

CMOS Realization of a Scalable High-Performance Binary Sorting Engine
Suitable for Embedded Applications

Tugba Demirci
Sabanci University

Engineering and Natural Sciences
tugbad@su.sabanciuniv.edu

Ilhan Hatirnaz
Compaq Research

Laboratories, Shrewsbury, MA
ilhan@ece.wpi.edu

Yusuf Leblebici
Swiss Federal Institute of
Technology - Lausanne
yusuf.leblebici@epfl.ch

Abstract

The CMOS realization of a new scalable, modular
sorting architecture is presented. The high-performance
architecture is based on rank ordering, and on efficient
implementation of multi-input majority (voting)
functions. The overall complexity of the proposed bit-
serial architecture increases linearly with the number of
input vectors to be sorted (window size = m) and with
the bit-length of the input vectors (word size = n), and
the sorter architecture can be easily expanded to
accommodate large vector sets. It is shown that the
proposed sorting engine is capable of producing a fully
sorted output vector set in (m+n-1) clock cycles, i.e., in
linear time.

To demonstrate the concept, a full-custom sorting
engine is realized to process 63 input vectors of 16-bits
(m = 63, n = 16), using conventional 0.35 µm CMOS
technology. The resulting sorter chip occupies a silicon
area of 13 sqmm, operates at a clock frequency of 200
MHz, and it is capable of completing the sorting
operation of 63 16-bit vectors within 78 clock cycles.

1. Introduction

The task of sorting an arbitrarily ordered vector set
according to magnitude (either from-largest-to-smallest
or from-smallest-to-largest) is one of the fundamental
operations required in many digital signal processing
applications. The solutions of many fundamental
computer science problems like searching, finding the
closest-pair, and frequency distribution etc., also depend
on the efficient implementation of this function.

Sorting is an expensive operation in terms of area-
time complexity; software-based solutions require word-
level sorting and can become computationally intensive,
while the overall complexity of hardware-based solutions
usually increases very rapidly with the size of the input
vector set (number of vectors) and with the bit-length of
the input vectors [1], [2]. The design of efficient sorting
engine architectures is therefore a significant challenge
for overcoming the computational bottleneck of the
binary sorting problem. A number of recent proposals for
the realization of sorting networks rely primarily on
median or rank order filters (ROF), yet their capabilities

in terms of window size and bit-length are typically
limited due to rapidly increasing hardware complexity
[2], [3], [4].

In this paper, we present a new bit-serial sorting
architecture based on rank-ordering. The hardware
realization of this architecture results in a compact and
fully modular sorting engine architecture that is capable
of processing a large number of input vectors in linear
time. The overall architecture is completely scalable to
accommodate a wide range of window sizes and bit-
lengths, and the hardware complexity only grows linearly
with both of these parameters. The proposed sorting
engine can also be used as an efficient building block in
embedded SoC applications. To our knowledge, this
represents the first demonstration of a linear-complexity
sorter architecture on silicon. The sorting algorithm and
the corresponding architecture are presented in Section 2
and Section 3. The full-custom CMOS realization of the
majority function and the overall sorting engine
architecture are discussed in Sections 4 and 5, followed
by a summary of results.

2. The Sorting Algorithm

A bit-serial algorithm proposed in [5], [6] was chosen
as the basis of the programmable sorter implemented in
this work. In this algorithm, the problem of finding a
rank-order-selection for n-bit long words is reduced to
finding “n” rank-order-selections for 1-bit numbers.

The algorithm starts by processing the most
significant bits (MSB) of the m = (2N + 1) words in the
current window, through an m-input programmable
majority function, to yield the MSB of the desired
output. This output is then compared with the other
MSBs of the window elements. The vectors whose MSB
is not equal to the output have their MSB propagated
down by one position, replacing the less significant bits
of the corresponding words.

Thus, the bit-serial sorting algorithm operates with an
input set (window) of “m” n-bit words. The output
corresponds to a sequence of the input vectors in a
desired rank order. Note that each bit-plane can be
independently assigned its own rank value which is used
to calculate the slice output. A detailed explanation of
the basic sorting algorithm can be found in [6] and [7].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147903623?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

3. The Sorting Engine Architecture

The bit-serial operation flow of the algorithm
described above suggests a simple bit-level pipelined
data path architecture, consisting of data modifier-
propagator blocks (ROF cells) to handle fine-grained
data selection, and majority decision blocks (majority
function) to determine output bits. The modular two-
dimensional array architecture consisting of these two
major blocks enables fully scalable construction of
structures of arbitrary window size and bit-length. The
bit-length dictates the number of the majority decision
gates (rows), whereas the window size determines the
number of ROF-cells driving one of these majority gates
(columns). The structure of one row is shown in Fig. 1
and the circuit diagram of a ROF cell is shown in Fig. 2.
Note that the circuit complexity of the ROF cell is fairly
limited, resulting in a very compact realization.

Figure 2: Gate-level circuit diagram of the ROF cell.

The complete sorter core has (n x m) ROF cells where
m = (2N + 1) is the window size and n is the bit-length of
the input words (vectors). Thus, it can be seen that the
overall circuit complexity increases linearly with
maximum window size (m) and with bit-length (n).

The proposed sorter architecture exploits the fact that
the modular core described here is capable of generating
one output vector per clock cycle, corresponding to the
currently selected rank. If the ranking process is repeated

on the same set of vectors instead of processing a
continuous stream of new vectors, the members of the
vector set can be sorted in linear time by simply
changing (increasing or decreasing) the rank in each
clock cycle. The circuit structure and the signal flow of
one sorter bit slice that is designed to implement the bit-
level operations described above will result in a regular,
expandable structure, as seen in Fig. 1. The multiplexer
on the input side is used for accepting the input vectors at
the rate of one vector per clock cycle, as well as for
circulating (rotating) the data until sorting is completed.
The so-called “sorter core” is simply constructed by
stacking “n” such bit-slices.

The overall architecture of the sorting engine is shown
in Fig. 3. The flow of data through the modular ROF
core is being regulated by complementary input and out-
put shift registers, which are used to stagger the
individual bit-planes of each input vector to enable bit-
level pipelined operation. The control logic is
responsible for regulating the data circulation path, and
for applying the rank selection signals to the individual
bit-planes, in ascending or descending order. The fact
that each individual bit-plane is capable of processing a
different rank at any given time significantly increases
the overall efficiency of this architecture. In a typical
sorting run, the control logic simply requests each bit-
plane to process a different rank in each clock cycle,
either beginning from the maximum rank and
descending, or beginning from the minimum rank and
ascending.

Figure 1: The block-level structure and the signal flow of one sorter bit-slice.

Figure 3: Top-level blocks in the sorter engine architecture.
Note that each slice in the “sorter core” contains 63 ROF cells,
one data MUX and one 63-bit majority block.

Figure 4: VHDL simulation results of the sorting architecture (m = 15, n = 8). The operation is done in ascending order (top)
and in descending order (bottom) to demonstrate the function.

The proposed architecture has been described with
VHDL to verify its operation. Fig. 4 shows simulated
results of the sorting operation on an arbitrarily ordered
set of 15 vectors (m=15), each with a bit-length of 8 bits
(n=8). The user determines how many input vectors are
to be sorted (“actualWindowSize”, not shown in Fig. 4)
and in which direction the sorting will occur (“sortType”)
and provides these inputs to the sorter block together
with a request pulse (“sortRequest”). As soon as the
request comes, the sorter block produces signal
(“sortActive”) which stays at the logic high level as long
as the corresponding set of vectors is processed. It can be
seen that the first output vector is generated with a
latency of (n-1) clock cycles, after the last vector of the
set is entered. The sorter block provides a signal to the
user (“outputsValid”) which goes high right at the last
rising edge of the clock before the first vector is ready at
the output (“sortDataOutput”).

4. Realization of the Majority Function

The programmable majority (voting) function is the
key operation that must be performed in each row. This
function also determines the overall operation speed (i.e.,
the clock frequency), since a 63-input majority function
must be performed in each row, during each clock cycle.
Note that the other operations described in the previous
sections only involve data transfers from one ROF cell to
the next, thus, they do not represent a critical bottleneck
in terms of the time budget.

The 63-input programmable majority block has been
realized with a fully combinational parallel counter that
consists of 57 full adders connected in a tree-network,
and an output comparator network that consists of 27
basic logic gates. Overall, the worst-case logic depth of
the entire majority block is equivalent to 8 full adders in
cascade. Consequently, the input-to-output delay of the
programmable majority function is smaller than 4.5 ns.

This allows a maximum clock frequency of 200 MHz for
the entire system.

The layout of the 63-input adder-tree network and the
comparator block is shown in Figure 5. The silicon area
occupied by this block is (208 µm x 380 µm), which is
much smaller than the total area occupied by the ROF
cells of the corresponding row. Also note that the
classical realization of the 63-bit majority function would
require an equivalent of 63 6-bit adder circuits, arranged
in a network of a logic depth of 64 (synthesized from
HDL description). The post-layout simulation results of
the 63-bit majority network are shown in Figure 6.

Figure 5: Full-custom layout of the 63-bit programmable
majority block, consisting of a tree network with 57 full adders
and the comparator. The total area is (208 µm x 380 µm).

Figure 6: Simulation results of the 63-bit programmable
majority function block, where 32 inputs are assigned logic-1
and 31 inputs are assigned logic-0 (alternating). The worst-case
propagation delay is smaller than 4.5 ns.

5. Realization of the Sorter Architecture

The binary sorting engine architecture designed to
process 63 input vectors of 16-bits (m = 63, n = 16) has
been realized using conventional 0.35 µm CMOS
technology. The architecture consists of 16 rows, where
each row is capable of processing 63 bits simultaneously.
To reduce signal propagation paths and to simplify a
balanced clock distribution, the rows were designed with
a folded geometry, and the 16 rows were divided in two
main columns, with 8 rows each. The top level layout of
the chip is shown in Figure 7. A four-level balanced
clock buffer network was used to distribute the system
clock to minimize skew. One 63-bit cell row and one 63-
bit majority network are also highlighted in the layout.
With its highly regular architecture and compact size,
this block would be a suitable candidate for embedded
applications where the sorting function is required.

6. Conclusion

In this paper, we present a highly modular
architecture for the realization of high-speed binary
sorting engines. The architecture consists of (i) a regular
"core" array that is completely scalable to accommodate
large window sizes and bit-lengths, (ii) input/output shift
registers, and (iii) control logic to regulate the bit-level
processing of data. It was shown that the complexity of
the proposed bit-serial pipelined architecture increases
linearly with the number of input vectors (m) to be
sorted, and with bit-length of the input vectors (n). It was
also demonstrated that the proposed sorting engine is
capable of producing a fully sorted output vector set in
(m+n-1) clock cycles, i.e., in linear time.

A full-custom sorting engine chip was realized to
process 63 input vectors of 16-bits (m = 63, n = 16),
using conventional 0.35 µm CMOS technology. The
resulting sorter chip operates at a clock frequency of 200
MHz, and it is capable of completing the sorting
operation of 63 16-bit vectors within 78 clock cycles. To
our knowledge, this represents the first demonstration of
a linear-complexity sorter architecture on silicon.

References

[1] P. Wendt et al., “Stack filters”, IEEE Trans. Acoust.,
Speech, Signal Processing, pp. 898-911, 1986.

[2] W.K. Lam and C.K. Li, “Binary sorter by majority gate”,
IEE Electronic Letters, Vol. 32, July 1996.

[3] B.K. Kar, D.K. Pradhan, “A new algorithm for order statis-
tic and sorting”, IEEE Trans. on Signal Processing, vol. 41,
pp. 2688-2694, August 1993.

[4] C.C. Lin, C.J. Kuo, “Fast response 2-D rank order
algorithm by using max-min sorting network”, International
Conference on Image Processing 1996, Vol. 1, pp. 403-406.

[5] I. Hatirnaz, F.K. Gurkaynak, Y. Leblebici, “A modular and
scalable architecture for the realization of high-speed pro-
grammable rank-order filters”, ASIC/SOC’99 Proceedings, pp.
382-386, 1999.

[6] I. Hatirnaz, Y. Leblebici, “Scalable binary sorting
architecture based on rank ordering with linear area-time
complexity”, ASIC/SOC’00 Proceedings, September 2000.

[7] I. Hatirnaz, F.K. Gurkaynak, Y. Leblebici, “A compact
modular architecture for high-speed binary sorting,” ISCAS-
2000 Proceedings, May 2000.

Figure 7: Top-level layout of the sorter chip, realized with
0.35 µm CMOS technology. The core area is 13 sqmm.

4.0 ns 4.5 ns

63-bit cell row

63-bit
majority
block

	1.	Introduction
	2.	The Sorting Algorithm
	3.	The Sorting Engine Architecture
	4.	Realization of the Majority Function
	5.	Realization of the Sorter Architecture
	6.	Conclusion
	
	References

