
Database Replication Using Generalized Snapshot Isolation∗

Sameh Elnikety
School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland

Fernando Pedone
Faculty of Informatics

Università della Svizzera Italiana
USI

Lugano, Switzerland

Willy Zwaenepoel
School of Computer and
Communication Sciences

EPFL
Lausanne, Switzerland

Abstract

Generalized snapshot isolation extends snapshot isola-
tion as used in Oracle and other databases in a manner suit-
able for replicated databases. While (conventional) snap-
shot isolation requires that transactions observe the “lat-
est” snapshot of the database, generalized snapshot iso-
lation allows the use of “older” snapshots, facilitating a
replicated implementation. We show that many of the de-
sirable properties of snapshot isolation remain. In particu-
lar, read-only transactions never block or abort and they do
not cause update transactions to block or abort. Moreover,
under certain assumptions on the transaction workload the
execution is serializable.

An implementation of generalized snapshot isolation can
choose which past snapshot it uses. An interesting choice
for a replicated database is prefix-consistent snapshot isola-
tion, in which the snapshot contains at least all the writes of
locally committed transactions. We present two implemen-
tations of prefix-consistent snapshot isolation. We conclude
with an analytical performance model of one implementa-
tion, demonstrating the benefits, in particular reduced la-
tency for read-only transactions, and showing that the po-
tential downsides, in particular change in abort rate of up-
date transactions, are limited.

1. Introduction

There is increasing interest in replicating the generation
of dynamic Web content [2, 14] for many Web services to
achieve efficiency and fault tolerance. The user’s request
is executed on a “nearby” replica, thereby avoiding long
roundtrip delays and distributing the load over the replicas.
In addition, replication increases the availability of a Web

∗This research was partially supported by the Swiss National Science
Foundation grant number 200021-107824: System Support for Distributed
Dynamic Content Web Services.

service because if a replica fails, information can still be
accessed at other replicas. In a centralized dynamic content
Web site, the dynamic data is most often stored in a database
[8, 3]. Therefore, one of the key problems in replicating dy-
namic Web content generation is replicating the database
and keeping the replicas consistent.

Ideally, we would like to provide the same database con-
sistency as in the centralized database case. We focus here
on databases providing snapshot isolation [6]. In such a
database, a transaction T obtains at the beginning of its ex-
ecution the latest snapshot of the database, reflecting the
writes of all transactions that have committed before trans-
action T starts. At commit, the database checks that the
writeset of transaction T does not intersect with the write-
sets of the transactions that committed since T ’s snapshot.
If there is a non-zero intersection, transaction T aborts; oth-
erwise, it commits.

Snapshot isolation is popular for a number of reasons,
one of which is the pragmatic reason that Oracle [9, 20]
and other database vendors [25, 32, 19] use it. More funda-
mentally, snapshot isolation never requires read-only trans-
actions to block or abort, and read-only transactions do not
cause update transactions to block or abort. This advantage
is significant for workloads with a large fraction of read-
only transactions (such as those resulting from the gener-
ation of dynamic Web content). Snapshot isolation pro-
vides a weaker form of consistency than serializability, but
one that programmers can understand and use. Moreover,
Fekete et al. [11, 13] have recently demonstrated that under
certain conditions on the workload transactions executing
on a database with snapshot isolation produce serializable
histories.

1.1. Generalized Snapshot Isolation (GSI)

Extending snapshot isolation to replicated databases is
not straightforward. Intuitively, the problem stems from the
requirement that a transaction must see the “latest” snap-
shot when it starts execution. In contrast with the central-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147903583?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


ized case, the notion of “latest” is not a priori well-defined
in a distributed setting. Implementations of an ordering that
defines the notion of “latest” and makes the corresponding
snapshot available may impose a delay at the start of a trans-
action. Imposing such a delay at the beginning of read-only
transactions voids one of the main benefits of snapshot iso-
lation.

Generalized snapshot isolation is based on the observa-
tion that a transaction need not necessarily observe the “lat-
est” snapshot. It can observe an older snapshot, and many
properties as those in (conventional) snapshot isolation con-
tinue to hold. Conditions can be identified that guarantee se-
rializable execution. With a suitable choice of “older”, read-
only transactions execute without delay or aborts, and they
do not cause update transactions to block or abort. Trans-
actions may, however, observe somewhat older data. To
commit an update transaction, its writeset must be checked
against the writesets of recently committed transactions, as
before. The probability of an abort increases, as it becomes
more likely that at the time of its commit an update trans-
action finds that another transaction has written to the same
data as it did since the time of its snapshot.

The ability to start from an older snapshot gives rise to
an interesting spectrum of possibilities with attendant per-
formance tradeoffs. At one end of the spectrum is the con-
ventional notion of snapshot isolation, further referred to in
this paper as conventional snapshot isolation, in which each
transaction reads the latest snapshot. This is clearly appro-
priate in a centralized setting where the latest snapshot is
trivially available, and where using the latest snapshot min-
imizes the probability of aborts. At the other end of the
spectrum is the trivial solution in which all transactions ob-
serve the initial snapshot (i.e., the database state as in the
beginning of execution).

1.2. Prefix-Consistent Snapshot Isolation (PCSI)

In a replicated setting, an interesting positioning in this
spectrum is for a transaction to take as its initial snapshot
the latest snapshot that is locally available on its replica.
We capture this idea in prefix-consistent snapshot isolation.
As an instance of generalized snapshot isolation, prefix-
consistent snapshot isolation maintains the desirable prop-
erties of generalized snapshot isolation. Read-only trans-
actions never block or abort, and they do not cause update
transactions to block or abort. Moreover, transactions ob-
serve at least all the writes that have committed on the lo-
cal replica before they start. This property is important in
a workflow of transactions, in which a user submits a se-
quence of transactions to a replica.

1.3. Contributions

The contributions of this paper are as follows: (1) intro-
ducing generalized snapshot isolation, (2) establishing two
sufficient conditions (one dynamic condition and one stat-
ically checkable condition) that guarantee serializable exe-
cution under generalized snapshot isolation, (3) introducing
prefix-consistent snapshot isolation and two implementa-
tion strategies for replicated databases, and (4) analytically
characterizing the relative performance of prefix-consistent
snapshot isolation to conventional snapshot isolation.

1.4. Roadmap

This paper is organized as follows: We present the
database model in Section 2 and develop generalized snap-
shot isolation in Section 3. Then we discuss how to guaran-
tee serializability in Section 4, and provide a dynamic and
a static condition for serializability under generalized snap-
shot isolation.

In section 5, we present prefix-consistent snapshot iso-
lation, which is an instance of generalized snapshot iso-
lation that is suitable for replicated databases. In section
6, we present a model for a distributed system with repli-
cated databases. We first show that conventional snapshot
isolation must impose a delay on read-only transactions in
that model, and then we develop two algorithms that imple-
ment prefix-consistent snapshot isolation , one using cen-
tralized certification and the other using distributed certi-
fication. In Section 7, we compare analytically the per-
formance of prefix-consistent snapshot isolation to conven-
tional snapshot isolation. Finally, we discuss related work
in Section 8 and derive our conclusions and future research
directions in Section 9.

We omit the proofs of propositions and of correctness
of the algorithms due to space limitations. We, however,
provide all proofs in a technical report [10].

2. Database Model and Definitions

2.1. Database Model

We assume that a database is a collection of uniquely
identified data items. Several versions of each data item
may co-exist simultaneously in the database, but there is a
total order among the versions of each data item. A snap-
shot of the database is a committed state of the database.

A transaction Ti is a sequence of read and write oper-
ations on data items, followed by either a commit or an
abort operation. We denote Ti’s write operation on item
X by Wi(Xi). If Ti executes Wi(Xi) and commits, then a
new version of X , denoted by Xi, is added to the database.
Moreover, we denote Ti’s read operation on item Xj by



Ri(Xj). Ti’s commit or abort is denoted by Ci or Ai, re-
spectively. Finally, to simplify the presentation, we assume
that transactions do not contain redundant read or write op-
erations1: A transaction reads any item at most once and
writes any item at most once, and if a transaction writes an
item, it does not read that item afterwards.

A transaction is read-only if it contains no write oper-
ation, and is update otherwise. The readset of transaction
Ti, denoted readset(Ti), is the set of data items that Ti

reads. Similarly, the writeset of transaction Ti, denoted
writeset(Ti), is the set of data items that Ti writes. We
add additional information to the writesets to include the
new values of the written data items.

A history h over a set of transactions T =
{T1, T2, ..., Tn} is a partial order ≺ such that (a) h con-
tains the operations of each transaction in T ; (b) for each
Ti ∈ T , and all operations Oi and O′

i in Ti: if Oi precedes
O′

i in Ti, then Oi ≺ O′
i in h; and (c) if Ti reads X from Tj ,

then Wj(Xj) ≺ Ri(Xj) in h [7].

2.2. Impacting Transactions

To simplify some definitions in the paper, we assign a
distinct time to each database operation, resulting in a total
order consistent with the partial order ≺ for history h.

In generalized snapshot isolation, each transaction ob-
serves a snapshot of the database that is taken at some time,
denoted snapshot(Ti). If transaction Ti sees a snapshot of
the database taken at time snapshot(Ti), then this snapshot
includes the updates of all transactions that have committed
before snapshot(Ti). To argue about the timing relation-
ships among transactions, we use the following definitions
with respect to transaction Ti:

• snapshot(Ti): the time when Ti’s snapshot is taken.

• start(Ti): the time of the first operation of Ti.

• commit(Ti): the time of Ci, if Ti commits.

• abort(Ti): the time of Ai, if Ti aborts.

• end(Ti): the time of either Ci or Ai.

Notice that snapshot(Ti) ≤ start(Ti) < end(Ti). The
time of the first operation of Ti defines start(Ti) since we
do not use an explicit transaction begin operation. Next, we
define the relation impacts for update transactions.

• Tj impacts Ti iff
writeset(Ti) ∩ writeset(Tj) 6= ∅, and
snapshot(Ti) < commit(Tj) < commit(Ti)

1This assumption is not restrictive: These redundant operations can be
added to the model, but they will complicate the presentation (e.g., the
rules D1 and D2 of GSI). Moreover, in practice if a transaction contains
redundant operations, then they can be removed using local variables in
the program that issues the transaction [22].

From this definition, only committed update transactions
may impact update transaction Ti. Read-only transactions
and uncommitted transactions cannot impact Ti. When
committing an active update transaction Ti, we say “Tj im-
pacts Ti” to mean that if Ti were to commit now, then Tj

would impact Ti.

3. Generalized Snapshot Isolation (GSI)

Generalized snapshot isolation (GSI) has two rules: the
first regulates read operations, and the second regulates
commit operations. For any history h created by GSI, the
following two properties hold: (The definitions below im-
plicitly assume that indexes i, j, and k are different values.)

• D1. (GSI Read Rule)
∀Ti, Xj such that Ri(Xj) ∈ h :

1- Wj(Xj) ∈ h and Cj ∈ h;
2- commit(Tj) < snapshot(Ti);
3- ∀Tk such that Wk(Xk), Ck ∈ h :

[commit(Tk) < commit(Tj) or
snapshot(Ti) < commit(Tk)].

• D2. (GSI Commit Rule)
∀Ti, Tj such that Ci, Cj ∈ h :

4- ¬(Tj impacts Ti).

The read rule D1 ensures that each transaction reads only
committed data, that is, each transaction observes a commit-
ted snapshot of the database. This snapshot could be any
snapshot that has been taken before the transaction starts,
which can be provided efficiently in a distributed system.

Part one and two of D1 allow Ti to read the data items
written by transactions that committed before Ti’s snapshot.
The third part of D1 prevents holes in the snapshot that Ti

receives: If Ti sees a snapshot at time t and reads data item
X , then it reads X from the last committed transaction at
time t that updated X .

The commit rule D2 prevents any update transaction Ti

from committing if it is impacted by another committed up-
date transaction. From the definition of the relation impacts,
D2 is trivially satisfied for read-only transactions. This rule
gives the “first-committer-wins behavior” [7]: If two active
transactions update the same item, then the transaction that
commits first succeeds at updating that item, while the other
transaction aborts.

When an update transaction Ti requests to commit in a
database running GSI, the database performs a test to decide
if Ti can commit or must abort. This test is called certifi-
cation. In other words, to dynamically enforce the commit
rule D2 when deciding whether an update transaction Ti

can commit, the database certifies Ti: the database checks
whether writeset(Ti) intersects with the writeset of any up-
date transaction that committed after snapshot(Ti). If all
intersections are empty, Ti commits; otherwise Ti aborts.



Conventional snapshot isolation (CSI) is a special case
of GSI where each transaction sees the last snapshot with
respect to its starting time, i.e., snapshot(Ti) = start(Ti).
This is referred to in literature simply as “snapshot isola-
tion”. On a system composed of a single site, it is easy
to implement conventional snapshot isolation, as the latest
snapshot is available for use without delay. Using the lat-
est snapshot, in general, minimizes the number of transac-
tions that may impact an update transaction. Therefore, in a
centralized database CSI typically reduces the abort rate of
update transactions and provides transactions with the most
recent snapshots.

4. Serializability under GSI

We now turn to discussing serializability under GSI. Se-
rializability is important: it is the basic correctness criteria
in much work on databases [7, 22]. If applications need se-
rializability, then providing a weaker form of consistency
makes those applications much harder to develop. GSI pro-
vides a weaker form of consistency than serializability.

Both GSI and CSI may produce non-serializable his-
tories. Here is an example of the write-skew anomaly
[6]. Assume that X and Y are the balances of two bank
accounts for the same person and that the bank enforces the
constraint (X + Y ) ≥ 0. The next two procedures deduct
an input amount, A1 and A2, from X and Y , respectively.

Proci = { input A1; read X and Y ;
if ((X + Y ) < A1) then {abort}
else {X = X −A1; write X; commit} }

Procj = { input A2; read X and Y ;
if ((X + Y ) < A2) then {abort}
else { Y = Y −A2; write Y ; commit} }

Running these procedures concurrently as transactions Ti

and Tj can produce the following non-serializable history
under CSI. Assume that X0, Y0, A1, and A2 are 50, 50,
60, and 60, respectively. h1 = Ri(X0 = 50), Ri(Y0 =
50), Rj(X0 = 50), Rj(Y0 = 50), Wi(Xi = −10), Ci,
Wj(Yj = −10), Cj .

4.1. Dynamic Serializability Condition (D3)

D3 is a dynamic condition: it adds a new rule to GSI.
Transactions that satisfy condition D3 produce serializable
histories under GSI.

• D3. (Dynamic Serializability Rule)
∀ update transactions Ti, Tj such that Ci, Cj ∈ h and
snapshot(Ti) < commit(Tj) < commit(Ti) :

readset(Ti) ∩ writeset(Tj) = ∅.

PROPOSITION 1. GSI is serializable under D3.
To use this condition we add rule D3 to the two rules,

D1 and D2, of GSI. Thus, rules D1, D2, D3 are applied
at runtime. First when certifying an update transaction
Ti, GSI requires Ti not to have any impacting transaction,
which can be verified by comparing writeset(Ti) to the
writesets of transactions that committed since Ti’s snap-
shot, i.e., {Tj : snapshot(Ti) < commit(Tj)}. Second,
condition D3 requires readset(Ti) not to intersect with the
writesets of the same set of committed update transactions
{Tj : snapshot(Ti) < commit(Tj)}. Therefore, to cer-
tify Ti both its readset and writeset must be available for
the dynamic checks, as well as the writesets of the update
transactions which committed since Ti’s snapshot.

D3 is sufficient but not necessary. Consider this history:
h2 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Wk(Yk), Cj , Ck. His-
tory h2 is serializable but does not satisfy D3.

Using the readsets is likely to incur a higher overhead
than using only writesets, especially in a distributed setting.
Next we present static condition S1, which avoids requir-
ing the readset to certify an update transaction. Roughly
speaking, “if we can determine the readsets and writesets of
transactions statically, then we can apply condition D3 on
all transaction pairs statically rather than dynamically”. S1
allows only a subset of the histories allowed by D3.

4.2. Static Serializability Condition (S1)

S1 is a static condition; it adds no extra dynamic check to
GSI. This condition can be checked statically by examining
the mix of transactions and query templates in application
programs. It can also be enforced by changing the transac-
tions as described later.

• S1. (Static Serializability Condition)
∀update transactions Ti, Tj :

writeset(Ti) ∩ writeset(Tj) 6= ∅
∨ readset(Ti) ∩ writeset(Tj) = ∅
∧

writeset(Ti) ∩ readset(Tj) = ∅.




PROPOSITION 2. GSI is serializable under S1.
S1 is sufficient but not necessary. For example, consider

this history: h3 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Wk(Yk),
Ck, Cj . History h3 does not satisfy S1 because write-
set(Tj) ∩ readset(Tk) 6= ∅. However, h3 is serializable
and is allowed by condition D3.

Read-only transactions trivially satisfy condition S1.
Therefore in practice, to use condition S1 all possible up-
date transactions must be known. That is usually the case in
many database applications where database transactions are



hidden from clients who interact with the system through
a standard interface (e.g., application forms which contain
SQL templates). In such a system, ad–hoc update transac-
tions must be prevented, unless they are checked to satisfy
condition S1. Fortunately, in many situations such ad–hoc
update transactions are forbidden because they need to fol-
low the procedures of the business logic. Nonetheless, ad–
hoc read-only transactions are allowed because they satisfy
S1 trivially.

To check if an application satisfies condition S1, we need
to conservatively check every pair of update transactions.
Some optimizations are possible if application specific in-
formation are available. For example, we do not need to
check pairs of transactions that never run concurrently (i.e.,
are not active at the same time) in the database application.
Such cases happen when two transactions always run se-
quentially in a single workflow as explained in Section 5,
or when one transaction runs during business hours and the
other runs at night.

If a pair of two update transactions do not satisfy S1, it
must be that they do not write any data item in common
and one of them writes a data item, X , and the other reads
that data item. We can change the second transaction, which
reads X , to include an identity write on item X , i.e., change
R(X) into R(X), W (X). This change makes their write-
sets intersect; therefore, they now satisfy S1.

Checking update transactions—and altering them if
needed—can be automated [11, 13]. Moreover, in some ap-
plications all transactions already satisfy S1. For example,
the TPC-C and TPC-W benchmarks [30] are the industry-
standard for evaluating online transaction processing sys-
tems and e-commerce systems, respectively. We, as well as
other researchers [13], have verified that both benchmarks
satisfy condition S1 by examining all update transactions
from the specification documents: TPC-C and TPC-W pro-
duce serializable histories under GSI without any modifica-
tion.

5. Prefix-consistent Snapshot Isolation (PCSI)

GSI’s rules D1 and D2 do not specify which snapshot
of the database a transaction should observe. The range of
possible snapshots that a transaction can receive varies from
the initial database state until the latest snapshot as in CSI.

Although applications can in general trade snapshot
freshness for performance, especially in distributed envi-
ronments, in some cases a transaction should be guaranteed
to receive a snapshot that contains the updates of specific
previous transactions. This happens, for example, when
a transaction may need to observe the effects of previous
transactions in the same application workflow. In order to
capture this additional requirement on database snapshots,
we introduce prefix-consistent snapshot isolation (PCSI).

We define PCSI in this section, and in the next section we
present a model for replicated databases and instantiate the
workflow relation and give an example to show its impor-
tance. Then we discuss how to implement PCSI in repli-
cated databases.

PCSI is parameterized by an equivalence relation ∼
among transactions. If transactions Ti and Tj are in
the same workflow, denoted by Ti ∼ Tj , and Tj com-
mits before Ti starts, then Ti’s snapshot must be recent
enough to contain at least Tj’s updates, that is, if Ti ∼
Tj and commit(Tj) < start(Ti) then commit(Tj) <
snapshot(Ti). We add a new conjunction, part 4 below, to
GSI rules D1 and D2 to obtain the following two properties
which must hold for any history generated by PCSI.

• P1. (PCSI Read Rule)
∀Ti, Xj such that Ri(Xj) ∈ h :

1- Wj(Xj) ∈ h and Cj ∈ h;
2- commit(Tj) < snapshot(Ti);
3- ∀Tk such that Wk(Xk), Ck ∈ h :

[commit(Tk) < commit(Tj) or
snapshot(Ti) < commit(Tk)];

4- ∀Tk such that Wk(Xk), Ck ∈ h and Ti ∼ Tk:
[commit(Tk) < commit(Tj) or
start(Ti) < commit(Tk)].

• P2. (PCSI Commit Rule)
∀Ti, Tj such that Ci, Cj ∈ h :

5- ¬(Tj impacts Ti).

Since GSI does not allow holes in the snapshot, it follows
that Ti’s snapshot includes the effects of all transactions
that are in Ti’s workflow and that have committed before
Ti starts. This does not imply that transactions executing
under PCSI will see only up-to-date snapshots of the data-
base as in CSI (and pay the corresponding implementation
cost): Ti’s snapshot may not include the updates of some
transactions that have committed before Ti starts and that
are not in Ti’s workflow.

6. Replicated databases

In this section we present a model for a distributed sys-
tem with replicated databases. We show that read-only
transactions under CSI must block in this model. Then,
we instantiate PCSI’s workflow relation and discuss two al-
gorithms that implement PCSI. Both algorithms implement
only PCSI; if serializability is needed, then condition D3 or
S1 should be applied.

6.1. System Model and Definitions

We consider an asynchronous distributed system com-
posed of a set of database sites S1, S2, ..., Si, ..., which



Algorithm 1 Centralized Certification Algorithm

When receiving (Vj , wsetj ) from Sj , Smaster executes:
if ∃(V, wset) ∈ Log 3 wset ∩ wsetj 6= ∅ ∧ V > Vj then

send (abort,-,-) to Sj

else
Vmaster ← Vmaster + 1
Log ← Log ∪ {(Vmaster, wsetj)}
wsList← {(V, wset) : (V, wset) ∈ Log ∧ V > Vj}
send (commit, Vmaster, wsList) to Sj

When ready to commit T , Si executes:
send (snapshotV er(T ), writeset(T )) to Smaster

wait until receive (result, Vnew, wsList) from Smaster

if result = commit then
db-apply-writesets(wsList)
Vi ← Vnew

db-commit(T )
else
db-abort(T )

When recovering from a failure Si executes:
read the latest version Vi from the database
resume normal operation by executing the when clause above

with T0: writeset(T0) = ∅, snapshotV er(T0) = Vi

Algorithm 2 Distributed Certification Algorithm

When ready to commit T , Si executes:
broadcast (T, snapshotV er(T ), writeset(T ))

When delivering (Tj , Vj , wsetj), Si executes:
if ∃(V, wset) ∈ Log 3 wset ∩ wsetj 6= ∅ ∧ V > Vj then

if Tj executed at Si then db-abort(Tj)
else

Vi ← Vi + 1
Log ← Log ∪ {(Vi, wsetj)}
db-apply-writesets(wsetj)
if Tj executed at Si then db-commit(Tj)

When delivering (“Sj recovering from Vj”), Si executes:
missing ← {(V, wset) : (V, wset) ∈ Log ∧ V > Vj}
send (missing) to Sj

When recovering from a failure Si executes:
read the latest version Vi from the database
broadcast (“Si recovering from Vi”)
repeat deliver (msg) until msg = “Si recovering from Vi”
wait until receive (missing) from Sj

db-apply-writesets(missing)
Vi ← maximum V in missing
resume normal operation

communicate through reliable message passing. We make
no assumptions about the time it takes for sites to execute
and for messages to be transmitted. Each database site has
a full copy of the database. A transaction is (globally) com-
mitted as soon as it is locally committed at any site.

CSI requires each transaction to observe the latest snap-
shot. Under CSI in a replicated setting, when a database site
receives a transaction, it has to provide that transaction with
the latest snapshot. However, doing so may force the site
either to delay the start of the transaction to obtain the latest
snapshot, or to stop accepting new transactions during some
time intervals.

As stated in Proposition 3, in this model any implemen-
tation of CSI requires transactions to block. By definition,
in a blocking implementation, there are periods of time dur-
ing which sites cannot start new transactions. In a non-
blocking implementation, transactions can start at any site
at any time. Blocking voids the main benefit of CSI and
motivates using PCSI.

PROPOSITION 3. There is no non-blocking implemen-
tation of CSI in an asynchronous system, even if database
sites never fail.

Although Proposition 3 holds in the absence of fail-
ures,2we assume the more general model, crash-recovery,

2If transactions are allowed to block and database sites do not fail, then
there exists a simple algorithm which implements CSI in an asynchronous
system [10]

where sites may fail independently by crashing, and subse-
quently recover an unbounded number of times. We do not
consider Byzantine failures.

We present two algorithms that implement PCSI. The
first algorithm uses a central certifier to certify update trans-
actions. The central certifier is a single point of failure,
and this motivates the second algorithm which replicates the
certifier using the state-machine approach [27]. The second
algorithm employs an atomic broadcast abstraction [18] that
is defined by the primitives broadcast(m) and deliver(m),
which satisfy these properties: if a site delivers a message
m, then all sites eventually deliver m (agreement); if two
sites, Si and Sj , both deliver messages m1 and m2, then
they do so in the same order (total order); if a site broad-
casts a message and does not crash, then all sites deliver the
message (validity); and a message is only delivered if it was
previously broadcast by some site (integrity).

In both algorithms, every transaction executes its
database operations at a single site—except for the com-
mit operation of an update transaction as it requires remote
communication to certify the transaction. Upon the commit
of an update transaction, its writeset is applied at the other
replicas, according to the algorithms.

We define the workflow relation ∼ as {(Ti, Tj) : Ti and
Tj execute in the same database site}. To illustrate the need
for the workflow relation consider the following scenario:
A client first issues (and successfully commits) a transac-
tion to database site Si requesting to buy a book. Then, she



issues a second transaction to the same site requesting a list
of her orders. The above instantiation of the workflow re-
lation guarantees that the second transaction observes the
effects of the first transaction; the list of orders contains the
order for that book.

We use version numbers to approximate global time. The
database goes through a number of versions, each identi-
fied by a monotonically increasing version number. When
a transaction starts, it obtains one of these versions as its
initial snapshot. We use the notation snapshotV er(Ti) for
the version number of the initial snapshot of transaction Ti

and commitV er(Ti) for the version number of the database
produced after the commit of transaction Ti. These two ver-
sion numbers correspond to the global times snapshot(Ti)
and commit(Ti), respectively.

6.2. Centralized Certification Algorithm

One site is the master (or central certifier). The master
certifies the commits of update transactions, and it stores
the writesets of all committed update transactions. Replicas
communicate only with the master using reliable message
passing and do not communicate among each other.

The master maintains a persistent Log which is a set of
(version number, writeset) tuples; Log is not lost in the
event of a crash . Each tuple in Log contains the writeset of
the transaction that produced the database version with that
particular version number. Also, the master maintains the
current version number Vmaster, initially set to zero.

Each replica Si maintains its own version number Vi,
which indicates the version number of its current database
version, and which may be different from the current ver-
sion at the master or at other replicas. For each transac-
tion T that is active at a replica, the replica maintains the
version number of its starting snapshot, which is denoted
snapshotV er(T ).

At the start of transaction T , Si provides the transaction
with a snapshot equal to its current database version, and
assigns Vi to snapshotV er(T ). Reads and writes execute
locally against this snapshot, without any communication.
When a read-only transaction completes, nothing further
needs to be done. When an update transaction completes,
it needs to be certified to commit successfully, as described
in Algorithm 1.

When a database site recovers from a failure, it reads its
last committed snapshot from the disk. Then, it sends the
version of that snapshot to the certifier to obtain the most
recent updates.

The master can garbage collect the Log data structure
by deleting old entries. To allow a replica to recover by
exchanging information only with the master and without
communicating with other replicas, the versions older than
the minimum Vi for all replicas can be safely deleted from

the Log. When certifying a transaction, if any writeset
needed to certify that transaction has been deleted from
Log, the transaction is aborted to preserve the safety prop-
erties ensured by certification. This is a trade-off between
the abort rate and the size of persistent storage.

6.3. Distributed Certification Algorithm

The distributed algorithm is a natural extension of the
centralized one, using the state machine approach [27, 23].
Each replica both executes transactions and certifies update
transactions. The algorithm uses an atomic broadcast ab-
straction [18] to deliver the writesets for certification to all
replicas.

The key difference from the centralized implementation
is that all replicas execute certification. Thus, all replicas
now maintain the data structures that were maintained by
the master in the centralized implementation. In particular,
the Log data structure is persistent at each database site.

Transaction operations, except for the commits of update
transactions, are handled as in the centralized algorithm.

After executing an update transaction T , the
replica broadcasts a certification request, containing
snapshotV er(T ) and writeset(T ) to all replicas. As
depicted in Algorithm 2, when replica Si delivers the
certification request, it applies the commit rule P2 and
checks that no committed transaction impacts T . If so, T is
aborted; otherwise, T is committed.

When a database site crashes and later recovers, it needs
to apply the effects of all messages which it did not deliver
or which it delivered but did not process due to the crash.
On recovery, the database site reads its latest snapshot from
the database to determine Vi. Then it broadcasts a recovery
message. The replica ignores all messages it delivers un-
til it delivers the recovery message. Then the replica waits
for a message with the updates it missed while it was down,
applies them to the database, and continues processing de-
livered messages as usual.

7. Performance Analysis of PCSI

This section assesses analytically the relative perfor-
mance of PCSI to CSI. More specifically, we show that un-
der certain assumptions the transaction abort rate is a linear
function of both transaction length and the age of the snap-
shot that the transaction observes.

We use a simple model to estimate the abort rate of up-
date transactions. This model is used to predict the prob-
ability of waits and deadlocks in centralized [17, pp. 428]
and replicated databases [16]. We assume that the abort rate
is small. This is a self–regulating assumption: If the abort
rate is too high, then snapshot isolation algorithms are not
suitable for the workload.



Symbol Meaning
CW length of the conflict window

CW (Ti) conflict window of transaction Ti, which is [snapshot(Ti), end(Ti)]

D age of the snapshot that the transaction receives when it begins execution, which is start(Ti)− snapshot(Ti)

DBSize database size (total number of data items)
L number of seconds needed to execute a transaction on a single database
N number of database sites

RR request-reply delay: delay for replica to send message to master and receive response, including round-trip, data
transfer and message processing

TPS number of transactions per second
W number of data items updated by each transaction

Table 1. Parameters of the analytical model.

Initially, we consider a single-site database to contrast
GSI to CSI. Then, we consider a replicated database over
multiple sites to compare the abort rate of PCSI to that of
CSI using an implementation based on centralized certifi-
cation. Finally, using that implementation we compare the
response times of read-only and update transactions in both
PCSI and CSI.

7.1. Model

We consider a single database site that uses GSI un-
der the following assumptions. The database has a fixed
set of data items. The total number of these data items is
DBSize. Here we consider only update transactions to
compute their abort rate; read-only transactions are ignored.
The database originates TPSupdate update transactions per
second. Each transaction updates W data items, takes L
seconds to finish, and observes a snapshot of the database
that is D seconds old. Table 1 lists the model parameters.

We define the time interval CW (Ti), the conflict win-
dow of transaction Ti, such that CW (Ti) = [snapshot(Ti),
end(Ti)]. The length of the conflict window is denoted sim-
ply as CW = (L + D). According to the commit rule D2,
while certifying Ti any transaction Tj will force Ti to abort
if commit(Tj) ∈ CW (Ti) and Tj wrote a data item that is
also written by Ti.

In this model, we assume that access to data items is uni-
form (no hotspots) and that DBSize >> (TPSupdate ∗
L ∗W ), which means that at any instant the number of data
items updated is much smaller than the database size.

7.2. Centralized Database Abort Rate

In this subsection, we consider a centralized database us-
ing GSI to compute the abort rate of update transactions.
The database artificially gives each update transaction a
snapshot that is D seconds old, even though the most re-
cent snapshot is available. First we compute the probability

that a single transaction, Ti, has to abort. On average, the
number of transactions that commit in CW (Ti), the conflict
window of Ti, = (TPSupdate ∗ CW ). Hence, the num-
ber of writes in that window = W ∗ (TPSupdate ∗ CW ).
The probability that a specific update (i.e., a write opera-
tion in Ti) conflicts with one of the writes in CW (Ti) =
(number of writes) / (database size) = (W ∗ TPSupdate ∗
CW )/DBsize. If any such conflict occurs, transaction
Ti must abort according to the commit rule D2. Since
Ti has W of these updates, the probability that Ti has to
abort = W∗ (probability of a single conflict) = (W 2 ∗
TPSupdate ∗ CW )/DBSize.

Then we compute the transaction abort rate at the
database site. The rate of aborted transactions = (rate of
transactions) * (probability that one transaction must abort)
= TPSupdate∗(W 2∗CW ∗TPSupdate)/DBSize. There-
fore, the abort rate at the database site = (TPS2

update ∗
W 2/DBsize)∗ (CW ). This rate is directly proportional to
the length of the conflict window (CW =D + L).

Under CSI each transaction observes the latest snapshot
of the database. Hence, D = 0 and CW = L. The node
abort rate = (TPS2

update ∗W 2/DBsize) ∗ (L).
For a single-site database the relative increase in node

abort rate due to using GSI instead of CSI = (1 + (D/L)),
which depends on D, the snapshot age: the older the snap-
shot, the higher the relative increase in abort rate.

7.3. Replicated Database Abort Rate

We now turn to replicated databases and estimate the
abort rate of update transactions under PCSI and CSI. We
consider a database replicated over N sites, where each site
has a full database replica and originates TPSupdate update
transactions per second. We use a simple implementation
based on a master database to perform centralized certifica-
tion for both PCSI and CSI. Hence, our performance evalua-
tion is valid only for this implementation. The request-reply
delay, RR, is the time necessary for a replica to send a mes-
sage to the master and receive the response. RR includes



Metric prefix-consistent snapshot isolation conventional snapshot isolation ratio of PCSI/CSI
System abort ((N ∗ TPSupdate ∗W )2/DBsize)∗ ((N ∗ TPSupdate ∗W )2/DBsize)∗ (D + L + 0.5 ∗RR)/
rate of update (D + L + 0.5 ∗RR), (L + RR), (L + RR),

transactions
127 trans/sec (%1 of update trans.) 58 trans/sec (%0.5 of update trans.) 2.2

Response time (L + RR), (L + 2 ∗RR), (L + RR)/
of update (L + 2 ∗RR),

transactions 250 ms 450 ms 0.55
Response time (L), (L + RR), (L)/(L + RR),

of read-only
transactions 50 ms 250 ms 0.2

Table 2. Summary of the performance metrics, with values: D = 400 ms, DBSize = 10,000,000, L =
50 ms, N = 8 nodes, RR = 200 ms, TPS = 10,000 trans./sec (update trans. ratio = %15, TPSupdate =
1500), W=4.

the network round-trip delay, time necessary to transfer the
data, and message processing delay. In wide-area networks,
the round-trip delay constitutes a major part of RR.

From the previous subsection, the system abort rate is ap-
proximately = ((N∗TPSupdate)2∗W 2/DBsize)∗(CW ).
For the replicated case, the abort rate rises rapidly as the
number of replicas increases because the abort rate is a
quadratic function of N . It remains to estimate the length
of the conflict window CW .

Under PCSI each update transaction observes the most
recent snapshot available locally at the replica without any
delay as depicted in Figure 1. At commit time, the database
replica sends the transaction writeset for certification to the
master database in order to check that there is no impacting
transaction. The length of the conflict window is CW =
(D + L + 0.5 ∗RR).

Under CSI each update transaction must observe the lat-
est snapshot in the system as it arrives at a database site.
We assume that this can be done by sending a message to
the master database and by receiving the reply as in Figure
2. This reply either indicates that the site already has the
latest snapshot, or includes the missing updates, which the
database installs to obtain the latest snapshot. At commit,
the replica sends the writeset of the new transaction to the
master database for certification to ensure that it is not im-
pacted by any transaction in the system. The length of the
conflict window is CW = (0.5 ∗ RR + L + 0.5 ∗ RR).
The relative increase in node abort rate due to using PCSI
instead of CSI = (D + L + 0.5 ∗RR)/(L + RR).

7.4. Replicated Database Response Time

Here we consider both read-only and update transactions
and estimate their response times. We define the response
time of a transaction to be the time taken from receiving the
transaction at a database site until knowing the commit or

abort status at the same database site. For PCSI in Figure 1,
the response times of update and read-only transactions are
(L+RR) and (L), respectively. Similarly for CSI in Figure
2, each transaction has to incur a round-trip delay to obtain
the latest snapshot before it begins execution. The response
times of update and read-only transactions are (L+2∗RR)
and (L + RR), respectively.

The response times of PCSI are lower, at the cost of (1)
letting transactions observe less recent data and (2) having
a potentially higher abort rate for update transactions.

7.5. Numerical Evaluation

To get numeric estimates, we use “typical” numbers
from a recent TPC-W disclosure report [29] and a request-
response delay of 200 msec [5]. We use these numbers
because we intend to use PCSI in a wide-area replicated
database and TPC-W is the industry standard benchmark
for e-commerce systems [8, 30]. We, however, vary the ra-
tio between some of these parameters in Figures 3 and 4.

Table 2 summarizes our findings. In that particular envi-
ronment, the abort rate of update transactions in both PCSI
and CSI is small, and PCSI’s abort rate is twice CSI’s abort
rate. In addition, the response time of update transactions in
PCSI is half of the response time of update transactions in
CSI. The response time of read-only transactions in PCSI is
one fifth of CSI’s response time of read-only transactions.

Figure 3 shows the ratio between the abort rate of up-
date transactions in PCSI and CSI. The abort rate ratio is
the rate of aborts in PCSI divided by the rate of aborts in
CSI. The graph contains several curves corresponding to
different values of D/L. For small values of RR/L, PCSI
aborts more update transactions than CSI. Then as the ratio
of RR/L increases, the trend reverses and CSI starts to abort
more update transactions than PCSI. The ratio of abort rates
reaches 0.5 for all curves as RR/L gets very large, that is,



Master Database

Database Replica
T is executing

1- T arrives 

2- Request to commit 

3- commit 

or abort 

(a) Prefix-Consistent Snapshot Isolation, 
T is an update transaction

Master Database

Database Replica
T is executing

1- T arrives 

(b) Prefix-Consistent Snapshot Isolation, 
T is a read-only transaction

Always commits

No conflict window

Snapshot age

D

Conflict window

D + L + 0.5*RR

Transaction length

L

Transaction length

L

Response time

Response time

Snapshot age

D

Time

Figure 1. Transaction execution in repli-
cated database using PCSI with master
database & centralized certification.

Master Database

Database Replica
T is executing

1- T arrives 

2- Request for 

latest snapshot 

3- Latest snapshot 

4- Request to commit 
5- Commit 

or abort 

(a) Conventional Snapshot Isolation, 
T is an update transaction

Conflict Window

0.5*RR + L + 0.5*RR

Master Database

Database Replica
T is executing

1- T arrives 

2- Request for 

latest snapshot 

3- Latest snapshot 

Time

(b) Conventional Snapshot Isolation, 
T is a read-only transaction

4- Always commits,

No conflict window

Transaction length

L

Transaction length

L
RR

Response time

Response time

Figure 2. Transaction execution in repli-
cated database using CSI with master
database & centralized certification.

PCSI aborts fewer update transactions than CSI. Although
it is contrary to intuition for PCSI to abort fewer update
transactions than CSI, it can be explained by the fact that
when the response-request delay is large, waiting to get the
latest snapshot increases the conflict window. This increase
leads to the higher abort ratio of CSI compared to PCSI.

Figure 4 shows the ratio of response times of different
transaction classes in PCSI to those in CSI. The response
time ratio of a class of transactions is the average response
time of that class of transactions in PCSI divided by the
average response time of the same class in CSI. There are
three curves corresponding to read-only transactions, up-
date transactions, and “all transactions” which corresponds
to the ratio between average response times of all transac-
tions in PCSI and CSI. Both PCSI and CSI give the same re-
sponse times when RR=0 (centralized environment); how-
ever, as RR/L increases PCSI gives substantially better re-
sponse times for all transaction types. The response time ra-
tio for update transactions approaches 0.5 quickly as RR/L
increases.

This improvement in response times comes at a cost;
transactions may not observe the latest snapshot in PCSI.
The request-reply delay, RR, is constrained by the speed of
light and L is reduced with faster computers, so RR/L in-
creases as technology advances, favoring PCSI to CSI in
both abort rates and response times.

7.6. Summary

For centralized databases, the abort rate under GSI is
higher than that of CSI in which read-only transactions ob-
serve the latest snapshot. This makes CSI a clear winner in
centralized systems.

For replicated databases, there is a tradeoff. Under PCSI,
transactions are not delayed, but they may not observe the
latest snapshot. The update transactions’ abort rate of PCSI
may be higher or lower than that of CSI, depending on sys-
tem parameters. If the workload is dominated by read-only
transactions, PCSI is more suitable than CSI.

8. Related Work

Despite the undebatable popularity and practical rele-
vance of CSI, relatively few papers have discussed its prop-
erties. CSI was first introduced in 1995 [6, 20]. The authors
show that CSI prevents many of the well-known concur-
rency control anomalies [6], and that CSI is weaker than se-
rializability, e.g., CSI allows some forms of constrain viola-
tion anomalies such as write-skew [6] and predicate-write-
skew [13]. Schenkel et al. [26] have discussed using CSI in
federated databases where global transactions access data
that are distributed across multiple sites. Their protocols
guarantee CSI at the federation level.

More research is needed for guaranteeing serializability
both when using weaker isolation levels and when using ap-



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RR/L

ab
or

t r
at

e 
ra

tio

D/L=0
D/L=2
D/L=4
D/L=6
D/L=8
D/L=10
D/L=12
D/L=14
D/L=16

Figure 3. Abort rate ratio of PCSI to CSI
in replicated database with centralized
certification, parameterized by D/L.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RR/L

re
sp

on
se

 ti
m

e 
ra

tio

update transactions

read-only transactions

all transactions

Figure 4. Response time ratio of PCSI to
CSI in replicated database with central-
ized certification.

plication specific knowledge. Adya et al. [1] have provided
a theoretical foundation to formally specify practical isola-
tion levels for commercial databases. Atluri et al. [4] have
studied the serializability of weaker isolation levels such
as the ANSI SQL isolation levels for centralized databases.
Shasha et al. [28] have presented the conditions that allow a
transaction to be divided into smaller sub-transactions that
release locks earlier than the original transaction under tra-
ditional locking policies. Kemme et al. [21] have discussed
how to implement different isolation levels (including se-
rializability) in replicated databases using group commu-
nication primitives. Two systems, Postgres-R(SI) [31] and
Ganymed [24], have been built to replicate databases that
use snapshot isolation.

Fekete et al. [11, 13] have studied the conditions under
which transactions executing on a centralized database with
CSI produce serializable histories. They have developed a
syntactic condition similar to condition S1. Condition S1
is an extension to their syntactic condition, and it applies
to GSI in centralized and distributed environments. How-
ever, their more recent work [12], which is based on ana-
lyzing conflict patterns among transactions, identifies nec-
essary and sufficient static conditions for serializability un-
der databases that support snapshot isolation.

Dahlin et al. [15, 14] have discussed application-specific
data replication techniques for Web edge services, with the
objectives of reducing response time, scaling up system per-
formance, and enhancing its availability. This method is ef-
fective but not transparent; application programmers have
to specify a replication policy for each “data object”. Also,
there is no guarantee of serializability. Our methods have
the same objectives. However, they are systematic and
transparent to application programmers. Serializability of

arbitrary transactions can be guaranteed by either rewriting
the transactions in the application to satisfy condition S1, or
by enforcing condition D3 at run-time.

9. Conclusions and Future Work

This research presents generalized snapshot isolation
(GSI), which is an extension of conventional snapshot iso-
lation (CSI). GSI does not delay read-only transactions, but
they may observe an old snapshot of the database. Serializ-
ability under GSI can be guaranteed. We show a dynamic
(D3) and a static (S1) condition that make transactions run-
ning under GSI produce serializable histories.

We present prefix-consistent snapshot isolation (PCSI),
an instance of GSI that is suitable for multi-site replicated
databases. PCSI uses the most recent snapshot currently
available on a database site, such that each transaction sees
the updates of all transactions that have executed and com-
mitted at that site. The most important benefits of using
PCSI are that it does not delay read-only transactions and
executions can be made serializable.

We develop two implementations of PCSI: one uses cen-
tralized certification and the other uses distributed certifi-
cation. We use an analytical model to compare the perfor-
mance of PCSI to CSI. The model shows that the abort rate
of update transactions in PCSI and CSI depends on system
parameters and that PCSI may give a lower abort rate than
CSI. The model also shows that the response times of both
update and read-only transactions are smaller when using
PCSI than when using CSI.

We plan to use PCSI in a geographically distributed net-
work of proxies to replicate Web services. Web services are
particularly suitable for PCSI: 1- Their workload is dom-



inated by read-only transactions. 2- Most update transac-
tions are short and have small writesets. 3- The templates
of all update transactions are known in advance, which al-
lows using S1 to guarantee serializability.

References

[1] A. Adya, B. Liskov, and P. E. O’Neil. Generalized isolation
level definitions. In Proceedings of the IEEE International
Conference on Data Engineering, pages 67–78, 2000.

[2] Akamai Technologies, Inc. EdgeSuite Architecture for Ad-
vanced E-Business. http://www.akamai.com/en/
html/services/edgesuite.html.

[3] C. Amza, E. Cecchet, A. Chanda, A. L. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and W. Zwaenepoel.
Specification and implementation of dynamic Web site
benchmarks. In Proceedings of the 5th Workshop on Work-
load Characterization, Austin, Texas, November 2002.

[4] V. Atluri, E. Bertino, and S. Jajodia. A theoretical formula-
tion for degrees of isolation in databases. Elsevier Science,
39 No.1, 1997.

[5] G. Ballintijn, M. van Steen, and A. S. Tanenbaum. Charac-
terizing internet performance to support wide-area applica-
tion development. Operating Systems Review, 34(4):41–47,
2000.

[6] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil,
and P. O’Neil. A critique of ANSI SQL isolation levels. In
Proceedings of the SIGMOD International Conference on
Management of Data, pages 1–10, May 1995.

[7] P. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison–
Wesley, Reading, MA, 1987.

[8] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance comparison of middleware
architectures for generating dynamic Web content. In Pro-
ceedings of the ACM/IFIP/USENIX International Middle-
ware Conference (Middleware 2003), Rio de Janeiro, Brazil,
June 2003.

[9] Data Concurrency and Consistency, Oracle8 Concepts, Re-
lease 8.0: Chapter 23. Oracle corporation. 1997.

[10] S. Elnikety, F. Pedone, and W. Zwaenepoel. General-
ized Snapshot Isolation in Replicated Databases. EPFL
Technical Report IC/2004/21. http://ic2.epfl.ch/
labos/gsi.pdf.

[11] A. Fekete. Serialisability and snapshot isolation. In Proceed-
ings of the Australian Database Conference, pages 201–210,
Auckland, New Zealand, January 1999.

[12] A. Fekete. Allocating isolation levels to transactions. In
ACM conference on Principles of database systems, pages
206–215, Baltimore, MD, June 2005.

[13] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and
D. Shasha. Making snapshot isolation serializable. In ACM
transactions on database systems, volume 39(2), pages 492–
528, June 2005.

[14] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Ap-
plication specific data replication for edge services. In Pro-
ceedings of the twelfth international conference on World
Wide Web, pages 449–460. ACM Press, 2003.

[15] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar.
Improving availability and performance with application-
specific data replication. IEEE Transactions on Knowledge
and Data Engineering, 17(1):106–120, Jan 2005.

[16] J. Gray, P. Helland, P. O’Neil, and D. Shasha. The dangers
of replication and a solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management
of Data, pages 173–182, June 1996.

[17] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 1993.

[18] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and
Related Problems. Distributed Systems (2nd Ed.), ACM
Press / Addison-Wesley Publishing Co., 1993.

[19] InterBase Documentation. Borland Software Corporation.
2004.

[20] K. Jacobs. Concurrency control, transaction isolation and
serializability in SQL92 and Oracle7. Technical report, Or-
acle Corporation, Redwoord City, CA, July 1995. White
paper A33745.

[21] B. Kemme and G. Alonso. A suite of database replica-
tion protocols based on group communication primitives. In
Proceedings 18th International Conference on Distributed
Computing Systems (ICDCS), Amsterdam, The Netherlands,
May 1998.

[22] C. Papadimitriou. The Theory of Database Concurrency
Control. Computer Science Press, 1986.

[23] F. Pedone, R. Guerraoui, and A. Schiper. The database state
machine approach. Distributed and Parallel Databases,
(14):71–98, 2003.

[24] C. Plattner and G. Alonso. Ganymed: Scalable Replica-
tion for Transactional Web Applications. In Proceedings of
the ACM/IFIP/USENIX International Middleware Confer-
ence (Middleware 2004), Toronto, Canada, October 2004.

[25] PostgreSQL 7.4 Documentation. PostgreSQL Global Devel-
opment Group. 2004.

[26] R. Schenkel, G. Weikum, N. Weißenberg, and X. Wu. Fed-
erated transaction management with snapshot isolation. Lec-
ture Notes in Computer Science, 1773:1–25, January 2000.

[27] F. Schneider. Replication Management using the State-
Machine Approach. Distributed Systems (2nd Ed.), ACM
Press / Addison-Wesley Publishing Co., 1993.

[28] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transac-
tion chopping: Algorithms and performance studies. ACM
Transactions on Database Systems, 20(3):325–363, 1995.

[29] The Transaction Processing Council (TPC). Full disclo-
sure report for Dell PowerEdge 6650 1.6GHz w/PowerEdge
1650 1.4GHz. http://www.tpc.org/results/
FDR/tpcw/PE6650 10K TPCW FDR 020822.pdf.

[30] The Transaction Processing Council (TPC). The TPC-C and
TPC-W Benchmarks. http://www.tpc.org/.

[31] S. Wu and B. Kemme. Postgres-R(SI): Combining replica
control with concurrency control based on snapshot iso-
lation. In International Conference of Data Engineering,
2005.

[32] Yukon Release Microsoft SQL Server. Microsoft Corpora-
tion. 2005.


