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pendant quatre ans tout en me laissant une grande liberté. Je le remercie
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Résumé

Ce travail consiste en une étude expérimentale systématique visant à élucider

les conditions pour lesquelles on observe des formations cellulaires dans des

flammes de diffusion de type hydrogène proche de l’extinction. La formation

de ces instabilités cellulaires ont été étudiées avec plusieurs types de brûleurs,

les brûleurs classiques dits “jet” (jet axisymétrique et jet bidimensionnel) et

un nouveau brûleur unidimensionnel.

Les principaux paramètres régissant ces instabilités cellulaires sont les

nombres de Lewis du combustible et du comburant et la composition initiale

de mélange (rapport entre la concentration de combustible et la concentra-

tion de comburant normalisé par le rapport stoechiométrique). La formation

des flammes cellulaires est favorisée pour des nombres de Lewis relativement

bas et proches de la limite d’extinction. Pour des brûleurs “jet”, la zone

d’instabilité cellulaire diminue soit en augmentant la composition initiale de

mélange, soit en augmentant la vitesse de sortie du combustible. Pour un

mélange particulier de combustible, les longueurs d’ondes associées aux insta-

bilités cellulaires se sont avérées diminuées pour des concentrations d’oxygène

décroissantes et pour des vitesses de jet croissantes.

Afin d’étudier les instabilités cellulaires dans des flammes de diffusion

sans effet hydrodynamique, un nouveau brûleur a été développé dans le

but de réaliser expérimentalement une flamme de diffusion plane unidimen-

sionnelle non-étirée, précédemment uniquement considérée dans des modèles

théoriques. Les zones d’instabilités cellulaires pour des flammes de type

hydrogène sont en bon accord avec les prédictions théoriques et avec les

expériences menés dans les brûleurs “jet” résultats du comportement d’une

flamme de diffusion proche de l’extinction issu d’un tel dispositif sont com-

parables à ceux issu des brûleurs “jet”.
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Abstract

A systematic experimental study was performed to elucidate the conditions

for which cellular patterns of diluted hydrogen diffusion flames near extinc-

tion were observed. The formation of cellular instabilities was studied for

several burners: jet burners (axisymmetric jet and two-dimensional jet) and

a novel one-dimensional burner.

The fuel and oxidizer Lewis numbers and the initial mixture strength

(fuel-to-oxygen concentration ratio normalized by the stoichiometric value)

were identified as the key governing parameters. The formation of cellular

flames occurs for low reactant Lewis numbers (less than one) and near the

extinction limit. For the jet burners, the parameter space for cellularity

was found to decrease with either decreasing initial mixture strength, either

increasing the fuel jet velocity. For a given fuel mixture, the wavelength

associated with the cellular instabilities was found to decrease with either

decreasing oxygen concentration, or increasing the fuel jet velocity.

To study the supression of hydrodynamic effects on the cellular insta-

bilities, a unique burner was constructed to experimentally realize a one-

dimensional unstrained planar non-premixed flame, previously only consid-

ered in idealized theoretical models. The results shos that when the oxidizer

diffuses against the bulk flow the propensity of cellular instabilities increases

with decreasing the initial mixture strength which is in agreement with the

theoretical predicitions for this type of burner as well as experimental results

for jet diffusion flames.

vii



viii



Contents

1 Introduction 1

2 Jet diffusion flame facilities 11

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Measurement techniques . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Properties of the fuel and oxidizers . . . . . . . . . . . 12

2.2.2 Flow controller system . . . . . . . . . . . . . . . . . . 13

2.2.3 Traverse equipment . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Hotwire anemometer . . . . . . . . . . . . . . . . . . . 14

2.2.5 Laser Doppler anemometry (LDA) . . . . . . . . . . . 15

2.3 Description of facilities . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Axisymmetric jet burner . . . . . . . . . . . . . . . . . 18

2.3.2 Wolfhard–Parker burner . . . . . . . . . . . . . . . . . 20

3 Cellular instabilities in jet diffusion flames 23

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Effect of reactant composition on cellular instabilities

Combust. Theory and Modelling, 7, 2003 [67] . . . . . . . . . . 24

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Experimental description . . . . . . . . . . . . . . . . . 27

3.2.3 Experimental results . . . . . . . . . . . . . . . . . . . 28

3.2.4 Discussion and conclusions . . . . . . . . . . . . . . . . 34

3.3 Jet burner velocity profiles . . . . . . . . . . . . . . . . . . . . 38

3.3.1 Axisymmetric jet burner . . . . . . . . . . . . . . . . . 38

3.3.2 Wolfhard–Parker burner . . . . . . . . . . . . . . . . . 39

3.3.3 Determining the vorticity thicknesses . . . . . . . . . . 40

ix



CONTENTS

3.4 Effect of jet velocity on cellular instabilities . . . . . . . . . . 42

3.4.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 Realization of a nearly one-dimensional diffusion flame 57

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 The theoretical one-dimensional burner . . . . . . . . . . . . . 58

4.3 Design considerations

Proc. Comb. Inst., 30, 2005 [66], expanded . . . . . . . . . . . 62

4.4 Experimental characterization of the burner

Proc. Comb. Inst., 30, 2005 [66], expanded . . . . . . . . . . . 67

4.4.1 Velocity profiles . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Temperature and heat loss consideration . . . . . . . . 70

4.4.3 Flame position measurements . . . . . . . . . . . . . . 71

5 First investigation of cell formation in the new burner 77

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Preliminary results

Proc. Comb. Inst., 30, 2005 [66] . . . . . . . . . . . . . . . . . 78

5.3 Additional comments on the reverse configuration . . . . . . . 86

5.4 Comments on possible thermal-convection . . . . . . . . . . . 88

6 Summary and future work 93

A Thermal properties of the reactants 97

Curriculum vitae 115

x



List of Figures

1.1 Examples of morphogenesis. . . . . . . . . . . . . . . . . . . . 2

1.2 Illustration of the morphogenesis mechanism. . . . . . . . . . . 3

1.3 Typical variation of the maximum reaction temperature with
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Chapter 1

Introduction

The following experimental study deals with cellular instabilities in non-

premixed flames. The term non-premixed refers to the way reactants are

introduced into the combustor. In laminar flow, the fuel and oxidizer are

initially separated and are brought to the reaction zone primarily due to

molecular diffusion. This is in contrast to premixed flames where the fuel

and the oxidizer are thoroughly mixed prior to reaching the reaction zone,

also known as the flame front. Non-premixed flames form a high percent-

age of practical combustion problems. Although combustion will occur only

where fuel and oxidizer meet, supplying them separately is convenient and

safe. Diesel engines, gas turbines, most industrial burners, and coal combus-

tion are just few examples of the many applications involving non-premixed

combustion.

Instabilities in flames can have multiple origins. In general three ‘motors’

which drive the instability can be distinguished ranging from small-scale to

large-scale phenomena. These are, in ascending order of size, combustion-

driven, hydrodynamic-driven (Darrieus [18], Landau [61]) and buoyancy-

driven (Taylor [106]) mechanisms. A comprehensive review of instabilities

occurring in premixed flames can be found in Clavin [15] and in Buckmas-

ter [7]. Cellular instabilities fall in to the category of combustion-driven

mechanisms referred to in the following as reaction-diffusion problems.
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1. INTRODUCTION

Figure 1.1: Typical examples of morphogenesis. The left sketch is of whorled
leaves, e.g. an arrangement of several leaves radiating from a single node.
The right figure is an SEM (Scanning Electron Microscope) image of devel-
oping somatic embryos showing 6 cotyledons taken from [37]. The scale bar
is equal to 200 � m.

Reaction-diffusion model

Cellular patterns observed in reaction-diffusion problems are often related to

the Turing instability. Although, as we shall see, the governing equations in

combustion are different to those for reaction-diffusion, the Turing instabil-

ity will be detailed here, since the underlying mechanism of this instability

is instructive. Turing’s work of interest here [90, 107] falls in the framework

of the morphogen theory of phyllotaxis or morphogenesis. He suggested that

this instability is at the origin of morphogenesis, like the formation of the

freshwater polyp Hydra tentacles or whorled leaves. Figure 1.1 shows typi-

cal examples of morphogenesis in plants, such as the arrangement of several

leaves radiating from a single node or developing somatic embryos showing

6 cotyledons equally spaced. Turing was influenced greatly by the biolo-

gist D’Arcy Thompson [17] who believed that biological forms were simply

a result of chemical and physical processes. A common feature of biological

development is a constant spacing between adjacent repetitions of an organ.

Up to now, constant-spacing effects have been explained by reaction-diffusion

2



Figure 1.2: Left: Sketch illustrating the role of the different morphogens.
Note that the inhibitor diffuses only on a short distance relative to the field
size developing many evenly spaced peaks of activator. Right: This illustrates
the activator peaks (circle) surrounded by diffuse halos of inhibitor. Taken
from [115].

theory (in the phyllotaxis literature it is referred as the chemical theory).

Turing suggested that a combination of chemical reactions and diffusion is

adequate to account for the main phenomenon of morphogenesis, this theory

being supported by contemporary biologists such as Wardlaw [109,110]. Tur-

ing assumed that pattern formation results if two interacting pattern-forming

substances — the morphogens activator (A) and inhibitor (I) — diffusing at

different rates in a third substance (the catalyst), satisfy particular diffu-

sivity and reaction rate conditions. For example, suppose that cells have

the capacity to autonomously produce a slowly diffusing activator (A). The

activator (A) stimulates its own production (auto-catalysis) and also stim-

ulates the production of inhibitor (I). (I) diffuses rapidly and inhibits the

production of (A), thus creating a region of inhibitor surrounding an acti-

vator [72, 115]. Figure 1.2 illustrates the role of the different morphogens,

taken from [115]. It should be noted that it has not been proven that these

morphogens (activator or inhibitor) exist [1]. The wavelength of the pat-

tern (Turing’s ‘chemical wavelength’ [107]) depends on the rates of reaction

k and diffusion D. Reaction rates give a characteristic time-scale [k] = [s−1]

and diffusion gives proportionality between a characteristic distance and the

3



1. INTRODUCTION

time [D] = [m2.s−1]. Reaction-diffusion equations are complex but gener-

ally lead to wavelength expressions that vary with the length scale
√

D/k

(see Harrison [36]). Turing’s predictions have been recently experimentally

confirmed [11,19,81].

Some confusion prevails about what is meant by Turing structures. These

structures are stationary concentration patterns, originating solely from the

coupling of reaction and diffusion processes. They correspond to stable sta-

tionary solutions of a set of reaction-diffusion equations:

∂ci

∂t
= Di∆ci + kξi ,

where ξi are in general non-linear functions of ci representing the contribu-

tions of reactive processes, and ∆ the Laplacian operator. Thus, the charac-

teristic ‘chemical wavelength’ is independent of the geometrical parameters.

This separates the Turing patterns from other well known structures like the

convective Bénard cells or the Taylor vortices in Couette flows [55]. Turing

was not alone in arriving at these ideas. For the example detailed above and

in Fig. 1.2, the function ξ could be a second order polynomial representing an

autocatalysted reaction. For this particular form of ξ, similar ideas [44, 72]

were introduced before Turing’s 1953 work [107] by Kolmogorov, Petrovski

and Piskunov [54], Fisher [25] and later by Rashevsky [88].

Cellular instabilities in combustion

Perhaps the earliest examples of cellular instabilities in flames are the ob-

servations made by Smithells and Ingle [100] in 1892, for premixed flames.

The first analyses of these phenomena were made by Barenblatt, Zeldovich

and Istratov [2] and suggested that the thermo-diffusive instability is simi-

lar to Turing’s model, since it involves modification of the chemical reaction

rate by differential diffusion of reactants and thermal energy as a reacting

agent [68,97]. However, the analysis of thermo-diffusive instability in flames

is considerably more complicated than that of the bio-chemical model. The

governing equations consist of the fluid mechanics equations (conservation of

mass, conservation of momentum, and conservation of energy) supplemented

by equations expressing the mass balance of the various species involved in

4



the chemical reaction. Therefore to a simple reaction-diffusion problem we

add several layers of difficulties, namely advection and temperature depen-

dence. Another complication comes from the fact that the reaction rate in

combustion is strongly non-linear. Arrhenius showed that the relationship

between temperature and the rate constant for a reaction obeys the following

equation:

k = A exp

(

−Ea

RT

)

,

where k is the rate coefficient, A is a frequency factor, called the pre-

exponential factor or the steric factor, and includes factors like the frequency

of collision and their orientation and is often taken as constant, Ea is the

activation energy, R is the universal gas constant, and T is the temperature.

Molecules need sufficient energy above Ea for reaction to occur. For diffu-

sion flames, the resulting flame temperature when plotted as a function of

the Damköhler number1, Dam, defined by the ratio of characteristic diffu-

sion time and chemical time, gives an S-shaped curve defining three distinct

regimes: a nearly frozen regime (weakly reacting) where the temperature in-

creases due to chemical reactions up to the lower turning point, called static

ignition point; an unstable partial burning regime where the reactants leak

through the reaction zone near the upper turning point, called the static ex-

tinction point; and an intensely burning diffusion-controlled regime resulting

in a very thin reaction zone (see Fig. 1.3). Several flame behaviors can be

distinguished: for very large Damköhler number an infinitesimally thin re-

action sheet exist as envisaged by Burke & Schumann [9], but for moderate

values of Damköhler, combustion is incomplete and there is leakage of one

or both reactants through the reaction zone [64].

The main research efforts on thermo-diffusive instability in flames have

been directed towards premixed flames and examples which exploit the large-

ness of the activation energy parameter [8,70,71]. Since cellular instabilities

can come from thermo-diffusive instabilities the Lewis number is of impor-

1In the literature it is found that for the advection-reaction-diffusion problem, the
Damköhler number is defined as the ratio between the advection time and the reaction
time. Another number is then supplied for the ratio between the diffusion time and
the reaction time, namely the Thiele modulus number (φ2). However in the combustion
community, the Thiele modulus is simply renamed as the second Damköhler number.
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Figure 1.3: Typical variation of the maximum reaction temperature with the
Damköhler number for a non-premixed mixture.

tance. The Lewis number (or Lewis–Semenov) is defined as the ratio between

thermal diffusivity and mass diffusivity. By using activation energy asymp-

totics, the analysis of Sivashinsky [97] in adiabatic one-dimensional premixed

flames showed that the cellular instability can occur if the mass diffusivity of

the limiting reactant is sufficiently larger than the thermal diffusivity, i.e. the

Lewis number is less than unity. Joulin and Clavin [45] extended the analysis

to non-adiabatic premixed flames and showed that an oscillatory instability

also occurs when the mass diffusivity of the limiting reactant is sufficiently

small compared to the thermal diffusivity.

For diffusion flames, theoretical analysis is difficult due to the unmixed

configuration. Instead of having a single term for the Lewis number (or

other nondimensionalized numbers), we have to take into account both Lewis

numbers, one for the fuel LeF and one for the oxidizer LeO. Nevertheless, a

starting point for previous theoretical studies was to take equal Lewis num-

bers. Thermo-diffusive instability in diffusion flames was first investigated

numerically for planar disturbances by Kirkby and Schmitz [53]. Later, Lewis

number effects on diffusion flames were discussed for several burner configu-

rations [14,51,101]. Kim, Williams and Ronney [52] theoretically investigated

thermo-diffusive instabilities in a one-dimensional diffusion flame with equal

Lewis numbers less than unity (for slowly varying flames, SVF) and for sto-

ichiometric conditions. They focused on near extinction flames leading to

a striped or cell pattern proportional to the reaction zone thickness. Their

results predicted cellular instabilities for flames sufficiently close to quasi-

6



steady extinction. Kim [48] extended the analysis for a quasi-one-dimensional

burner namely the opposed jet configuration. Kim [49] further investigated

thermo-diffusive instabilities in diffusion flames with Lewis numbers close to

unity (similar to the near equidiffusional flame, NEF, formulation). Kim [49]

developed a general model and also considered the more general case where

the Lewis number deviates from unity by a small amount and is defined for

the deficient reactant. His results exhibited two types of unstable solution,

depending on whether the Lewis number is less than or greater than unity.

For sufficiently small Lewis numbers, a cellular instability arises. However,

for flames with large Lewis numbers, a pulsating instability was found. The

pulsating instability is beyond the scope of this document, and an exhaus-

tive survey can be found in Füri [26, 59]. The adopted configuration is the

same as that of Kim et al. [52]. In this configuration, there is a constant ve-

locity, directed from the porous oxidizer plate toward the porous fuel plate,

and fuel and oxidizer diffuse from their respective supply plates to the re-

action sheet where they react to release thermal energy. At each porous

plate the concentration of the species supplied is maintained constant. Kim

and Lee [50] and Lee and Kim [62] with the same method (NEF) focused

on the counterflow configuration and found similarly oscillatory behavior for

Lewis numbers higher than one and stripe patterns for Lewis numbers less

than one. They pointed out that unlike the chaotic behavior of the cellular

structure in premixed-flames [75, 97–99], coming from the integration of the

Kuramoto–Sivashinsky equation, the strip structure is found to be station-

ary. These theoretical investigations indicated the importance of the Lewis

number but did not study the importance of the initial mixture strength,

φ (φm), defined as the fuel-to-oxygen molar (mass) ratio normalized by the

stoichiometric value. Furthermore the instabilities presented are fast-time in-

stabilities (growth rate scaled on the reaction time) which restricts the study

very near extinction. The work of Cheatham and Matalon [12] addressed

these last issues, and confirmed the importance of the Lewis numbers as

well as the importance of the Damköhler number, by conducting a general

asymptotical theory for diffusion flames. Cheatham and Matalon [12] fo-

cused then on the onset of cellular instabilities for a one-dimensional burner,

by providing stability curves that map the Lewis-number parameter plane
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sion flame. The hatched regions represent cells where heat release is rein-
forced by rising temperature. Mechanisms working against the instability:
heat loss (solid arrows) and non-uniform diffusive reactant supply (dashed
arrows).

for several values of φm. This one-dimensional burner is different from the

one used by Kim et al. [52] and Kim [49]. This idealized burner was the same

as Kirkby and Schmitz [53], first studied by Zeldovich [118], extending the

work of Shvab [94]. This model allows the study of instabilities without any

hydrodynamic disturbance, such as stretch (counterflow burner) or shear (jet

burner), and will be the topic of Chap. 4-5.

The aim of this study is to elucidate the physics underlying cell formation

for diffusion flames. The basic mechanism of these thermal-diffusive instabili-

ties is relatively simple: if, within a part of the reaction zone, the temperature

and the heat release perturbations are in phase, a mutual reinforcement of

the two perturbations occurs, provided the reinforcement is not stopped by

diffusion of heat or species and/or advective transport, see Fig. 1.4. For sta-

tionary cells in particular, the local temperature maxima associated with the

maxima of reaction rate are local sinks for the reactants. These maxima are

self-sustained provided that the thermal conductivity is low (small heat loss

of the high temperature region) and the reactant diffusivities are high (small

“resistance” to the non-uniform supply of reactants to the reaction rate max-

ima), i.e. provided the Lewis numbers are small (typically < 1). However,
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the detailed analysis of the complete process is complex as it depends on a

large number of parameters: the Damköhler number (Dam), the fuel and

oxidizer Lewis numbers (LeF, LeO), the initial mixture strength (φm), and

finally the standard hydrodynamic parameters must be included.

The first reported experiments on thermo-diffusive instabilities in diffu-

sion flames are those of Garside and Jackson [29,30]. For a flame burning in

air with a fuel mixture of hydrogen diluted in carbon dioxide, or nitrogen,

they observed a polyhedral structure in an axisymmetric jet (AJ) burner.

Later Dongworth and Melvin [22] reported cellular flames in a Wolfhard–

Parker (WP) burner. They carried out experiments for hydrogen-oxygen

flames and found cellular flames when the reactants were diluted with nitro-

gen or argon. However when the two reactants were diluted with helium,

no cells were reported. Later Ishizuka and Tsuji [43] reported similar be-

havior in their counterflow diffusion burner for hydrogen flames. The burner

was in fact a Tsuji burner, i.e. a porous cylinder immersed in a uniform

stream. The experimental work of Chen, Mitchell and Ronney [13] reported

the occurrence of cellular flames for various reactants in a WP burner. They

clearly demonstrated the importance of low Lewis numbers on the formation

of cells in diffusion flames. Füri [26] pointed out the importance of the ini-

tial mixture strength, and conducted experiments in WP and AJ burners.

He obtained cellular instabilities with SF6 diluted methane burning in pure

oxygen. For all these experiments, cellular instabilities were found near the

extinction limit (associated with low Damköhler numbers) and for sufficiently

low Lewis numbers, typically less than one.

None of the above experiments systematically investigated the influence

of hydrodynamic forces or the influence of the initial mixture strength, on the

onset and characteristics of the cellular instabilities. The observation of cells

in these studies was in many cases of secondary importance [22, 29, 30, 43].

Chen et al. [13] performed a systematic study on the effect of Lewis num-

ber for a WP burner. Later, Füri [26] reported the effect of initial mixture

strength. Table 1.1 reports the typical wavelength of the cellular patterns ob-

served in the works cited above involving different burner geometries. These

previous experiments confirm the theoretical prediction for the Lewis de-

pendence, e.g. the cellular regime occurs for relatively low LeO but more

9
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Reference Burner Fuel Inert LeF LeO λ [cm]
Garside & Jackson [29,30] AJ H2 CO2 0.27 1.13 0.7
Dongworth & Melvin [22] WP H2 N2 0.31 1.21 1.0
Ishizuka & Tsuji [43] CF H2 N2 0.30 1.20 0.7a

Chen et al. [13] WP H2 N2 0.32 1.25 0.7–1.6b

Füri [26] AJ CH4 SF6 0.50 0.50 0.4
Füri [26] WP CH4 SF6 0.50 0.50 0.32
a taken from [52]
b several exit velocities.

Table 1.1: Wavelength of cellular instabilities for various reactants and con-
figurations.

importantly for low LeF. Several wavelengths were found, ranging from 0.3

to 1.6 cm. These wavelengths were compared to theoretical prediction, but

since these predictions were based on different geometries (often idealized)

the comparison was only qualitative.

The dissertation will first introduce the experimental techniques and the

jet burners used throughout this work in Chap. 2. Results will be described

for cellular instabilities occurring in jet diffusion flames in Chap. 3. The

influence of the initial mixture strength will be presented in Sec. 3.2, this

first work [67] illustrates the effect of φ, in agreement with theory [12]. The

influence of hydrodynamics and scaling issues will be described in Sec. 3.4.

This first work on hydrodynamic effects will provide useful information for

modeling and comparing results quantitatively with theories. Following this

we shall investigate cellular instabilities in a burner without hydrodynamics

effects, in Chap. 5 by constructing a novel one-dimensional unstrained burner

depicted in Chap. 4. Finally a summary and concluding remarks will be given

in Chap. 6.
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Chapter 2

Jet diffusion flame facilities

2.1 Introduction

Jet test facilities are often used to study both reactive and non-reactive

shear layers between gas or liquid streams. In this study two classical jet

facilities are examined, namely the axisymmetrical jet (AJ) burner and the

two-dimensional burner, referred as the Wolfhard–Parker (WP) jet burner.

A novel burner was also studied and is presented in Chap. 4. Diffusion flame

experiments consist of bringing fuel and oxidizer into a zone called the “mix-

ing layer” in order to achieve the combustion process. Here the term mixing

does not necessarily mean molecularly mixed, but a zone where both reac-

tants can be found. These types of burners are present in various industrial

devices: for example, coaxial jets constitute an efficient way of mixing species

for combustion applications. They are also used for aeroacoustical purposes:

the noise produced by a single jet can be damped with the addition of a

surrounding coaxial stream [114]. Mixing in both non-reactive and reactive

single-phases has been the subject of a number of experimental investiga-

tions into plane shear layers1. These investigations typically focus on three

main areas: the characterization of the mixing transition, the variation of the

composition of the mixed fluid across the shear layer, and finally, the role of

molecular diffusivity.

1The streams can be either gas or liquid, which are characterized respectively by high
and low molecular diffusivity.
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2. JET DIFFUSION FLAME FACILITIES

In the high Damköhler2 limit, e.g. when very fast kinetics characterize

the chemical reaction, the reaction zone and the diffusive inter-penetration

between the streams coincide [20, 79, 113, 117]. Therefore the geometry and

the stirring conditions just after the contact play a crucial role.

In this chapter, several measurement techniques used throughout the dis-

sertation are described in Sec. 2.2. Then, details on the flame test facilities

are presented for the axisymmetrical jet (AJ) burner in Sec. 2.3.1 and for the

Wolfhard–Parker (WP) burner in Sec. 2.3.2.

2.2 Measurement techniques

2.2.1 Properties of the fuel and oxidizers

The current investigation used hydrogen H2 as the fuel mixed with various

inerts and various O2-containing mixtures as the oxidant. The physical prop-

erties, e.g. thermal conductivities, diffusion coefficients, and thermal diffu-

sion coefficients, were calculated with a software package developed at Sandia

National Laboratories, CHEMKIN [46], coupled with a Perl script to au-

tomatically retrieve reactant properties at several conditions. This software

provided both the mixture-averaged forms [47,111] as well as the multicom-

ponent formulations [21]. Basically, the code first computes third order poly-

nomial fits of the physical properties versus the temperature. The properties

are the dependent parts of the kinetic theory expressions for pure species

viscosities and binary diffusion coefficients. Then a subroutine returns either

pure species properties or multicomponent gas mixture properties. All the

results given here come from the multicomponent formulation. The mixture-

averaged calculation was not used because unlike the 1983 version [47] the

binary diffusion computed in the mixture-averaged formulation does not use

second-order correction [46]. The binary diffusion coefficients and the single

component viscosities are given from the standard kinetic theory [39]. This

expression is a function of the Lennard–Jones potential well depth, the dipole

moment and the collision integral factor. The first two functions are read in

2Damköhler number Dam, is the ratio between the characteristic diffusion and the
chemical reaction times.
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2.2 Measurement techniques

an external database, and are available for numerous hydrocarbon combus-

tion species in the correct format in [28] or from the NASA-Lewis data file.

The collision integral value is determined by a quadratic interpolation of the

tables based on Stockmayer potentials given in [76]. Appendix A presents

the properties for the reactants used.

2.2.2 Flow controller system

Teledyne–Hastingsr flow controllers (model HFC 202/203, “Low Flow”) were

used to accurately control the flow rates of each gas. These instruments

did not require any temperature correction and were insensitive to small

upstream and downstream pressure changes. Separate flow controllers were

used for each gas and application. The precision of these flow controllers

was about 1% of full scale. Each flow controller had a shunt, which could

be adapted to the desired flow range. The range of these flow controllers

varied (for air equivalent) from 0–30, 0–10 and 0–3 sL/min, where sL/min

represents liters per minute at standard conditions. The power supply was

±15 VDC and both the driving and response signal were between 0–5 VDC.

The input and output voltages to the mass flow controllers were regulated

via two National Instrument data acquisition boards (PCI-6025E and PCI-

6713). The PCI-6025E had a maximum sampling rate of 200 kS/s, an input

range ±0.05 to ±10 V, a 12 bit input resolution and 16 analog inputs which

could thus monitor up to 16 devices. The PCI-6713 had a sampling rate

ranging from 740 kS/s to 1 MS/s, an input range from ±0.05 to ±10 V, a

12 bit output resolution and 8 analog outputs; it could thus control up to 8

input voltages from the flow controllers. Custom programs were written and

developed with Labviewr and allowed the user to make/check the calibration

for the different gases and to simultaneously monitor all gas flows in the test

facility. The program worked as follows: the total flow rate was set for each

mixture (oxidizer and fuel) and desired the concentration of each mixture (in

% vol.) was selected.

Calibration was made for each gas with a flow calibrator Biosr DryCal,

DC-2. The Bios DryCal DC-2 primary flow meter uses near-frictionless pis-

ton and photo optic sensing technology to obtain volumetric and standard-
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2. JET DIFFUSION FLAME FACILITIES

ized volumetric flow readings. Each calibration was made by averaging over

a hundred measurements. Depending on the volumetric flow two flow cell

ranges were used: a small one ranging from 10 to 1000 mL/min, and a

large range from 1 to 50 L/min. The DryCal DC-2 uses internal sensors

to automatically correct readings for standardized temperature and pressure

conditions. Instantaneous readouts for the volumetric flow, volumetric flow

average, standardized flow and standardized flow average were visible simul-

taneously on the LCD. A validation of flow calibrations was made prior to

each series of experimental runs.

2.2.3 Traverse equipment

The axisymmetric jet burner (AJ) was vertically oriented and mounted on a

precision two-dimensional traverse (Dantecr model 57G20). The precision of

this traverse was ±80 � m. Some measurements required a greater precision

(see Sec. 3.3.3). This system was completed with a more accurate two-

dimensional traverse (Newportr) with a MM4006 motion controller. The

precision stated by the manufacturer for the motion controller and the linear

motor was ±2 � m. Unfortunately, unlike the Dantecr model, this traverse

was designed with a side screw driven technology, which led to large errors

(±0.5 mm). These errors were not acceptable so another feature was added:

a high precision gauge (Sylvacr Mini dial gauge S233), which had a course

length of 12.5 mm and a precision of 5 � m. The gauge was supplied with the

RS232 cable. The motion controller and the precision gauge were controlled

with the RS232 port. A custom program was written and developed with

Labviewr and allowed the user to make a feedback control loop of the traverse

system. With this system, the position was precise to within 5 � m with

approximately three iteration steps.

2.2.4 Hotwire anemometer

Hotwire (HW) anemometry works on the basis of convective heat transfer

from a heated thin wire to the surrounding fluid, the heat transfer being

primarily related to the fluid velocity. The constant temperature technique

(CTA) is the most used where the wire is placed in a bridge circuit which
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2.2 Measurement techniques

keeps the wire resistance (temperature) constant. In this mode the current

required to achieve constant temperature is a measure of fluid velocity normal

to the wire.

The CTA measurements were performed using a Dantecr single hot wire,

model 55 P11, and an anemometer TSIr model: IFA-100. The measurements

were performed in a region where LDA measurements were not possible or

for development/design purposes. These velocity profiles were measured in

air, and calibrated with a dedicated calibrator with a low-turbulent free jet,

whose velocity is calculated on basis of volumetric flow (see Sec. 2.2.2). The

calibration curve was then fitted with a 4th order polynomial. These non-

reacting velocity profiles in air were performed to measure the vorticity thick-

ness (see Sec. 3.3.3) in the slot burner and to help design and develop a new

1-D burner (see Chap. 4. This technique (CTA) is not very accurate for

small velocities (less than 10 cm.s−1). A more suitable technique was used

for small velocities, the constant current method. This method is similar

to the CTA, fluid flow cools the thermistor thereby lowering its resistance

and unbalancing the Wheatstone bridge and yielding a measurable voltage.

The thermistor measurements were made using a device [38] borrowed from

J.-A. Hertig from the Environmental Fluid Mechanics Laboratory, EPFL

(EFLUM).

For a more comprehensive reference and review of the hotwire literature

see [5, 6].

2.2.5 Laser Doppler anemometry (LDA)

Characteristics

Velocity measurements were performed using a three-component fiber-optic

LDA system. A schematic view of the LDA measuring facility is shown in

Fig. 2.1. Its components and their specifications are summarized below. For

complete details see [24]. An Ar-Ion laser, Coherent Innova 90 was used.

With this laser, an output of 10 W can be achieved. During the measure-

ments the laser was run at about 2 W. This power provided sufficient in-

tensity of the backscattered light of the particles. The optical head consists

of two elements: the outgoing laser beam, which is split into two compo-
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nents, and the backscatter sensor for detection of the scattered light. The

two outgoing laser beams cross at a half-angle of 4.6˚. At the intersection,

the beams interfere and when a particle moving with the flow goes through

the intersection, it scatters the light of the interfering laser beams with a

frequency proportional to the velocity of the particle. This phenomenon is

called Doppler frequency shift. The scattered light is detected by the optical

head sensor and transmitted to a photo multiplier tube via fiber-optic cables.

Three types of laser beams, distinguished by wavelength, i.e. by their color,

were used for the experiments. The specifications of the three beams are

given in Table 2.1.

Laser color Blue Green Violet
Wavelength [nm] 488.0 541.5 476.5
Calib. [m.s−1/MHz] 3.06 3.226 2.988
Beam distance d [mm] 8 8 8
Focal length f [mm] 50 50 50
Measurement volume
Size ∆x [mm] 0.031 0.033 0.030
Size ∆y [mm] 0.031 0.033 0.030
Size ∆z [mm] 0.390 0.411 0.380
Volume [10−4 mm3] 2.0 2.3 1.8

Table 2.1: Specifications of the LDA apparatus. Calib. stands for calibration
factor and is the conversion factor Doppler frequency-to-velocity. The spatial
dimensions of the measurement volume are given by ∆x, ∆y, ∆z.

The spatial resolution of the LDA (i.e. the measuring volume) obtained

with this apparatus was between 0.18 and 0.23 10−4 mm3. The beam distance

d is the distance between the split components of the laser at the lens. The

optical signal received from the backscatter sensor in the optical head was

amplified in a photomultiplier tube and processed by a burst spectrum ana-

lyzer, type Dantecr BSA model S, 57N10 and 57N25. The data acquisition

was obtained with the Dantecr software BURSTware (1991), version 3.11.

The Dantecr software was not used to perform the statistical calculations

and to control the traverse — the BSA-computer and software are quite old

and not supported by Dantecr anymore. It was not possible to change the

BSA-computer because of compatibility problems with the burst spectrum
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analyzers, giving rise to three issues: (1) extracting the binaries from the

BSA-computer, (2) writing a code to process the binaries, and (3) managing

the positioning of the optical head, controlled by the main computer, with

the BSA computer. Installing the old-DOS network solved the first issue.

The second issue was the easiest task and details are given in Sec. 3.3.3. The

last issue was more difficult to solve. The BSA-computer displayed on the

monitor a progress bar while acquiring the data. A Labviewr code control-

ling a webcam (model: Typhoon Webshot II USB 300K Web Cam) focused

on the progress bar and triggered the traverse system when necessary.

Seeding technique

In order to perform velocity profiles with the laser Doppler anemometry tech-

nique, it was necessary to appropriately seed the flow with particles. Since

the size of the particles is a key parameter one must prevent agglomeration

of the particles. It is always difficult to seed homogeneously a low mass flow

rate of gas with solid particles. For very small velocities, O(10 cm.s−1), the

best system was the use of a magnetic stirrer. This apparatus consists of

a hermetically closed cylinder containing the seeding particles placed on a

magnet agitator that actuates a metallic rod inside the cylinder. The par-

ticles are dispersed and the gas flow through the bin carries the particles

along. For larger velocities a rotating disk technique showed the best results.

This seeding system was larger than the first one and consisted of two joint

metallic cylinders, the upper one containing the seeding particles. An electric

motor is integrated in the lower cylinder and continuously turns a scratched

disk. The gas flow is led between the upper and the lower cylinder where

the seeding powder is continuously interspersed. For more details on the size

specification for suitable particle tracers and a review of a wide variety of

seeders see [73].

Seeding particles

The particles used in this work are Al2O3 particles (Micropolishr nominal

diameter of 0.3 � m). Ideally seeding particles should have the following

properties [24]: the same density as the fluid, ability to follow the flow, good
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light scattering, non-toxic, non-corrosive, non-abrasive, non-volatile, or slow

to evaporate, and chemically inactive.

An additional consideration, concerned with the motion of the particle

relative to the fluid, is of importance when seeding particles are used as flow

field tracers. Indeed, the motion of particles suspended in a fluid is affected

by several interactions described by the two-phase flow theory. Some of the

properties affecting the motion of the particle are the following: particle

shape, particle size, relative density of particle and fluid, concentration of

particles in the fluid, body forces, viscous drag, and electrostatic and ther-

mophoretic forces.

More details on choosing the materials can be found in [24] (Sec. 10.5–

10.8). The importance of added mass, history of acceleration and pressure

gradient due to fluid accelerations has been determined for particle motion

in turbulent fluid by Hjelmfelt et al. and was used to check if the particles

followed well the fluid motion [40].

2.3 Description of facilities

2.3.1 Axisymmetric jet burner

P. A. Monkewitz and E. Pfizenmaier [78] designed the axisymmetrical jet

(AJ) test facility to meet fluid mechanical and aeroacoustical conditions.

Figure 2.1 shows a sketch of the AJ burner with the LDA apparatus.

The jet burner was vertically oriented and each gas (fuel, oxygen and inert)

was individually connected to fully automated flow controllers (Sec. 2.2.2).

The upstream pressure of the flow controllers was set with pressure regu-

lators connected to the outlet of each gas cylinder. The fuel-inert mixture

first passed through a seeder (Sec. 2.2.5) before entering a sound muffler

where axial perturbations, coming essentially from the seeder and the flow

controllers, were efficiently damped. The muffler was directly followed by

a tube section, which contained a honeycomb flow straightener, and several

turbulence screens followed by a contoured axisymmetric contraction with

an area ratio of 100:1 from the settling chamber cross-section down to the

round nozzle exit (inner diameter D = 7.5 mm). The hot gases were evacu-
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Figure 2.1: Schematic of the axisymmetric jet (AJ) burner and the LDA
apparatus. Flow management: ① Oxidizer gas cylinder, ② Fuel gas cylinder,
③ Inert gas cylinder, ④ Flow controllers, ⑤ Particle seeder, ⑥ Turbulence
management section, ⑦ Contoured nozzle 100:1, ⑧ Porous sintered metal
sheet, ⑨ Exhaust system. LDA apparatus: ❶ LDA optical head, ❷ Photo-
multiplier Tubes (PMT), ❸ Burst Spectrum Analyzer (BSA), ❹ Data acqui-
sition computer.

ated by the exhaust system of the laboratory. On the oxidizer side (co-flow)

the oxygen-inert mixture were introduced through a porous sintered metal

plate (Mott Metallurgical, 100 � grade) of 75 mm diameter that surrounded

the fuel jet nozzle. This porous plate ensured a high pressure drop. The co-

flow velocity profile at the exit was shown to be uniform (HW measurements

located at 0.5 mm above the jet nozzle [26]). The diameter chosen was large

enough to avoid any disturbance due to external flow. However, there were

two major drawbacks in the design of the co-flow. Firstly, the porous plated
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precluded any non-intrusive measurements such as LDA. Since, the co-flow

could not be seeded a bias was introduced in the LDA measurements of the

velocity in the shear layer. Note that this bias did not play a significant role

for the measurement of the initial vorticity thickness [24, 26]. Secondly the

co-flow diameter prevented a high flow of oxidizer (Uco−flow ≈ 14 cm.s−1 for

30 L/min at standard conditions) because of the limited maximum range of

the flow controllers.

2.3.2 Wolfhard–Parker burner

The Wolfhard–Parker burner (WP), or slot burner, is a two-dimensional

burner. A schematic view and the dimensions of the burner are shown in

Fig. 2.2. The fuel jet in this burner has a large 7:1 aspect ratio (ratio of

length to width) in order to minimize the end effects. The burner designed

and constructed by Füri [26] was modified here in order to have better flow

uniformity at the exit. The fuel and oxidizer are introduced from the bottom

section of the burner, passing a first diffusor of perforated sheet metal before

passing through four metal grids. The brass metal grids had a wire thickness

of 0.35 mm; the mesh spacing was 0.5 mm. The geometrical dimensions of

the fuel outlet were l = 56 mm for the length and W = 8 mm for the width.

For this burner, post-combustion gases are also evacuated by the exhaust

system of the laboratory. The results of these modifications are a uniform

and symmetric top hat profile at the exit, see Sec. 2.3.2.
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given in mm.
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Chapter 3

Cellular instabilities in jet

diffusion flames

3.1 Introduction

This chapter is concerned with the cellular instabilities occurring in jet dif-

fusion flames for several parameters. Few experimental observations have

reported cellular instabilities of diffusion flames [13, 22, 26, 29, 30, 43]. None

of them performed a systematic investigation on flame diffusion instabilities.

Several theoretical studies were undertaken for idealized burner in diffusion

flames [12,52]. These studies are likely to compare their model to experience

by comparing wavelength associated to the maximal growth rate at marginal

stability.

The first section (Sec. 3.2), will introduce the first systematic experimen-

tal work study on H2-O2 diluted with CO2 diffusion flames in an axisymmet-

ric jet near-extinction. This work will cover a wide range of initial mixture

fraction, and will show clearly the crucial role of this initial mixture fraction,

φ-space parameter, on the occurrence of cellular instabilities. The second

space parameter studied is the fuel velocity exit for a fixed initial concen-

tration. This study involves the formation of coherent structures linking

hydrodynamic and combustion instabilities. The jet flow properties at the

nozzle exit are mainly imposed by the upstream geometrical properties such

as the shape of the contoured nozzle or different flow straighteners. The ratio
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between the nozzle radius and the momentum thickness of the shear layer

at the jet nozzle exit (vorticity thickness) plays a significant role in the jet

behavior [16,41,74,77]. Characteristics on the velocity profiles and vorticity

thickness are presented in Sec. 3.3. The results of these characteristics on

the cellular formation in jet diffusion flames are then presented for this space

parameter in Sec. 3.4.

3.2 Effect of reactant composition on cellular

instabilities

Combust. Theory and Modelling, 7, 2003 [67]

This experimental work will introduce the first systematic study of cellular

instabilities of H2-O2 diluted with CO2 diffusion flames in an axisymmetric

jet. Past theoretical work [12] demonstrated the importance of the mixture

strength, in addition to Lewis numbers, on the formation of cellular insta-

bilities, thus this experimental study, and will show clearly the crucial role

of this mixture fraction on the occurrence of cellular instabilities. This first

study was published at the Combustion Theory and Modelling [67]. For con-

sistency purposes minor modification were made to the original paper such

as figures positions in text and figures and table numbers. The references to

other publications correspond to references in the general bibliography.
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Cell formation in non-premixed, axisymmetric

jet flames near extinction

Abstract

Systematic experiments with CO2 diluted H2-O2 circular jet diffusion flames

have been undertaken to study the formation of cellular flames, which occur

for relatively low reactant Lewis numbers and near the extinction limit. The

jet Reynolds number for all experiments was about 500 based on the center-

line velocity, jet diameter and ambient fuel properties. The Lewis numbers,

based on the initial mixture strength φ and ambient conditions, of the inves-

tigated near-extinction mixtures vary in the range [1.1–1.3] for oxygen and

[0.25–0.29] for hydrogen (φ is defined here as the fuel-to-oxygen molar ratio

normalized by the stoichiometric value). Various conditions near the extinc-

tion limit were investigated by fixing the fuel composition (H2-CO2 mixture),

and systematically lowering the oxygen concentration in the co-flowing oxi-

dizer stream past the point where cellular structures formed, until extinction

occurred. The observed different instability states were correlated with the

initial mixture strength and the proximity to the extinction limit.

The parameter space for cellularity was found to increase with decreasing

initial mixture strength. For a given initial mixture strength, several cellu-

lar states were found to co-exist near the extinction limit, and the preferred

number of cells (the azimuthal wave number) was observed to decrease with

decreasing oxygen concentration (Damköhler number). These trends are con-

sistent with previous theoretical work and our own stability analysis to be

reported elsewhere.

3.2.1 Introduction

Experimental studies on the formation of cells in premixed circular burners

have revealed that a wide variety of spatio-temporal patterns. For premixed

jet flames, these states include uniformly rotating ring(s) of cells [34], nonuni-

form or intermittent rotations [34], and ratcheting or chaotic motions [33].
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The formation of cellular structures in premixed flames is attributed to

thermo-diffusive instabilities which occur when a weighted Lewis number

is sufficiently low [15], and simple phenomenological models have been de-

veloped to replicate the particular cellular patterns [82].

Although the first observations of cellular instabilities in non-premixed

flames date back many decades [22,29], theoretical analyses of thermo-diffusive

instabilities in non-premixed flames are quite recent [12, 49, 59, 83, 84]. The

stability analysis performed by Matalon and Cheatham [12] demonstrated

that both reactant Lewis numbers are important for non-premixed flames,

and the propensity for the formation of cells increases with decreasing re-

actant Lewis numbers, Damköhler number, and initial mixture strength or

’equivalence ratio.’ In this study, the initial mixture strength φ, which can

be specified for purely gaseous non-premixed flames, is defined as the fuel-

to-oxygen molar ratio normalized by the stoichiometric ratio. The experi-

mental investigation of Chen et al. [13] clearly demonstrated the importance

of relatively low Lewis and Damköhler numbers for the formation of cells

in non-premixed flames. Little attention has been given, however, to the

selection criteria of cellular patterns– in particular, to the influence of the

initial mixture strength φ and the dynamics of these cellular patterns. More

recent work in our laboratory has demonstrated the importance of the initial

mixture strength on gaseous non-premixed flame instabilities [26, 27]. Fig-

ure 3.1 shows the formation of a cellular CH4-SF6 jet flame burning in pure

oxygen [26]. The low luminosity from diluted hydrogen flames makes pho-

tography difficult; thus, Fig. 3.1 was chosen because it represents a clearer

visualization, while still reproducing all the qualitative features of the cellu-

lar H2-O2 flames considered in this paper. In Fig. 3.1, the reactant Lewis

numbers of both methane and oxygen are about 0.5 based on the overall

mixture (φ = 0.42) at ambient conditions. Other experiments at higher ini-

tial mixture strengths for both SF6-diluted methane- and propane-oxygen

flames indicated that cell formation could be suppressed by increasing initial

mixture strength, despite the relatively low reactant Lewis numbers of these

systems.

Since the number of physical effects (and parameters) potentially involved

in cell formation is large, experimental information is required to elucidate
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Figure 3.1: Hexagonal cellular flame instability of an axisymmetric methane
jet diffusion flame (taken from [26]). 21% CH4-79% SF6 fuel mixture burning
in 100% O2. Left: side view (photograph); Right: axial view (streamwise
integrated chemiluminescence image taken from the downstream jet axis).

the underlying physics. Such information is still largely incomplete, particu-

larly regarding the dynamics and types of cellular patterns which develop in

non-premixed flames (e.g. the preferred number of cells in a particular sys-

tem) and the parameter space (e.g. the range of initial mixture strengths) in

which different cell patterns appear. This relative lack of experimental data

has provided the motivation for the current investigation.

3.2.2 Experimental description

Only a brief overview is given here, since a detailed description of the EPFL

facility can be found elsewhere [26]. The flame test facility consists of a free

jet rig, oriented vertically up and mounted on a precision traverse, of a laser

Doppler anemometer (LDA) and a setup for laser-induced fluorescence (LIF),

together with PC-based data acquisition and control systems. An intensified

CCD (LaVision, Flamestar II) with 384 × 576 pixels and 14-bit resolution

was used to record images of the streamwise integrated chemiluminescence

emission from above the flame tip. The flow rates of the fuel, inert and

oxygen gases to the jet apparatus were set with fully automated flow con-
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trollers (Teledyne-Hastings, HFC 202/203) that had a nominal accuracy of

1% (Full Scale). Flow rate calibrations were verified with a flow calibrator

(Bios, DC-2M). The gaseous fuel passed through a muffler, settling chamber

with honeycomb straighteners and turbulence screens, and finally through

a contoured axisymmetric contraction with an area ratio of 100:1. The di-

ameter of the circular fuel nozzle is D = 7.5 mm. In order to control the

oxidizer characteristics, a uniform co-flow of an oxygen-inert mixture could

be introduced through a porous plate of 75 mm diameter which surrounds

the fuel nozzle.

3.2.3 Experimental results

For the experiments reported in this study, the fuel centerline and co-flowing

oxidizer velocities (flow rates) were fixed at UF ≈ 76 and UO ≈ 4 cm.s−1,

respectively. The corresponding jet Reynolds number, based on UF, the jet

diameter and fuel properties at 300 K, is about 500. The parameter space

near the extinction limit was investigated by fixing the fuel composition (H2-

CO2 mixture) and systematically lowering the concentration of O2 in the

oxidizer stream (O2-CO2 mixture) until extinction was reached. Specifically,

experiments were performed for thirteen different hydrogen concentrations in

the range of 17-35% hydrogen by volume, which are indicated by arrowheads

next to the ordinate of Fig. 3.2. For each of these thirteen fuel compositions,

the oxygen concentration was decreased in steps of 0.1%. In terms of reactant

Lewis numbers, based on the overall reactant mixture at 300 K, these near

extinction experiments cover the range of [1.1–1.2] for oxygen and [0.25–0.28]

for the hydrogen fuel. In terms of initial mixture strength, the experiments

mostly cover the region φ . 1. The two dotted straight lines through the

origin of Fig. 3.2 are lines of constant φ. The line φ = 1 then divides the

figure into a part on the left with overall “fuel-rich” mixtures and a part on

the right with “fuel-lean” mixtures.

Within this parameter space, the different flame regimes, e.g. the type of

cellular structures, were recorded and the dynamic extinction limit, shown

as thick solid line in Fig. 3.2, was determined for the flow conditions of the

current experiments. Regardless of the concentration of the other reactant,
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Figure 3.2: Extinction limit and boundaries of different cellular instabilities
observed for CO2 diluted, H2-O2 jet diffusion flames. Centerline fuel velocity
UF ≈ 76 cm.s−1. Oxidizer co-flow velocity UO ≈ 4 cm.s−1. [❍]: Rotating
single-cell state of Fig. 3.3(a); [�]: rotating 2-cell state of Fig. 3.3(b); [O]: ro-
tating 3-cell state of Fig. 3.3(d); [ut]: 4-cell state of Fig. 3.3(d); [I]: 5-cell
state of Fig. 3.3(e); and [�]: 6-cell state of Fig. 3.3(f).

this extinction curve reveals that a diffusion flame could not be established

below the asymptotic (limiting) hydrogen concentration of about 17.3%, or

approximately a limiting oxygen concentration of about 18% by volume. It

is noted that above a hydrogen concentration of about 30% (and φ & 1),

lifted flames are observed below an oxygen concentration of 18% ; thus, the

above limiting oxygen concentration is not a real asymptote. The anchoring
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(a) 1R-cell (b) 2R-cell (c) 3R-cell

(d) 4S-cell (e) 5S-cell (f) 6S-cell

Figure 3.3: Streamwise integrated chemiluminescence images taken from the
downstream jet axis of a 22.5% H2 (77.5% CO2) jet flame burning in (a)
24.6% O2 (75.4% CO2) co-flow; (b) 26.0% O2 co-flow; (c) 27.5% O2 co-flow;
(d) 31.0% O2 co-flow, (e) 40.0% O2 co-flow, and (f) 20.0% H2 (80.0% CO2)
jet flame burning in 80.0% O2 co-flow. “R” designates rotating and “S”
stationary cell patterns. Fuel and oxidizer velocities as in Fig. 3.2.

edges of these flames, which were lifted above the jet nozzle rim, were found

to meander in the downstream direction, but regular flame-edge oscillations

[26,27] were not observed for the conditions explored. Since it is not the focus

of the current study, this lifted flame regime will not be further discussed.

Additional tests were performed to ensure that the measurements of the

extinction limit are not compromised by air entrainment into the oxidizer

co-flow, especially for O2 concentrations below the 21% concentration in air,

i.e. H2 concentrations in Fig. 3.2 above about 25%. In this parameter region,

an air entrainment would cause a nominally lower oxygen concentration at
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extinction because of the differences in the inert1 specific heat values of CO2

and N2, and the higher oxygen concentration in air. The tests consisted

of preventing air entrainment by completely surrounding the co-flow with a

quartz cylinder of 20 cm diameter and 50 cm length. The resulting extinc-

tion limit was found to be identical to the one determined without a quartz

cylinder, and reported in Fig. 3.2 for the entire non-lifted regime of interest

here.

The various types of cellular modes shown in Fig. 3.2 are illustrated by

the images of Fig. 3.3 obtained at a fixed jet fuel composition (22.5% H2,

except for the last image (f) obtained with 20.0% H2) and various oxygen

concentrations above the extinction limit of 23.2% O2. The images, labeled

Fig. 3.3(a)–3.3(f), correspond to the six individual symbols in Fig. 3.2. These

images were taken with a digital camera (71×74 pixel images) pointed at the

flame from the downstream jet axis. The gray-scale is related to the intensity

of the chemiluminescence, integrated in the streamwise direction over the

entire length of the flame. All the images shown here are of flames typified

by Fig. 3.1: a distinctively cellular flame structure which varies little in the

streamwise direction and a total flame length of less than three jet diameters.

Following the terminology of other investigators [34], the particular cellular

states in this Fig. 3.3 are labeled by the number of cells, followed by the

letters “R” or “S” for rotating and stationary states, respectively. The lower-

numbered cellular structures (3R, 2R, and 1R states) rotated around the jet

axis in either the clockwise or counterclockwise direction, depending on the

initial conditions.

The observed cellular states result from a sequence of transitions which

occur within a narrow range of parameters (oxygen concentration in this

example). Since different states have been observed to compete near the

extinction limit, the state realized in a particular experiment is determined

by the initial conditions and the path adopted in parameter space to reach

the experimental conditions (for instance, the way the O2 concentration is

changed). Consequently, mode switches can be also induced by suitable

(possibly large) perturbations such as noise, transient perturbations of the

1Carbon dioxide is essentially chemically inert under the current experimental condi-
tions.
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Figure 3.4: Forward- and backward-transition oxygen values observed for
22.5% H2-77.5% CO2 jet diffusion flames burning in O2-CO2. Fuel and oxi-
dizer velocities as in Fig. 3.2. [�]: Dynamic extinction limit. [- - -]: No ex-
tinction observed for unperturbed flames. [❍]: Backward-transition points.
[ut]: Forward-transition points.

jet flow field or the fuel flow rate, etc. As a consequence, the regions in

Fig. 3.1 with different numbers of cells are overlapping and indicate where

such a state can be produced in an ensemble of attempts with different ini-

tial conditions and/or perturbations. Except very near extinction, the most

commonly encountered cellular state in our experiments at relatively high

oxygen concentrations (‘fuel-lean’ conditions) were 5 or, with smaller prob-

ability, 6 stationary cells shown in Fig. 3.3(e) and 3.3(f), respectively. At

lower oxygen concentrations (‘fuel-rich’ conditions), the 6-cell mode was no

longer observed, but the flame could be forced to switch from the preferred

5-cell mode to the stationary 4-cell mode of Fig. 3.3(d). The (overlapping)

parameter regions, in which these 4- to 6-cell states can appear, are shown

in Fig. 3.2.

Close to extinction, a sequence of transitions could be induced between

the 5-cell state, which dominates further away from the extinction boundary,

and the 4-, 3-, 2-, and single-cell states. Figure 3.4 shows a transition diagram

between the states shown in Fig. 3.3(a)–3.3(e) for the fixed fuel concentration

of 22.5% H2 (the line of symbols in Fig. 3.2) and the fixed reactant stream

velocities used throughout the study. For this fuel composition, only the

stationary 5-cell state illustrated in Fig. 3.3(e) was observed above 30% O2
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concentration and no flame could be sustained below 23.2% O2 concentration,

the extinction limit. Between these concentrations, (hysteretic) transitions

could be induced either by gradually changing the O2 concentration in small

steps of 0.1% or by “inducing” the system with a large perturbation (ac-

tually a screwdriver). In Fig. 3.4 all the so-called “forward-transition” and

“backward-transition” points resulting from a gradual increase or decrease

in the O2 concentration, respectively, are indicated by arrows. Starting with

the 5-cell state, for instance, a gradual decrease of the oxygen concentration

in the oxidizer stream leads directly to extinction at about 23.8% O2 concen-

tration2. The corresponding inverse transition from extinction to the 5-cell

state is of course not defined, as it involves the intervention of an ignition

source. Consequently, the broken line on Fig. 3.4, labeled “no extinction ob-

served for unperturbed flames,” simply indicates the O2 concentrations for

which the current flames could possibly be extinguished with perturbations.

From the direction of the arrows in Fig. 3.4, it is immediately clear that

the 1- to 4-cell states cannot be reached from the 5-cell state by slow vari-

ations of the O2 concentration in the oxidizer stream. Hence, they were

all produced by large initial perturbations (insertion of a screwdriver into

the flame in a manner promoting the desired symmetry, or possibly upon

ignition). The interval of O2 concentrations over which our “screwdriver

perturbation” was effective, is indicated by the solid lines associated with

the 1- to 4-cell states in Fig. 3.4. Once one of these states was “induced”

into existence, the O2 concentration was again slowly varied to locate the

forward and backward transitions to other modes. Since this procedure to

locate the transition points is clearly independent of the initial perturbation,

the observed “intervals of existence” of the 1- to 4-cell modes are believed

to correctly represent the stability boundaries of these (saturated) modes.

These stability intervals were furthermore tested by repetitive perturbations

(typically more than 50 attempts) at each fuel/oxidizer composition inves-

tigated. The O2 concentrations for the forward- and backward-transition

points obtained in this manner were repeatable to within 0.3% vol.

Within a narrow range of O2 concentrations around 27%, all states from 1

to 5 cells are possible. This range corresponds to the white region in Fig. 3.2,

25-to-1 transitions could be observed at higher hydrogen concentrations.
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just prior to extinction, where the 3R, 2R, and 1R states can all be excited.

Since the preferred state in this region is a rotating single-cell (1R) state,

transitions from high-numbered cellular states such as the 4-, 3-, and 2-cell

states typically go directly to the rotating single-cell state. Even closer to

extinction in Fig. 3.4, only the 5-cell and the 1-cell state can be observed, and

it is interesting that the flame in the 1-cell mode can persist longer (down to

23.2% O2) than the 5-cell flame which extinguishes at 23.8% O2
3.

3.2.4 Discussion and conclusions

For a given fuel composition, examination of Fig. 3.2 shows that the likeli-

hood of observing a low-number cellular state increases with decreasing oxy-

gen concentration. Since the Damköhler number and initial mixture strength

vary with changing oxygen concentration, it is important to examine the data

in the entire fuel-oxygen parameter space. Figure 3.2 shows that the rotat-

ing single-cell state can only be observed at relatively large initial mixture

strengths near the extinction limit. Also, Fig. 3.2 shows that the propensity

for the rotating single-cell flame state increases with decreasing oxygen con-

centration or Damköhler number (i.e. nearer the dynamic extinction limit).

The trend with initial mixture strength is consistent with recent theoreti-

cal work in our laboratory consisting of a viscous, finite-rate linear stability

analysis of a non-premixed circular jet flame [87]. Also, recent numerical

simulations of two-dimensional counterflow diffusion flames have shown that

transitions from states with narrow “stripes” (cells) to wider “stripes” occur

as the Damköhler number is reduced [63].

Table 3.1 summarizes the conditions at which cellular instabilities have

been observed in the current study and previous investigators. The first and

second columns identify the fuel system and inert, respectively. The third

and fourth columns report the fuel and oxygen Lewis number, respectively,

calculated for the overall mixture (fuel/inert as well as the oxygen/inert

mixtures) [46]. The fifth and sixth columns report the initial mixture strength

φ, based on the molar fuel-to-oxygen concentrations in the fuel and oxidizer

3Note that the extinction value reported in Fig. 3.2 corresponds to the extinction of
the 1-cell flame.
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Fuel Inert LeF LeO φ φm XF XO Obs. Config.
H2 CO2 0.25 1.06 0.117 0.112 0.175 0.746 C AJ
H2 CO2 0.24 1.04 0.145 0.145 0.180 0.621 C AJ
H2 CO2 0.24 1.03 0.211 0.226 0.190 0.450 C AJ
H2 CO2 0.24 1.03 0.260 0.288 0.200 0.384 C AJ
H2 CO2 0.24 1.03 0.328 0.375 0.210 0.320 C AJ
H2 CO2 0.24 1.04 0.457 0.543 0.225 0.246 C AJ
H2 CO2 0.24 1.05 0.500 0.603 0.235 0.235 C AJ
H2 CO2 0.24 1.06 0.587 0.726 0.250 0.213 C AJ
H2 CO2 0.25 1.09 0.716 0.920 0.275 0.192 C AJ
H2 CO2 0.25 1.12 0.811 1.079 0.300 0.185 C AJ
H2 CO2 0.26 1.15 0.918 1.266 0.325 0.177 NC AJ
H2 CO2/N2 0.27 1.13 0.461 0.370 0.194 0.210 C AJa

H2 N2 0.31 1.21 0.274 0.316 0.115 0.210 C WPb

H2 Ar/N2 0.30 1.20 0.255 0.205 0.107 0.210 C WPb

H2 N2 0.31 1.21 0.271 0.313 0.114 0.210 C CFc

H2 Ar 0.29 1.18 0.193 0.200 0.081 0.210 C CFc

H2 He 0.92 3.20 0.283 0.743 0.119 0.210 NC CFc

H2 N2 0.31 1.22 0.250 0.294 0.128 0.256 C WPd

H2 N2 0.32 1.25 0.500 0.599 0.158 0.158 C WPd

H2 N2 0.33 1.29 1.000 1.250 0.203 0.102 C WPd

H2 N2 0.34 1.33 1.500 1.961 0.244 0.081 C WPd

H2 N2 0.35 1.40 2.000 2.857 0.315 0.079 NC WPd

CH4 SF6 0.50 0.50 0.420 0.113 0.210 1.000 C AJe

CH4 SF6 0.47 0.48 0.477 0.184 0.210 0.880 C AJe

CH4 SF6 0.52 0.52 0.560 0.163 0.280 1.000 C WPe

C3H8 SF6 0.92 0.45 1.358 0.590 0.220 0.810 NC AJe

aGarside and Jackson [29].
bDongworth and Melvin [22].
cIshizuka and Tsuji [43].
dChen et al. [13].
eFüri [26].

Table 3.1: Characteristic parameters for various flames near extinction. AJ
denotes axisymmetric jet burners, WF denotes Wolfhard–Parker jet burners,
and CF denotes counter-flow burner.

streams, and the mass-based initial mixture strength φm. This mass-based

ratio equals the ratio of the fuel mass fraction in the fuel stream to oxygen

mass fraction in the oxidizer stream normalized by the stoichiometric fuel-to-

oxygen mass ratio. Both parameters completely identify both the fuel/inert

and oxygen/inert stream compositions. The ninth column indicates if cellular

instabilities, denoted by “C,” or non-cellular flames, denoted by “NC,” were

observed. Finally, the last column relates the type of experimental apparatus

used as well as the reference citation.

The propensity of diffusion flames to form cellular instabilities with de-
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Figure 3.5: Theoretical cellular instability boundaries (lines) for an ideal
unstretched planar flame and experimental jet flame data near extinction
in the LeF-LeOplane. Open and solid symbols correspond to cellular and
non-cellular flames, respectively. Theoretical calculation taken from [12] for
φm = 1/3 [– – –]; φm = 1 [——]; φm = 2 [- - -]. Experimental data: [ut]: CO2

diluted H2 cellular axisymmetric jet flames (AJ) burning in CO2-O2 co-flow;
[4]: N2 diluted H2 cellular Wolfhard–Parker flames (WP) burning in N2-
O2 co-flow taken from [13]; various other conditions specified in Table 3.1
from [29] [.]; [22] [5]; [26] [❍]; [43] [♦].

creasing reactant Lewis numbers and decreasing initial mixture strength has

been demonstrated by the linear stability analysis of Cheatham & Mat-

alon [12] for a unstretched planar flame, as well as recently by Rais [87]

for the axisymmetric jet flame configuration. The reactant Lewis numbers

and the initial mixture strength in experiments, are of course not indepen-

dently controllable parameters; thus, the variation of both parameters must

be considered when analyzing data. As reported previously, the reactant

Lewis numbers did not vary significantly over the whole range of the mixture

compositions investigated in the current hydrogen-oxygen flames — [1.1–1.2]

for oxygen and [0.25–0.28] for hydrogen. The effect of the initial mixture

strength, therefore, on the formation of cells is clearly evident in Fig. 3.2.

In this figure, the parameter space where cell instabilities occur is relatively

broader on the fuel-lean (right-side) side of the graph; thus, the current ex-
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perimental results are consistent with the theoretical work cited above. This

observation is also consistent with the previous experimental data reported

by Chen et al. [13] for nitrogen diluted, hydrogen-oxygen flames established

in a Wolfhard–Parker burner (see Table 3.1). In their study, cellular insta-

bilities were not observed for relatively high initial mixture strength values

φ & 1.5. Despite the relatively low reactant Lewis numbers, the last system

reported in Table 3.1 for a SF6-diluted propane-oxygen jet diffusion is also

not cellular as a consequence of the relatively high initial mixture strength.

In order to examine the effects of Lewis number on the flame data re-

ported in Table 3.1, Fig. 3.5 shows selected data in the Lewis number plane.

Of particular interest are the data sets in the lower right-hand corner of

this figure for the current CO2-diluted H2 axisymmetric jet flame experi-

ments (squares) and the N2-diluted H2 Wolfhard–Parker flame data reported

by Chen et al. [13] (triangles). Although the hydrodynamic conditions and

burner geometries are not the same for these data, both data sets show that

cellular instabilities do not occur above a certain initial mixture strength, as

shown by the filled symbols. The arrowed lines next to these data indicate

the direction of increasing initial mixture strength. The curves dividing the

graph into a cellular and a non-cellular region are taken from Cheatham &

Matalon’s [12] stability analysis of a planar diffusion flame for three different

initial mixture strengths (φm = 1/3, 1, and 2) very close to the extinction

limit (at δ − δc = 0.01 in their article). The selected theoretical curves sep-

arate the cellular instability region at relatively low reactant Lewis numbers

from the non-cellular region. These results show that the region for cellu-

lar instabilities decreases with increasing initial mixture strength, as shown

by the dashed arrow in Fig. 3.5. These theoretical trends are in agreement

with our recent linear stability results for axisymmetric jet flames near the

extinction limit [87].

It must be stressed that the theoretical boundaries in Fig. 3.5 depend on

several parameters, including the initial mixture strength. Also, other effects

such as density variation and hydrodynamics do not correspond to the various

experimental conditions. Nevertheless, the theory correctly reproduces the

experimental trends.
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3.3 Jet burner velocity profiles

This section will present the flow characteristics of the two jet diffusion burn-

ers. Velocity profiles and the initial vorticity thickness have been determined.

The velocity profiles presented are in both burners with air instead of fuel.

The vorticity thickness has been determined experimentally for both burners

with reacting and non-reacting flows. The reacting condition was 20% H2-

80% CO2 fuel mixture burning in pure oxygen. In the following the Reynolds

number is defined as ReL = ūFL/νF, where ūF is the mean velocity of the fuel

outlet, L is the characteristic geometric length scale (D for the AJ burner

and W for the WP burner), and νF the viscosity of the fuel mixture at cold

conditions.

3.3.1 Axisymmetric jet burner

The velocity profile was measured over the nozzle diameter (D = 7.5 mm),

from ±3.9 mm, using the LDA apparatus. The distance between the mea-

suring points varied between 0.05 mm and 0.5 mm, where the resolution

close to the edge (high gradient region) of the jet was highest. An average

of 70 measuring points were used close to the nozzle exit z = 1 mm. The

turbulence level at the nozzle exit was not measured, but the quality of the

facility is reflected by the possibility of obtaining completely steady lami-

nar hydrogen-air flames up to Reynolds numbers of 1750 [86]. The binary

data obtained by the burst spectrum analyzer were post-processed by a Mat-

lab code. For every measuring point, 50000 samples (Doppler bursts) were

taken. This number was enough to obtain converged mean velocities. Fig-

ure 3.6 shows an example of two profiles at ReD ≈ 775 and ReD ≈ 1400 with

the associated standard deviation profiles. The standard deviation profiles

show high values on the edge of the nozzle, where the gradient is highest.

The profiles are symmetrical, and were repeatable to within less than 2%.

For the experiments conducted in Sec. 3.4, the Reynolds number range was

ReD ∈ [300, 1500].
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Figure 3.6: Typical velocity measurements from the LDA apparatus for the
AJ burner. Profiles for air taken near the fuel outlet at z = 1 mm. The
[ut] and [❍] symbols represent the ReD = 775 and ReD = 1400 conditions,
respectively, based on the mean velocity for air at cold conditions. (a) Axial
velocity in cm.s−1 the solid line correspond to a u = tanh fit. (b) Standard
deviation of the axial velocity in cm.s−1.

3.3.2 Wolfhard–Parker burner

The velocity profile was measured across the fuel gap (W = 8 mm), from

±4.5 mm, at a distance of z = 1 mm from the fuel outlet using the HW

anemometer. The distance between the measuring points was fixed to 0.15 mm.

Each velocity profile was determined twice with 60 measuring points, and was

repeatable to within less than 3%. The calibration of the HW was made be-

fore and after each profile. The sampling rate was fixed at 200 Hz during

20 s.

Figure 3.7(a) shows symmetrical velocity profiles. The Reynolds number

varied from 200 to 330 (based on the mean velocity). The profiles present a

slight overshot on each side located at a quarter of the gap, due to unavoid-

able leakage around the upstream screens. For the reacting experiments in

Sec. 3.4, the Reynolds number varied from 60 to 300. Figure 3.7(b) shows the

uniformity of the flow in the longitudinal direction for the highest Reynolds

number (ReW = 330). The velocity profiles show a nonuniformity of about

5% in the jet core.
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Figure 3.7: Typical velocity measurements from the HW apparatus for the
WP burner. Profiles for air taken near the fuel outlet at z = 1 mm. (a)
Profiles of axial velocity in cm.s−1 taken at the center of the burner (y/W =
0), for Reynolds number ranging from 200 to 330. (b) Profiles of axial velocity
taken at several y-locations, for Reynolds number 330.

3.3.3 Determining the vorticity thicknesses

Several scaling lengths are used in the literature for shear layer studies. The

most common is the vorticity thickness δω defined as:

δω

L
=

Ūmax − Ūmin
∣

∣

dU
dr

∣

∣

max

, (3.1)

where Ū is the mean velocity, and L is a characteristic geometrical length,

here the diameter D of the fuel jet for the AJ burner and the width W of the

fuel nozzle for the WP burner. Since the co-flow velocity is low compared to

the inner flow, the initial vorticity thickness is determined assuming Ūmax =

ūF and Ūmin = 0.

The vorticity thickness measurements of the AJ burner were performed

with non-reacting (air) and reacting flow. Since the measurements were made

near the nozzle exit z = 1 mm, the vorticity thickness and the velocity profiles

did not change for reacting and non-reacting flows. To obtain the maximum

slope of the velocity profiles, the common hyperbolic tangent velocity profile

was assumed. This nonlinear curve-fitting was performed with a Matlab

function lsqcurvefit, which solves nonlinear data-fitting problems. The
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Figure 3.8: Vorticity thickness normalized with the fuel outlet L versus the
inverse square root of ReL. The [ut] symbols represent the WP burner mea-
surements. The [❍] and [●] symbols represent the AJ burner measurements
for the non-reacting (air) and reacting (20% H2-80% CO2 fuel mixture burn-
ing in 100% O2) case, respectively. The dashed-lines represent a linear fit.

determination of the maximum slope was performed by averaging the fitted-

slope at the left hand and right hand side of the mixing layer on two successive

measurements. The maximum error between the left hand and right hand

slopes was found to be less than 0.6%.

The vorticity thickness measurements of the WP burner were only per-

formed for the non-reacting case. Since the difference of δω between the

reacting and the non-reacting case is negligible for the AJ burner, the same

behavior was assumed for the WP burner. The determination of the max-

imum slope was graphically obtained by averaging the right and left hand

side of the profiles on two successive measurements. The maximum error

between the left and right slopes was about 2%.

For laminar flow in the nozzle, the vorticity thickness scales with the
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Reynolds number approximately as follows [91]:

δω

L
= m

1√
ReL

, (3.2)

where m is a parameter depending on the geometry, and L is the characteris-

tic length scale of the burner. Figure 3.8 shows the vorticity thickness versus

the inverse square root of ReL. Equation (3.2) fits our data well for non-

reacting and reacting cases. The error between the left hand and right hand

side slopes was about 1.5% for the AJ burner and 5% for the WP burner.

The results for the vorticity thickness are:

δω

D
= 1.81

1√
ReD

, (3.3)

δω

W
= 3.14

1√
ReW

, (3.4)

for the AJ and WP burner respectively. A particular effort was made to

reduce the uncertainty of Eq. (3.3) and Eq. (3.4) because, as we shall see in

Sec. 3.4, this initial vorticity thickness plays a significant role in the stability

characteristics of the initial mixing layers.

3.4 Effect of jet velocity on cellular instabil-

ities

This section focuses on cellular instabilities in jet diffusion flames for several

fuel velocities with a fixed initial concentration. The jet flow properties at

the nozzle exit are mainly imposed by the upstream geometrical properties

such as the shape of the contoured nozzle or different flow straighteners. The

ratio between the nozzle radius and the vorticity thickness of the shear layer

at the jet nozzle exit plays a significant role in the jet behavior [16, 41, 74,

77]. Both the axisymmetric jet (AJ) burner and the Wolfhard–Parker (WP)

burner are used for this study. The flames are limited to H2-O2 diluted

in CO2 flames. First, it is useful to consider what happens for a fixed fuel

velocity in the previous AJ burner study (Sec. 3.2). The mean velocity in the
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3.4 Effect of jet velocity on cellular instabilities

(a) 5S-cell (b) 6S-cell (c) 7S-cell (d) 8S-cell

Figure 3.9: Examples of several cellular modes coexisting for a particular
state. 17% H2-83% CO2 fuel mixture burning in 100% O2 vol. (a,b): ūF =
0.377 m.s−1; (c,d): ūF = 0.943 m.s−1.

previous study was ūF = 0.377 m.s−1. Cellular states were found to depend

significantly on the initial mixture strength and confirm qualitatively the

prediction of Cheatham and Matalon [12]. The tendency to form cells was

found to decrease with increasing φm (see Fig. 3.2).

As stated in the introductory chapter and illustrated with Table 1.1, pre-

vious studies have not thoroughly investigated the parametric dependance of

the cellular wavelength. This wavelength is of importance for quantitative

comparison with theory. In this section, experimental data for the wavelength

are provided and correlated with the shear layer thickness wich in turn de-

pends on the fuel jet velocity, ūF. The O2 concentration and the co-flow mean

velocity were fixed at the same value as in Sec. 3.2, i.e. ūO = 4.66 cm.s−1.

For the AJ burner, several cellular modes coexisted for a particular operating

condition (see previous section) giving discrete values of the cellular wave-

length, λ/D, where D = 7.5 mm is the nozzle diameter. For the WP burner

the values of the cellular wavelength, λ/W , where W = 8 mm is the width

of the fuel inlet are quasi-continuous. An example is given in Fig. 3.9 for the

AJ burner and in Fig. 3.10 for the WP burner.

This section is divided as follows: first, the procedure for determining the

different λ/L is presented, where L is the reference length of the AJ or the

WP burner. Second, the evolution of cellular boundaries when varying the

jet velocity will be discussed. Finally, for a particular value of fuel mixture

(17% H2-83% CO2 vol.) results for the scaling of the cellular wavelength are
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3. CELLULAR INSTABILITIES IN JET DIFFUSION FLAMES

Figure 3.10: Typical two-dimensional cellular flame instability of a diluted
hydrogen diffusion flame, from the WP burner. 17% H2-83% CO2 fuel mix-
ture burning in 100% O2 vol.

presented.

3.4.1 Procedure

To determine the width of the cells, pictures of the flames were taken for both

jet burners (AJ & WP). For the AJ burner, photographs of the top view of

the flame were taken to determine the size of the cells. For the WP burner,

digital pictures were taken from an oblique angle at 45˚with respect to the

horizontal. Calibration photographs of a ruler were taken for both burners.

The AJ burner

For this apparatus, photographs were taken with Nikon D70 digital SLR

camera (3008× 2000 px). To avoid heating up the camera, the downstream

distance from the lens to flame was about 60 cm and in addition the AJ

burner was placed on a traverse allowing lateral movement of the AJ burner

during concentration changes without changing the camera focal plane. In

order to maximize the resolution of the camera, a Vivitar macro lens (85-

205 mm, 1:3.8, 85 mm dia.) and two extension rings Nikon PK-3 (27.5 mm)

and Nikon PK-1 (8 mm) were added. The combination of all these parameters

gave a spatial resolution of about 60 px/mm. The resolution was high enough

to capture the effective diameter of the flame Df , based on the maximum

of the integrated chemiluminescence. The camera was operated on-line by a

USB-connection. These measurements were then processed using a Matlab

code. As the center was not fixed, the aim of the code was to sum the
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3.4 Effect of jet velocity on cellular instabilities

Figure 3.11: Example of two top views of the AJ burner for two different
fuel velocities ūF. The solid lines represent the burner nozzle inner diameter
D = 7.5 mm and the dashed lines represent the calculated flame diameter
Df . 17% H2-83% CO2 fuel mixture burning in 100% O2 vol., φm = 0.0738.
Oxidizer co-flow velocity ūO = 4.66 cm.s−1. Fuel velocity: ūF = 37.7 cm.s−1

and ūF = 75.4 cm.s−1 for left and right photographs respectively.

intensities on a fitted circle (three independent variables: two for the center

and one for the radius. The built-in function fminsearch for unconstrained

nonlinear optimization was used to determined these three parameters.

Figure 3.11 illustrates how cellular wavelengths were obtained. The con-

tinuous circle represents the nozzle inner diameter, D = 7.5 mm, and the

dashed line represents the calculated circle of the flame with the diameter

Df . These photographs were taken for fixed oxidizer and fuel concentra-

tion (H2 = 17% vol., O2 = 100% vol.) and for a fixed co-flow velocity

(ūO = 4.66 cm.s−1). Only the fuel velocity varied from ūF = 37.7 cm.s−1

to ūF = 75.4 cm.s−1. The left hand photograph shows that for the lowest

velocity the flame diameter is nearly the same as the nozzle diameter and

that there are 6 cells. The right hand photograph shows a larger flame di-

ameter and a 7-cell state. The cellular wavelengths are then simply obtained

by dividing the circle perimeter by the number of cells:

λ =
πDf

Ncell

, (3.5)
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where Ncell is the number of cells observed4. The repeatability was within

1%, provided the photograph was not saturated.

The WP burner

For the data acquisition, a SONY DSC-F828 Digital Still Camera (3264 ×
2448 px) was used. The camera was positioned on the side of the burner,

with an oblique angle of about 45˚and at 8 cm from the flame. The com-

bination of these parameters gave a spatial resolution of about 50 px/mm.

The pictures were taken for various conditions with the speed burst mode,

i.e. seven pictures every 0.38 s and a shutter time of 30 ms. The reason

for collecting pictures at this speed was that the cells in the WP burner, for

certain conditions, were more likely to move laterally without any preferred

direction.

Figures 3.12–3.13 illustrates how cellular wavelengths were determined.

The black lines, on the top picture of Fig. 3.12, represent the region of interest

(ROI). The bottom graph shows the filtered signal of the raw signal taken at

the center of the ROI. The ROI had a height of 60 pixels. The wavelength

was determined as follows: for each row in the 60 pixels ROI, the signal was

low-pass filtered; then, on each filtered signal a Hanning window and zero

padding were applied in order to obtain 8192 long samples. These samples

were then processed with a Fast Fourier Transform (FFT) and the average

of each peak obtained determined our λ/W . Figure 3.13 shows the results of

the same filtered signal presented at the bottom of Fig. 3.12. The calculated

cellular wavelength for each photograph can be written as:

fi(x)
FFT−−→ f̂i(k) =⇒ k?

i as the max

∣

∣

∣
f̂i(k

?
i )

∣

∣

∣
,

λ =
1

N

N
∑

i=1

1

k?
i

, for N = 60 . (3.6)

4If the inner diameter of the jet had been used as a length scale, the cellular wavelength
would have been underestimated: 3.36 mm instead of 3.59 mm, for the example illustrated
in Fig. 3.11
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Figure 3.12: Top: Typical photograph of the diffusion flame in the WP
apparatus. The black lines represent the region where the wavelength was
determined (ROI). Conditions: ūF = 0.186 m.s−1, 17% H2-83% CO2 fuel
mixture burning in 100% O2 vol., φm = 0.0738. Bottom: typical raw signal
(intensity versus the longitudinal axis of the burner given in mm) at a center
position of the ROI and the low-pass filtered signal.
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Figure 3.13: Typical result of a FFT from the filtered signal of Fig. 3.12.
The FFT was performed after applying a Hanning window and padding of
zeros up to 8192. The abscissa is in mm.
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3.4.2 Results

Cellular boundaries

In the previous section (see Sec. 3.2), the jet and co-flow velocities have been

fixed and a wide variety of cellular states was found. A map (see Fig. 3.2)

of the φ-parameter space (the range of initial mixture strengths) in which

different cell patterns appear has been constructed. More information is

needed to understand the physical effects of the large amount of parameters

involved in cell formation in jet burners. This relative lack of experimen-

tal data motivated this new parameter space investigation (varying the fuel

velocity).

Figure 3.14 reports the cellular modes occurring in the AJ burner for sev-

eral jet flow velocities. The detection of the cell modes, i.e. the number of the

cells occurring, was performed directly by visualization. In order to detect

several cellular modes at one condition, the flame was manually disturbed

using a bluff-body5. Measurements were performed for several values of ūF

ranging from 0.3 to 3.4 m.s−1 in steps of 0.18 m.s−1 (0.5 sl/min). The con-

centration of H2 was varied from 14.1% to 21.1% vol. in steps of 0.2% vol. in

the cellular region. For the determination of the cellular boundaries, namely

the extinction limit and the onset limit, the steps were reduced to 0.1% vol.

The extinction boundaries were repeatable within 0.1% vol. For the onset

limit the error is larger for high values of ūF than for low ones. For high fuel

velocity the cell ‘flamelets’ are close to each other making the onset of cells

less clear. The repeatability for the onset limit is estimated to be around

0.3% vol. The measurements were performed by fixing ūF and decreasing

the concentration of H2.

Figure 3.14 shows several important features. Concerning the cellular

modes, up to three different cellular modes could coexist for several condi-

tions. With increasing ūF the cell length λ/D — inversely proportional to

the cellular mode — is found to decrease; the onset limit decreases making

the cellular zone smaller since the extinction limit is found to be less sensitive

to this parameter. It should be noted that higher values of λ/D occur very

near the extinction limit even for high values of ūF.

5The same bluff-body as in Sec. 3.2, i.e. a screwdriver.
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Figure 3.14: Extinction limit and boundaries of different cellular instabilities
observed in AJ diffusion flames. H2-CO2 fuel mixture burning in 100% O2.
Oxidizer co-flow velocity ūO = 4.66 cm.s−1. The related cellular symbols are
found on the bottom graph.
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Figure 3.15: Extinction limit and boundaries of the onset and lift-off of
cellular instabilities observed for CO2 diluted, H2-O2 diffusion flames in WP
burner. The onset limit is represented with lines and circles. The region
between the lift-off limit and the extinction limit is hatched. The oxidizer
co-flow velocity is ūO = 4.66 cm.s−1. (a) Fixed fuel velocity condition: ūF =
0.377 m.s−1. (b) Fixed oxidizer concentration: O2 = 100% vol.

Similar investigations of the cellular instabilities occurring in the WP

burner have been undertaken. Figure 3.15 shows the cellular instability

boundaries for the two parameters investigated: (1) decreasing O2% for a

fixed velocity and (2) increasing ūF for a fixed O2 concentration. The prob-

ability of finding cellular instabilities in the WP burner increases as φm de-

creases. The determination of the different boundaries was made by fixing

the O2 concentration and decreasing in small steps 0.1% H2 vol. The posi-

tion of the fixed parameter — O2 concentration for Fig. 3.15(a) or ūF for

Fig. 3.15(b) — is represented with the circle symbol on the onset limit line.

It should be noted that the hatched region represented in Fig. 3.15(a,b) cor-

responds to flame lift-off (approximately 3W high), which is present near the

extinction limit. This behavior is similar to the one recorded in the early

work of Dongworth and Melvin [22]. The anchoring edges of these flames,

which were lifted above the jet nozzle rim, were found to meander in the

downstream direction, but regular flame-edge oscillations [26, 27] were not
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observed for the conditions explored. Since it is not the focus of the current

study, this lifted flame regime will not be discussed further. The extinction

limit is found to be less sensitive to the ūF parameter than with φm. These

results are similar to those found with the AJ burner.

Behavior of the cells

To investigate the precise dependence of the cellular wavelength in both jet

facilities, the number of variable parameters must first be reduced. The

cellular wavelength function can be written as:

λ = f(YF, YO, uF, uO, geometry, reactant properties) ,

where Yk are the mass fractions. Keeping the co-flow velocity constant,

ūO = 4.66 cm.s−1, and assuming that it is small compared to the fuel velocity

allows to neglect the dependence on ūO. To further reduce the number of

parameters, the initial concentration are kept fixed at [H2] = 17% vol. and

[O2] = 100% vol.with CO2 as inert in all cases (φm = 0.0738). This fuel

mixture covers a wide range of the cellular zone in both burners, see Fig. 3.14

and Fig. 3.15(b). The cellular wavelength can be rewritten as:

λ = f(uF, geometry) ,

if the reactant properties and the initial mixture strength are held constant.

The “geometry” includes the vorticity thickness in each burner determined

in Sec. 3.3.3. Here . Eqs. (3.3)–(3.4) and the notations are repeated:

δω

L
=











δω

D
= 1.81

1√
ReD

δω

W
= 3.14

1√
ReW

L =







D = 7.5 mm→ ❍

W = 8.0 mm→ ut—ut
ReL =

ūF L

νF

,

with νF the fuel viscosity taken at 300 K for the concentration indicated

above [46]. It should be noted from the above equations that the coefficient

before the inverse square root of ReL is different for the two burners. This

characteristic is important in the sense that it will permit to distinguish

between a scaling with ReL and δω/L.
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Figure 3.16: Cellular wavelengths measurement in the WP and AJ burner,
for 17% H2-83% CO2 fuel mixture burning in 100% O2 vol., φm = 0.0738.
[❍]: Cellular wavelengths from the AJ burner λ/D; [ut—ut]: cellular wave-
lengths from the WP burner λ/W . The solid line is fit through symbols.
(a) Scaling with ReL. (b) Scaling with δω/L.

Figure 3.16 shows the cellular wavelength λ/L measurements in both

burners for 17% H2-83% CO2 fuel mixture burning in 100% O2 vol. It should

be noted that several wavelength coexist for a particular fuel velocity, there-

fore the line between the symbols represents the variation of the number

of cells observed. Figure 3.16(a) shows that the trend of the cellular wave-

lengths with the fuel velocity is the same for both burners, but that both

data sets do not collapse. When plotted against δω/L, however, all data

collapse onta a single line in Fig. 3.16(b). The line fitted through both sets

of measurements in fact covers the seperate fits of each data set. Therefore,

the geometery dependence of the cellular wavelength is gien by:

λ

L
= a

√

δω

L
. (3.7)

For the flame conditions specified above, the empirical coefficient a = 1.6

is found from Fig. 3.17. The coefficient is found to be equal to a = 1.6.

Figure 3.17 also present a blow-up of the AJ burner data which illustrates

that the cellular wavelengths from the AJ burner are strongly “quantized” by

Eq. (3.5) compared to the ones from the WP burner. Therefore, the resulting
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Figure 3.17: Cellular wavelengths measurement in the WP and AJ burner,
for 17% H2-83% CO2 fuel mixture burning in 100% O2 vol., φm = 0.0738.
[❍]: Cellular wavelengths from the AJ burner λ/D; [ut—ut]: Cellular wave-
lengths from the WP burner λ/W . The solid line is given by Eq. (3.7), with
a = 1.6.

relations should be regarded as typical cellular wavelengths.

As discussed previously, the parameter a is dependent on the flame pa-

rameters and the reactant properties. Notably, it was shown that increasing

initial mixture strength increases the wavelength of the cellular instability.

For fixed initial fuel mixture, the cellular instability domain changes smoothly

with increasing φm, up to a particular value of O2 close to extinction, see

Fig. 3.2 and Fig. 3.15 for the AJ and the WP burner, respectively. Conse-

quently the reactant properties are assumed to be constant sufficiently far

from the O2 extinction limit. This last assumption decouples the effect of

φm from the one of δω in the cellular wavelength relation:

λ

L
= a(φm)

√

δω

L
. (3.8)

Additional experiments were conducted to see if a suitable relation could
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Figure 3.18: Cellular wavelengths measurement in the WP and AJ burner, for
17% H2-83% CO2 fuel mixture burning in O2-CO2 mixture. The fuel velocity
and the oxidizer co-flow velocity is ūF = 0.377 m.s−1 and ūO = 4.66 cm.s−1,
respectively. [4]: 5-cell mode wavelengths from the AJ burner; [♦]: 6-cell
mode wavelengths from the AJ burner; [ut—ut]: cellular wavelengths from
the WP burner. (a) λ/L versus φm; (b) log(λ/L) versus log(φm). [- - -]: fit
through the cellular wavelength of the two burners.

be found for a(φm). The velocities of the jet flow and the co-flow were held

constant for both burners. The fuel velocity and the oxidizer co-flow velocity

was ūF = 0.377 m.s−1 and ūO = 4.66 cm.s−1, respectively. The fuel mixture

was fixed to 17% H2-83% CO2, for both burners. It should be recalled that

even if the fuel velocities are equal for both burners, the vorticity thicknesses

are different (see Fig. 3.17).

Figure 3.18 confirms that the cellular wavelengths increase with increasing

initial mixture strength φm. Only two cellular modes were observed in the AJ

burner, compared to a higher number of cellular modes in the WP burner.

Assuming a power law for a(φm) = bφγ
m, two different powers are found for

the two burners on Fig 3.18(b). Since the two powers are close, the average

γ = 0.22 is used to arrive at:

λ

L
= bφγ

m

√

δω

L
, (3.9)

To confirm this relation and to find the appropriate empirical coefficient

b = 2.83 all data are plotted on Fig. 3.19. To confirm Eq. (3.9), still more
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Figure 3.19: Cellular wavelengths measurement in the WP and AJ burner,
for 17% H2-83% CO2 fuel mixture burning in O2-CO2 mixture. The fuel
velocity and the oxidizer co-flow velocity is ūF = 0.377 m.s−1 and ūO =
4.66 cm.s−1, respectively. [❍]: Cellular wavelengths from the AJ burner for
φm = 0.0738; [4]: 5-cell mode wavelengths from the AJ burner; [♦]: 6-cell
mode wavelengths from the AJ burner; [ut—ut]: cellular wavelengths from the
WP burner. Empirical fitted values: γ = 0.22 and b = 2.83.

measurements for different combinations of δω and φm are required. In addi-

tion, the parameters γ and b are expected to be dependant on the thermo-

chemical properties of the reactants. To explore this suggestion, additional

experiments are required with other reactants. Replacing the CO2 inert with

CF4 will lower the Lewis number without changing the combustion proper-

ties. Other inerts with higher molecular weights than CF4 (SF6, Xe, Kr, ...)

can sufficiently reduce the Lewis number of the hydrocarbons so that cellu-

lar instabilities are possible. In the hydrogen system higher Lewis numbers

can be obtained with inerts such as Ar or N2, which are known to produce

cellular instabilities [13,22,43]. However these inerts will lower the chemilu-

minescence and the identification of cells may become difficult.
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Conclusions

An empirical scaling of the cellular instability wavelength was found, for a

17% H2-83% CO2 fuel mixture burning in a O2-CO2 mixture. This scaling

is based on a large Reynolds number variation from 50 to 1500 at a fixed

φm = 0.0738, and a variation of φm ∈ [0.0738, 0.2260], at one fixed fuel

Reynolds number. This empirical relation is valid if several hypotheses are

met. Firstly, the oxidizer co-flow velocity has to be low compared to the

fuel velocity. Secondly, the thermo-chemical properties (reactant properties)

were assumed to be constant sufficiently far from extinction. Therefore,

high values of the cellular wavelengths for conditions very close to extinction

cannot be predicted with the empirical relation Eq. (3.9), see Fig. 3.4 and

Fig. 3.14. However, the region near-extinction where there are large changes

in the cellular wavelength is small.

The Damköhler number for jet diffusion flames is the ratio between the

hydrodynamic effects and chemical effects. Two regimes can therefore be

distinguished: a near-extinction regime where λ/L is controlled primarily

by the thermo-chemical parameters and a second regime, investigated here,

where λ/L is determined primarly by hydrodynamics.

Additional measurements are needed to confirm these results, notably,

the dependence on the physical properties of the reactants (thermal and

mass diffusion). The initial assumption of a small co-flow velocity needs to

be studied as Füri [26] reported different cellular behavior, such as traveling

cells, when varying the oxidizer co-flow in the WP burner.
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Chapter 4

Realization of a nearly

one-dimensional diffusion flame

4.1 Introduction

This chapter is devoted to a new type burner designed to produce a one-

dimensional diffusion flame. The material is in essence contained in the

Combustion Symposium paper [66] mentioned in the title. However, for

consistency and clarity purposes the presentation has been modified and

the original paper expanded. The additional material consists of velocity

measurements (Sec. 4.4.1) and temperature measurements (Sec. 4.4.2). A

notable modification has also been made to the discussion of the flame stand-

off distance and corresponding figure in Sec. 4.4.3.

A unique burner was constructed to realize experimentally a one-dimen-

sional unstrained planar non-premixed flame, previously only considered in

idealized theoretical models. The potential experiments in such a burner,

free of flame stretch effects, include investigations of instabilities, extinction

dynamics and heat loss and chemistry effects. The capabilities of this unique

burner are demonstrated in Chap. 5 with a preliminary investigation of cell

formation in CO2-diluted H2-O2, nearly unstrained non-premixed flames near

the extinction limit.

The unstrained one-dimensional diffusion flame has served for over six

decades, starting with Zeldovich [118], Shvab [94], and Spalding [103, 104],
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as an idealized construct for theoretical modeling. The principal obstacle in

the way of an experimental realization of this idealized burner is the uniform

oxidizer supply. Even with a screen separating the chamber from the fast ox-

idizer stream across the top of the combustion chamber, one-dimensionality

in the chamber is unlikely to be approached in practice, as it can only be ex-

pected in the limit of an infinite ratio between the cross stream and chamber

exhaust velocities. Therefore, experimental investigations of non-premixed

flames have until now been restricted to burners which produce non-uniform

conditions over the flame surface. Several common burners are the Wolfhard–

Parker burner, axisymmetric jet and counterflow configurations. Of the cited

examples, the counterflow burner comes closest to the idealized burner dis-

cussed above. There are two major types of counterflow diffusion flames,

namely the opposed-jet and Tsuji burners. Opposed jet flames are planar,

i.e. free from curvature effects, but the flow is non-uniform and characterized

by a single parameter — the axial velocity gradient or strain rate. Recently,

Han et al. [35] proposed an original idea to obtain low strain flame by means

of a Tsuji burner with a small curvature. They were able to obtain flames

with a strain rate around 1.4 s−1.

This chapter will be organized as follows. The details of the theoretical

model will be discussed in Sec. 4.2. The design consideration and details of

the burner construction are discussed in the Sec. 4.3. Experimental char-

acterization (Sec. 4.4) includes velocity, temperature and stand-off distance

measurements will end this chapter.

4.2 The theoretical one-dimensional burner

The idealized burner is supplied from the bottom with one reactant, the

fuel in this study1, through a “semi-permeable plate” (impermeable in the

downward direction). The oxidizer diffuses from a reservoir on top of the

chamber to the flame, against the upward flow of products. Conditions at

the boundary where the oxidizer originates are maintained constant by a

fast-flowing oxidizer stream across the top exit of the combustion chamber.

1the role played by the two reactants can be easily interchanged.
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Figure 4.1: Schematic of the ideal 1-D model.

The supply of both reactants is assumed to be uniform over the respective

horizontal burner cross sections such that the velocity, which is directed

upwards because of the bottom semi-permeable plate, as well as all other

physical quantities depend only on the vertical coordinate normal to the

planar flame (see Fig. 4.1).

The chemical activity is modeled by a one-step global irreversible reaction

of the form

ν ′

FF + ν ′

OO −→ (ν ′

F + ν ′

O)P , (4.1)

where ν ′

k is the stoichiometric coefficient of species k, and F, O, and P rep-

resents the fuel, the oxidizer and the products respectively. The chemical

reaction rate ω is assumed to obey an Arrhenius type law:

ω = A
ρYF

WF

ρYO

WO

exp

(

−Ea

RT

)

, (4.2)

with R the gas constant, T the temperature, Ea the overall activation energy,

A a constant pre-exponential factor, ρ the density of the mixture, Wk and

Yk are the molecular weight and the mass fraction of species k respectively.

For steady burning, the equations of conservation of mass, momentum and
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energy are expressed as follow:

ρu = const. , (4.3)

ρuu,x = −p,x + ρg + (4/3)(µu,x),x , (4.4)

ρucpT,x − (λT,x),x = Qω , (4.5)

ρuYF,x − (ρDFYF,x),x = −νFWFω , (4.6)

ρuYO,x − (ρDOYO,x),x = −νOWOω , (4.7)

where p represent the pressure, g the gravitational acceleration, Q the total

heat released during combustion, λ, cp and µ are the thermal conductivity,

specific heat at constant pressure and dynamic viscosity of the mixture, and

Dk is the binary diffusion coefficient of species k.

For low-speed flows (isobaric assumption, low Mach number) it can be

that the spatial variation in pressure is small, so that the equation of state

can be written as follow:

p0 =
ρRT

W
, (4.8)

with P0 representing the ambient pressure and W the mixture average molec-

ular weight. The boundary conditions for the top x = 0 and bottom x = L

of the chamber are:

x = 0 :



























T = TOi ,

YF = 0 ,

YO = YOi ,

p = 0 ,

x = L :



















λT,x = ρu(T − TFi) ,

ρDFYF,x = ρu(YF − YFi) ,

ρDOYO,x = ρuYO ,

(4.9)

where YFi and YOi are the initial mass fraction of fuel and oxidizer respec-

tively. The solution corresponding to complete combustion, called the Burke–

Schumann solution [9], will be presented. This solution is also designated as

“fast-chemistry” because the associated Damköhler number, Dam, tends to

infinity. This correspond to the leading order of an asymptotic solution for

large activation energy2 [12,49,52,64]. This solution will not allow any leak-

2For finite Damköhler number the following expression are not the same but the posi-
tion of the reaction sheet remains very close which therefore could be used as a reasonable
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age of the reactants. The reaction zone thickness will be infinitely small

(also called flame sheet model) and will be located at x = xf where fuel and

oxidizer meet at stoichiometric proportions. Assuming transport properties

λ, µ, cp, ρDk remain constants, and denoting x̂ = x/L the following solution

is found for the fuel and oxidizer mass fractions:

YO =







YOiφm [−1 + exp (−PeLeO(x̂− x̂f ))] , ∀x̂ ∈ [0, x̂f [

0 , ∀x̂ ∈ ]x̂f , 1]
(4.10)

YF =







0 , ∀x̂ ∈ [0, x̂f [

YFi [1− exp (PeLeF(x̂f − x̂))] , ∀x̂ ∈ ]x̂f , 1]
(4.11)

The reaction sheet location x̂f is located:

x̂f = (PeLeO)−1 ln(1 + φ−1
m ) , (4.12)

where

φm =
YFi/νFWF

YOi/νOWO

, (4.13)

is the (mass) initial mixture strength. The two Lewis number LeF and LeO

are associated to the fuel and the oxidizer respectively. The Lewis number

represents the ratio between heat and mass transfer and is defined for a specie

k as, Lek = Dth/Dk, where Dth is the thermal diffusivity Dth = λ/(ρcp). The

Péclet number3 Pe represents the ratio between convective transport and

thermal diffusive transport and is defined as Pe = uL/Dth. The temperature

profile reads:

T =











Tf + (Tf − TOi)
exp (−Pe(x̂− x̂f ) + 1)

exp (−Pe(1− x̂f )− 1)
, ∀x̂ ∈ [0, x̂f [

TFi + (Tf − TFi) exp (Pe(x̂f − x̂)) , ∀x̂ ∈ ]x̂f , 1]

(4.14)

approximation of the flame position [12]
3In literature concerning diffusion in reactors the term PeLe is replaced by the Bo-

denstein number Bs, or in porous media literature is replaced by Pem which is a Péclet
number defined with mass diffusivity instead of thermal diffusivity.
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where the flame temperature Tf is given by:

Tf = TFi +
q

cp

+

(

TOi − TFi −
q

cp

)(

1 +
1

φm

)

−1/LeO

, (4.15)

where q = QYFi/νFWF is the heat release per mass unit of fuel supplied. In

this configuration where oxidizer diffuses against the bulk flow only LeO is

present in the relations Eq. (4.12) and Eq. (4.15).

The density and the velocity fields can be solved from the equation of

state Eq. (4.8) and Eq. (4.3):

u

UFi

=
ρ

ρFi

=
TFi

T
. (4.16)

4.3 Design considerations

Proc. Comb. Inst., 30, 2005 [66], expanded

The idealized burner in these studies is supplied with one reactant from the

bottom through a “semi-permeable plate” — impermeable in the downward

direction. The other reactant diffuses from the top of the chamber to the

flame, against the upward flow of products. The supply of both reactants is

assumed to be uniform over the burner cross section such that the velocity,

which is upwards everywhere, and all other physical quantities depend only

on the (vertical) coordinate normal to the planar flame. Since the uniform

supply of the reactant diffusing against the bulk flow is a major experimental

problem, laboratory investigations of non-premixed flames have until now

been limited to burners with non-uniform conditions over the flame surface.

In order to more directly compare the theoretical results for the 1-D ideal

flame with experiments, a new improved experimental realization of the ideal

burner has been constructed. On the left hand side of Fig. 4.2 the idealized

model with additional arrows is shown, where the straight ones correspond to

convective transport and the wiggly ones to diffusive transport. The key for

the uniform removal of products is to redesign the top of the idealized burner.

By introducing an array of tubes through which the oxidizer is supplied the

products can escape in-between the tubes, as shown on the right hand side.
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Figure 4.2: Sketch of the idealized burner (left) and the experimental real-
ization (right). The straight arrows correspond to convective transport and
the wavy ones to diffusion transport.

A three-dimensional layer therefore exist where the oxidizer and the products

mix and where below this region the oxidizer diffuses down to the flame in the

same manner as depicted in the idealized burner. The key of this apparatus

is that the tube supply and the tube spacing must be kept small enough so

that the non uniformity is in a smaller scale compared to the scale of the

phenomena to be studied.

Figure 4.3 shows a schematic of the burner on which the various compo-

nents are identified. The combustion chamber has a square cross section of

46× 46 mm, and a brass back wall with a circular plug for the introduction

of an ignition torch. The other three walls are fused silica windows (Op-

tico, FS7980; 80 × 46 × 3 mm) to provide optical access. For the current

experiments, the adjustable vertical length of the combustion chamber (L in

Fig. 4.3) was fixed at 20 mm.

To obtain a planar flame at some height xf within the chamber, which is

as nearly one-dimensional as possible, a uniform supply of the reactants over

the cross section is crucial. The bottom reactant, the fuel in this study, is

introduced through a diffuser, an initial porous plate, a layer of glass spheres

(1 mm dia.), and finally enters the combustion chamber through a 34 mm

square porous plate (Mott Metallurgical, 100 � grade). The high pressure

drops insure a good spatial uniformity of the fuel velocity at the porous
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Figure 4.3: Schematic of the Mark I burner. ① bottom fuel flow, ② inert co-
flow, ③ porous plates, ④ fused silica windows, ⑤ reactant tube array, ⑥ hot
product exhaust, ⑦ oxidizer flow from top, ⑧ movie camera.

plate exit. This part is similar to the porous plug burner, which is commonly

used for premixed flame studies. The square plenum for the bottom reactant

(label ③ in Fig. 4.3) has an outer dimension of 38 mm and is surrounded by

a 4 mm wide channel, which allows the introduction of an inert co-flow. For

the first experiments presented here, however, no co-flow was used.

Since the combustion products have to escape upwards from the chamber

with a uniform velocity over the entire cross section and the oxidizer supply

from the top also needs to be uniform over the cross section, this oxidizer

supply and the product exhaust have to penetrate each other. The solution

adopted here is to allow non-uniformity on a small scale, with the expectation

that it will become negligible near the flame front. In practical terms, the

oxidizer is supplied from the top through a Cartesian array of 25× 25 = 625

stainless steel capillaries (Unimed, AISI 304; 1 mm O.D., 0.8 mm I.D.) with
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1.78 mm center-to-center spacing. These 210 mm long hypodermic needles

originate from a common top plenum with dimensions of 48 × 48 × 22 mm

and, to maintain even spacing, are threaded through a fine wire mesh (G.

Bopp & Co, 0.75 mm nominal mesh size, 0.18 mm wire dia.) located about

20 mm above the tube exits. Since the oxidizer supply tubes occupy only 23%

of the cross sectional area, the interstitial area is sufficient to allow the hot

products to escape from the combustion chamber. As shown schematically

in Fig. 4.3, the exhaust first flows vertically up, parallel to the capillaries,

and then laterally out between the top end of the burner housing and the

bottom of the oxidizer plenum.

Just below the oxidizer injection level at x = 0 (see Fig. 4.3), the flow is

clearly three-dimensional on the scale of the tube spacing. Since the Reynolds

number in the oxidizer mixture supply tubes, based on average velocity and

tube I.D., is in the range of about 5–10, i.e. neither small nor large, the

thickness of this layer can at this point only be bracketed as follows. In the

Stokes flow limit, the “fundamental” of the flow non-uniformity at the upper

edge of the combustion chamber, u(x = 0, y, z) = û cos(2πy/s) cos(2πz/s),

with s = 1.78 mm the oxidizer supply tube spacing, is readily shown to decay

as exp(−2
√

2πx/s) for uniform fluid properties, i.e. to less than 1% in one

millimeter. On the other hand, one can use the standard similarity solution

for a single laminar jet [91] into a stagnant fluid to estimate the distance

required for the jet diameter to increase from the 0.8 mm supply tube I.D. to

the tube spacing s. Assuming again uniform fluid properties, the result is less

than one millimeter for the highest Reynolds number. Thus, both low and

high Reynolds number estimates show that the thickness of the needle injec-

tion layer is less than one needle diameter. The end of this layer constitutes

the virtual oxidizer boundary where the concentration appears uniform. To

confirm this issue, a numerical simulation for the three-dimensional injection

layer have been developed.

The numerical simulation of the 3D-layer was performed with Fluentr, a

commercial software. The size of the numerical domain is 15× s× s mm and

includes, a 5 mm long tube (0.8 mm I.D., 1 mm O.D). The mesh used for the

simulation consisted of unstructured triangular cells (≈ 400000), developed

with Gambitr a commercial mesh-generator software. The calculation was
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Figure 4.4: Slice of the numerical solution taken at the mid-plane of the
computational domain. The field represented in gray level is the O2 con-
centration in % vol. near the tube exit. The domain is ranging from −5 to
10 mm in the x-direction. The width of the numerical domain in the y-, and
z-direction is of a tube spacing s length. Numerical boundary conditions:
oxidizer inlet velocity ūO = 10 cm.s−1; fuel inlet velocity ūF = 3 cm.s−1;
periodic conditions on the sides (y = ±s/2, z = ±s/2). The points and the
lines represent the stagnation point.

made for pure hydrogen introduced at x = 10 mm, at a uniform velocity

ūF = 3 cm.s−1, against pure oxygen introduced at the tube exit (x = 0 mm)

with a parabolic velocity profile and an average velocity of ūO = 10 cm.s−1.

The mixture exits the numerical domain at x = −5 mm. The boundary

conditions on the side of the numerical domain (y = ±s/2, z = ±s/2)

are imposed as periodic. The velocity field (not represented here) gives an

estimate of about 1 tube diameter for the thickness of the layer.

Below this three-dimensional injection region, the oxidizer is transported

towards the flame by one-dimensional diffusion against the product flow, as

in the idealized burner discussed in the previous section. This aspect is com-

pletely different from the standard counterflow burner where the products

are carried away radially from the opposing reactant jets and the resulting

planar diffusion flame is necessarily strained.
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Figure 4.5: Example of a flame side view of 4.348% mass H2 and 62.92% mass
O2 diluted in CO2, QO = 3.33× 10−5 m3.s−1, QF = 2.83× 10−5 m3.s−1. The
scale is given by tubes of the 1 mm O.D. of the tubes.

Deviations of the steady flame surfaces from planar have not yet been

quantified in detail, but Fig. 4.5 gives an impression of the typical flame

flatness achieved in the new burner.

4.4 Experimental characterization of the bur-

ner

Proc. Comb. Inst., 30, 2005 [66], expanded

4.4.1 Velocity profiles

In order to obtain velocity profiles, the fuel inlet of the burner was modified.

The porous plug was replaced by 14×14 = 196 stainless steel tubes (Unimed,

AISI 304; 3 mm O.D, 2.8 mm I.D.). To ensure a uniform bottom flow the

porous plate of Fig. 4.3 was replaced by a 50 mm-long flow straightener

preceded by several grids. Figure 4.6 shows several view of the new version

of the burner. In addition, the back-side of the burner was modified. To

improve the symmetry the original brass back wall with the ignition access

was replaced with a fused silica window, identical to the three other windows

except for the ignition hole. The modifications are shown to scale on Fig. 4.6,

showing the side view, the front view and the cross section of the burner.

Preliminary three-dimensional velocity field measurements were performed

in the middle section of the burner, with the LDA described in Sec 2.2.5. Only

two components are represented in Fig. 4.7, as the third component was be-

low 0.2 cm.s−1 everywhere, with measurements made at 5–7 x-positions, with

measurements points equally spaced, 2 mm in the y-direction. The number
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Figure 4.6: One-dimensional Mark Ia burner. (a) Front view; (b) Side view;
(c) Cross section of the burner view.

of burst in each direction was fixed at 15000 and the processing of the data

was performed with BURSTware software. The traverse used is similar to

the one described in Sec. 2.2.3, without the additional correction. Figure 4.7

shows two velocity fields (vectors) corresponding to two conditions. The first

condition, at the top of the figure, is the cold condition (air). The flow is

uniform except near the tube exit (2-tube diameter), where a divergence of

the vectors can be observed. The field represented in gray filled-contour is

the dimensionalized strain rate calculated as the traverse gradient of the ax-

ial velocity. For the cold condition this strain rate is small ranging from

−0.2 to 0.2 s−1. The bottom plot of Fig. 4.7, represents a typical burning

regime of 30% H2-70% CO2 reacting with pure oxygen. The flowrate QO and

QF are equal to 3.33 × 10−5 m3.s−1. The strain rate field is ranging from

−1.5 to 1.5 s−1. Unfortunately, measurements could not be made above the

flame (indicated by the solid line) because of seeding particles sticking on
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Figure 4.7: Velocity field and associated dimensional strain rate ∂u/∂y in
contour filed. L = 20 mm and W = 46 mm. Flow rates: QF = QO =
3.33 × 10−5 m3.s−1 at standard conditions. Top: Cold conditions for air.
Bottom: 30% H2-70% CO2 fuel mixture burning in 100% O2 vol. The solid
line represents the flame position, xf = 4.94 mm.
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the wall. These preliminary results show two interesting behaviors. The

non-uniformity of the velocity field suggests that heat loss through the walls

is important. This observation will be confirmed with temperature profiles

presented in the next section. Nevertheless, the strain rate obtained is small,

compared to typical counterflow burners (10 s−1 for the lowest). Han et

al. [35] obtained a strain rate of about 1.5 s−1 which is low too, however,

reduction of our residual strain to zero is not impossible since gravity does

not break the symmetry of our design.

4.4.2 Temperature and heat loss consideration

The temperature profiles were made with type K thermocouples (Omega,

0.25 mm diameter) connected to a multi-channel thermocouple monitor (Stan-

ford Research Systems, SR636). These thermocouples were 200 mm long,

this length was long enough to perform temperature measurements from the

top in-between the injection needles, and from the bottom through the grids

and the flow straightener. Taking the two profiles were necessary because of

the bias on the temperature measurement due to heat loss from conduction.

However, without any radiation correction, the temperature profiles give a

good estimate of the heat loss through the windows of the burner. The po-

sition measurements of each thermocouple were made with a digital height

gauge (Trimos, mini-vertical) with a magnifying scope (f10/25X). Figure 4.8

shows several temperature profiles, those coming from the top and the bot-

tom at the center of the burner (ŷ = Y/W = 0), those coming from the top

and the bottom on the side of the burner (ŷ = 0.5) and the one taking the

temperature on the outside surface of the burner window (ŷ = 0.5+).

The difference at the flame position for the center profile and the side

profile is important. Nearly half of the temperature is observed between

the center of the flame and the temperature at the window. This creates

temperature gradient inducing changes on the flow field.

The temperature difference across the window is about 100 K, the ther-

mal conductivity of the window is estimated to be λw = 1.67 W/m.K [112].

A rapid estimate of the heat flux through the window can be made with

the Fourier law, qw = λwdT/dx ≈ λw∆T/e, with e = 3 mm the thickness
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Figure 4.8: Thermocouple profiles at several locations without radiative
correction, for 30% H2-70% CO2 fuel mixture burning in 100% O2 vol.
[—∆—]: Thermocouple originating from bottom, at the center of the burner
ŷ = 0; [—5—]: thermocouple originating from top, at the center of the
burner ŷ = 0; [—ut—]: thermocouple originating from top, at the side of
the burner, ŷ = 0.5; [—♦—]: thermocouple originating from bottom, at the
side of the burner, ŷ = 0.5; [—❍—]: thermocouple outside at the side of the
burner, ŷ = 0.5+; the solid line at x̂ ≈ 0.25 is the flame position.

of the window, resulting in 56 kW/m2. Thus, for a 1 cm high strip of win-

dow surrounding the flame, there will be a total heat loss of about 110 W,

which represents approximately 3.6% of the thermal power produced by the

flame. Assuming 2.86 kJ/g for the heat of combustion, 30% H2-70% CO2

fuel mixture flowing at 2 sl/min.

4.4.3 Flame position measurements

The flame position xf , measured from the ends of the oxidizer injection tubes,

was taken to be the center of the visible luminous zone in the dark labora-

tory. A digital height gauge (Trimos, mini-vertical) with a magnifying scope

(f10/25X) was used to measure xf with a resolution of 0.01 mm. From re-

peated measurements, the overall uncertainty in xf , was estimated at about

71



4. REALIZATION OF A NEARLY ONE-DIMENSIONAL
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±0.2 mm. The temperature T e of the exhaust gases near the capillary tube

exits was measured with a type K thermocouple (Omega, 0.25 mm diame-

ter) connected to a multi-channel thermocouple monitor (Stanford Research

Systems, SR636).

To characterize the burner, the position xf of steady flames and the ex-

haust temperature near x = 0, i.e. at the level of the oxidizer injection, were

measured for different H2-CO2 and O2-CO2 reactant mixtures as well as ox-

idizer and fuel flowrates. Eighteen data sets for nine different reactant com-

positions have been acquired by fixing the oxidizer flowrate QO through the

hypodermic needle manifold to either 3.33× 10−5 or 5.00× 10−5 m3.s−1, and

varying the fuel flowrate QF. These data sets are reported in Table 4.1, where

the two vertical partitions correspond to the two fixed oxidizer flowrates used

in this study. The first column defines the nine different combinations of ini-

tial fuel and oxidizer mixtures by specifying the respective H2 and O2 volume

percent in CO2. The second column gives the corresponding mass-based ini-

tial mixture strength φm, which is defined as the ratio of the H2 and O2 mass

fractions supplied in the fuel and oxidizer streams, respectively, normalized

by the stoichiometric ratio. The third and seventh columns specify the min-

imum and maximum fuel mixture flowrate QF used for each data set, i.e.

for each combination of reactant mixtures and QO, while the corresponding

range of measured flame positions xf is given in the following columns. In

columns five and nine, the range of exhaust temperatures T e, measured near

the chamber center, corresponding to the range of QF is reported. The total

uncertainty of the reported temperatures, which were not corrected for radia-

tion and conduction losses, is estimated at less than 2 K for the experimental

conditions studied. The last columns six and ten list the range of diffusivity

De
O of oxygen into a representative composition of H2-CO2, calculated at the

corresponding exhaust temperatures T e [46]. The representative composition

for the diffusion coefficient De
O was estimated by taking into account the

mass flux of the initial O2-CO2 mixture injected through the hypodermic

needle manifold, the mass flux of CO2 from the bottom porous plug, and by

assuming that the H2 is completely converted to water.

To compare the behavior of the present burner with that of the idealized

burner discussed in the introduction (e.g. [53, 69]), the measured xf is com-
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System QO = 3.33× 10−5 m3.s−1 QO = 5.00× 10−5 m3.s−1

Symb. H2-O2 φm QF × 10−5xf × 10−3 T e De
O × 10−4 QF × 10−5xf × 10−3 T e De

O × 10−4

[% vol.] [m3.s−1] [m] [K] [m2.s−1] [m3.s−1] [m] [K] [m2.s−1]

★ 30-50 0.36 2.50 2.70 831 1.13 2.83 2.74 859 1.22
3.33 3.94 917 1.34 4.16 4.18 975 1.51

� 50-50 0.82 1.83 2.90 842 1.16 1.83 3.66 843 1.18
2.50 4.42 990 1.53 2.66 5.35 988 1.55

� 30-70 0.24 3.00 2.85 870 1.22 3.50 3.12 910 1.34
4.16 4.15 977 1.49 4.66 4.28 1002 1.58

N 50-70 0.55 2.00 3.70 853 1.19 2.16 4.43 853 1.20
2.83 5.54 1008 1.57 3.00 6.09 1005 1.59

✶ 30-100 0.15 3.33 3.33 888 1.27 3.33 4.10 880 1.27
4.66 4.94 998 1.54 4.66 5.70 983 1.53

H 50-100 0.35 2.33 4.70 903 1.31 2.66 5.35 938 1.42
3.00 5.90 998 1.55 3.33 6.64 1023 1.64

I 50-30 1.46 1.33 1.94 803 1.07 1.50 2.28 823 1.13
1.83 3.30 906 1.32 2.33 3.98 979 1.53

● 70-30 3.23 1.16 1.12 873 1.24 1.16 2.24 833 1.16
1.66 2.72 973 1.49 1.83 4.15 1002 1.59

J 70-50 1.82 1.50 2.84 898 1.30 1.66 3.62 912 1.35
2.00 4.25 1007 1.58 2.16 4.95 1016 1.63

Table 4.1: Range of conditions for flame position measurements. For each initial reactant mixture investigated, the
minimum and maximum parameter values are reported.
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pared to the theoretical prediction for a one-dimensional, unstretched planar

diffusion flame [12]. Under the simplifying assumption of constant transport

properties (constant thermal conductivity, viscosity, specific heat at constant

pressure, and ρDk, where ρ is the local mixture density and Dk the binary

diffusion coefficient of species k), an explicit Burke–Schumann solution4 has

been developed [12] for the relation between the flame position and system

parameters:

xf =
ρDO

mF

ln(1 + φ−1
m ) , (4.17)

where mF is the mass flux [kg/(m.s)] of the H2-CO2 mixture through the

bottom porous plug, and the other quantities are defined earlier in this section

(cf. also Table 4.1).

Guided by this analysis, the experimentally determined flame position

xf , is normalized as x̃f = (xfmF)/(ρe
ODe

O), where mF is the mass flux of

the H2-CO2 mixture from the porous plug, ρe
O the density of the O2-CO2

mixture at the measured exhaust temperature T e, and De
O the calculated

binary diffusion coefficient of oxygen into the product gases at T e (see above

description associated with Table 4.1).

To compare with the idealized burner, the x̃f corresponding to the eigh-

teen data sets of Table 4.1 are plotted against ln(1 + φ−1
m ) in Fig. 4.9. The

open and solid symbols in this figure correspond to the oxidizer flowrates of

QO = 3.33× 10−5 and QO = 5.00× 10−5 m3.s−1, respectively. The solid line

represents the ideal relationship of Eq. (4.17) and the dashed lines are sepa-

rate linear fits, forced through the origin, for the two QO conditions. Despite

the differences between the ideal theoretical model and experiments, the first

observation drawn from Fig. 4.9 is that the theoretical and measured nondi-

mensional flame positions x̃f are both linearly correlated with ln(1 + φ−1
m ).

However, the experimental standoff distance x̃f is dependent on the oxidizer

flow rate. Depending on the flow rate, x̃f is either larger or smaller than the

theoretical value x̃f,ideal = ln(1 + φ−1
m ). The difference between the ideal and

the measured standoff distance is denoted by ∆̃.

One is tempted to identify the difference ∆̃ with the non-dimensional

4For large activation energy, this solution is relevant even for incomplete combustion
including conditions approaching extinction, as it represents the leading order term of an
expansion in inverse powers of the activation energy [12].
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Figure 4.9: Flame position x̃f = xf (mF/ρeDe
O) as a function of ln(1 + φ−1

m )
for the data sets of Table 4.1. [——]: Theoretical line for a simplified one-
dimensional unstrained planar flame [12]. Open symbols: QO = 3.33 ×
10−5 m3.s−1; filled symbols: QO = 5.00 × 10−5 m3.s−1. [- - -]: Separate fits
through open and filled symbols.

thickness of the three-dimensional injection layer below the ends of the oxi-

dizer supply tubes, and to conclude that x̃ = ∆̃ represents the virtual origin

of one-dimensional downward diffusion of oxidizer against the upward ex-

haust flow. The observation (cf. Fig. 4.9) that, for any fixed φm and QF,

∆̃ increases with increasing oxidizer injection rate QO is consistent with this

view. However, the situation is not as simple. On the theoretical side, the

analysis leading to Eq. (4.17) assumes constant transport properties. The

measured exhaust temperature T e at x = 0, however, can be up to three

times higher than the fuel inlet temperature. Furthermore, since the binary

diffusion coefficient of real gases increases approximately as T 1.8 [46], the

variation of the physical properties with temperature is significant. If the

temperature dependence of the transport properties is taken into account, a

refined analysis of the idealized burner yields an increase of x̃f,ideal beyond

75



4. REALIZATION OF A NEARLY ONE-DIMENSIONAL
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its value given by Eq. (4.17), i.e. x̃f,ideal > ln(1 + φ−1
m ). In other words, a

part of ∆̃ in Fig. 4.9 is due to the oversimplified theoretical analysis.

Since the calculated De
O value in Table 4.1 is sensitive to the variation

of both mixture composition and temperature, the uncertainties associated

with De
O are difficult to quantify. Since complete temperature profiles across

the flame have not been measured, it is difficult to determine if the mea-

sured exhaust temperature is the appropriate reference temperature for the

evaluation of transport properties. The variation of De
O with the mixture

composition must also be considered. If the representative mixture for the

calculation of De
O was taken to be the total initial reactant mixture (H2, O2,

and CO2) instead of the representative product mixture, for example, the De
O

in Table 4.1 would increase by as much as 20% in some cases which would

shift the experimental points in Fig. 4.9 downwards. However, the measured

xf values in Table 4.1 strongly suggest that the transport of oxygen to the

flame is mostly directed by diffusion against the upwards product flow.
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Chapter 5

First investigation of cell

formation in the new burner

5.1 Introduction

Idealized unstrained, planar non-premixed flames have been the object of

numerous theoretical and numerical investigations. Spalding and Jain [104],

for example, examined the effect of finite-rate chemistry and temperature-

dependent fluid properties. Kirkby and Schmitz [53] examined the stability

of this unstrained flame to infinitesimal one-dimensional disturbances. Their

numerical results showed that a “pulsating” instability is possible in the pres-

ence of heat losses (non-adiabatic systems) or when the reactant Lewis num-

bers exceed unity. Using activation-energy asymptotics, Matalon et al. [69]

determined the unburned fuel fraction (fuel leakage through the flame) as a

function of the constant fuel flow rate for the whole range of Damköhler num-

bers. More recent work was directed towards thermo-diffusive instabilities,

and both pulsation [59] and cellular modes [12,49] have been analyzed. These

latter investigations revealed the influence of both reactant Lewis numbers,

heat loss, and the initial mixture strength on these thermo-diffusive instabil-

ities as well as the requirement of a relatively low Damköhler number (near

extinction conditions) for their appearance. Cheatham and Matalon [12],

for example, demonstrated that the propensity for the formation of cells

increases with increasing heat loss and decreasing reactant Lewis numbers,
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Damköhler number, and the initial mixture strength.

Some notable experimental investigations on cell formation in non-pre-

mixed flames include the works of Dongworth and Melvin [22] who observed

cells at the base of a diluted H2-O2 diffusion flame, and Chen et al. [13] who

clearly demonstrated the importance of relatively low Lewis and Damköhler

numbers in a Wolfhard–Parker burner. More recent experimental work at

EPFL has confirmed the influence of the initial mixture strength on cell

formation in an axisymmetric jet flame [26,67]. Since these experiments can

only be qualitatively related to the stability theories of idealized flames, the

current attempt was made to experimentally realize, as closely as possible, the

unstretched one-dimensional planar non-premixed flame assumed to exist in

the idealized theoretical model mentioned above. To the authors’ knowledge,

this work is the first such attempt.

To explore the potential of the new burner, the formation of cellular

structures in CO2-diluted H2/O2 flames near the extinction limit has been

investigated. Due to the nearly unstrained flame produced in the new burner,

the comparison of the current investigation with a similar recent study in an

axisymmetric jet flame [67] represents a first step towards a better under-

standing of cell formation in the absence of strain.

5.2 Preliminary results

Proc. Comb. Inst., 30, 2005 [66]

The parameter space near the extinction limit was investigated by hold-

ing the oxidizer composition (O2-CO2 mixture) constant, and varying the

H2 concentration in the bottom fuel stream (H2-CO2 mixture). For all

the experiments reported in this section, the oxidizer supply was fixed at

QO = 3.33 × 10−5 m3.s−1, while the oxygen concentration was varied in the

range of 10.6–100% mass (14.0–100% vol.). For each oxidizer mixture stud-

ied, the cell formation boundary and the extinction limit were identified by

gradually decreasing the hydrogen concentration in steps of 0.2 and 0.1% vol.

close to extinction. In terms of reactant Lewis numbers based on the overall

reactant mixture at 300 K, the experiments cover the range of 0.97–1.33 for
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Figure 5.1: Near-extinction limit and cellular instability boundaries observed
for nearly unstrained planar non-premixed CO2-diluted H2-O2 flames; QO =
3.33×10−5 m3.s−1. Shaded region: transition region from non-cellular flames
to cellular structures throughout the entire flame; [—�—]: near-extinction
limit; [❍]: conditions for Fig. 5.2.

oxygen and 0.22–0.29 for hydrogen. In terms of initial mixture strength, the

range 0.05 < φm < 3.55 is covered. The results are shown in Fig. 5.1 in terms

of the initial O2 and H2 concentrations, with two lines of constant φm added

for reference.

The solid squares in this figure mark the reactant compositions at the

“near-extinction” limit. For the current study, the flame was considered ex-

tinct when it consisted of less than 3 small cell structures or flame “patches”,

corresponding to a total flame area of less than 0.2% of the burner cross

section. The extinction curve in Fig. 5.1 has two asymptotes for the limit-

ing hydrogen and oxygen concentrations. Irrespective of the composition of

the other reactant, a diffusion flame could not be established below a lim-

iting H2 concentration of 0.65% mass (12.6% vol.) or a O2 concentration of

10.60% mass (14.0% vol.). These limiting concentrations are lower than the

values in the axisymmetric jet flame experiments [67], where limiting values

of 0.94% mass (17.3% vol.) H2 and 13.77% mass (18.0% vol.) O2 were re-

ported. These significant differences are at least partially attributable to the

negligible flow strain rate in the current facility.
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(a) 1.275% mass H2 (22.1% vol.) (b) 1.203% mass H2 (21.1% vol.)

(c) 1.029% mass H2 (18.6% vol.) (d) 0.740% mass H2 (14.1% vol.)

Figure 5.2: Digital images taken, at an oblique angle as indicated in
Fig. 4.3, of the cells observed at the four points [❍] in Fig. 4.9 (QO =
3.33 × 10−5 m3.s−1, QF = 3.00 × 10−5 m3.s−1). (a)–(c): Transition from no
cells to the fully cellular regime; (d): near the extinction limit.

In Fig. 5.1, the transition region from a steady “featureless” flame to a

flame with cells over its entire surface is identified by shading. As in previous

work [67], the range of concentrations in the parameter space where cells are

observed is shown to increase with decreasing initial mixture strength; in

other words, the distance between the cell transition region and the extinction

boundary increases with decreasing φm.

To illustrate the transition process to a fully cellular flame, Fig. 5.2 shows

digital images taken for various conditions corresponding to the open circles

in Fig. 5.1. The oxidizer mixture for these images was fixed at 62.92% mass

O2, and the reactant flowrates are given in the figure caption. The digital

images were taken with a movie camera (Sony, DSR 300P) at an oblique

angle of about 45 degrees with respect to the vertical (cf. Fig. 4.3).

The first image, Fig. 5.2(a), corresponds to a 1.275% mass H2 fuel mix-

ture. At this condition, the cell formation starts at the flame edges adjacent

to the chamber walls. The linear cell dimensions at this condition are about

2–5 times the spacing s = 1.78 mm of the oxidizer supply tubes and cells are
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not spatially locked to the tube grid. As the H2 concentration is reduced to

1.203% mass H2 in Fig. 5.2(b), the cellular region grows towards the center

of the flame. At 1.029% mass H2 in Fig. 5.2(c), the entire flame consists

of cells and the transition to the fully cellular regime in Fig. 5.1 is consid-

ered complete. At this point, the cell structures (flame “patches”) are not

stationary. They appear to be generated near the flame center, travel out-

wards, and then sometimes move along the chamber walls before vanishing.

As the H2 concentration is reduced further, the number of cells populating

the flame region decreases progressively until the extinction limit is reached.

Figure 5.2(d) shows an image at 0.740% mass H2 which is close to the ex-

tinction limit. The cell sizes at this condition are up to 2 times larger than

the tube spacing s. Therefore, the cell size over the entire cellular regime is

believed to be unrelated to the spacing of the oxidizer supply tubes.

Additional experiments were conducted to investigate the sensitivity of

the near-extinction limit and the cellular regime boundary in Fig. 5.1 to

changes of the fuel and oxidizer flowrates, QF and QO. For the conditions

shown in Fig. 5.1, extinction experiments were performed for QF and QO in

the range of 1.67–4.17×10−5 and 2.50–6.67×10−5 m3.s−1, respectively. As

described before, extinction was found by gradually decreasing the H2 con-

centration in decrements of 0.1% vol. Over the range of flowrates studied,

the hydrogen concentration at the near-extinction limit was found to vary

by less than 0.5% vol., i.e. to be essentially insensitive to flowrate changes.

Hence, the 0.5% vol. variation can be considered to be the uncertainty of the

H2 concentration at the near-extinction in Fig. 5.1.

For fixed initial reactant concentrations and upper oxidizer flowrate, the

highest bottom fuel flowrate was limited by the requirement of not pushing

the flame too close to the oxidizer injection tubes. Since the extinction limits

were not found to vary significantly with flowrate, and consequently stand-off

distance, heat loss to the oxidizer injection manifold is not expected to be

significant for the conditions investigated. Although the heat loss from the

flame is difficult to quantify, one would expect that the flame-edges near the

chamber walls experience a relatively higher heat loss, i.e. burn at a lower

effective Damköhler number than the center of the flame. Therefore, heat loss

is a possible explanation for the observation that in the current configuration
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cells always appear first at the flame-edges. Since other explanations, such

as non-uniformity caused by the unused co-flow slot around the fuel supply

plug, are possible, further studies are required to clarify the issue.

Since the flow in the current apparatus is very close to one-dimensional,

and cells appear in the same horizontal plane, the effects of buoyancy are not

significant for the current experiments, see additional discussion in Sec. 5.4.

There was no visual evidence of convective cells in the flowfield for the current

flame experiments.

Discussion and conclusions

In the experiments reported here, the fuel was transported upwards to the

flame in direction of the bulk velocity, while the oxygen diffused against

the bulk flow to the flame front. The situation is analogous in the steady

axisymmetric fuel jet flame, where the radial bulk flow through the flame

is directed outwards from the fuel to the oxidizer side (cf. [32]). The same

situation is also found in a “lean” flamelet, i.e. a small locally flat segment

of a relatively large non-premixed flame. A prototype of a flamelet [85] is the

strained planar flame front in a counterflow configuration. For opposed jet

flames of highly diluted fuel, such as N2-diluted CH4 burning with pure O2

(e.g. [23]), the flame zone lies on the fuel side of the stagnation plane, and

the O2 reaches the flame by counterdiffusion as in the current experiments.

Previous theoretical studies [12,59,60] have shown that the reactant con-

vected through the flame zone plays a significant role in determining the

conditions for thermo-diffusive instabilities in non-premixed flames. When

O2 diffuses against the bulk flow, the current study and others (cf. [67]) have

shown that cellular instabilities are more prevalent at low initial mixture

strength and Lewis numbers, in agreement with theoretical predictions [12].

At this point it is interesting to consider the opposite situation, i.e. the coun-

terdiffusion of fuel instead of oxygen. The theoretical studies cited above

demonstrate that the effect on thermo-diffusive instabilities is major. Cells,

for example, would become more prevalent at high, rather than low, ini-

tial mixture strength. For the flame position, the simplified theory [12] again

yields Eq. (4.17), but with ρDO replaced by ρDF. The new burner, which has
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been shown to produce an essentially one-dimensional planar non-premixed

flame with virtually no strain, appears to be the only possibility to test these

theories. The experiment can be implemented relatively easily by interchang-

ing the reactant supplies, i.e. by supplying the oxidizer through the bottom

porous plug and the fuel through the upper hypodermic needle manifold.

Preliminary experiments on this “reverse configuration” are presented in the

next section (Sec. 5.3), and the dependence of pattern formation on the ini-

tial mixture strength is being examined. In addition to satisfying scientific

curiosity, these future experiments may have some bearing on the dynamic

extinction of “flamelets”.

Published comments

James G. Quinterie, University of Maryland, USA. Your experiment can

be thought of as a representation of the ideal 1-D stagnant layer diffusion

burning rate problem (for liquids or simple solids). Have you considered this

connection?

Author’s reply. The objective of our experiment was to realize a planar

unstrained diffusion flame. The bulk flow in our experiment is directed always

upwards and hence our configuration does not correspond to an ideal 1-

D stagnant layer in which both the fuel and oxidizer are brought together

purely by diffusion. Now that we have demonstrated for the first time that it

is possible to introduce one of the reactants (the oxidizer in this work) to the

flame purely by diffusion, it is perhaps possible to modify the configuration

and produce a diffusion flame in a 1-D stagnant layer. This modification will

require both reactants to be introduced through hypodermic tube manifolds

similar to the top manifold of the current experiment. In this way, both

reactants would reach the flame through counterdiffusion and the bulk flow

would be zero. We have given some thought to such a modification of our

burner, but it is not yet clear whether all design problems can be resolved.

Alfonso F. Ibarreta. Case Western Reserve University, USA. How accu-

rate is it to call your flame an “unstretched” diffusion flame? As mentioned
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in your presentation there is a small but finite strain rate. For the limit of

zero stretch, the diffusion flame thickness should go to infinity. This limit

can thus never be achieved. It would be better to designate your flame as a

“low stretch” of “ultra-low stretch” flame.

Author’s reply. All the presented evidence supports our claim that the

flame is planar and that the flow is essentially uniform and unidirectional

near the flame. As stated in the oral presentation, accurate measurements of

the flowfield have been carried out very recently. For these experiments, the

bottom porous plug was replaced by a closely packed bundle of 3 mm O.D.

hypodermic needles (about 50 mm in length) to allow the introduction of solid

particles for laser Doppler velocimetry. These preliminary measurements

show the strain rate (the transverse gradient of vertical velocity) is less than

1 s−1, i.e., is indeed “ultra-low” as stated in the comment (see Sec. 4.4.1). The

“residual” strain, which results from non-uniformities due to heat losses to

the chamber walls, can be minimized with proper heat loss management (see

Sec. 4.4.2). Furthermore, gravity imposes no limit on the further reduction of

strain, as fluxes can be perfectly aligned with the gravity vector. Therefore we

maintain the reduction of the residual strain to ZERO (within experimental

error, of course!) is not impossible, thus justifying the term “unstretched

diffusion flame” we have used. Finally, the variation of the flame thickness

with the inverse square root of the strain rate applies to a strained flame such

as in a counterflow configuration, and does not hold for unstrained flame such

as the one realized in our burner.

S. Candel, EM2C Lab. CNRS, Ecole Centrale Paris, France. Your the-

oretical analysis is based on the assumption that ρD = constant? while the

more standard approach uses ρ2D = constant?. The last assumption might

give a better description of the flame structure.
?Using unequal diffusivities for the fuel and oxidizer

Author’s reply. Whether ρD or ρ2D is assumed constant in theoretical

studies is a choice made solely for mathematical convenience. The diffusion

term in the mass balance equation for a given species contains the nonlinear
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term ∇(ρD∇Y ) where D is the molecular diffusivity that depends in gen-

eral on temperature. It is advantageous, for mathematical simplification, to

replace this term with ρD∇2Y by assuming ρD = const. When a density

weighted coordinate is introduced in the analysis (usually in order to reduce

the governing equations to an incompressible form), an additional ρ appears

in front of ρD from the coordinate transformation; linearization then requires

introducing the assumption ρ2D = const. This issue, however, is irrelevant

since, as noted in the oral presentation, we have extended the theory to ac-

commodate for an arbitrary dependence of the diffusivity on temperature.

This generalization includes the choice of ρD or ρ2D being constant. As

noted, the physically realistic choice ρD ∼ T 0.7 leads to a description of the

flame structure that is more consistent with the experimental data.
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5.3 Additional comments on the reverse con-

figuration

Foreword A part of this section was presented at the 21st International

Congress of Theoretical and Applied Mechanics (ICTAM) [65].

Previous experimental investigations on cell formation in non-premixed

flames include the work of Chen et al. [13] who clearly demonstrated that

low Lewis and Damköhler numbers are required for cells formation. More

recently, the influence of the initial mixture strength on cell formation in an

axisymmetric jet flame has been documented at EPFL [26, 67]. While these

studies qualitatively confirm the influence of the different parameters pre-

dicted theoretically for an ideal 1-D flame, the new burner described above

should permit quantitative comparisons. In the following, preliminary results

with the new burner are reported for CO2-diluted H2-O2 nearly unstrained,

non-premixed flames near extinction. Two configurations are considered:

One with the fuel supplied from the bottom (FB) and the oxidizer counter-

diffusing from the top, and the configuration with inverted supplies, i.e. the

fuel counterdiffusing from the top (FT). Note that the FB configuration is

analogous to the steady axisymmetric jet flame, where the radial bulk flow

through the flame is directed outwards from the fuel to the oxidizer side.

The same situation is also found in a “lean” flamelet. Finally, for opposed

jet flames with highly diluted fuel (e.g. N2-diluted CH4 burning with pure

O2 [23]), the flame sits on the fuel side of the stagnation plane and O2 reaches

the flame by counterdiffusion, again as in the FB configuration.

First, the extinction limit for the FB and FT configurations were deter-

mined as a function of the initial O2 and H2 concentrations. For this, the top

reactant composition was held constant, while the bottom reactant concen-

tration was gradually decreased in small steps until the flame could barely be

maintained (a further 0.1% reduction of the bottom reactant concentration

below this “near-extinction” limit always resulted in complete extinction).

As shown in Fig. 5.3, these extinction curves have asymptotes corresponding

to limiting H2 and O2 concentrations, below which a diffusion flame cannot

be established, irrespective of how “rich” the other reactant is. The influ-
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Figure 5.3: Near-extinction limits observed in nearly unstrained planar
non-premixed CO2-diluted H2-O2 flames; [—�—]: FB near-extinction limit;
[—∆—]: FT near-extinction limit.

ence of the direction of bulk flow on the limiting O2 concentration is evident:

when O2 is supplied convectively by the bulk flow (FT configuration), a flame

with excess fuel supply can be sustained at about 5% less O2 concentration

than in the FB configuration, where O2 has to diffuse against the bulk flow.

The comparison of the limiting H2 concentrations, on the other hand, has

not yet been carried out. Furthermore, it is noted that all the limiting con-

centrations in Fig. 5.3 are significantly lower than in the axisymmetric jet

flame [67], which is believed to be at least partly due to the negligible flow

strain rate in the present burner. Other effects, such as heat loss, remain to

be investigated: for any given reactant composition, the flowrate of the bot-

tom reactant had to be limited keep the flame away from the upper injection

manifold. The limit where heat loss to this manifold affects the extinction

limits, however, remains to be determined.

Next, the parameter space in which cellular flames are observed was de-

termined for the FB configuration only . For the limited conditions examined

to date in the FT configuration, no cells have been found yet.
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Outlook

Theoretical studies [12,59,60] have shown that the reactant convected to the

flame zone has a significant influence on the conditions for thermo-diffusive

instabilities in non-premixed flames. When O2 diffuses against the bulk flow

(our FB configuration), the current study and others (cf. [67]) have shown

that cellular instabilities are more prevalent at low initial mixture strength

and Lewis numbers, in agreement with theoretical predictions. In the op-

posite FT configuration, theory predicts that high initial mixture strength

promotes cell formation. In addition, as opposed to the FB configuration, a

low O2 Lewis number would be more important for cell formation than a low

H2 Lewis number. The new burner, which has been shown to produce an

essentially 1-D planar non-premixed flame with virtually no strain, appears

to be well suited to test these theories. As mentioned above, no cells have

so far been observed near the FT extinction limit in Fig. 5.3, despite the

high φm. The next step will therefore consist in lowering the oxidizer Lewis

number and minimizing the effects of heat loss.

5.4 Comments on possible thermal-convection

In the 1-D burner, the flame produces a hot layer of fluid and the question

arises whether the development of cellular instability is possibly related to

thermal convection above the flame. The classical setup with a hot rigid

(non-permeable) boundary below and cold rigid boundary can lead to the

Rayleigh–Bénard instability [4,55,89]. The literature on this subject is abun-

dant, and a complete review is beyond the scope of this discussion. The goal

of this section is to present the literature on convection instability with a

vertical throughflow.

In the classical problem named after Rayleigh and Bénard the criterion

for the onset of convection in a horizontal fluid layer heated uniformly from

below is given in terms of the Rayleigh number.

Ra =
gαd3∆T

νDth

,
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with ∆T the imposed temperature difference, d the layer depth and α the

volumetric thermal expansion (α = 0.00367 K−1 for most gases and tem-

peratures for constant pressure [112]). If Ra exceeds the critical Rayleigh

number Rac = 1708 [10], the basic conduction state becomes unstable with

respect to convection rolls. At higher Ra transitions to increasingly complex

spatio-temporal behavior occur. The case with permeable boundaries was

first studied by Shvartsblat [95, 96] in the late 1960’s and his results were

summarized by Gershuni and Zhukhovitskii [31]. By changing the temper-

ature profile from linear for no-throughflow to exponential for throughflow,

convection rolls changed to hexagonal cells for moderate values of through-

flow. The problem is of interest because the convective instability can be

controlled by changing the throughflow. The theoretical and experimental

work of Krishnamurti [56–58] and the numerical work by Somerville and

Gal-Chen [102] dealt with this problem from a meteorologist’s viewpoint.

They obtained a Rac = 1100 and 657 for rigid-free and free-free conducting

boundaries respectively, and found that the mean flow has a stabilizing effect.

This problem of permeable boundaries was also studied from a porous me-

dia viewpoint. The convection in saturated porous medium was studied by

Wooding [116] and Homsy and Sherwood [42]. They confirmed the stabiliz-

ing effect of the throughflow. Nield [80] studied the effects of various different

boundaries on the onset of convection1. He obtained a formulation for Rac

in terms of Prandtl (Pr) and Péclet (Pe) numbers for rigid-rigid, free-free

and rigid-free, conducting and/or insulating boundaries. In this problem,

the Péclet number is defined as follow

Pe =
ud

Dth

,

with u the imposed vertical flow. The minimum Rac of Rac = 720 and 120

for rigid-rigid and free-free insulating boundaries respectively was obtained

obtained for Pe = 0. For the rigid-rigid and free-free insulating case the

mean flow always has a stabilizing effect independent of the direction of the

1Some errors were found in [80] p356 concerning the free-free case, in the third equa-
tion the prefactor should be [µ3(1 − eµ)]−1 and in equation (11) one of the terms in the
denominator should be 12[µ4/(Q+µ)−µ3−Q2µ] sinh((Q+µ)/2). The limiting cases e.g.
Q→ ±∞ and Q→ 0 are however not affected.
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flow. For the rigid-free insulating case, Pe > 0 (Pe < 0) was stabilizing

(destabilizing) for Pr < 1.25 and destabilizing (stabilizing) for Pr > 1.25.

The critical Ra number at Pe = 0 and Pr = 1.25 is Rac = 320. For conducting

boundaries Nield confirmed the values obtained by Krishnamurti using a

single-term Galerkin method, see [56,80] for more details.

A similar problem was treated in the context of internal heat generation in

porous media. For example, Sparrow et al. [105] studied the convection in the

Earth’s mantle where radioactive materials are heat sources. Shivakumara

and Suma [93] and Shivakumara [92] recently studied the onset of convection

by using linear stability theory.

The problem of reaction-diffusion coupled with Rayleigh–Bénard convec-

tion and throughflow problem has received much less attention. Recently,

the experiments of Vaezi and Aldredge [108] motivated a numerical work by

Bayliss et al. [3] who investigated the combustion of premixed flames in a

Taylor–Couette apparatus. The reason for which this problem has not been

studied for diffusion flames is that steady state conditions — continuing sup-

ply of fresh reactive gas — could not be achieved. As seen previously, the

1-D unstrained ideal model studied by theoreticians [12, 53] does not have

this problem and with the new burner developed (see Sec. 4) the fluid-flame

interaction problem can be analyzed.

For the 1-D unstrained diffusion flames, the most appropriate boundary

condition appears to be free-rigid conducting because of the presence of the

metallic oxidizer injection manifold. To determine if the instabilities seen and

reported in Sec. 5.2 are coupled with a reactive Rayleigh–Bénard problem,

the Ra number must be calculated. The layer depth d is now the flame

standoff distance xf . In Fig. 5.4, the Rayleigh number, Ra, is plotted against

xf and the Péclet number, Pe. The imposed temperature difference ∆T was

estimated to be 0.4 times the exit temperature Te (see Fig. 4.8, in Sec. 4.4.2).

The other values come from the experiment described in Sec. 4.4.3 where

Table 4.1 contains the extreme values. The solid symbols are H2 = 30% vol.

From Fig. 5.1, no cellular flames exist above this concentration. The values

of Ra fall in the range Ra ∈ [100, 800]. These values are below Rac as defined

by Krishnamurti and Nield. Comparisons with the literature have to be made

with caution, however, as all these studies were done with a single species.
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Figure 5.4: Rayleigh number calculated for a H2-O2 diluted in CO2 diffusion
flames (a) versus standoff distance xf ; (b) versus Péclet number for conditions
taken at the flame position. The solid symbols represent the 30% vol. of H2,
and the open symbols represent the other conditions defined in Table 4.1

It can be concluded that the cellular behavior of the flame is most likely

not due to thermal convective instabilities (hexagonal cellular pattern [56])

above the flame.
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Chapter 6

Summary and future work

Cellular instabilities found near the extinction limit were experimentally in-

vestigated in jet diffusion flames and in a 1-D unstrained flame.

For the jet diffusion flames, several parameters controlling the cellular in-

stability of non-premixed hydrogen-oxygen diluted in carbon dioxide flames

were identified and systematically investigated. The effect of reactant compo-

sition on cellular instabilities has been experimentally studied. The propen-

sity of cellular instabilities increases with decreasing initial mixture strength.

In addition, as the initial mixture strength near the extinction condition in-

creases, experiments show that the propensity for the formation of a rotating

one-cell state also increases. In accordance with previous work, cellularity

in the non-premixed jet flame experiments was promoted by reducing the

system Damköhler number and/or the reactant Lewis numbers. The exper-

imental observations were in good agreement with the model proposed by

Cheatham and Matalon [12], even though the model does not include hydro-

dynamic effects. The effect of jet velocity in cellular instabilities has also been

experimentally studied. The propensity of the cellular instabilities decreases

with increasing jet velocity, however, the extinction limit is less affected by

increasing jet velocity. Additional experimental work on the scaling of the

cellular wavelength has been undertaken. It has been shown that the cellular

wavelengths for jet diffusion flames were dependent on the initial vorticity

thickness. More precisely, the cellular wavelength increases with the square

root of the vorticity thickness for jet burners.
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In order to compare the results with the idealized model, a novel burner

producing a nearly 1-D unstrained flame has been realized. Although the

burner is still under development, preliminary results of cellular instabilities

have been examined. When the oxidizer diffuses against the bulk flow, the

current study has shown that the propensity of cellular instabilities increases

with decreasing initial mixture strength, in agreement with theoretical pre-

dictions and experimental investigations in jet diffusion flames. When the

fuel diffuses against the bulk flow, no cells have so far been observed near

the extinction limit, despite the high initial mixture strength. Thermal-

convection as a driving mechanism in this novel burner is excluded.

Future work

On the jet diffusion flames, additional experimental data is needed in order

to find the quantitative dependence on other parameters such as the Lewis

numbers. This can be done by changing the fuel mixture and/or the oxidizer

mixture with other inerts. Comparison with other jet burners will confirm

the dependence of the cellular wavelength with the square root of the initial

vorticity thickness. By changing the Lewis numbers and/or other parameters,

the theoretical behavior of pulsating cells may be systematically studied.

On the unstrained diffusion flames, the next step will consist in lowering

the oxidizer Lewis number and minimizing the effects of heat loss. Minimiz-

ing the oxidizer Lewis number will allow studying the effect of the reactant

convected through the flame zone, which is known to play a significant role in

determining the conditions for thermo-diffusive instabilities in non-premixed

flames. Accurate measurements of the effective mixture burning with a mass

spectrometer will allow exact definition of the different burning regime. Sev-

eral associated studies such as kinetic modeling and thermo-diffusive analysis

instability are also possible.

Another interesting proposition will be the realization of the ‘real’ ideal

diffusion flame. The ideal situation for a diffusion flame is when there are

no hydrodynamic forces. The flame will be produced only by the diffusion of

both reactants against the product. The experimental realization of such a

burner is possible if one replaces the bottom inlet with a device identical to
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the top inlet/outlet. A second manifold of needles will allow the products to

escape in between the needles at each side of the burner. This realization will

be difficult considering the necessity of controlling the pressure drop to avoid

any bulk flow above the flame, promoted by buoyancy. However, despite the

technical issues, cellular instabilities in this idealized burner version should

behave as Turing structures and the patterns should scale with Turing’s

chemical wavelength.
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Appendix A

Thermal properties of the

reactants

The current investigation involved hydrogen flames burning in oxygen diluted

with carbon dioxide. The physical properties presented here were calculated

with the Sandia package [46] (see Sec. 2.2.1). Densities, kinematic viscosi-

ties, thermal diffusivities, mass diffusivities, Lewis and Prandtl numbers of

pure fuel and oxidizer are given versus temperature in Fig. A.1. For a H2-

O2 diluted in CO2 mixture, the kinematic viscosities and Prandtl numbers

(Fig. A.2), the Lewis numbers of fuel and oxidizer (Fig. A.3) and the Schmidt

numbers of fuel and oxidizer (Fig. A.4) are given for several temperatures.
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Figure A.1: Properties of pure H2 (solid lines), pure O2(dashed lines) and
pure CO2 (dotted lines) versus temperature. (a) Densities, ρk; (b) Kinematic
viscosities νk; (c) Thermal diffusivity Dthk; (d) Mass diffusivity Dk; (e) Lewis
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Figure A.2: Kinematic viscosities and Prandtl numbers of H2-O2 diluted in
CO2 mixtures. Solid lines kinematic viscosities ν; dashed lines represents
Prandtl number Pr. (a) T = 300 K; (b) T = 600 K; (c) T = 900 K;
(d) T = 1200 K; (e) T = 1500 K;
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Figure A.3: Fuel and oxidizer Lewis numbers for H2-O2 diluted in CO2 mix-
tures. Solid lines represents fuel Lewis number LeF; dashed lines represents
oxygen Lewis number LeO. (a) T = 300 K; (b) T = 600 K; (c) T = 900 K;
(d) T = 1200 K; (e) T = 1500 K;
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Figure A.4: Fuel and oxidizer Schmidt numbers (Sck = LekPr) of H2-O2

diluted in CO2 mixtures. Solid lines represents fuel Schmidt number ScF;
dashed lines represents oxygen Schmidt number ScO. (a) T = 300 K; (b) T =
600 K; (c) T = 900 K; (d) T = 1200 K; (e) T = 1500 K;
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[64] Liñan, A. Asymptotic structure of counterflow diffusion flames for large

activation-energies. Acta Astronautica, 1 (7-8), 1007–1039, 1974.

[65] Lo Jacono, D., Papas, P., Matalon, M. & Monkewitz, P. A. A nearly

1-d non-premixed flame near extinction. Cell formation and the effect

of the direction of bulk flow. ICTAM, 2004.

108



BIBLIOGRAPHY

[66] Lo Jacono, D., Papas, P., Matalon, M. & Monkewitz, P. A. An ex-

perimental realization of an unstrained planar diffusion flame. Proc.

Comb. Inst., 30 (1), 501–509, 2005.

[67] Lo Jacono, D., Papas, P. & Monkewitz, P. A. Cell formation in non-

premixed, axisymmetric jet flames near extinction. Combust. Theory

and Modelling, 7 (4), 635–644, 2003.

[68] Markstein, G. H. Non-steady flame propagation. Pergamon Oxford,

1964.

[69] Matalon, M., Ludford, G. S. S. & Buckmaster, J. Diffusion flames in

a chamber. Acta Astronautica, 6, 943–959, 1979.

[70] Matalon, M. & Matkowsky, B. J. Flames as gasdynamic discontinuities.

J. Fluid Mech., 124, 239–259, 1982.

[71] Matalon, M. & Matkowsky, B. J. Flames in fluids: Their interactions

and stability. Combust. Sci. Technol., 34, 295–316, 1983.

[72] Meinhardt, H. Positional Control in Plant Development, chapter Mod-

els of pattern formation and their application to plant development.

Cambridge University Press, 1984.

[73] Melling, A. Tracer particles and seeding for particle image velocimetry.

Meas. Sci. Technol., 8 (12), 1406–1416, 1997.

[74] Michalke, A. Survey on jet instability theory. Prog. Aerospace Sci., 21,

159–199, 1984.

[75] Michelson, D. M. & Sivashinsky, G. I. Non-linear analysis of hydro-

dynamic instability in laminar flames. 2. numerical experiments. Acta

Astronautica, 4, 1207–1221, 1977.

[76] Monchick, L. & Mason, E. A. Transport properties of polar gases. J.

Chem. Phys., 35, 1676–1697, 1961.

[77] Monkewitz, P. A. & Huerre, P. The influence of the velocity ratio on

the spatial instability of mixing layers. Phys. Fluids, 25 (7), 1137–1143,

1982.

109



BIBLIOGRAPHY

[78] Monkewitz, P. A., Simon, J. & Pfizenmaier, E. On the instability be-

havior of laminar hydrogen- and hydrogen-helium jet diffusion flames.

Deutsche Forschungsanstalt für Luft und Raumfahrt e. V, 1992.

[79] Mungal, M. G. & Dimotakis, P. E. Mixing and combustion with low

heat release in a turbulent shear layer. J. Fluid Mech., 148, 349–382,

1984.

[80] Nield, D. A. Throughflow effects in the Rayleigh–Bénard convective

instability problem. J. Fluid Mech., 185, 353–360, 1987.

[81] Ouyang, Q., Boissonade, J., Roux, J. C. & de Kepper, P. Sustained

reaction-diffusion structures in an open reactor. Phys. Lett. A, 134,

282–286, 1989.

[82] Palacios, A., Gunaratne, G. H., Gorman, M. & Robbins, K. A. Cellular

pattern formation in circular domains. Chaos, 7 (3), 463–475, 1997.

[83] Papas, P., Monkewitz, P. A. & Tomboulides, A. G. New instability

modes of a diffusion flame near extinction. Phys. Fluids, 11 (10),

2818–2820, 1999.

[84] Papas, P., Rais, R. M., Monkewitz, P. A. & Tomboulides, A. G. In-

stabilities of diffusion flames near extinction. Combust. Theory and

Modelling, 7 (4), 603–633, 2003.

[85] Peters, N. Turbulent combustion. Cambridge University Press, U.K.,

(2000)., 2000.

[86] Pfizenmaier, E., Simon, J. & Monkewitz, P. A. Gallery of fluid motion.

Physics of Fluids A., 9, 547–565, 1993.

[87] Rais, R. M. Numerical investigations of diffusion flame instabilities.
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