s capabilities and beliefs) has to be built in terms of the Python capabilities first.

• The introspection functionality needs to be accessible from outside of the agent’s process. Typ-
ically, the system is distributed and the information has to be accessible remotely. For this
purpose a special CORBA interface was implemented.

The required introspection capabilities were built using the information available to the agent –
its state and the information gained from the functors implementing the actions.

Figure 7.10 depicts how the introspection layer is implemented as an additional CORBA interface
extending the regular FacilitableAgent. The methods of this interface provide direct access to the
lists of actions (functors) with all their metadata encoded using the Python “pickle” mechanism to
marshal them for easy transport over CORBA. The same approach is used for the agent’s beliefs. The
checkSolvable function is used to verify an individual predicate, whether it holds or not in the
context of the agent’s beliefs.

125

 «FacilitableAgent»

 +executeID(in long id, in FacilitableAgent originator, in string solvable): void

 +receiveReply(in long id, in string data): void

 «BeliefGhost»

 +observe_solvable(in tuple solvable): bool

 +check_solvable(in tuple solvable): list

 +wait_for_solvables(in tuple solvable): list

 +declare_add_effects(in list effects): void

 +undeclare_del_effects(in list effects): void

 ...

 HumanGhost

 +initialize()

 +run()

 +exit()

 BarmanGhost PoliceGhost GuideGhost

 «ReflexiveGhost»

 +getActionList():string

 +checkSolvable(in string solvable):string

 +getAgentName():string

 +getBeliefs():string

Figure 7.10: Autonomous agent with introspection class diagram

Similar introspection is also provided for other agents (software agents in general, not just ghosts)
available via CORBA in the current simulation system. The agents are enumerated together with their
methods and displayed in the form of a list – see figure 7.11. For agents with static interfaces, the
methods can be retrieved directly using Python, unlike for the ghosts, where the interface can change
depending on whether some new object-specific actions were loaded or not or which default actions
were loaded at the start of the agent.

The object browser provides the user with multiple information:

• List of running agents and their types (ghost, puppet, something else).

• For each non-ghost agent its static API and its facilitator-declared capabilities are displayed.

• For each ghost agent, there is the static API and its facilitator-declared capabilities displayed.
The facilitator-declared actions are checked against the agent’s current state and impossible
actions (with unsatisfied preconditions) are grayed out.

The information in the object browser is updated to reflect the current state of the system and
provides the user with a quick overview of the situation.

7.4.3 Action scheduling

In order to have an agent execute an order or to complete a complex task, the goal has to specified.
Using the described interface, it is possible to instantiate an action (perform a valid substitution of the
arguments – the user pick out of the list of instances which are possible at the moment for the agent)
and schedule this action for direct execution in the scheduler window. In this way it is possible for
the user to create a plan for the agent(s) manually and then have it executed.

Another, more flexible, option is depicted in the figure 7.9(d). The plan is generated automatically
using the action planner from the current world state retrieved from both the facilitator and the agents

126

Figure 7.11: Object browser

127

and the specified goal. This is done by direct invocation of the solveProblem method of the
planning agent, available from the object browser.

The plan, created either manually or automatically, is displayed in the scheduler window and
available for the user to modify it or to start executing it. During the execution of the plan the
application assumes the role of the coordinator, delegating the individual tasks to the facilitator for
dispatching to the agents for execution and tracking its progress by evaluating the incoming status
reports from the agents.

Another possible option is to store the built plan as a “shortcut”, as seen in figure 7.9(b). The
shortcuts can be invoked by a simple click of the mouse and are typically used for frequently used
actions (essentially a macro).

Another use for the shortcuts is to provide a simplified interface for non-expert user – the user
will be able to use only the predefined set of actions presented on the screen in the form of shortcuts
created by the scenario designer.

7.4.4 Action pre-validation

In order to ensure that the user is able to submit only valid orders or tasks to the agents, it is necessary
to pre-validate his input. Of course, the agents test the preconditions of each action before attempt-
ing to execute it and the consistency of the state of the virtual world will be maintained even with
invalid input. However, the user will have to wait potentially long time while the action/plan is being
executed, only to learn that a mistake was made and some action is not possible in the given state,
indicated by the received failure status report.

The action pre-validation is performed in two contexts:

• On action instantiation (static check)

• Before plan execution (dynamic simulation)

Static pre-validation on action instantiation uses the list of all possible argument substitutions for
the given action to filter out impossible actions. For each instance the preconditions are evaluated us-
ing the current system state as retrieved from the facilitator and the impossible instances are removed.
If there is at least one instance left, the action is deemed possible, otherwise the action is grayed out
in the browser.

The same action pre-validation process is used when an action is being instantiated manually
for insertion into the plan. In that case the user is only given list of instances which are possible
(preconditions are satisfied) in the current state, making it impossible to insert an invalid action into
the plan.

The pre-validation process has O(m × n) complexity, where m is the number of actions to be
tested and n is the number of facts received from the facilitator. This process has the potential to
be slow (essentially quadratic complexity) and more optimization is needed, such as memoization of
already tested and known to be true predicates during processing of the actions and more efficient
storage of the data to speed up the processing.

In case that only automated plan generation was used, no more plan validation would be necessary
– the planner guaranties that the generated plan is correct with respect to the given initial and goal
state. If manual plan creation/modification is allowed, this guarantee is not there anymore because
the static action pre-validation described above cannot check for dynamic effects introduced by the
actions before the tested action in the plan – the static check tests only again the current system state.

128

To address this problem a plan execution simulator was implemented. The simulator receives
a copy of the current world state and simulates execution of the plan by sequential evaluation of the
preconditions of the actions and application of their effects to the simulated state. Using this approach
it is possible to identify problems in the plan before submitting it for execution. The invalid action
will fail during the simulated execution step because its preconditions will not be satisfied.

Dynamic and static action pre-validation is able to catch the most common problems, however it
has to be taken into account that the plan may still fail during the execution – for example because
of the unknown side effects of the delegated actions. The pre-validation provides support to the user,
but it is not a solution for every possible problem.

7.4.5 Task delegation

The plan execution is implemented using the task delegation via the facilitator. The actions are dele-
gated to the facilitator in sequence and the facilitator dispatches them for execution, using the standard
delegation approach described in previous chapters.

There is one problem which is unique to the user’s view of the world state while using the de-
scribed interface. For example, in the “Virtual guide” application, the user is collaborating with the
autonomous agent on a peer-to-peer basis, having only partial view of the world state (partial observ-
ability). On the other hand, the described interface works directly with the global state retrieved from
both the agents via introspection and from the facilitator by direct queries. A problem occurs when
the plan is created relying on some information which is available to the user from the global state
but is not available to the agent executing the action.

Let’s consider an example in the museum scenario from the “box world” experiments:

1. Agent Carlo opened the museum door (for example as a result of a previous plan or a side
effect).

2. The user specifies that agent Gino should close the door of the museum. From the user’s (and
the pre-validation) point of view, the action is possible, because the facilitator knows about the
change made by Carlo (door is open).

3. The door closing action is delegated to agent Gino via the facilitator and fails.

The action/plan failure in this case stems from the difference in the world state view available to
the user through the interface. The user has an unrestricted access to the world state in the facilitator
(full observability), whereas the agents have only partial observability. The nature of the issue is
similar to the problems caused by the side effects of the delegated actions.

There are two possible solutions for the problem:

• Tell the agent the missing information.

• Ask the agent to sense for it.

The second solution is preferable and was actually implemented, because the sensing is also
useful to mitigate the problems caused by the side effects. Another reason is a problem of accidental
“poisoning” of the beliefs of the agent, if fed with incorrect information.

Sensing was described in the section 6.3.4. However, by default the agent senses only the content
of the current room (list of objects contained there) and tests the solvables explicitly contained in the
sensing list, which may or may not contain the required solvable (e.g. the door state from the example
above), causing the inconsistency.

129

In our case, the agent modifying the state of the world has the option to add the modification to
the list of solvables to test for in the current room. Alternatively, the solvable can be put there by the
scenario designer or the solvable can be sensed for every time (useful for global facts, such as time of
the day). During the next observation cycle, the agents will test for this solvable and learn about the
new modification – limiting the impact of the problem described above.

7.4.6 Evaluation

The described user interface proved to be a valuable tool while debugging the problems in the sce-
narios being developed. Especially the introspection features are very useful while debugging a fully
distributed system running many agents.

The interface itself is a prototype developed more as a feasibility study than a finished solution
usable by non-expert users. It would have to be simplified further to shield the user from issues
such as action instantiation and rather complex plan building. The shortcut feature provides a good
starting point to create specialized, high-level interfaces to the concrete scenarios, without complex
programming skills required.

From the interaction point of view, the interface provides the user with essentially complete free-
dom. The user can control directly the puppets with the interface acting as a ghost agent, even though
doing so is not very practical from the usability point of view – the actions need to be instantiated
with arguments and for puppets there is little introspection and validation support.

The other two options were described already – the user can interact with the scenario using either
manually or automatically built plans. The plans may include team forming by the agents. The user
usually does not have to form a team explicitly to achieve his goal, even though the option to do so is
there, albeit laborious – the user would have to form a team manually by scheduling the right actions
and than manage the team as well. It is a lot easier to just delegate the full task to some other agent
which will perform the tricky job instead.

Overall, the application is a good demonstration of possibilities available to the developer us-
ing the collaborative agents framework. The introspection, action validation, plan creation and the
shortcut macros are techniques which are valuable for other scenarios as well.

7.5 Declarative “story specification” for VR exposure therapy

In the field of psychotherapy, cognitive and behavioral therapists started to use the virtual reality for
the exposure sessions to complement a therapy in vivo for many psychological conditions. It has
been widely applied to various phobias, such as fear of flying, arachnophobia and acrophobia. More
recently, it has been used to treat also the social anxiety disorder – the patient is unable to function
normally in social situation because it makes him anxious (such as speaking in front of an audience,
meeting friends in a bar, etc.).

The challenge for the therapist is to reproduce an anxiety stimulus in the patient. In order for the
virtual reality to be effective for this purpose, it has to be:

• Believable – in order to not break the immersion and to work as an anxiety stimulus in the first
place.

• Reproducible – the scenario has to be fully repeatable, essentially ruling out fully autonomous
systems. It is not sufficient that the agent will perform the same activities if they do not happen

130

(a) The bar scenario (b) The bar scenario

(c) Patient’s view

Figure 7.12: The bar scenario

(for example) in the same place and in the same situation. If the scenario is not fully repeatable,
it is impossible for the therapist to evaluate/compare the results obtained.

• Controllable – the therapist has to be able to intervene at any moment and be able to adapt the
scenario to the condition of the patient.

In the typical case, the therapist is a non-expert user and the application has to be as robust and
simple to use as possible. A typical VR system is usually built from the machine perspective – the
interaction is low level in the style: “in order to achieve this, you have to do this, this and that’. Far
easier for the non-expert is to use a system which offers human perspective: “I want this this and that
to happen, arrange it!” The actions should simply happen, without the need for complex scripting or
programming.

The collaborative framework described in this thesis is a good candidate for implementation of
such simulation system because it offers high level actions much closer to the interactions with the
real world – such as “go to the toilet” implying that the agent will negotiate doors, flush the toilet after
use and return to the original place. The reproducibility and controllability are also easy to achieve
by using the ghosts & puppets framework.

131

Figure 7.13: Action scheduler

To test the possibility of using the described framework in a therapeutic setting, a special scenario
for treatment of social phobia was created. The scenario takes place in a bar full of people (figures
7.12(a), 7.12(b)). The patient is supposed to meet a friend there and make small talk with him/her
(figure 7.12(c)).

In order for the scenario to be believable and have the desired effect, the virtual characters have to
“be alive” – the waiter should arrive and offer drinks, some people may dance to the music and some
simply go to the toilet and back.

The amount of this “disturbance” present has a direct effect on the patient’s anxiety and it is
therefore desirable to have a simple means to control it – for example the patient starts in a very calm
bar where everybody is drinking coffee and the patient is undisturbed. As the therapy progresses, the
patient may be gradually exposed to more stressful situations – the interaction with the waiter, people
playing music on a jukebox etc.

One possibility how to regulate the amount of “action” in the scenario is to script everything. This
is commonly done and allows to have a total control over every aspect of the simulation, however it
is extremely labor intensive and unfeasible for the therapist himself.

A better solution is to use high level actions to tell the virtual characters what to do and let them
work out the details autonomously. The therapist only has to specify the amount of the actions to be
performed, for example: during the session, the waiter will inquire about order twice, somebody goes
to the toilet and some people will dance.

Using the capabilities of the collaborative agent framework, implementation of such automated
background “story” specification is simple. Figure 7.13 depicts a simple action scheduler, where in the
left part of the window, the therapist can specify how many times each action should happen and the
total duration of the scenario. Afterwards, a random schedule conforming to the given specification
will be generated and another push of a button starts execution of the generated scenario.

The events available for the therapist are defined as declarative task specification, for example the
“Drink” event is defined as task: (plan-and-execute %a (not (thirsty %a))). This
is in fact a template, the %a will be substituted for a randomly chosen agent. In case, that the some

132

(a) Jukebox (b) Virtual characters dancing

Figure 7.14: The “dance” action

action (event) should be always performed by a certain (not random) agent, the event can be defined
with the name of the agent explicitly specified. During the execution of such generated scenario, the
tasks are sequentially delegated to the corresponding agents using the already described procedure.

Using the declarative task specification for the event definition has another advantage: the agents
performing the tasks will use the planner. The planner ensures certain consistency, such as that a
virtual character told to drink something will attempt to order a drink from the waiter, except in the
case that he has a non-empty drink in front of himself already. All the details of ordering a drink
(such as summoning a waiter, making an order, having the waiter bring the drink etc.) will be planned
automatically by the agent and the therapist does not have to care about them. This property is in
stark contrast with the scripting approach, where all this information has to be manually programmed
into the scripts.

Figure 7.14 shows the “dance” action (event). Virtual character Martin turns on a jukebox and
Gino together with Carlo are dancing. Apart from the use of a planner, this action demonstrates the
use of object-specific actions (jukebox operation) and sensing (Marting turns on the jukebox and Gino
with Carlo detect the music playing/stopped).

In order to be able to specify the required semantic information for the scenario, a small tool was
created using the free 3D modeling application Blender2. With the use of few custom export scripts,
it is possible to use Blender to define:

• Obstacles for the path planning

• Rooms with their names

• Exit/Entrance points for the rooms

• Named points

Unfortunately, it is not yet possible to define the connections between the rooms using Blender
because it does not allow arbitrary links between objects. The connections/links have to be added
manually afterward.

2http://www.blender.org/

133

http://www.blender.org/

(a) Obstacle definition relative to the geometry of the
bar

(b) Rooms with their entrance/exit points

Figure 7.15: Definition of semantic information in Blender

7.5.1 Evaluation

The automatic generation of “life” using the collaboration framework together with the action plan-
ning provides a unique way of how to automatically create new background activity, while retaining
consistency and being reproducible and controllable at the same time.

The user interacts with the simulation mainly indirectly, by building a global plan of high level,
declaratively defined, tasks for the agents to execute. The tasks may require further planning and
processing on the part of the agents, however this is transparent to the user. No teams are explicitly
created by the user, but the agents may form teams during the course of the execution of the delegated
tasks.

Overall, the case study verified that the approach taken is workable in practice. It is possible to
have a very high level control over a scenario (the “disturbance” level) and leave the low level details
to the autonomous agents to work out.

The described scenario is not yet complete (some object-specific animations are still missing) and
the field testing with a therapist and patients is planned for near future.

7.6 City riot

Various training systems have frequently specific requirements not satisfied by regular agent-based
simulation frameworks. In particular, the issues of controllability and reproducibility are problematic
in systems with fully autonomous agents. On the other hand, scripting-based systems suffer from lack
of flexibility and difficult modification.

The presented study strives to demonstrate how a very flexible simulation system can be built us-
ing the collaborative agent framework developed during the course of this thesis. The task delegation
framework provides the user with high level control of the situation and the lower level capabilities
of the ghosts & puppet system allow the user to become one of the actors in the simulation.

On the high level order-based interaction the user lets the agents decide the low level details of the
actions themselves. On the other hand, the user is able to perform actions as one of the agents directly

134

on the scene, enabling him to compensate for the possible shortcomings of the artificial intelligence
or to perform actions the AI is unable to do.

To demonstrate the capabilities of the developed collaboration framework, a test case simulating
a training system for police was implemented. The user is put in a position of a police commander
having to manage a large crowd of people moving in urban environment (fig. 7.16). The goal of the
user is to prevent access of the crowd to certain places of strategic importance in order to prevent
damage (such as looting or arson).

Figure 7.16: Police blocking a street from rioting crowd

7.6.1 Architecture

The application utilizes the standard architecture centered around the facilitator and the ghost agents.
The planning agent is used to perform the action planning duties utilizing the fast Metric-FF planner
described before. The visualization part is implemented using the freely available Delta3D3 graphic
engine.

3http://www.delta3d.org/

135

http://www.delta3d.org/

Delta3D engine

Crowd
Puppet

Crowd
Ghost

Facilitator

Grid
agent

Location
agent

GUI agent

Planning
agent

Gamepad agent

Police
Ghost

Police
Puppet

Police
Puppet

Car
Puppet

Car
Puppet

Car
Ghost

Camera
Puppet

Figure 7.17: Architecture of the scenario

Apart of the standard components of the system, there are two user interface agents available – a
gamepad agent for the first person interaction and a graphical user interface (GUI) agent for indirect,
command-based interaction. The architecture of the scenario is shown in the figure 7.17.

There are three types of autonomous ghost agents present in the scenario:

• Crowd controlling agent. By default, the ghost only moves the crowd to a location randomly
picked out of a list of several predefined places. The crowd consists of a leader and 1000 virtual
characters following the leader.

• Police ghost agent. The police ghosts control the individual policemen. There are 20 individual
policemen in the scenario.

• Car ghost agent. There are 20 cars controlled by separate ghost agents. The cars are used to
build road blocks and to transport the policemen to destinations farther away.

Each of these ghost agents has a corresponding puppet being controlled by it. A single exception
is a camera puppet, which does not have its own ghost agent and instead is controlled by the gamepad
agent whenever the user takes control of the crowd or one of the policemen. The camera puppet is
used to keep track about which individual policeman or the crowd is controlled by the user and to
manipulate the 3D cursor (visible as a red cube in the pictures) used to take control of the individual
agent.

136

7.6.2 Interaction

The gamepad is used in the first-person mode, where the user is able to be one of the policemen on
the scene or, alternatively, controls the crowd by the means of its leader. The first-person mode is
implemented as a control exchange between the ghost agent controlling the policeman/crowd and the
gamepad agent, as described in section 6.1.2. The user is able to select a desired virtual character to
take control of by moving a 3D cursor and then with a button push take him over. The camera changes
automatically to the first person view and the user sees exactly what the virtual character sees – the
user becomes the virtual character (policeman, crowd leader), as depicted in the figure 7.18.

Figure 7.18: User as the crowd leader

Once in the first person mode, the user is able to move the virtual character/crowd and explore
the virtual environment. Alternatively, this mode can be used by the trainer to control the crowd
manually, forcing the trainee controlling the police force to respond to a more challenging goal than
the scripted behavior of the default crowd ghost.

Apart from the low-level “hands-on” interaction enabled by the gamepad, the trainee can use in-
direct, order-based control using a specialized graphical user interface agent. The graphical interface
is depicted in the figure 7.19. It provides multiple functionalities:

137

(a) Situation overview (b) Dispatching orders

(c) Selection of a place to be protected

Figure 7.19: Graphical user interface for high level control

• Agent position and activity tracking. The user is made aware of the current whereabouts of
each controllable agent and its current activity by icons on the map of the city (fig. 7.19(a) and
the status reports arriving to the notification area of the GUI (lower right corner of the figure).

• Order dispatch. The user is able to select an agent by clicking on the icon of the agent and
assign him a task to perform, figure 7.19(b).

• Order parameters specification. Some orders (such as “cut-street”) require a place specification.
The user interface enables a simple selection of the relevant location by direct clicking on the
displayed map.

All orders given by the user to the agents are high level delegated actions. The agents are re-
sponsible to work out a plan leading to the successful completion of the assigned task, frequently
necessitating creation of teams for this purpose.

There are two typical activities where teams are formed:

138

• Blocking off a location. In this case, the crowd has to be prevented from accessing given
location. The blocking is achieved by creating a fenced obstacle and posting police cars and
policemen on the scene.

• Moving policemen to a distant location. If a policeman has to move to a distant location (de-
fined in terms of connections between the “rooms” in the virtual environment), he will summon
a car to drive to the destination instead of walking.

Figure 7.20: Barrier established to cut the street

In both cases described above the user specifies the high level goal only. Once that happens and
the task is delegated to a policeman, the agent will use the planner to determine the required course
of action in order to be able to fulfill the order. Typically, this involves recruiting one or several car
agents, moving to the designated location and establishing the barrier in place, as shown in fig. 7.20.

139

7.6.3 Technical notes

Apart from the standard collaboration framework as described in the chapter 6, a few modifications
were necessitated by the large scale of the scenario (≈ 90 agents – 20 policemen, 20 cars, 20 police-
man puppets, 20 car puppets and auxiliary agents, such as the facilitator and planning agent).

First of all, the visualization engine was changed from the in-house developed VHD++ to Delta3D
because at the time VHD++ didn’t support animation of crowds. Specialized crowd rendering is a
necessity if a reasonable performance is to be achieved with many virtual characters being animated
at the same time.

(a) Crowd following the leader while avoiding obsta-
cles

(b) Corresponding obstacle definition in Blender

Figure 7.21: Social forces model for the crowd

The crowd is controlled by a single agent designated as leader. The crowd members follow the
leader using the social force field model described by Helbing in [39]. The obstacles were defined
using the same tool as for the bar scenario described in section 7.5. Figure 7.21 illustrates the crowd
behavior when faced with an obstacle (in red).

The standard CORBA communication layer between VHD++ and the puppets was replaced by
an event-based layer using the COS Event Service, as defined by OMG standard. The reason for
this change was the requirement of asynchronous communication between the 3D engine and the
simulation framework.

With the regular VHD++ based system, the communication is based on blocking function calls –
with the consequence that the puppet will be blocked until the virtual character finishes the requested
animation. This is not desirable when many virtual characters have to be moved at the same time –
they would have to move sequentially, each waiting until the previous one finishes his action. With
40 dynamically simulated agents (20 policemen and 20 cars) such system would be unusable.

Another change concerns the distributed nature of the simulator. The full version with 90 agents
is too large to be run on a single machine as the previous studies were (such as the virtual guide
described in section 7.2). The system was distributed over three computers, as depicted in figure
7.22. One of the machines used was a high performance Linux cluster, it was used to run the agent
framework. The PC workstation powered the visualization (using a large back-projected screen) and
the user interface. Finally, a laptop was used to run the gamepad ghost.

140

Figure 7.22: System setup for the City Riot simulator

The basic functionality of the collaboration framework used for this scenario was changed only
minimally. One notable exception is the use of the multiple planners - the planning agent runs multiple
instances of the planner to achieve higher planning throughput when multiple ghosts request planning.

Further exception from the standard framework is the use of the parallelization step to enable
out-of-order execution of the tasks (Metric-FF is a total order planner generating sequential plans).
The agents are submitting delegated movement tasks to the facilitator in parallel and waiting for all
of them to finish at once. The parallelization is necessary because of the large amount of the agents.
Moving the larger groups sequentially would take too long and is not realistic neither.

7.6.4 Evaluation

The training simulator is the largest test of the collaborative agent framework described in this thesis.
The goal of the study was to validate the framework from several points of view:

• Scalability. The initial tests used only few agents (≈ 10) and the facilitator was perceived as a
possible bottleneck for larger simulation.

141

• Complexity. The previous experiments used only few actions and very small teams (1-2 team
members + leader). A more realistic scenario was required to evaluate the impact of added
information on both the facilitator and the planner.

• Network transparency. The system was developed from scratch with the focus on network
transparency (as provided by CORBA), but it was never truly tested before. All simulations
were run on a single machine, because there was no real need for distributed computing.

From the point of view of scalability, the framework performed well. The expected bottleneck
caused by the facilitator didn’t have a perceivable impact with the ≈ 90 agents used by the scenario.
The lightweight design of the facilitator has proven itself as the correct decision.

Of course, if an even larger scenario is desired, it will be necessary to make certain changes. Right
now the facilitator spends most of its time in performing the unification and solvable look-ups and
the impact of these two rather expensive operations will only grow as new agents are added. One
solution would be to switch the storage back-end to a relational database and performing parts of the
matching directly in SQL code. Another possibility is a multi-facilitator system, where the work is
divided among multiple facilitator instances.

From the complexity point of view, the largest impact is on the amount of data the facilitator has to
deal with and the difficulty of the planning required to achieve given goals. The issue of the facilitator
performance was discussed above already. The planner is a critical problem as the amount of data
and agents grow. Propositional planning has a tendency for explosive complexity growth when new
data are added to the initial state or new operators are introduced.

This issue forced also the switch from the Sensory Graphplan to Metric-FF in spite of a significant
complication of Metric-FF being a total order planner. Metric-FF is a forward-chaining planner and
due to the use of heuristics for guiding the search it is several orders of magnitude faster – as a
comparison, Metric-FF was able to solve the Towers of Hanoi with 9 disks in 511 steps (the amount
of steps is 2n − 1, where n is the number of disks) in under a second. Sensory Graphplan takes more
than 20 minutes just to determine that the default amount of steps allowed (10) is not sufficient to
solve the problem.

Despite that Metric-FF is one of the fastest planners currently available (according the standard
IPC4 benchmarks for numeric domains), several limits were hit during the development of the sce-
nario. During the attempts to solve the issue of parallelization of the total order plans generated by
Metric-FF, one solution would be to move the whole team (e.g. consisting of 5 agents) at once using
a single “mass-move” action. Such an approach would elegantly sidestep the problems of out-of-
order action execution and ensure the state consistency of the system. Unfortunately, expanding the
argument list (8 arguments instead of just 3 – the leader, 5 team member, origin, destination) of the
corresponding operator led to complexity explosion in the operator instantiation step because of too
many possible permutations and the planner ran out of memory. Another problem was encountered
with rooms and links between them – if there are too many (>≈ 20 in our case) rooms and links,
there will be too many possible instantiations of the move operator and the planner either runs very
slowly (needs to search a large graph) or runs out of memory.

These issues have to be carefully tested and tuned. To improve the behavior of the planner in cases
where there are many irrelevant facts, it would be useful to implement a pre-processing step to filter
out the irrelevant information. One such method based on solving a dual problem (transformation
from goal state back to initial state) was described in [22].

4International planning competition, http://planning.cis.strath.ac.uk/competition/

142

http://planning.cis.strath.ac.uk/competition/

Network transparency was a design feature which was built into the collaboration framework right
from the beginning when the decision to use CORBA for inter-agent communication purposes was
made. The correctness of this decision was verified when the described simulation was able to run
on anything from a single laptop to a high-performance cluster without any modification. The only
modification necessary is correct specification of the location of the COS Naming service used by the
agents to locate each other on the network. Such flexibility allows easy adaptation of the framework
to the complexity of the solved problem.

Another advantage of a network transparent architecture is that implementation of multi-user
simulations is very easy – it is sufficient to connect the required software agents (such as a gamepad
or a GUI) for different users. No special handling is necessary, with the exception of unique resources
such as camera control.

Overall, the described case study was a success validating many design and implementation de-
cisions made during the development of the described collaborative framework. The study proves
that the implemented framework and used techniques are usable and useful for solving real-world
problems in the simulation and training fields.

143

144

Chapter 8

Conclusions

8.1 Summary of the research

This dissertation focused on the problem of human-agent collaboration in virtual environments with
the focus on problem solving by propositional planning and the related issues, such as representation
of the semantic information about the world and problems of control and controllability.

This work tried to address these issues and focused on several goals:

• Different control modes – using the ghosts & puppets framework enables the application de-
veloper to easily provide multiple interaction and control modes, such as first person direct
interaction or indirect interaction by issuing orders. The user is able to select a mode of opera-
tion which suits him or the task at hand best, contributing to his comfort and efficiency.

Another advantage is the possibility of direct intervention in case that the otherwise autonomous
virtual characters do not behave in desired manner. This feature is of special importance in
training and therapeutic applications, where the trainer or therapist have to be in control of the
application at all times.

• Task delegation – let the computer do the menial jobs it was designed for. The tasks can be
either not interesting but necessary to do or simply too complex for a human user to perform
manually. Delegation is a basic element of collaboration between the parties, both human users
and autonomous agents.

The delegation of work to the machine was achieved by a facilitator-based multi-agent frame-
work enabling the human user but also the agents themselves to ask other participants (both
humans and computers) to help with solving of a particular task.

• Automatic sub-task solving – in order to be really useful, it is not enough to only delegate the
task, but the simulator has to be also able to solve it autonomously. To aid with this task a
planning system was implemented.

The planner together with the task delegation facilities enable the user to shift the complexities
of the problem being solved to the autonomous agents. It also frees the user from having to
deal with low-level details which the machine can work out automatically.

• Teamwork – many tasks are difficult or not solvable at all without collaboration with others. In
order to address this problem, the multi-agent framework was enhanced with explicit teamwork

145

support using delegated actions and team planning to enable collaboration between human users
and autonomous agents and between agents themselves.

As a result, a multi-agent collaborative framework was implemented, which tries to address all
these goals in a consistent manner. The work was focused on virtual reality simulations using virtual
humans with sample applications in therapy, training and elsewhere.

8.2 Summary of the contributions

The main contribution of this work is the new approach to the human user – intelligent agent collab-
oration and problem solving, based on task delegation, planning and teamwork and focused on the
virtual environments.

During the course of this research, several new solutions and techniques were developed and
implemented:

• The ghost & puppets framework – it permits to exchange and share the control over a virtual
character or object dynamically at run-time. This is a new solution of the problem of control
over the simulation, which is especially important in training and therapeutic applications. The
implemented solution is also useful in case that multiple control modes are required during
run-time in the same application.

• Knowledge and semantic information representation in the virtual environment – a formal
method how to define semantic information for all major components of the virtual reality
application was demonstrated. The semantics of the world state, tasks and agents’ actions was
defined using predicate calculus and STRIPS-like notation.

• A multi-agent collaborative simulation framework based on task delegation, facilitation and
planning – implements the support for intelligent autonomous agents able to work in teams to
solve problems. The focus of this framework is on problem solving and teamwork for both
human – intelligent agent and agent – agent cases.

• Delegated actions in standard STRIPS-like planners – they allow the planner to reason about
teams and teamwork by describing the expected behavior of the team members. Together
with the Contract Net-derived protocol for team forming, delegated actions form a basis for
collaborative activity between the agents in the described framework.

• Object-specific planning – the concept of smart objects was extended to permit reasoning about
them by including object-specific high level semantic information about the object’s properties,
state and actions possible to perform with it.

8.3 Future work

The teamwork between autonomous agents and more importantly between a human user and an au-
tonomous agent is a very complex topic and there are still many problems left to address. Some of
the issues identified during the course of this work will be presented in the following sections.

146

8.3.1 State consistency

Consistency of the semantic information about the state of the virtual world is major problem. Main-
taining it using only the declared effects of the actions fails to take into account events which happened
without the direct influence of the agent (for example because of result of some physical simulation,
such as falling blocks). Agents’ sensing mitigates this problem to some extent, however it is still
an issue in the case of agent/human user having total observability – the user will have incorrect
information about the world state.

More research needs to be done in order to make the bond between the semantic information
and the geometric/physical representation of the objects closer. Ideally, each object should be able to
update the world state automatically, whenever its own state changes.

8.3.2 Sub-teams

The current implementation of the simulation framework permits the agent to be a member of only
a single team at a time. However, it is frequently useful to let the team member become a leader
of its own sub-team focused on solving the task that it got assigned. This feature is feasible as a
straightforward extension of the existing implementation.

8.3.3 Agent autonomy versus controllability

The issue of agent’s autonomy has to be carefully balanced against the controllability of the scenario.
In the implemented case studies, the focus was on the controllability and the agents have very little
autonomous behavior – they mostly wait for delegated tasks or perform some simple scripted activities
until told otherwise.

The problem with agents which are autonomous to a higher degree is the interplay between their
own desires (assuming the common BDI model) and the higher level goals delegated to them (roles
assigned to them in the collaboration process). More research is needed to establish good balance
between the two extremes – fully autonomous agent ignoring the delegated tasks and fully externally
controlled agent with minimal autonomy. A first attempt to address this problem was made by using
different priorities for incoming delegated tasks and internally generated tasks (intentions to satisfy
own desires), however that is very crude solution.

8.3.4 Facilitator improvements

The facilitator plays a central role in the multi-agent collaborative framework described in this disser-
tation. There are several problems with the current implementation, mainly concerning the scalability
of the current implementation.

The current facilitator has bottlenecks while matching the incoming requests against its knowl-
edge base because of the rather inefficient organization of the data. In case of a simulation system
with many agents and a lot of state being stored, another back-end supporting efficient matching
would be necessary. A most logical solution would be a port to a relational database.

Another possible improvement for large deployments is inclusion of the support for multiple
facilitators and transparent data replication/synchronization between them. Alternatively, support for
data partitioning and deep queries between facilitators would have to be implemented.

147

148

Appendix A

Extended smart objects

A.1 Jukebox from the bar environment
<?xml version="1.0" encoding="iso-8859-1" ?>
<vhdHObjectProperty name = "SOjukeBox">
<hobjObjectoid name = "dancefloor-jukebox">

<hobjMatrix for = "worldTransform">
1.000000 0.000000 0.000000 0.000000
0.000000 1.000000 0.000000 0.000000
0.000000 0.000000 1.000000 0.000000

0.000000 0.000000 0.000000 1.000000
</hobjMatrix>

<hobjGroup name = "JukeChooser">
<hobjMatrix for = "defaultTransform">

0.000000 0.000000 -1.000000 0.000000
0.000000 1.000000 0.000000 0.000000
1.000000 0.000000 0.000000 0.000000
-8.761451 0.944456 3.338238 1.000000

</hobjMatrix>

<hobjVisualGeometry name = "jukeChooser">
<hobjMatrix for = "offsetTransform">

0.010000 0.000000 0.000000 0.000000
0.000000 0.010000 0.000000 0.000000
0.000000 0.000000 0.010000 0.000000
0.000000 0.000000 0.000000 1.000000

</hobjMatrix>

<hobjFile>jukeBox.osg</hobjFile>
</hobjVisualGeometry>

<hobjAttributeSet name = "jukeRHand" annotation = "hand">
<hobjBool for = "left">

false
</hobjBool>
<hobjMatrix for = "transform">

-0.986668 -0.154289 -0.051783 0.000000
-0.098919 0.315876 0.943630 0.000000
-0.129234 0.936172 -0.326927 0.000000
0.236765 0.139402 0.190024 1.000000

</hobjMatrix>
<hobjQuat for = "pinky0"> 9.1709e-009 4.45565e-010 2.54339e-009 1 </hobjQuat>
<hobjQuat for = "ring0"> 9.1709e-009 4.45565e-010 2.54339e-009 1 </hobjQuat>
<hobjQuat for = "middle0"> 9.1709e-009 4.45565e-010 2.54339e-009 1 </hobjQuat>
<hobjQuat for = "index0"> 9.1709e-009 4.45565e-010 2.54339e-009 1 </hobjQuat>
<hobjQuat for = "thumb1"> 7.59119e-009 0.188775 4.88034e-009 0.98202 </hobjQuat>
<hobjQuat for = "pinky1"> 9.38865e-009 -8.39039e-010 0.513431 0.858131 </hobjQuat>
<hobjQuat for = "pinky2"> -5.00326e-008 -4.95325e-008 0.625986 0.779834 </hobjQuat>
<hobjQuat for = "pinky3"> 2.86096e-009 -4.76598e-009 0.558285 0.829649 </hobjQuat>
<hobjQuat for = "ring1"> -1.25456e-007 -5.46972e-008 0.370503 0.928831 </hobjQuat>
<hobjQuat for = "ring2"> 2.38569e-009 -2.12607e-009 0.561404 0.827542 </hobjQuat>
<hobjQuat for = "ring3"> -6.6419e-008 -4.3602e-008 0.558285 0.829649 </hobjQuat>
<hobjQuat for = "middle1"> 1.4213e-008 -7.24679e-010 0.192504 0.981296 </hobjQuat>
<hobjQuat for = "middle2"> -6.44407e-008 -3.01425e-008 0.353089 0.93559 </hobjQuat>
<hobjQuat for = "middle3"> -6.67108e-008 -2.23531e-008 0.401332 0.915933 </hobjQuat>
<hobjQuat for = "index1"> -5.07543e-009 5.97495e-011 3.23166e-009 1 </hobjQuat>
<hobjQuat for = "index2"> 9.1709e-009 5.55434e-009 -9.86178e-010 1 </hobjQuat>
<hobjQuat for = "index3"> 9.1709e-009 5.55434e-009 -9.86178e-010 1 </hobjQuat>
<hobjQuat for = "thumb2"> 0.167034 8.85852e-009 -1.70661e-009 0.985951 </hobjQuat>
<hobjQuat for = "thumb3"> 0.122157 0.0170392 -0.137094 0.982849 </hobjQuat>

</hobjAttributeSet>

149

<hobjAttributeSet name = "standPosition" annotation = "position">
<hobjPoint for = "position">

0.0 0.0 0.7
</hobjPoint>

<hobjVector for = "direction">
0.0 0.0 -1.0

</hobjVector>
</hobjAttributeSet>

<hobjAttributeSet name = "jukePos0" annotation = "position">
<hobjPoint for = "position">

-0.100873 -0.944456 0.488811
</hobjPoint>

</hobjAttributeSet>
<hobjAttributeSet name = "jukePos1" annotation = "position">

<hobjPoint for = "position">
-0.063293 -0.944456 2.342339

</hobjPoint>
</hobjAttributeSet>
<hobjAttributeSet name = "jukePos2" annotation = "position">

<hobjPoint for = "position">
1.436546 -0.944456 2.544468

</hobjPoint>
</hobjAttributeSet>
<hobjAttributeSet name = "jukeVector" annotation = "vector">

<hobjPoint for = "position">
-0.100873 -0.944456 0.488811

</hobjPoint>
<hobjVector for = "direction">

-1.000000 0.000000 0.000000
</hobjVector>

</hobjAttributeSet>

<hobjAttributeSet annotation="" name="object-properties">
<hobjText for="predicates">

[(’jukebox’, ’dancefloor-jukebox’),
(’machine’, ’dancefloor-jukebox’)]

</hobjText>

<hobjText for="functions">
{’(dancefloor-jukebox-FOO)’:0}

</hobjText>
</hobjAttributeSet>

<hobjAttributeSet name = "operator-a-power-up-jukebox" annotation = "action">
<hobjText for="functor">
import time
import mathutils
import unifier
import SOKOBAN
import action_functor

class a_power_up_jukebox(action_functor.GenericActionFunctor):
’’’
Actions are integrated into functor classes, i.e classes that implement the
__callable__ method and can therefore be called as functions
this way in addition to executing the action we can also call
other methods such as verify_preconds or others
’’’
def __init__(self, human):

action_functor.GenericActionFunctor.__init__(self, human)
self.action_name = ’power-up-jukebox’
self.arguments = (’?who’, ’?what’)
self.vars = []

self.predicates = [(’near’, ’?who’, ’?what’),
(’agent’, ’?who’),
(’busy’, ’?who’),
(’powered-on’, ’?what’),
(’machine’, ’?what’),
(’jukebox’, ’?what’)]

self.preconds = (’and’,
(’near’, ’?who’, ’?what’),
(’agent’, ’?who’),
(’machine’, ’?what’),
(’not’, (’busy’, ’?who’)),
(’not’, (’powered-on’, ’?what’)))

self.effects = (’powered-on’, ’?what’)

def verifyPreconds(self, *args):
’’’
replaces all occurences of "?from" and "?to" with
actual locations and verifies whether the action is solvable
’’’
preconditions = unifier.apply_subs({’?who’:args[0],

’?what’:args[1]}, self.preconds)

150

return self.human._check_solvable(preconditions)

def __call__(self, *args):
’’’ toggle the device on
’’’

self.logger.info(’power-up-jukebox called, args = ’ + repr(args))

check preconds
these have to be invariants

who = args[0]
machine = args[1]

if self.human.human_name != who:
return (’error’, (’badagent’, self.human.human_name, who))

if self.verifyPreconds(*args):
push the button
try:

machine_puppet = self.human.chelper.openObject(machine)
machine_puppet.possess(self.human.ghost_name, 0)
machine_puppet.performGenericAction(self.human.ghost_name, \

’power-up-jukebox’, \
[self.human.human_name, machine])

machine_puppet.unpossess(self.human.ghost_name,0)

except SOKOBAN.ActionFailed, err:
oops, failure
code = eval(err.reason)
if code[0] == ’nopath’:

self.logger.error(’path not found between to ’ + repr(pos))
elif code[0] == ’obstacle’:

self.logger.error(’obstacle at : ’ + repr(code[1]))
else:

self.logger.error(’unknown problem occurred’)

try to salvage the state, because we are maybe not in the original place anymore
nothing to do here
return (’error’, code)

else:
update state
turning machine on
self.human._declare_add_effects([(’powered-on’, machine)])
self.human.logger.info(’power-up-jukebox - machine turned on’ + str(machine))

return (’success’,)
else:

self.logger.error(’Preconditions for power-up-machine not met!’)
return (’error’, (’precond’,))

</hobjText>
<hobjText for="animation_script">
sys.path.append(’/home/janoc/src/VHD/VHDPP_TEST/py’)
import time
from libhobject import *
from pyvhdHObjectService import *
from pyvhdHAGENTService import *
from pyvhdPythonService import *

eH = PythonEventHandler()
oS = hobjectService
ag = hagentService

human = Human(ARGS[0])

jukebox = ObjectoidPtr(oS.getHObjectByName(ARGS[1]))

human.walk(asAttributeSet(jukebox.getNodeByName("standPosition")), Human.Stop)
eH.subscribe(WalkReachedEventClass(human))
eH.waitForEvents()

#fix orientation
q = vhdQuaternion()
q.fromAngleAxis(-3.14/2.0, vhdVector3(0,1,0))
ag.setRotation(ARGS[0], q)

rh = asAttributeSet(jukebox.getNodeByName("jukeRHand"))
human.grasp(rh)
human.reach(human.RightArm, rh.lookupUpdated("transform"))

time.sleep(2)

human.reset()

</hobjText>
</hobjAttributeSet>

151

<hobjAttributeSet name = "operator-a-power-down-jukebox" annotation = "action">
<hobjText for="functor">
import time
import mathutils
import unifier
import SOKOBAN
import action_functor

class a_power_down_jukebox(action_functor.GenericActionFunctor):
’’’
Actions are integrated into functor classes, i.e classes that implement the
__callable__ method and can therefore be called as functions
this way in addition to executing the action we can also call
other methods such as verify_preconds or others
’’’
def __init__(self, human):

action_functor.GenericActionFunctor.__init__(self, human)
self.action_name = ’power-down-jukebox’
self.arguments = (’?who’, ’?what’)
self.vars = []

self.predicates = [(’near’, ’?who’, ’?what’),
(’agent’, ’?who’),
(’busy’, ’?who’),
(’powered-on’, ’?what’),
(’machine’, ’?what’),
(’jukebox’, ’?what’)]

self.preconds = (’and’,
(’near’, ’?who’, ’?what’),
(’agent’, ’?who’),
(’machine’, ’?what’),
(’not’, (’busy’, ’?who’)),
(’powered-on’, ’?what’))

self.effects = (’not’, (’powered-on’, ’?what’))

def verifyPreconds(self, *args):
’’’
replaces all occurences of "?from" and "?to" with
actual locations and verifies whether the action is solvable
’’’
preconditions = unifier.apply_subs({’?who’:args[0],

’?what’:args[1]}, self.preconds)

return self.human._check_solvable(preconditions)

def __call__(self, *args):
’’’ toggle the device on
’’’

self.logger.info(’power-down-jukebox called, args = ’ + repr(args))

check preconds
these have to be invariants

who = args[0]
machine = args[1]

if self.human.human_name != who:
return (’error’, (’badagent’, self.human.human_name, who))

if self.verifyPreconds(*args):
push the button
try:

machine_puppet = self.human.chelper.openObject(machine)
machine_puppet.possess(self.human.ghost_name, 0)
machine_puppet.performGenericAction(self.human.ghost_name, \

’power-down-jukebox’, \
[self.human.human_name, machine])

machine_puppet.unpossess(self.human.ghost_name,0)

except SOKOBAN.ActionFailed, err:
oops, failure
code = eval(err.reason)
if code[0] == ’nopath’:

self.logger.error(’path not found between to ’ + repr(pos))
elif code[0] == ’obstacle’:

self.logger.error(’obstacle at : ’ + repr(code[1]))
else:

self.logger.error(’unknown problem occurred’)

try to salvage the state, because we are maybe not in the original place anymore
nothing to do here
return (’error’, code)

else:
update state

152

turning machine off
self.human._undeclare_del_effects([(’powered-on’, machine)])
self.human.logger.info(’power-down-jukebox - machine turned off’ + str(machine))

return (’success’,)
else:

self.logger.error(’Preconditions for power-down-machine not met!’)
return (’error’, (’precond’,))

</hobjText>
<hobjText for="animation_script">
sys.path.append(’/home/janoc/src/VHD/VHDPP_TEST/py’)
import time
from libhobject import *
from pyvhdHObjectService import *

eH = PythonEventHandler()
oS = hobjectService

human = Human(ARGS[0])

jukebox = ObjectoidPtr(oS.getHObjectByName(ARGS[1]))

human.walk(asAttributeSet(jukebox.getNodeByName("standPosition")), Human.Stop)
eH.subscribe(WalkReachedEventClass(human))
eH.waitForEvents()

#fix orientation
q = vhdQuaternion()
q.fromAngleAxis(-3.14/2.0, vhdVector3(0,1,0))
ag.setRotation(ARGS[0], q)

rh = asAttributeSet(jukebox.getNodeByName("jukeRHand"))
human.grasp(rh)
human.reach(human.RightArm, rh.lookupUpdated("transform"))

time.sleep(2)
human.reset()

</hobjText>
</hobjAttributeSet>

</hobjGroup>
</hobjObjectoid>
</vhdHObjectProperty>

153

154

Appendix B

Example actions

B.1 move action
######
Functor class move.
Implements the action of moving
Created by Miguel Garcia Arribas (miguel.garcia@epfl.ch)
14/12/2004
#####

import pickle
import mathutils
import unifier
import SOKOBAN
import action_functor

class a_move(action_functor.GenericActionFunctor):
’’’
Actions are integrated into functor classes, i.e classes that implement the
__callable__ method and can therefore be called as functions
this way in addition to executing the action we can also call
other methods such as verify_preconds or others
’’’
def __init__(self, human):

action_functor.GenericActionFunctor.__init__(self, human)
self.action_name = ’move’
self.arguments = (’?who’, ’?from’,’?to’)

self.preconds = (’and’, (’at’, ’?who’, ’?from’),
(’not’, (’=’, ’?from’, ’?to’)),
(’place’, ’?from’),
(’place’, ’?to’),
(’agent’, ’?who’),
(’not’, (’busy’, ’?who’)),
(’connected’, ’?from’, ’?to’))

self.effects = (’and’,
(’at’, ’?who’, ’?to’),
(’not’, (’at’, ’?who’, ’?from’)))

self.predicates = [(’at’, ’?who’, ’?from’),
(’place’, ’?from’),
(’agent’, ’?who’),
(’busy’, ’?who’),
(’connected’, ’?from’, ’?to’)]

def verifyPreconds(self, *args):
’’’
replaces all occurences of "?from" and "?to" with
actual locations and verifies whether the action is performable
’’’
preconditions = unifier.apply_subs({’?who’:args[0],

’?from’:args[1],
’?to’:args[2]}, self.preconds)

return self.human._check_solvable(preconditions)

def __call__(self, *args):
’’’ move agent from one place to another
’’’
#self.human.logger.debug(self.writeLisp(True))

155

check preconds
self.human.logger.debug(’called a_move’ + repr(args))

who = args[0]
p_from = args[1]
p_to = args[2]

if self.human.human_name != who:
return (’error’, (’badagent’, self.human.human_name, who))

if self.verifyPreconds(*args):
move around to the closest exit point in the other room
current_pos = self.human.human_puppet.reportPos()

get exits
solvable = (’exits_for’, p_to)
res = self.human._wait_for_reply(self.human.fac.solve(pickle.dumps(solvable),

pickle.dumps({’no_results’:1}), self.human.me), 60)

if res[0][0] == ’success’:
exits = res[0][1]
#p_to_pos = mathutils.getClosest((current_pos.x, current_pos.y), exits)
p_to_pos = random.choice(exits);

else:
self.human.logger.error(’Invalid destination ’ + p_to + ’ for move !’)
return (’error’, (’badplace’, p_to))

failure is not an option, however the puppet can easily mess up
since it has no brains ...
try:

self.human.human_puppet.goto(self.human.ghost_name, p_to_pos[0], p_to_pos[1])

except SOKOBAN.ActionFailed, err:
oops, failure
code = eval(err.reason)
if code[0] == ’nopath’:

self.human.logger.error(’path not found between ’ + p_from + ’ and ’ + p_to)
elif code[0] == ’obstacle’:

self.human.logger.error(’obstacle at : ’ + repr(code[1]))
else:

self.human.logger.error(’unknown problem occurred’)

try to salvage the state, because we are maybe not in the original place anymore
self.human._undeclare_old_position(self.human.human_name)
#self._undeclare_del_effects([(’at’, self.human_name, p_from)])

self.human.current_room = self.human._which_room(self.human.human_puppet.reportPos())
self.human._declare_add_effects([(’at’, self.human.human_name, self.human.current_room)])
return (’error’, code)

else:
update state
self.human._undeclare_old_position(self.human.human_name)
#self._undeclare_del_effects([(’at’, self.human_name, p_from)])
self.human._declare_add_effects([(’at’, self.human.human_name, p_to)])
self.human.current_room = p_to
return (’success’,)

else:
self.human.logger.error(’Preconditions for move not met!’)
return (’error’, (’precond’,))

B.2 delegated-move action
import mathutils
import unifier
import SOKOBAN
import action_functor

class a_delegated_move(action_functor.GenericActionFunctor):
’’’
Actions are integrated into functor classes, i.e classes that implement the
__callable__ method and can therefore be called as functions
this way in addition to executing the action we can also call
other methods such as veryfy_preconds or others
’’’
def __init__(self, human):

action_functor.GenericActionFunctor.__init__(self, human)
self.action_name = ’delegated-move’
self.arguments = (’?who’, ’?from’,’?to’)

self.preconds = (’and’,
(’or’, (’at’, ’?who’, ’?from’),

(’=’, ’?from’, ’anywhere’)),
(’not’, (’=’, ’?from’, ’?to’)),
(’place’, ’?from’),

156

(’place’, ’?to’),
(’agent’, ’?who’),
(’not’, (’busy’, ’?who’)))

self.effects = (’and’,
(’at’, ’?who’, ’?to’),
(’not’, (’at’, ’?who’, ’?from’))
)

self.predicates = [(’at’, ’?who’, ’?from’),
(’place’, ’?from’),
(’agent’, ’?who’),
(’connected’, ’?from’, ’?to’)]

def verifyPreconds(self, *args):
’’’
replaces all occurences of "?from" and "?to" with
actual locations and verifies whether the action is solvable
’’’
preconditions = unifier.apply_subs({’?who’:args[0],

’?from’:args[1],
’?to’:args[2]}, self.preconds)

return self.human._check_solvable(preconditions)

def __call__(self, *args):
’’’ move agent from one place to another
’’’
#self.human.logger.debug(self.writeLisp(True))

check preconds
self.human.logger.debug(’called a_delegated_move’ + repr(args))

who = args[0]
p_from = args[1]
p_to = args[2]

CAUTION!
this is not a bug, the lisp delegate-move and this
function are not the same thing. The one in lisp is from the
point of view of a team leader giving order, this one here is from
the point of view of the *TEAMMATE* receiving it. Therefore these two
conditions are not checked here:
(’not’, (’=’, ’?who’, ’self’)),
(’teamleader’, ’self’)

if self.human.human_name != who:
result = (’error’, (’badagent’, self.human.human_name, who))

else:
if self.verifyPreconds(*args):

if self.human._which_room(self.human.human_puppet.reportPos()) == p_to:
he’s already there, so there’s no need to ask the planner to do anything.
in fact if we do, it will return ’none’ and the whole planning will fail.
result = (’success’,)

else:
he’s somewhere else, so it’s safe to call the planner
ask the planner to move us to the destination
result = self.human.action_table[’plan-and-execute’](self.human.human_name, \

(’at’, self.human.human_name, p_to))
else:

self.human.logger.error(’Preconditions for delegated-move not met!’)
result = (’error’, (’precond’,))

return result

157

158

Appendix C

“Cut street” order from the “City riot”
application

A real example from the “City riot” application. The user (trainee) orders his policemen to block a
street using their vehicles. The team-forming and the usage of delegated actions is clearly visible. The
planner also decides that it is faster to take the team leader to the destination by car than by walking
and he uses one of the cars for transportation. The problem description part shows the current beliefs
of the team leader as well.

C.1 Domain description (operators)
(define (domain door) (:requirements :strips :equality)

(:predicates (self ?foo)
(toilet ?what)
(ordered ?who ?what)
(thirsty ?who)
(agent ?who)
(guarding ?a ?slot)
(at ?who ?what)
(human ?who)
(car-covered ?slot)
(busy ?who)
(named-point ?what)
(teammember ?who)
(open ?door)
(consumable ?what)
(near ?who ?what)
(covered ?slot)
(powered-on ?what)
(teamleader ?who)
(door ?door)
(joining-team ?who)
(fire ?slot)
(strategic-point ?arg_0 ?arg_1)
(barman ?who)
(connected ?from ?to)
(protoagent ?who)
(being-guided ?who)
(dance-place ?what)
(uncertain ?door)
(have-consumable ?who ?what)
(policeman ?who)
(waiting-for-guide ?who)
(doorway ?door ?side_a ?side_b)
(place ?what)
(guiding ?who)
(car ?who)
)
(:functions (THIRST)
(FEELFULL)
(TEAMSIZE)
)
(:action dance
:parameters (?who ?jukebox ?where)

159

:precondition (and (agent ?who) (place ?where)
(dance-place ?where) (at ?who ?where)
(powered-on ?jukebox) (= ?who self))

:effect (increase (THIRST) 20)
)
(:action declare-slot-car-protected
:parameters (?who ?a ?slot)
:vars (?place)
:precondition (and (agent ?who) (agent ?a) (policeman ?who)

(car ?a) (place ?place) (at ?a ?place)
(strategic-point ?place ?slot) (named-point ?slot)
(not (fire ?place)) (guarding ?a ?slot) (= ?who self))

:effect (car-covered ?slot)
)
(:action delegated-protect-building-slot
:parameters (?who ?slot)
:vars (?place)
:precondition (and (agent ?who) (place ?place) (at ?who ?place)

(strategic-point ?place ?slot) (named-point ?slot)
(not (fire ?place)) (not (busy ?who))
(not (= ?who self)) (teamleader self))

:effect (and (guarding ?who ?slot) (busy ?who))
)
(:action delegated-bring-order
:parameters (?who ?to_whom ?what)
:precondition (and (ordered ?to_whom ?what) (agent ?who)

(agent ?to_whom) (barman ?who) (consumable ?what)
(not (= ?to_whom ?who)) (not (= ?who self)) (teamleader self))

:effect (have-consumable ?to_whom ?what)
)
(:action delegated-drive-agent
:parameters (?who ?whom ?from_vehicle ?from_policeman ?to)
:precondition (and (agent ?who) (agent ?whom) (car ?who)

(policeman ?whom) (place ?from_policeman)
(place ?to) (place ?from_vehicle)
(at ?whom ?from_policeman) (at ?who ?from_vehicle)
(not (= ?from_policeman ?to)) (not (busy ?who))
(not (busy ?whom)) (not (= ?who self)) (teamleader self))

:effect (and (at ?whom ?to) (not (at ?whom ?from_policeman))
(at ?who ?to) (not (at ?who ?from_vehicle)))

)
(:action quench-thirst
:parameters (?who)
:precondition (and (thirsty ?who) (agent ?who) (<= (THIRST) 20) (= ?who self))
:effect (not (thirsty ?who))
)
(:action declare-slot-protected
:parameters (?who ?a ?slot)
:vars (?place)
:precondition (and (agent ?who) (agent ?a) (policeman ?who)

(place ?place) (at ?a ?place) (strategic-point ?place ?slot)
(named-point ?slot) (not (fire ?place))
(guarding ?a ?slot) (= ?who self))

:effect (covered ?slot)
)
(:action reject-teammate
:parameters (?who)
:precondition (and (joining-team ?who) (agent ?who) (= ?who self))
:effect (not (joining-team ?who))
)
(:action delegated-toggle-door
:parameters (?who ?door)
:vars (?side_a ?side_b)
:precondition (and (agent ?who) (door ?door) (doorway ?door ?side_a ?side_b)

(not (= ?who self)) (teamleader self))
:effect (and (when (open ?door) (and (not (open ?door))

(not (connected ?side_a ?side_b)) (not (connected ?side_b ?side_a))))
(when (not (open ?door)) (and (open ?door)

(connected ?side_a ?side_b) (connected ?side_b ?side_a))))
)
(:action move
:parameters (?who ?from ?to)
:precondition (and (at ?who ?from) (not (= ?from ?to)) (place ?from)

(place ?to) (agent ?who) (not (busy ?who))
(connected ?from ?to) (= ?who self))

:effect (and (at ?who ?to) (not (at ?who ?from)))
)
(:action delegated-get-close
:parameters (?who ?what)
:vars (?place)
:precondition (and (at ?who ?place) (at ?what ?place)

(agent ?who) (not (= ?who self)) (teamleader self))
:effect (near ?who ?what)
)
(:action disband-team
:parameters (?who ?protoagent)
:precondition (and (not (= ?who ?protoagent))

(agent ?who) (agent ?protoagent)
(teamleader ?who) (= ?who self))

160

:effect (and (decrease (TEAMSIZE) 1) (protoagent ?protoagent)
(not (agent ?protoagent)) (when (= (TEAMSIZE) 1)
(not (teamleader ?who))))

)
(:action toggle-door
:parameters (?who ?door)
:vars (?side_a ?side_b)
:precondition (and (doorway ?door ?side_a ?side_b)

(or (at ?who ?side_a) (at ?who ?side_b))
(agent ?who) (door ?door) (place ?side_a)
(place ?side_b) (not (busy ?who)) (= ?who self))

:effect (and (when (open ?door) (and (not (open ?door))
(not (connected ?side_a ?side_b))
(not (connected ?side_b ?side_a))))

(when (not (open ?door)) (and (open ?door)
(connected ?side_a ?side_b)
(connected ?side_b ?side_a))))

)
(:action drink
:parameters (?who ?what)
:precondition (and (agent ?who) (consumable ?what)

(have-consumable ?who ?what) (= ?who self))
:effect (and (decrease (THIRST) 40) (increase (FEELFULL) 40)

(not (have-consumable ?who ?what)))
)
(:action delegated-move
:parameters (?who ?from ?to)
:precondition (and (or (at ?who ?from) (= ?from anywhere))

(not (= ?from ?to)) (place ?from)
(place ?to) (agent ?who) (not (busy ?who))
(not (= ?who self)) (teamleader self))

:effect (and (at ?who ?to) (not (at ?who ?from)))
)
(:action goto-wc
:parameters (?who ?wc)
:vars (?to)
:precondition (and (at ?wc ?to) (toilet ?wc)

(place ?to) (agent ?who) (not (busy ?who)) (= ?who self))
:effect (assign (FEELFULL) 0)
)
(:action delegated-car-protect-building-slot
:parameters (?who ?slot)
:vars (?place)
:precondition (and (agent ?who) (car ?who) (place ?place)

(at ?who ?place) (strategic-point ?place ?slot)
(named-point ?slot) (not (fire ?place))
(not (busy ?who)) (not (= ?who self)) (teamleader self))

:effect (and (guarding ?who ?slot) (busy ?who))
)
(:action leave-as-teammate
:parameters (?who ?teamleader)
:precondition (and (agent ?who) (teammember ?who) (= ?who self))
:effect (and (not (teammember ?who)) (not (teamleader ?teamleader)))
)
(:action delegated-take-order
:parameters (?who ?customer ?what)
:vars (?place)
:precondition (and (agent ?who) (agent ?customer)

(barman ?who) (consumable ?what) (place ?place)
(at ?who ?place) (at ?customer ?place)
(not (= ?customer ?who)) (not (= ?who self)) (teamleader self))

:effect (ordered ?customer ?what)
)
(:action commit-to-team
:parameters (?who ?teamleader)
:precondition (and (joining-team ?who) (agent ?who) (= ?who self))
:effect (and (teammember ?who) (teamleader ?teamleader) (not (joining-team ?who)))
)
(:action join-as-teammate
:parameters (?who)
:precondition (and (not (busy ?who))

(not (joining-team ?who))
(agent ?who) (not (teammember ?who)) (= ?who self))

:effect (joining-team ?who)
)
(:action recruit-help
:parameters (?who ?protoagent)
:precondition (and (protoagent ?protoagent) (agent ?who) (= ?who self))
:effect (and (increase (TEAMSIZE) 1)

(agent ?protoagent) (teamleader ?who) (not (protoagent ?protoagent)))
)
(:action get-close
:parameters (?who ?what)
:vars (?place)
:precondition (and (at ?what ?place) (at ?who ?place) (agent ?who) (= ?who self))
:effect (near ?who ?what)
)
)

161

C.2 Problem description (initial state, beliefs, goal specification)
(define (problem door)
(:domain door)
(:objects
Leader4
a1
a10
a2
a3
a4
a5
a6
a7
a8
a9
anywhere
field
lakebuilding
lakecross1
lakecross1-slot1
lakecross1-slot2
lakecross1-slot3
lakecross1-slot4
lakecross3
lakecross3-slot1
lakecross3-slot2
lakecross3-slot3
lakecross3-slot4
lakepark
mainavenue
parking
parkingbuilding
policecross1
policecross1-slot1
policecross1-slot2
policecross1-slot3
policecross1-slot4
policecross1-slot5
policecross1-slot6
policecross2
policecross2-slot1
policecross2-slot2
policecross2-slot3
policecross3
policecross3-slot1
policecross3-slot2
policecross3-slot3
policecross3-slot4
policecross4
policecross4-slot1
policecross4-slot2
policecross4-slot3
policecross4-slot4
policestation
room1
room2
room3
room4
room5
room6
sidelake
sidelakestreet
tvtower
self
)
(:init
(= (THIRST) 40)
(= (FEELFULL) 0)
(= (TEAMSIZE) 0)
(agent self)
(at self room2)
(at a1 anywhere)
(at a10 anywhere)
(at a2 anywhere)
(at a3 anywhere)
(at a4 anywhere)
(at a5 anywhere)
(at a6 anywhere)
(at a7 anywhere)
(at a8 anywhere)
(at a9 anywhere)
(car a1)
(car a10)
(car a2)
(car a3)
(car a4)
(car a5)
(car a6)

162

(car a7)
(car a8)
(car a9)
(connected anywhere field)
(connected anywhere lakebuilding)
(connected anywhere lakecross1)
(connected anywhere lakecross3)
(connected anywhere lakepark)
(connected anywhere mainavenue)
(connected anywhere parking)
(connected anywhere parkingbuilding)
(connected anywhere policecross1)
(connected anywhere policecross2)
(connected anywhere policecross3)
(connected anywhere policecross4)
(connected anywhere policestation)
(connected anywhere room1)
(connected anywhere room2)
(connected anywhere room3)
(connected anywhere room4)
(connected anywhere room5)
(connected anywhere room6)
(connected anywhere sidelake)
(connected anywhere sidelakestreet)
(connected anywhere tvtower)
(connected field room1)
(connected lakebuilding lakecross3)
(connected lakebuilding lakepark)
(connected lakebuilding parkingbuilding)
(connected lakebuilding room5)
(connected lakebuilding room6)
(connected lakecross1 parking)
(connected lakecross1 sidelake)
(connected lakecross3 lakebuilding)
(connected lakecross3 lakepark)
(connected lakecross3 room4)
(connected lakepark lakebuilding)
(connected lakepark lakecross3)
(connected lakepark mainavenue)
(connected lakepark parking)
(connected lakepark room4)
(connected lakepark sidelake)
(connected lakepark sidelakestreet)
(connected mainavenue lakepark)
(connected mainavenue room4)
(connected parking lakecross1)
(connected parking lakepark)
(connected parking parkingbuilding)
(connected parking room2)
(connected parking sidelake)
(connected parking sidelakestreet)
(connected parkingbuilding lakebuilding)
(connected parkingbuilding parking)
(connected parkingbuilding room1)
(connected parkingbuilding room2)
(connected policecross1 policestation)
(connected policecross2 policestation)
(connected policecross3 policestation)
(connected policecross3 sidelake)
(connected policecross4 policestation)
(connected policecross4 sidelake)
(connected policestation policecross1)
(connected policestation policecross2)
(connected policestation policecross3)
(connected policestation policecross4)
(connected policestation sidelake)
(connected room1 field)
(connected room1 parkingbuilding)
(connected room1 room2)
(connected room1 room6)
(connected room2 parking)
(connected room2 parkingbuilding)
(connected room2 room1)
(connected room2 sidelakestreet)
(connected room3 room4)
(connected room3 room5)
(connected room3 tvtower)
(connected room4 lakecross3)
(connected room4 lakepark)
(connected room4 mainavenue)
(connected room4 room3)
(connected room4 room5)
(connected room5 lakebuilding)
(connected room5 room3)
(connected room5 room4)
(connected room5 room6)
(connected room5 tvtower)
(connected room6 lakebuilding)
(connected room6 room1)

163

(connected room6 room5)
(connected sidelake lakecross1)
(connected sidelake lakepark)
(connected sidelake parking)
(connected sidelake policecross3)
(connected sidelake policecross4)
(connected sidelake policestation)
(connected sidelake sidelakestreet)
(connected sidelakestreet lakepark)
(connected sidelakestreet parking)
(connected sidelakestreet room2)
(connected sidelakestreet sidelake)
(connected tvtower room3)
(connected tvtower room5)
(named-point lakecross1-slot1)
(named-point lakecross1-slot2)
(named-point lakecross1-slot3)
(named-point lakecross1-slot4)
(named-point lakecross3-slot1)
(named-point lakecross3-slot2)
(named-point lakecross3-slot3)
(named-point lakecross3-slot4)
(named-point policecross1-slot1)
(named-point policecross1-slot2)
(named-point policecross1-slot3)
(named-point policecross1-slot4)
(named-point policecross1-slot5)
(named-point policecross1-slot6)
(named-point policecross2-slot1)
(named-point policecross2-slot2)
(named-point policecross2-slot3)
(named-point policecross3-slot1)
(named-point policecross3-slot2)
(named-point policecross3-slot3)
(named-point policecross3-slot4)
(named-point policecross4-slot1)
(named-point policecross4-slot2)
(named-point policecross4-slot3)
(named-point policecross4-slot4)
(place anywhere)
(place field)
(place lakebuilding)
(place lakecross1)
(place lakecross3)
(place lakepark)
(place mainavenue)
(place parking)
(place parkingbuilding)
(place policecross1)
(place policecross2)
(place policecross3)
(place policecross4)
(place policestation)
(place room1)
(place room2)
(place room3)
(place room4)
(place room5)
(place room6)
(place sidelake)
(place sidelakestreet)
(place tvtower)
(policeman self)
(protoagent a1)
(protoagent a10)
(protoagent a2)
(protoagent a3)
(protoagent a4)
(protoagent a5)
(protoagent a6)
(protoagent a7)
(protoagent a8)
(protoagent a9)
(strategic-point lakecross1 lakecross1-slot1)
(strategic-point lakecross1 lakecross1-slot2)
(strategic-point lakecross1 lakecross1-slot3)
(strategic-point lakecross1 lakecross1-slot4)
(strategic-point lakecross3 lakecross3-slot1)
(strategic-point lakecross3 lakecross3-slot2)
(strategic-point lakecross3 lakecross3-slot3)
(strategic-point lakecross3 lakecross3-slot4)
(strategic-point policecross1 policecross1-slot1)
(strategic-point policecross1 policecross1-slot2)
(strategic-point policecross1 policecross1-slot3)
(strategic-point policecross1 policecross1-slot4)
(strategic-point policecross1 policecross1-slot5)
(strategic-point policecross1 policecross1-slot6)
(strategic-point policecross2 policecross2-slot1)
(strategic-point policecross2 policecross2-slot2)

164

(strategic-point policecross2 policecross2-slot3)
(strategic-point policecross3 policecross3-slot1)
(strategic-point policecross3 policecross3-slot2)
(strategic-point policecross3 policecross3-slot3)
(strategic-point policecross3 policecross3-slot4)
(strategic-point policecross4 policecross4-slot1)
(strategic-point policecross4 policecross4-slot2)
(strategic-point policecross4 policecross4-slot3)
(strategic-point policecross4 policecross4-slot4)
)
(:goal
(and (at self lakecross1)

(car-covered lakecross1-slot3)
(car-covered lakecross1-slot1)
(car-covered lakecross1-slot4)
(car-covered lakecross1-slot2)))

)

C.3 Resulting plan

MOVE SELF ROOM2 PARKING
RECRUIT-HELP SELF A9
DELEGATED-DRIVE-AGENT A9 SELF ANYWHERE PARKING LAKECROSS1
DELEGATED-CAR-PROTECT-BUILDING-SLOT A9 LAKECROSS1-SLOT3
RECRUIT-HELP SELF A1
DELEGATED-MOVE A1 ANYWHERE LAKECROSS1
DECLARE-SLOT-CAR-PROTECTED SELF A9 LAKECROSS1-SLOT3
DELEGATED-CAR-PROTECT-BUILDING-SLOT A1 LAKECROSS1-SLOT1
RECRUIT-HELP SELF A10
DELEGATED-MOVE A10 ANYWHERE LAKECROSS1
DECLARE-SLOT-CAR-PROTECTED SELF A1 LAKECROSS1-SLOT1
DELEGATED-CAR-PROTECT-BUILDING-SLOT A10 LAKECROSS1-SLOT4
RECRUIT-HELP SELF A2
DELEGATED-MOVE A2 ANYWHERE LAKECROSS1
DELEGATED-CAR-PROTECT-BUILDING-SLOT A2 LAKECROSS1-SLOT2
DECLARE-SLOT-CAR-PROTECTED SELF A10 LAKECROSS1-SLOT4
DECLARE-SLOT-CAR-PROTECTED SELF A2 LAKECROSS1-SLOT2

165

C.4 Corresponding action in the virtual environment

Figure C.1: Result of the plan execution in the virtual environment

166

Bibliography

[1] ABACI, T., CIGER, J., AND THALMANN, D. Action semantics in smart objects. In Proceed-
ings of the Workshop towards Semantic Virtual Environments (Villars, Switzerland, March
2005), Miralab, pp. 120–162.

[2] ABACI, T., CIGER, J., AND THALMANN, D. Planning with smart objects. In Proceedings of
WSCG 05 (Pilsen, Czech Republic, 2005).

[3] ABACI, T., DE BONDELI, R., CÍGER, J., CLAVIEN, M., EROL, F., GUTIÉRREZ, M.,
NOVERRAZ, S., RENAULT, O., VEXO, F., AND THALMANN, D. Magic wand and the Enigma
of the Sphinx. Computers & Graphics 28 (2004), 477–484.

[4] ABACI, T., MORTARA, M., PATANÈ, G., SPAGNUOLO, M., VEXO, F., AND THALMANN,
D. Bridging geometry and semantics for object manipulation and grasping. In Proceedings
of the Workshop towards Semantic Virtual Environment (Villars sur Ollon, Switzerland, March
2005).

[5] ABELSON, H., SUSSMAN, J., AND SUSSMAN, J. Structure and Interpretation of Computer
Programs, the second ed. MIT Press, 1984. ISBN: 0-262-01077-1.

[6] ALONSO, E., AND KUDENKO, D. Logic-based multi-agent systems for conflict simulations.
In Proceedings of UKMAS (2000).

[7] ANDERSON, C. R., SMITH, D. E., AND WELD, D. S. Conditional effects in Graphplan. In
Proceedings of AIPS ’98 (1998).

[8] BADLER, N., BINDIGANAVALE, R., BOURNE, J., PALMER, M., SHI, J., AND SCHULER, W.
A parameterized action representation for virtual human agents. In Embodied Conversational
Agents (Cambridge, MA, 2000), MIT Press, pp. 256–284.

[9] BAXTER, J., AND HEPPLEWHITE, R. A hierarchical distributed planning framework for
simulated battlefield entities. In Proceedings of the 19th Workshop of the UK Planning and
Scheduling Special Interest Group (PLANSIG 2000) (2000).

[10] BLUM, A. L., AND FURST, M. L. Fast planning through planning graph analysis. Artificial
Intelligence 90 (1997), 281–300.

[11] BLUMBERG, B. M. Old Tricks, New Dogs: Ethology and Interactive Creatures. PhD thesis,
School Of Architecture And Planning, Massachusetts Institute of Technology, February 1997.

[12] BRATMAN, M. E. Intention, Plans, and Practical Reason. Harvard University Press, Cam-
bridge, MA, 1987.

167

[13] CIGER, J., HERBELIN, B., AND THALMANN, D. Evaluation of gaze tracking technology for
social interaction in virtual environments. In 2nd Workshop on Modelling and Motion Capture
Techniques for Virtual Environments, CAPTECH04 (Zermatt, December 2004).

[14] COHEN, P. R., CHEYER, A. J., WANG, M., AND BAEG, S. C. An Open Agent Architecture.
In AAAI Spring Symposium (March 1994), pp. 1–8. OAA.

[15] DARPA. Specification of the KQML agent communication language. Tech. rep., DARPA
Knowledge Sharing Initiative, External Interfaces Working Group, 1993.

[16] DECKER, K., AND LESSER, V. Designing a family of coordination algorithms. Tech. rep.,
University of Massachusetts, Amherst, MA, USA, 1994.

[17] DECKER, K. S. Environment Centered Analysis And Design of Coordination Mechanisms.
PhD thesis, Department of Computer Science, University of Massachusetts Amherst, May
1995.

[18] DORAN, J. E., FRANKLIN, S., JENNINGS, N. R., AND NORMAN, T. J. On cooperation in
multi-agent systems. Knowledge Engineering Review 12, 3 (Sep 1997), 309–314.

[19] DOYLE, P., AND HAYES-ROTH, B. An intelligent guide for virtual environments. In Proceed-
ings of the 1st International Conference on Autonomous Agents (New York, Feb. 5–8 1997),
W. L. Johnson and B. Hayes-Roth, Eds., ACM Press, pp. 508–509.

[20] DURFEE, E. H. Organizations, plans, and schedules: An interdisciplinary perspective on
coordinating AI agents. Journal of Intelligent Systems, Special Issue on the Social Context of
Intelligent Systems (1991).

[21] DURFEE, E. H., AND LESSER, V. Partial global planning: A coordination framework for
distributed hypothesis formation. IEEE Transactions on Systems, Man, and Cybernetics 21, 5
(September 1991), 1167–1183.

[22] EL-MANZALAWY, Y. Efficient planning with initial irrelevant facts. online, 2004. http:
//www.cs.iastate.edu/~yasser/jplan.pdf.

[23] EVERS, M., AND NIJHOLT, A. Jacob - an animated instruction agent in virtual reality. In
Advances in Multimodal Interfaces - ICMI 2000: Third International Conference. Lecture
Notes in Computer Science, T. Tan, Y. Shi, and W. Gao, Eds., vol. 1948. Springer-Verlag
GmbH, 2000, ch. 526.

[24] FARENC, N., BOULIC, R., AND THALMANN, D. An informed environment dedicated to the
simulation of virtual humans in urban context. In Proceedings of Eurographics ’99 (Milano,
Italy, 1999), pp. 309–318.

[25] FIKES, R., AND NILSSON, N. J. STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence 2 (1971), 189–208.

[26] FININ, T., FRITZSON, R., MCKAY, D., AND MCENTIRE, R. KQML as an agent communica-
tion language. In CIKM ’94: Proceedings of the third international conference on Information
and knowledge management (1994), ACM Press, pp. 456–463.

168

http://www.cs.iastate.edu/~yasser/jplan.pdf
http://www.cs.iastate.edu/~yasser/jplan.pdf

[27] FIPA. FIPA ACL Message Structure Specification. online, September 2005. http://www.
fipa.org/specs/fipa00061/.

[28] FIPA. FIPA Communicative Act Library Specification. online, September 2005. http:
//www.fipa.org/specs/fipa00037/.

[29] FIPA. FIPA Contract Net Interaction Protocol Specification. online, February 2005. http:
//www.fipa.org/specs/fipa00029/.

[30] FIPA. FIPA Interaction Protocols. online, September 2005. http://www.fipa.org/
repository/ips.php3.

[31] FIPA. FIPA KIF Content Language Specification. online, February 2005. http://www.
fipa.org/specs/fipa00010/XC00010B.html/.

[32] FIPA. FIPA SL Content Language Specification. online, September 2005. http://www.
fipa.org/specs/fipa00008/.

[33] FUNGE, J., TU, X., AND TERZOPOULOS, D. Cognitive modeling: Knowledge, reasoning and
planning for intelligent characters. In SIGGRAPH 99 (Los Angeles, CA, August 11-13 1999).

[34] GEIB, C., LEVISON, L., AND MOORE, M. B. SodaJack: An architecture for agents that
search for and manipulate objects. Tech. Rep. MS-CIS-94-16LINC, University of Pennsylva-
nia, LAB 265, Department of Computer and Information Science, University of Pennsylvania,
December 1994.

[35] GIAMPAPA, J. A., AND SYCARA, K. Team-oriented agent coordination in the RETSINA
multi-agent systems. In 1st International Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS 2002) (Bologna, Italy, 2002), ACM Press.

[36] GRAHAM, J. R., DECKER, K. S., AND MERSIC, M. DECAF - a flexible multi agent system
architecture. Autonomous Agents and Multi-Agent Systems 7, 1-2 (Jul 2003), 7.

[37] GRIFFITHS, N., AND LUCK, M. Coalition formation through motivation and trust. In AA-
MAS ’03: Proceedings of the second international joint conference on Autonomous agents and
multiagent systems (2003), ACM Press, pp. 17–24.

[38] GROSZ, B. J., AND KRAUS, S. The evolution of shared plans. In Foundations of Rational
Agency, A. Rao and M. Wooldridge, Eds. Kluwer, Dordrecht, 1999, pp. 227–262.

[39] HELBING, D., AND MOLNÁR, P. Social force model for pedestrian dynamics. Physical
Review 51, 5 (May 1995), 4282–4286 Part A.

[40] HILDEBRAND, M., NS, A. E., HUANG, Z., AND VISSER, C. Interactive agents learning
their environment. In Intelligent Virtual Agents: 4th International Workshop. Lecture Notes in
Computer Science, T. Rist, R. Aylett, D. Ballin, and J. Rickel, Eds., vol. 2792. Springer-Verlag
GmbH, 2003, pp. 13–17.

[41] HOFFMANN, J. The Metric-FF planning system: Translating “ignoring delete lists” to numeric
state variables. Journal of Artificial Intelligence Research 20 (2003), 291–341.

169

http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00061/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/specs/fipa00029/
http://www.fipa.org/repository/ips.php3
http://www.fipa.org/repository/ips.php3
http://www.fipa.org/specs/fipa00010/XC00010B.html/
http://www.fipa.org/specs/fipa00010/XC00010B.html/
http://www.fipa.org/specs/fipa00008/
http://www.fipa.org/specs/fipa00008/

[42] HOFFMANN, J., AND NEBEL, B. The FF planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence Research 14 (2001), 253–302.

[43] INGRAND, F. F., GEORGEFF, M. P., AND RAO, A. S. An architecture for real-time reasoning
and system control. IEEE Expert: Intelligent Systems and Their Applications 7, 6 (1992),
34–44.

[44] IOERGER, T. R., AND JOHNSON, J. C. A formal model of responsibilities in agent-based
teamwork. Applied Artificial Intelligence 15, 10 (November 2001), 875–916.

[45] JENNINGS, N. R. On being responsible. In Decentralized AI 3, E. Werner and Y. Demazeau,
Eds. North-Holland, 1992, pp. 93–102.

[46] JENNINGS, N. R. Towards a cooperation knowledge level for collaborative problem solving.
In Proc. 10th European Conf. Artificial Intelligence, ECAI (3–7 Aug. 1992), B. Neumann, Ed.,
John Wiley & Sons, pp. 224–228.

[47] JENNINGS, N. R. Commitments and conventions: The foundation of coordination in multi-
agent systems. Knowledge Engineering Review 8, 3 (1993), 223–250.

[48] JENNINGS, N. R. Specification and implementation of a belief desire joint-intention archi-
tecture for collaborative problem solving. Journal of Intelligent and Cooperative Information
Systems 2, 3 (1993), 289–318.

[49] JENNINGS, N. R. On agent-based software engineering. Artificial Intelligence 117 (2000),
277–296.

[50] JUNG, H., AND TAMBE, M. Conflicting agents: conflict management in multi-agent systems.
Kluwer Academic Publishers, 2001, ch. Conflicts in agent teams, pp. 153–167.

[51] KALLMANN, M. Object Interaction in Real-Time Virtual Environments. PhD thesis, École
Polytechnique Fédérale de Lausanne, 2001.

[52] KAMINKA, G. A., AND TAMBE, M. Robust multi-agent teams via socially-attentive monitor-
ing. Journal of Artificial Intelligence Research 12 (2000), 105–147.

[53] KIM, I.-C. KGBot: A BDI agent deploying within a complex 3D virtual environment. In
Intelligent Virtual Agents. Lecture Notes In Artificial Intelligence, T. Rist, R. Aylett, D. Ballin,
and J. Rickel, Eds., vol. 2792. Springer-Verlag GmbH, 2003, pp. 192–196.

[54] KRAPICHLER, C., HAUBNER, M., ENGELBRECHT, R., AND ENGLMEIER, K.-H. VR in-
teraction techniques for medical imaging applications. Computer Methods and Programs in
Biomedicine 56, 1 (April 1998), 65–74.

[55] KRAUS, S., SHEHORY, O., AND TAASE, G. Coalition formation with uncertain heterogeneous
information. In AAMAS ’03: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems (New York, NY, USA, 2003), ACM Press, pp. 1–
8.

[56] KRUM, D. M., OMOTESO, O., RIBARSKY, W., STARNER, T., AND HODGES, L. F. Speech
and gesture multimodal control of a whole earth 3d visualization environment. In VISSYM
’02: Proceedings of the symposium on Data Visualisation 2002 (Aire-la-Ville, Switzerland,
Switzerland, 2002), Eurographics Association, pp. 195–200.

170

[57] LABROU, Y., AND FININ, T. A proposal for a new KQML specification. Tech. Rep. TR-
CS-97-03, Computer Science and Electrical Engineering Dept., Univ. of Maryland, Baltimore
County, Baltimore, Md., 1997.

[58] LAIRD, J. E. It knows what you’re going to do: Adding anticipation to a quakebot. In
Proceedings of the 5th Int. Conference on Autonomous Agents (New York, 2001), ACM Press,
pp. 385–392.

[59] LAIRD, J. E., NEWELL, A., AND ROSENBLOOM, P. S. Soar: an architecture for general
intelligence. Artificial Intelligence 33, 1 (1987), 1–64.

[60] LANDER, S. E. Distributed Search and Conflict Management Among Reusable Heterogeneus
Agents. PhD thesis, University of Massachusetts Amherst, 1994.

[61] LESPÉRANCE, Y., LEVESQUE, H., AND REITER, R. A situation calculus approach to mod-
eling and programming agents. In Foundations and Theories of Rational Agents, A. Rao and
M. Wooldridge, Eds. Kluwer, 1999.

[62] LEVISON, L. Connecting planning and acting via object-specific reasoning. PhD thesis,
University of Pennsylvania, Philadelphia, PA, USA, 1996.

[63] LEVISON, L., AND BADLER, N. How animated agents perform tasks: Connecting planning
and manipulation through object-specific reasoning. In Toward Physical Interaction and Ma-
nipulation (1994), AAAI Spring Symposium Series.

[64] LUGER, G. F. Artificial Intelligence, 4. ed. Addison Wesley, 2002.

[65] MARSELLA, S., ADIBI, J., AL-ONAIZAN, Y., KAMINKA, G. A., MUSLEA, I., AND TAMBE,
M. Experiences acquired in the design of robocup teams: A comparison of two fielded teams.
Autonomous Agents And Multi-Agent Systems 4, 1-2 (Mar–Jun 2001), 115–129.

[66] MARSH, S., GHORBANI, A. A., AND BHAVSAR, V. C. The ACORN multi-agent system.
Web Intelli. and Agent Sys. 1, 1 (2003), 65–86.

[67] MARTIN, C., SCHRECKENGHOST, D., BONASSO, P., KORTENKAMP, D., MILAM, T., AND

THRONESBERY, C. An environment for distributed collaboration among humans and soft-
ware agents. In AAMAS ’03: Proceedings of the second international joint conference on
Autonomous agents and multiagent systems (2003), ACM Press, pp. 1062–1063.

[68] MARTIN, D. L., CHEYER, A. J., AND MORAN, D. B. The Open Agent Architecture: A
Framework for Building Distributed Software Systems. Applied Artificial Intelligence 13, 1/2
(1999), 91–128.

[69] MCDERMOTT, D. V. PDDL specification. online, 2004. version 2.1, http://cs-www.
cs.yale.edu/homes/dvm/.

[70] MELO, F., CHOREN, R., CERQUEIRA, R., LUCENA, C., AND BLOIS, M. Deploying agents
with the CORBA component model. In Component Deployment:Second International Working
Conference. Lecture Notes In Computer Science, W. Emmerich and A. L. Wolf, Eds., vol. 3083.
Springer-Verlag GmbH, 2004, pp. 234–247.

171

http://cs-www.cs.yale.edu/homes/dvm/
http://cs-www.cs.yale.edu/homes/dvm/

[71] MENEGUZZI, F. R., ZORZO, A. F., AND DA COSTA MÓRA, M. Propositional planning in
BDI agents. In SAC ’04: Proceedings of the 2004 ACM symposium on Applied computing
(New York, NY, USA, 2004), ACM Press, pp. 58–63.

[72] MILLER, M. S., YIN, J., VOLZ, R. A., IOERGER, T. R., AND YEN, J. Training teams with
collaborative agents. Lecture Notes In Computer Science 1839 (2000), 63–72.

[73] NAIR, R., TAMBE, M., AND MARSELLA, S. Role allocation and reallocation in multiagent
teams: Towards a practical analysis. In AAMAS 2003 (2003).

[74] NAIR, R., TAMBE, M., AND MARSELLA, S. Team formation for reformation in multiagent
domains like RoboCupRescue. In RoboCup 2002: Robot Soccer World Cup VI. Lecture Notes
In Artificial Intelligence, G. A. Kaminka, P. U. Lima, and R. Rojas, Eds., vol. 2752. Springer-
Verlag GmbH, 2003, pp. 150–161.

[75] NEBEL, B., DIMOPOULOS, Y., AND KOEHLER, J. Irrelevant facts and operators in plan
generation. Tech. Rep. 00089, Institut für Informatik Freiburg, April 1997.

[76] NIGENDA, R. S., NGUYEN, X., AND KAMBHAMPATI, S. Altalt: Combining the advantages
of Graphplan and heuristic state search. In Proceedings of KBCS-2000 (Mumbai, India, 2000).

[77] NIJHOLT, A., AND HULSTIJN, J. Multimodal interactions with agents in virtual worlds. In Fu-
ture Directions for Intelligent Information Systems and Information Science, Studies in Fuzzi-
ness and Soft Computing, N. Kasabov, Ed. Physica-Verlag, 2000, pp. 148–173.

[78] PAYNE, T. R., SYCARA, K., AND LEWIS, M. Varying the user interaction within multi-agent
systems. In AGENTS ’00: Proceedings of the fourth international conference on Autonomous
agents (2000), ACM Press, pp. 412–418.

[79] PENBERTHY, J. S., AND WELD, D. S. UCPOP: A sound, complete, partial-order planner
for ADL. In Third International Conference on Knowledge Representation and Reasoning
(KR-92) (Cambridge, MA, October 1992).

[80] PERLIN, K., AND GOLDBERG, A. Improv: a system for scripting interactive actors in virtual
worlds. Computer Graphics 30 (1996), 205–216.

[81] PERLIN, K., AND GOLDBERG, A. Improv: a system for scripting interactive actors in virtual
worlds. In SIGGRAPH ’96: Proceedings of the 23rd annual conference on Computer graphics
and interactive techniques (New York, NY, USA, 1996), ACM Press, pp. 205–216.

[82] PONDER, M., MOLET, T., PAPAGIANNAKIS, G., MAGNENAT-THALMANN, N., AND THAL-
MANN, D. VHD++ development framework: Towards extendible, component based VR/AR
simulation engine featuring advanced virtual character technologies. In Computer Graphics
International 2003 (2003), pp. 96–104.

[83] PYNADATH, D. V., KAMINKA, G. A., AND TAMBE, M. Monitoring teams by overhearing: A
multi-agent plan-recognition approach. Journal Of Artificial Intelligence Research 17 (2002),
83–135.

[84] PYNADATH, D. V., AND TAMBE, M. The communicative multiagent team decision prob-
lem: Analyzing teamwork theories and models. Journal of Artificial Intelligence Research 16
(2002), 389–423.

172

[85] PYNADATH, D. V., TAMBE, M., ARENS, Y., CHALUPSKY, H., GIL, Y., KNOBLOCK, C.,
LEE, H., LERMAN, K., OH, J., RAMACHANDRAN, S., ROSENBLOOM, P. S., AND RUSS, T.
Electric elves: Immersing an agent organization in a human organization. In Proceedings of
the AAAI Fall Symbolic on Socially Intelligent Agents (2000).

[86] PYNADATH, D. V., TAMBE, M., CHAUVAT, N., AND CAVEDON, L. Toward team-oriented
programming. In Intelligent Agents, N. R. Jennings and Y. Lespérance, Eds., vol. IV. Springer
Verlag, 1999, pp. 233–247.

[87] RICH, C., AND SIDNER, C. L. COLLAGEN: When agents collaborate with people. In
Proceedings of the First International Conference on Autonomous Agents (Agents’97) (New
York, 5–8 1997), W. L. Johnson and B. Hayes-Roth, Eds., ACM Press, pp. 284–291.

[88] RICKEL, J., AND JOHNSON, W. L. Integrating pedagogical capabilities in a virtual environ-
ment agent. In Proceedings of First International Conference on Autonomous Agents (1997),
ACM Press.

[89] RICKEL, J., AND JOHNSON, W. L. Virtual humans for team training in virtual reality. In
Artificial Intelligence in Education, S. P. Lajoie and M. Vivet, Eds. IOS Press, Amsterdam,
1999, pp. 578–585.

[90] RICKEL, J., AND JOHNSON, W. L. Task-oriented collaboration with embodied agents in
virtual worlds. In Embodied Conversational Agents, J. Cassell, J. Sullivan, S. Prevost, and
E. Churchill, Eds. MIT Press, Cambridge, MA, 2000.

[91] RUSSELL, S. J., AND NORVIG, P. Artificial intelligence: A Modern Approach, 2nd ed. Pren-
tice Hall, Englewood Cliffs, N.J., 2003.

[92] SCERRI, P., PYNADATH, D., JOHNSON, L., ROSENBLOOM, P., SI, M., SCHURR, N., AND

TAMBE, M. A prototype infrastructure for distributed robot-agent-person teams. In AAMAS
2003 (2003).

[93] SCHURR, N., OKAMOTO, S., MAHESWARAN, R. T., SCERRI, P., AND TAMBE, M. Evo-
lution of a teamwork model. online, February 2005. http://teamcore.usc.edu/
schurr/papers/BDIBookChapter.pdf.

[94] SCHWARTZ, D. G., STERLING, L. S., AND MAYLAND, E. The FLiPSiDE Blackboard: a
financial logical programming system for distributed expertise. In Proceedings of First Inter-
national Conference on Artificial Intelligence on Wall Street (9 Oct. 1991), IEEE, pp. 64–72.
IEEE Catalog Number: 91TH0399-6.

[95] SEARLE, J. R. Speech Acts. Cambridge University Press, 1969.

[96] SERRANO, J. M., AND OSSOWSKI, S. On the impact of agent communication languages on
the implementation of agent systems. In Cooperative Information Agents VIII: 8th Interna-
tional Workshop. Lecture Notes in Computer Science, M. Klusch, S. Ossowski, V. Kashyap,
and R. Unland, Eds., vol. 3191. Springer-Verlag GmbH, January 2004, pp. 92–106.

[97] SERRANO, J. M., OSSOWSKI, S., AND FERNÁNDEZ, A. The pragmatics of software agents:
Analysis and design of agent communication languages. In Intelligent Information Agents:
The AgentLink Perspective. Lecture Notes in Computer Science, M. Klusch, S. Bergamaschi,
P. Edwards, and P. Petta, Eds., vol. 2586. Springer-Verlag GmbH, January 2003, pp. 234–273.

173

http://teamcore.usc.edu/schurr/papers/BDIBookChapter.pdf
http://teamcore.usc.edu/schurr/papers/BDIBookChapter.pdf

[98] SHEHORY, O., AND KRAUS, S. Coalition formation among autonomous agents: Strategies
and complexity. In From Reaction to Cognition (1995), no. 957, pp. 57–72.

[99] SYCARA, K., DECKER, K., PANNU, A., WILLIAMSON, M., AND ZENG, D. Distributed
intelligent agents. IEEE Expert, Intelligent Systems and their Applications 11, 6 (1996), 36–
45.

[100] TAMBE, M. Agent architectures for flexible, practical teamwork. In Proceedings of the
14th National Conference on Artificial Intelligence and 9th Innovative Applications of Artifi-
cial Intelligence Conference (AAAI-97/IAAI-97) (Menlo Park, July 27–31 1997), AAAI Press,
pp. 22–28.

[101] TAMBE, M. Towards flexible teamwork. Artificial Intelligence 7 (1997), 83–124.

[102] TAMBE, M. Implementing agent teams in dynamic multiagent environments. Journal of
Applied Artificial Intelligence 12, 2/3 (1998).

[103] TAMBE, M., ADIBI, J., ALONAIZON, Y., ERDEM, A., KAMINKA, G., MARSELLA, S., AND

MUSLEA, I. Building agent teams using an explicit teamwork model and learning. Artificial
Intelligence 110, 2 (1999).

[104] TAMBE, M., PYNADATH, D. V., CHAUVAT, N., DAS, A., AND KAMINKA, G. A. Adaptive
agent integration architectures for heterogeneous team members. In Proceedings of the ICMAS
2000 (2000), pp. 301–308.

[105] TAMBE, M., SHEN, W.-M., MATARIC, M., PYNADATH, D. V., GOLDBERG, D., MODI,
P. J., QIU, Z., AND SALEMI, B. Teamwork in cyberspace: Using teamcore to make agents
team-ready. In Proceedings of the AAAI Spring Symposium on Agents in Cyberspace (Menlo
Park, CA, 1999), The AAAI Press.

[106] TAMBE, M., AND ZHANG, W. Towards flexible teamwork in persistent teams: Extended
report. Journal of Autonomous Agents and Multi-Agent Systems 3, 2 (Jun 2000), 159–183.

[107] THIÉBAUX, S., HOFFMANN, J., AND NEBEL, B. In defense of PDDL axioms. In Proceedings
of the 18th International Joint Conference on Artificial Intelligence (IJCAI-03) (Acapulco,
Mexico, 2003), G. Gottlob, Ed.

[108] TU, X., AND TERZOPOULOS, D. Artificial fishes: Physics, locomotion, perception, behavior.
In Proceedings of SIGGRAPH 94 (New York, 1994), ACM Press, pp. 43–50.

[109] VELOSO, M., CARBONELL, J., PEREZ, A., BORRAJO, D., FINK, E., AND BLYTHE, J.
Integrating planning and learning: The PRODIGY architecture. Journal of Experimental and
Theoretical Artificial Intelligence 7, 1 (1995).

[110] VOSINAKIS, S., AND PANAYIOTOPOULOS, T. A task definition language for virtual agents.
Journal of WSCG 11 (2003), 512–519.

[111] WELD, D. S., ANDERSON, C. R., AND SMITH, D. E. Extending Graphplan to handle uncer-
tainty & sensing actions. In Proceedings of AAAI ’98 (1998).

174

[112] WOOLDRIDGE, M., AND JENNINGS, N. R. Formalizing the cooperative problem solving
process. In Proceedings of the Thirteenth International Workshop on Distributed Artificial
Intelligence (IWDAI-94) (Lake Quinalt, WA, July 1994), pp. 403–417.

[113] WOOLDRIDGE, M., AND JENNINGS, N. R. Towards a theory of cooperative problem solving.
In MAAMAW94 (Aug. 1994), pp. 15–26.

[114] YU, H., GHORBANI, A. A., BHAVSAR, V. C., AND MARSH, S. Keyphrase-Based Informa-
tion Sharing in the ACORN Multi-Agent Architecture. In Proceedings of the Second Interna-
tional Workshop on Mobile Agents for Telecommunication Applications (MATA 2000) (Paris,
France, 2000), E. Horlait, Ed., Springer-Verlag: Heidelberg, Germany, pp. 243–256.

175

176

Curriculum Vitae

General information

Name: Ján Cíger

Date of birth: 27.9.1976, Slovak Republic

Nationality: Slovak

Mother tongue: Slovak

Other languages: English, German, French,

Russian, Czech

Education
Magister’s Degree in Computer Science (Mgr.) with specialization in Computer Graphics and Par-

allel Algorithms and Distributed Systems. Faculty of Mathematics, Physics and Computer Science,

Comenius University Bratislava, Slovak Republic, 1999

Professional activities
2001–2005

research assistant at VRlab (Virtual Reality Laboratory), EPFL, Switzerland

1999–2001

software engineer at WOC s.r.o, Slovak Republic

1998–1999

software engineer at BMS Group s.r.o, Slovak Republic

1996–1998

software engineer at UCS s.r.o, Slovak Republic

Publications

• J.Ciger, “Cheap and Accurate 3D Positioning Device for Virtual Reality Usage”, Proceedings

of SCCG ’98 – Posters, p. 19–20, Budmerice, 1998

• J.Ciger, “An Ultrasonic Motion Tracker for VR Usage”, Proceedings of CESCG ’99, p. 163–

170, Budmerice, 1999

• J.Ciger, “An Ultrasonic Motion Tracker for VR Usage”, Proceedings of SCCG ’99 – Posters,

p. 41–42, Budmerice, 1999

• J.Ciger, “An Ultrasonic Motion Tracker for VR Usage”, in “CESCG ’97–’99 Selected Papers”,

p. 175–182, Oesterreichische Computer Gesellschaft, Wien, 2000

• J.Ciger, J. Placek, “The Hand as an Ultimate Tool”, Proceedings of SCCG ’2000, p. 137–143,

Budmerice, 2000

• J.Ciger, J. Placek, “Non-traditional image segmentation and filtering”, Proceedings of SCCG

’2001 – Posters, p. 25–27, Budmerice 2001

• J.Ciger, M. Gutierrez, F. Vexo, D.Thalmann, “The Magic Wand”, Proceedings of SCCG ’2003,

p. 132–138, Budmerice, 2003

• T. Abaci, R. de Bondeli, J. Ciger, M. Clavien, F. Erol, M. Gutierrez, S. Noverraz, O. Renault,

F. Vexo, D. Thalmann, “The Enigma of the Sphinx”, In International Conference on CYBER-

WORLDS, Singapore, 2003, pp. 106–113

• T. Abaci, R. de Bondeli, J. Ciger, M. Clavien, F. Erol, M. Gutierrez, S. Noverraz, O. Renault, F.

Vexo, D. Thalmann, “Magic Wand and Enigma of the Sphinx”, Computers and Graphics, 2004

• T. Abaci, J.Ciger, D. Thalmann, “Speculative Planning With Delegation”, in International Con-

ference on CYBERWORLDS, Tokyo, 2004

• Jan Ciger, Bruno Herbelin and Daniel Thalmann, “Evaluation of Gaze Tracking Technology for

Social Interaction in Virtual Environments”, 2nd Workshop on Modelling and Motion Capture

Techniques for Virtual Environments, CAPTECH04, Zermatt Dec. 9–11, 2004.

• Tolga Abaci, Jan Ciger, Daniel Thalmann, “Planning with Smart Objects”, Proceedings of

WSCG ’05, Pilsen, 2005

• Tolga Abaci, Jan Ciger, Daniel Thalmann, “Action Semantics in Smart Objects”, in Workshop

Towards Semantic Virtual Environments, SVE05, Villars, March 16–18, 2005

	Abstract
	Version abrégée
	Table of contents
	List of figures
	Introduction
	Motivation
	Objectives of the research
	Contribution
	Plan of the thesis

	Related work
	Definitions of the frequently used terms
	Semantic information in VR environments
	Agent-based systems
	Multi-agent systems

	Collaboration
	Purpose
	Theories
	Technologies

	Action planning
	Iterative techniques
	Propositional STRIPS-like planning

	Symbolic representation of a virtual world
	General problems
	Environment representation
	Partial observability
	Task representation
	Action semantics

	VR-specific challenges
	Gap between geometry and semantic information
	Animation and its semantics
	Real-time response

	Human-agent communication
	Summary

	Model of Collaboration
	Agent-agent collaboration
	Delegation
	Role of the facilitator in OAA-like system
	Facilitator design
	Matching requests with offered services
	Global world state

	Teamwork
	Forming teams
	Contract Net and team forming
	Roles in the team

	Human-agent collaboration
	Summary

	Collaborative problem solving
	Role of the planning in problem solving process
	Problems of the planning approach
	Planning with delegation and teamwork
	Delegated actions and speculative planning
	Generic plans
	Planning with delegated operations
	Multi-stage planning in teams

	Object-specific planning
	Summary

	Multi-agent simulation framework
	Overall architecture of the implementation
	Basic technologies
	Ghosts & puppets framework

	Facilitator
	Implementation

	Agents
	Objectives
	General design
	Beliefs
	Sensing
	Actions
	Application of the effects
	Axiom enforcement

	Action Planning
	Planning by agents

	Fail-safe execution
	Summary

	Case studies
	``Box world''
	Eye tracker experiment

	Virtual guide
	Interaction
	Evaluation

	Natural language interface
	Interaction
	Evaluation

	User interface for problem solving
	Interface
	Introspection
	Action scheduling
	Action pre-validation
	Task delegation
	Evaluation

	Declarative ``story specification'' for VR exposure therapy
	Evaluation

	City riot
	Architecture
	Interaction
	Technical notes
	Evaluation

	Conclusions
	Summary of the research
	Summary of the contributions
	Future work
	State consistency
	Sub-teams
	Agent autonomy versus controllability
	Facilitator improvements

	Extended smart objects
	Jukebox from the bar environment

	Example actions
	move action
	delegated-move action

	``Cut street'' order from the ``City riot'' application
	Domain description (operators)
	Problem description (initial state, beliefs, goal specification)
	Resulting plan
	Corresponding action in the virtual environment

	Bibliography

