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Abstract 

The CMOS realization of a new scalable, modular 
sorting architecture is presented. The high-performance 
architecture is based on rank ordering, and on efficient 
implementation of multi-input majority (voting) 
functions. The overall complexity of the proposed bit-
serial architecture increases linearly with the number of 
input vectors to be sorted (window size = m) and with 
the bit-length of the input vectors (word size = n), and 
the sorter architecture can be easily expanded to 
accommodate large vector sets. It is shown that the 
proposed sorting engine is capable of producing a fully 
sorted output vector set in (m+n-1) clock cycles, i.e., in 
linear time. 

To demonstrate the concept, a full-custom sorting 
engine is realized to process 63 input vectors of 16-bits 
(m = 63, n = 16), using conventional 0.35 µm CMOS 
technology. The resulting sorter chip occupies a silicon 
area of 13 sqmm, operates at a clock frequency of 200 
MHz, and it is capable of completing the sorting 
operation of 63 16-bit vectors within 78 clock cycles. 

1. Introduction 

The task of sorting an arbitrarily ordered vector set 
according to magnitude (either from-largest-to-smallest 
or from-smallest-to-largest) is one of the fundamental 
operations required in many digital signal processing 
applications. The solutions of many fundamental 
computer science problems like searching, finding the 
closest-pair, and frequency distribution etc., also depend 
on the efficient implementation of this function. 

Sorting is an expensive operation in terms of area-
time complexity; software-based solutions require word-
level sorting and can become computationally intensive, 
while the overall complexity of hardware-based solutions 
usually increases very rapidly with the size of the input 
vector set (number of vectors) and with the bit-length of 
the input vectors [1], [2]. The design of efficient sorting 
engine architectures is therefore a significant challenge 
for overcoming the computational bottleneck of the 
binary sorting problem. A number of recent proposals for 
the realization of sorting networks rely primarily on 
median or rank order filters (ROF), yet their capabilities 

in terms of window size and bit-length are typically 
limited due to rapidly increasing hardware complexity 
[2], [3], [4].  

In this paper, we present a new bit-serial sorting 
architecture based on rank-ordering. The hardware 
realization of this architecture results in a compact and 
fully modular sorting engine architecture that is capable 
of processing a large number of input vectors in linear 
time. The overall architecture is completely scalable to 
accommodate a wide range of window sizes and bit-
lengths, and the hardware complexity only grows linearly 
with both of these parameters. The proposed sorting 
engine can also be used as an efficient building block in 
embedded SoC applications. To our knowledge, this 
represents the first demonstration of a linear-complexity 
sorter architecture on silicon. The sorting algorithm and 
the corresponding architecture are presented in Section 2 
and Section 3. The full-custom CMOS realization of the 
majority function and the overall sorting engine 
architecture are discussed in Sections 4 and 5, followed 
by a summary of results. 

2. The Sorting Algorithm  

A bit-serial algorithm proposed in [5], [6] was chosen 
as the basis of the programmable sorter implemented in 
this work. In this algorithm, the problem of finding a 
rank-order-selection for n-bit long words is reduced to 
finding “n” rank-order-selections for 1-bit numbers.  

The algorithm starts by processing the most 
significant bits (MSB) of the m = (2N + 1) words in the 
current window, through an m-input programmable 
majority function, to yield the MSB of the desired 
output. This output is then compared with the other 
MSBs of the window elements. The vectors whose MSB 
is not equal to the output have their MSB propagated 
down by one position, replacing the less significant bits 
of the corresponding words. 

Thus, the bit-serial sorting algorithm operates with an 
input set (window) of “m” n-bit words. The output 
corresponds to a sequence of the input vectors in a 
desired rank order. Note that each bit-plane can be 
independently assigned its own rank value which is used 
to calculate the slice output. A detailed explanation of 
the basic sorting algorithm can be found in [6] and [7]. 
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3. The Sorting Engine Architecture 

The bit-serial operation flow of the algorithm 
described above suggests a simple bit-level pipelined 
data path architecture, consisting of data modifier-
propagator blocks (ROF cells) to handle fine-grained 
data selection, and majority decision blocks (majority 
function) to determine output bits. The modular two-
dimensional array architecture consisting of these two 
major blocks enables fully scalable construction of 
structures of arbitrary window size and bit-length. The 
bit-length dictates the number of the majority decision 
gates (rows), whereas the window size determines the 
number of ROF-cells driving one of these majority gates 
(columns). The structure of one row is shown in Fig. 1 
and the circuit diagram of a ROF cell is shown in Fig. 2. 
Note that the circuit complexity of the ROF cell is fairly 
limited, resulting in a very compact realization. 

 
Figure 2: Gate-level circuit diagram of the ROF cell.  
 

The complete sorter core has (n x m) ROF cells where 
m = (2N + 1) is the window size and n is the bit-length of 
the input words (vectors). Thus, it can be seen that the 
overall circuit complexity increases linearly with 
maximum window size (m) and with bit-length (n). 

The proposed sorter architecture exploits the fact that 
the modular core described here is capable of generating 
one output vector per clock cycle, corresponding to the 
currently selected rank. If the ranking process is repeated 

on the same set of vectors instead of processing a 
continuous stream of new vectors, the members of the 
vector set can be sorted in linear time by simply 
changing (increasing or decreasing) the rank in each 
clock cycle. The circuit structure and the signal flow of 
one sorter bit slice that is designed to implement the bit-
level operations described above will result in a regular, 
expandable structure, as seen in Fig. 1. The multiplexer 
on the input side is used for accepting the input vectors at 
the rate of one vector per clock cycle, as well as for 
circulating (rotating) the data until sorting is completed. 
The so-called “sorter core” is simply constructed by 
stacking “n” such bit-slices. 

The overall architecture of the sorting engine is shown 
in Fig. 3. The flow of data through the modular ROF 
core is being regulated by complementary input and out- 
put shift registers, which are used to stagger the 
individual bit-planes of each input vector to enable bit-
level pipelined operation. The control logic is 
responsible for regulating the data circulation path, and 
for applying the rank selection signals to the individual 
bit-planes, in ascending or descending order. The fact 
that each individual bit-plane is capable of processing a 
different rank at any given time significantly increases 
the overall efficiency of this architecture. In a typical 
sorting run, the control logic simply requests each bit-
plane to process a different rank in each clock cycle, 
either beginning from the maximum rank and 
descending, or beginning from the minimum rank and 
ascending. 

 

Figure 1: The block-level structure and the signal flow of one sorter bit-slice. 
 
Figure 3: Top-level blocks in the sorter engine architecture.
Note that each slice in the “sorter core” contains 63 ROF cells,
one data MUX and one 63-bit majority block.  



 

 

Figure 4: VHDL simulation results of the sorting architecture (m = 15, n = 8). The operation is done in ascending order (top)
and in descending order (bottom) to demonstrate the function.  

The proposed architecture has been described with 
VHDL to verify its operation. Fig. 4 shows simulated 
results of the sorting operation on an arbitrarily ordered 
set of 15 vectors (m=15), each with a bit-length of 8 bits 
(n=8). The user determines how many input vectors are 
to be sorted (“actualWindowSize”, not shown in Fig. 4) 
and in which direction the sorting will occur (“sortType”) 
and provides these inputs to the sorter block together 
with a request pulse (“sortRequest”). As soon as the 
request comes, the sorter block produces signal 
(“sortActive”) which stays at the logic high level as long 
as the corresponding set of vectors is processed. It can be 
seen that the first output vector is generated with a 
latency of (n-1) clock cycles, after the last vector of the 
set is entered. The sorter block provides a signal to the 
user (“outputsValid”) which goes high right at the last 
rising edge of the clock before the first vector is ready at 
the output (“sortDataOutput”). 

4. Realization of the Majority Function 

The programmable majority (voting) function is the 
key operation that must be performed in each row. This 
function also determines the overall operation speed (i.e., 
the clock frequency), since a 63-input majority function 
must be performed in each row, during each clock cycle. 
Note that the other operations described in the previous 
sections only involve data transfers from one ROF cell to 
the next, thus, they do not represent a critical bottleneck 
in terms of the time budget. 

The 63-input programmable majority block has been 
realized with a fully combinational parallel counter that 
consists of 57 full adders connected in a tree-network, 
and an output comparator network that consists of 27 
basic logic gates. Overall, the worst-case logic depth of 
the entire majority block is equivalent to 8 full adders in 
cascade. Consequently, the input-to-output delay of the 
programmable majority function is smaller than 4.5 ns. 

This allows a maximum clock frequency of 200 MHz for 
the entire system.  

The layout of the 63-input adder-tree network and the 
comparator block is shown in Figure 5. The silicon area 
occupied by this block is (208 µm x 380 µm), which is 
much smaller than the total area occupied by the ROF 
cells of the corresponding row. Also note that the 
classical realization of the 63-bit majority function would 
require an equivalent of 63 6-bit adder circuits, arranged 
in a network of a logic depth of 64 (synthesized from 
HDL description). The post-layout simulation results of 
the 63-bit majority network are shown in Figure 6. 
 

 
  
Figure 5: Full-custom layout of the 63-bit programmable 
majority block, consisting of a tree network with 57 full adders 
and the comparator. The total area is (208 µm x 380 µm). 



 

 

 

 
 
Figure 6: Simulation results of the 63-bit programmable 
majority function block, where 32 inputs are assigned logic-1 
and 31 inputs are assigned logic-0 (alternating). The worst-case 
propagation delay is smaller than 4.5 ns. 

5. Realization of the Sorter Architecture 

The binary sorting engine architecture designed to 
process 63 input vectors of 16-bits (m = 63, n = 16) has 
been realized using conventional 0.35 µm CMOS 
technology. The architecture consists of 16 rows, where 
each row is capable of processing 63 bits simultaneously. 
To reduce signal propagation paths and to simplify a 
balanced clock distribution, the rows were designed with 
a folded geometry, and the 16 rows were divided in two 
main columns, with 8 rows each. The top level layout of 
the chip is shown in Figure 7. A four-level balanced 
clock buffer network was used to distribute the system 
clock to minimize skew. One 63-bit cell row and one 63-
bit majority network are also highlighted in the layout. 
With its highly regular architecture and compact size, 
this block would be a suitable candidate for embedded 
applications where the sorting function is required. 

6. Conclusion 

In this paper, we present a highly modular 
architecture for the realization of high-speed binary 
sorting engines. The architecture consists of (i) a regular 
"core" array that is completely scalable to accommodate 
large window sizes and bit-lengths, (ii) input/output shift 
registers, and (iii) control logic to regulate the bit-level 
processing of data. It was shown that the complexity of 
the proposed bit-serial pipelined architecture increases 
linearly with the number of input vectors (m) to be 
sorted, and with bit-length of the input vectors (n). It was 
also demonstrated that the proposed sorting engine is 
capable of producing a fully sorted output vector set in 
(m+n-1) clock cycles, i.e., in linear time. 

A full-custom sorting engine chip was realized to 
process 63 input vectors of 16-bits (m = 63, n = 16), 
using conventional 0.35 µm CMOS technology. The 
resulting sorter chip operates at a clock frequency of 200 
MHz, and it is capable of completing the sorting 
operation of 63 16-bit vectors within 78 clock cycles. To 
our knowledge, this represents the first demonstration of 
a linear-complexity sorter architecture on silicon. 
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Figure 7: Top-level layout of the sorter chip, realized with 
0.35 µm CMOS technology. The core area is 13 sqmm. 
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