
Scalable Binary Sorting Architecture Based on Rank Ordering

With Linear Area-Time Complexity

�. Hat�rnaz and Y. Leblebici

Department of Electrical and Computer Engineering

Worcester Polytechnic Institute

Abstract

A new modular architecture is presented for the realiza-
tion of high-speed binary sorting engines, based on e�-
cient rank ordering. Capacitive Threshold Logic (CTL)
gates are utilized for the implementation of the multi-input
programmable majority (voting) functions required in the
architecture. The overall complexity of the proposed bit-
serial architecture increases linearly with the number of
input vectors to be sorted (window size = m) and with
the bit-length of the input vectors (word size = n), and
the sorter architecture can be easily expanded to accom-
modate large vector sets. It is demonstrated that the pro-
posed sorting engine is capable of producing a fully sorted
output vector set in (m+n-1) clock cycles, i.e., in linear
time.

1 Introduction

The task of sorting an arbitrarily ordered vector set ac-
cording to magnitude (either from-largest-to-smallest or
from-smallest-to-largest) is one of the fundamental oper-
ations required in many digital signal processing appli-
cations. It is also among the best studied problems in
computer science, with a variety of di�erent algorithms
developed for this purpose. Many fundamental computer
science problems like searching, �nding the closest-pair,
and frequency distribution etc., become easy to solve once
a set of items is sorted (Fig. 1).

Sorting is an expensive operation in terms of area-time
complexity; software-based solutions require word-level
sorting and can become computationally intensive, while
the overall complexity of hardware-based solutions usually
increases very rapidly with the size of the input vector set
(number of vectors) and with the bit-length of the input
vectors [1], [3], [5]. The design of e�cient sorting engine
architectures is therefore a signi�cant challenge for over-
coming the computational bottleneck of the binary sorting

V2

V1 V7
V9

V3
V6

V8
V4

V5

V1
V2

V3

V4

V5

V6

V7

V8

V9

V3

V5

V4 V8

V2

V1V7

V6
V9

The smallest vector

Ascending order sort

The largest vector

sorting of the
window elements

Window containing m input vectors.

The smallest vector

Descending order sort

The largest vector

Figure 1: Illustration of the sorting process (1-D).

problem. A number of recent proposals for the realization
of sorting networks rely primarily on median or rank order
�lters (ROF), yet their capabilities in terms of window size
and bit-length are typically limited due to rapidly increas-
ing hardware complexity [2], [5], [6] .

In this paper, we present a new bit-serial sorting archi-
tecture based on rank-ordering. The hardware realization
of this architecture results in a compact and fully modular
sorting engine architecture that is capable of processing a
large number of input vectors in linear time. The overall
architecture is completely scalable to accommodate a wide

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147903628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


C
L

K

D
Q

C
L

K

D
Q

CLK

D Q

MUX

Next_SelectNext Data

Majority_Output

Shifted_Data_Out

CLK

Majority_Output

Shifted_Data_In

BUFFER

Propagated_Data_Out Prev_Data Prev_Select
(to Majority Gate)

CELL
ROF MAJORITY

DECISIONCELL
ROF

CELL
ROF MAJORITY

DECISIONCELL
ROF

CELL
ROF

CELL
ROF MAJORITY

DECISIONCELL
ROF

CELL
ROF

CELL
ROF

2

2 2 2

p

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

m22

m

m222

m

Rank Bus

data(0)

data(m-2)

data(m-1)

coreOut(m-2)

coreOut(m-1)

coreOut(0) ROF CELL

Figure 2: The ROF core as proposed in the modular rank ordering architecture, the gate-level structure of a ROF cell,
and the corresponding layout, allowing modular expansion.

range of window sizes and bit-lengths, and the hardware
complexity only grows linearly with both of these parame-
ters. The proposed sorter architecture is essentially based
on a fully programmable modular ROF design that was
presented earlier [7]. In the following, the rank ordering
architecture is presented in Section 2. The proposed sort-
ing algorithm and its hardware realization are examined
in Section 3 and 4, followed by a summary of results.

2 The Rank Ordering Architecture

A bit-serial algorithm proposed in [5] was chosen as the
basis of the programmable rank-order �lter architecture
implemented in this work. In this algorithm, the problem
of �nding a rank-order-selection for n-bit long words is
reduced to �nding �n� rank-order-selections for 1-bit num-
bers.

The algorithm starts by processing the most signi�cant
bits (MSB) of the m=(2N + 1) words in the current win-
dow, through an m-input programmable majority gate,
to yield the MSB of the desired �lter output. This out-
put is then compared with the other MSBs of the window
elements. The vectors whose MSB is not equal to the �l-
ter output have their MSB propagated down by one posi-
tion, replacing the less signi�cant bits of the corresponding
words.

The bit-serial operation �ow of the algorithm described
above suggests a simple bit-level pipelined data path ar-
chitecture, consisting of data modi�er-propagator blocks
(ROF Cells) to handle �ne-grained data selection, and ma-
jority decision blocks (majority gate) to determine output
bits. The modular architecture consisting of these two
major blocks enables fully scalable construction of �lter

structures of arbitrary window size and bit-length (Figure
2). The bit-length dictates the number of the majority
decision gates, whereas the window size determines the
number of ROF-cells driving one of these majority gates.
This regular structure also forms the basis of the sorting
algorithm described in the next section.

The ROF core shown in Figure 2 has (n�m) ROF cells
where m = (2N + 1) is the window size and n is the bit-
length of the input words (vectors). Thus, it can be seen
that the overall circuit complexity increases linearly with
maximum window size (m) and with bit-length (n).

A prototype ROF circuit has been designed and fabri-
cated using a 0.8 �m CMOS process, to validate the main
operation principles of the ROF architecture. Detailed
measurement results of this circuit indicate that the new
architecture can accommodate sampling clock rates up to
50 MHz [7]. In this circuit, the programmable majority
decision gates are realized using the capacitive threshold
logic (CTL) circuit architecture presented earlier [4]. This
allows simple implementation of programmable majority
gates with up to 63 parallel inputs, using a very small
silicon area (625�m x 130�m for 63-bit majority gate).
In comparison, a classical realization of the 63-bit major-
ity gate would require an equivalent of 63 6-bit full-adder
circuits, arranged in a network of a logic depth of 64 (syn-
thesized from HDL description).

3 The Sorting Algorithm

In the following, we propose a bit-serial sorting algorithm
with an input set (window) of �m� n-bit words. The output
corresponds to a sequence of the input vectors in a desired
rank order. The algorithm starts by processing the MSBs



of the �m� input vectors in the current window. Note that
each bit-plane can be independently assigned its own rank
value which is used to calculate the slice output.

The pseudo-code of the proposed sorting algorithm is
given below. The algorithm involves two loops; the outer
loop initializes the rank value for the next iteration and
checks if the sorting operation is �nished, whereas the
inner loop does the actual sorting operation by performing
parallel instructions on �n� bit-planes.

rankof(1):= firstDesiredRank;

do{

-- Rank initialization

if (rankof(1) != lastDesiredRank)

rankof(0):= nextDesiredRank;

-- Main operation starts

for all bit-planes

do{

if (all_bits(selectedBitplane) are in the core)

then shift_rotate(selectedBitplane);

else

shift(selectedBitplane);

end if;

selectedRank := rankof(selectedBitplane);

outputWordVector(selectedRank, selectedBitplane) :=

rank_order(selectedBitplane, selectedRank);

rankof(selectedBitplane) :=

rankof(selectedBitplane - 1);

}

}while (rankof(n) != lastDesiredRank)

Listing of the proposed sorting algorithm.

The very �rst step of the algorithm is to set the rank
value of the most-signi�cant bit-plane to the �rst desired
rank (�rstDesiredRank), whose value depends on whether
the input vectors are to be sorted in ascending or descend-
ing order. For example, if we consider the case of sorting
the input vectors in ascending order; at the �rst iteration
of the main operation loop (inner loop), the rank value cor-
responding to the most-signi�cant bit-plane (rankof(1))
has to be set to �smallestRank �, which results in �ltering
out the smallest input word. Also, the rank values for the
next iterations (nextDesiredRank) are determined by the
sorting direction, that are stored in a register (rankof(0)).
If the vectors are to be sorted in ascending order, the value
of rankof(0) is increased until the rank value correspond-
ing to the MSB-plane will be equal to the upper rank value
(lastDesiredRank), which will be the � largestRank �. So,
at each step, the value of rankof(0) is assigned to the
MSB slice (rankof(1)), where as the rank value of each
slice is shifted to one lesser-signi�cant bit-slice. It should
also be noted that the algorithm can be used for sorting
the input vectors in any desired order. In this case, a look-
up table may be used to provide the necessary sequence of
rank values to the sorter engine core.

E1 D1 C1 B1 A1

E2 D2 C2 B2 A2

E3 D3 C3 B3 A3

R1

R2 R3 R4 R5

C1

E4 D4 C4 B4 A4

E1 D1 C1 B1A1

E2 D2 C2 B2 A2

E3 D3 C3 B3 A3

R1

R2

R3 R4 R5

E4 D4 C4 B4 A4

E1 D1 C1B1 A1

E2 D2 C2 B2A2

E3 D3 C3 B3 A3 R1

R2

R3

R4 R5

C1

E4 D4 C4 B4 A4

E1 D1C1 B1 A1

E2 D2 C2B2 A2

E3 D3 C3 B3A3

R1

R2

R3

R4

R5

C1

E4 D4 C4 B4 A4

A1

C2

A1

C2

D1

A2

C3

C1A1

C2

D1

A2

C3

B1

D2

A3

C4

Inputs Sorter-Core Rank Outputs

(a)

(b)

(c)

(d)

Figure 3: Illustration of a sorting operation on �ve 4-bit
input vectors: (a) The staggered input vectors are shifted
into the ROF core, and the �rst rank (R1) is applied to the
MSB plane. (b) The MSB of the �rst input vector (A1)
is rotated, R1 is applied to the next bit-plane, and the
new rank R2 is applied to the MSB plane. (c) B1 and A2
are rotated, while R1 is applied to the lesser-signi�cant bit-
plane. The rank R2 shifts down by one, while R3 is applied
to the MSB plane. (d) Bit circulation continues, while the
ranks propagate down the bit-planes in descending order.
In this example, the rank ordering of the input vectors
is assumed to be: C (largest vector)-A-D-B-E (smallest
vector).

The operations contained in the inner loop are per-
formed at the same time on all bit-planes. After the �m�
bits in each bit-plane are arranged either by shifting or by
shifting and rotating, the corresponding bit-plane output



Q

D

D
F

F

Select signal
from the

control block

shift registers
from the input
Shifted data

Propagating data

from the bit-slice

Select signal
for the next

lower bit-slice

to the bit-slice

Shifted data

majority gate

Input bus to the

through the ROF Cells

Actual input data flow

GATE

MAJORITY

Actual Data output of
the last ROF Cell

RANK
REG

Rank bus
from the

control block

Bit-slice output

shift register
to the output

majority gateOutput of the
(fed back to the ROF Cells)

Rank for the

bit-slice
next lower

B

A

Y

MUX

S

CELL
ROF

CELL
ROFROF

CELL

Figure 4: The signal �ow of one sorter slice bit-slice, showing how the data bits are circulated.

is calculated by evaluating all of the bits in each bit-plane
according to the current rank value (�rank_order �). The
algorithm is �nished after the bit-plane corresponding to
the least-signi�cant bits is processed with the last rank
value (lastDesiredRank).

The operation of the proposed sorting algorithm is illus-
trated with an example in Fig. 3. Here, �ve 4-bit vectors
(A through E) are being sorted by the ROF core. The �rst
rank (R1) is initialy applied to the MSB plane consisting of
the bits A1 through E1. In the next clock cycle, the same
rank is used to process the lesser-signi�cant bit-plane (A2
through E2), while a new rank (R2) is being applied to
the MSB plane. Also note that the staggered data bits are
gradually circulated from the end of the chain to the front,
so that each vector in the window can be completely pro-
cessed. The entire operation requires only (m+n-1) clock
cycles after all input vectors are applied. It is important
to note that the time-complexity of the sorting operation
described above has a linear dependence both with respect
to window size (m) and with respect to bit-length (n).

4 Realization of the Sorting Engine

The proposed sorter architecture exploits the fact that the
modular ROF core described in Section 2 is capable of gen-
erating one output vector per clock cycle, corresponding
to the currently selected rank. If the ranking process is
repeated on the same set of vectors instead of processing
a continuous stream of new vectors, the members of the
vector set can be sorted in linear time by simply chang-
ing (increasing or decreasing) the rank in each clock cycle.
Figure 4 shows the circuit structure and the signal �ow
of one sorter bit slice that is designed to implement the
bit-level operations described above. The multiplexer on
the input side is used for accepting the input vectors at
the rate of one vector per clock cycle, as well as for circu-
lating (rotating) the data until sorting is completed. The
so-called �sorter core� is simply constructed by stacking
�n� such bit-slices, as depicted in Fig. 5.

The overall architecture of the sorting engine is shown
in Fig. 5. The �ow of data through the modular ROF
core is being regulated by complementary input and out-
put shift registers, which are used to stagger the individual
bit-planes of each input vector to enable bit-level pipelined
operation. The control logic is responsible for regulating
the data circulation path, and for applying the rank selec-
tion signals to the individual bit-planes, in ascending or
descending order. The fact that each individual bit-plane
is capable of processing a di�erent rank at any given time
signi�cantly increases the overall e�ciency of this archi-
tecture. In a typical sorting run, the control logic simply
requests each bit-plane to process a di�erent rank in each
clock cycle, either beginning from the maximum rank and
descending, or beginning from the minimum rank and as-
cending.

INPUT

SHIFT

REGISTER

ARRAY

used to obtain

data vectors.

bit-wise staggered

used to convert bit-wise

staggered output vectors

back to normal.

CONTROL
BLOCK

Control feedback

to the userfrom the user

to the majority gates

Control signals

Rank control bus

sorter data

input bus

OUTPUT

SHIFT

REGISTER

ARRAY

sorter data

output bus

DataMUX

control bus

SORTER CORE

Sorter slice - MSB

Sorter slice - MSB2

Sorter slice - MSB3

Sorter slice - LSB

Figure 5: Top-level blocks in the architecture of the pro-
posed sorter engine. Note that each slice in the �sorter
core� contains m ROF cells, one data MUX and one m-
input majority gate.

The proposed architecture has been described with
VHDL to verify its operation. Figures 6 and 7 show sim-
ulated results of the sorting operation on an arbitrarily



Figure 6: VHDL simulation results of the proposed sorter architecture (m=15, n=8, ascending order).

Figure 7: VHDL simulation results of the proposed sorter architecture (m=15, n=8, descending order).

ordered set of 15 vectors (m=15), each with a bit-length
of 8 bits (n=8). The user determines how many input
vectors are to be sorted (�actualWindowSize�, not shown
in Fig. 6 and Fig. 7) and in which direction the sorting
will occur (�sortType�) and provides these inputs to the
sorter block together with a request pulse (�sortRequest�).
As soon as the request comes, the sorter block produces
signal (�sortActive�) which stays at the logic high level as
long as the corresponding set of vectors is processed. It
can be seen that the �rst output vector is generated with
a latency of (n-1) clock cycles, after the last vector of the
set is entered. The sorter block provides a signal to the
user (�outputsValid �) which goes high right at the last ris-
ing edge of the clock before the �rst vector is ready at the
output (�sortDataOutput�).

The mask layout of a (63x16-bit) sorter block was com-
pleted using 0.8 um CMOS technology, to evaluate the
area-e�ciency of the presented architecture. The entire
sorting engine occupies a silicon area of 37.7 sqmm, about
80% of which is dedicated to the ROF cells, and 10% of
which is dedicated to majority gates.

5 Summary

In this paper, we present a highly modular architecture
for the realization of high-speed binary sorting engines.
The architecture consists of (i) a regular "core" array that
is completely scalable to accommodate large window sizes
and bit-lengths, (ii) input/output shift registers, and (iii)
control logic to regulate the bit-level processing of data. It

was shown that the complexity of the proposed bit-serial
pipelined architecture increases linearly with the number
of input vectors (m) to be sorted, and with bit-length of
the input vectors (n). It was also demonstrated that the
proposed sorting engine is capable of producing a fully
sorted output vector set in (m+n-1) clock cycles, i.e., in
linear time.

References

[1] D.S. Richards, �VLSI median �lters�, IEEE Trans. Acoust.,

Speech, Signal Processing , vol. 38, pp.145-152, Jan 1990.

[2] W.K. Lam and C.K. Li, �Binary sorter by majority gate�,
IEE Electronic Letters, Vol. 32, July 1996.

[3] P. Wendt et al., �Stack �lters�, IEEE Trans. Acoust.,

Speech, Signal Processing , pp. 898-911, 1986.

[4] Y. Leblebici, F.K. Gurkaynak, D. Mlynek, �A compact
31-input programmable majority gate based on capacitive
threshold logic�, in Proc. ISCAS 1998.

[5] B.K. Kar, D.K. Pradhan, �A new algorithm for order statis-
tic and sorting�, IEEE Trans. on Signal Processing , vol. 41,
pp.2688-2694, August 1993.

[6] C.C. Lin, C.J. Kuo, �Fast response 2-D rank order algo-
rithm by using max-min sorting network�, Int. Conf. on

Image Processing 1996 , Vol. 1, pp. 403-406.

[7] �. Hat�rnaz, F.K. Gurkaynak, Y. Leblebici, �A modular and
scalable architecture for the realization of high-speed pro-
grammable rank-order �lters�, ASIC'99 Proceedings, pp.
382-386, 1999.


