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Abstract. Non-trivial search predicates beyond mere equality are at
the current focus of P2P research. Structured queries, as an important
type of non-trivial search, have been studied extensively mainly for un-
structured P2P systems so far. As unstructured P2P systems do not use
indexing, structured queries are very easy to implement since they can
be treated equally to any other type of query. However, this comes at the
expense of very high bandwidth consumption and limitations in terms of
guarantees and expressiveness that can be provided. Structured P2P sys-
tems are an efficient alternative as they typically offer logarithmic search
complexity in the number of peers. Though the use of a distributed index
(typically a distributed hash table) makes the implementation of struc-
tured queries more efficient, it also introduces considerable complexity,
and thus only a few approaches exist so far. In this paper we present a
first solution for efficiently supporting structured queries, more specif-
ically, XPath queries, in structured P2P systems. For the moment we
focus on supporting queries with descendant axes (“//”) and wildcards
(“*”) and do not address joins. The results presented in this paper pro-
vide foundational basic functionalities to be used by higher-level query
engines for more efficient, complex query support.

1 Introduction

P2P systems have been very successful as global-scale file-sharing systems. Typ-
ically these systems support simple exact and substring queries which suffice in
this application domain. To make P2P systems a viable architectural alternative
for more technical and database-oriented applications, support for more power-
ful and expressive queries is required, though. A couple of approaches have been
suggested already on top of unstructured P2P systems and are being applied
successfully in practice, for example, Edutella [21]. Unstructured P2P systems
do not use indexing, but typically some form of constrained flooding, and thus
structured queries are very easy to implement, since each peer receiving the
query, which can be arbitrarily complex, can locally evaluate it and return its
contribution to the overall result set. However, this comes at the expense of very
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high bandwidth consumption and some intrinsic limitations. For example, com-
pleteness of results cannot be guaranteed, query planning is not possible, and
joins are nearly impossible to implement efficiently in large-scale settings.

The efficient alternative are structured P2P systems, as they typically offer
logarithmic search complexity in the number of participating nodes. Though the
use of a distributed index (typically a distributed hash table) makes the imple-
mentation of structured queries more efficient, it also introduces considerable
complexity in an environment that is as instable and error-prone as large-scale
P2P systems. Thus, so far only a few approaches exist, for example a PIER
project [14].

In this paper we present a first solution for the efficient support of structured
queries, more specifically, XPath queries, in large-scale structured P2P systems.
We assume such a P2P system processing queries expressed in a complex XML
query language such as XQuery. XQuery uses XPath expressions to locate data
fragments by navigating structure trees of XML documents stored in the net-
work. We refer to this functionality as processing of structured queries. In this
paper we provide an efficient solution for processing XPath queries in struc-
tured P2P networks. We do not address query plans or joins, but focus on a
foundational indexing strategy that facilitates efficient answering of structured
queries, which we refer to as structural indexing in the following. We restrict
the supported queries to a subset of the XPath language including node tests,
the child axes (“/”), the descendant axes (“//”) and wildcards (“*”) which we
will denote as X Pathy, ;/; in the following. Thus, in this paper we describe an
indexing strategy for efficient X Pathy, ,/} query answering in a structured P2P
network. Our goal was to provide a basic functional building block which can be
exploited by a higher-level query engine to efficiently answer structural parts of
complex queries in large-scale structured P2P systems. However, we think that
the work presented in this paper provides generally applicable concepts which
can be generalized to more complete support of XPath predicates and joins.

The paper is organized as follows: Section 2 gives a brief introduction to
our P-Grid structured overlay network which we use to evaluate our approach.
Our basic indexing strategy is described in Section 3 whose efficiency is then
improved through caching as described in Section 4. The complete approach is
then evaluated in Section 5 through simulations. Following that, we position our
approach in respect to related work in Section 6 and present our conclusions in
Section 7.

2 The P-Grid overlay network

We use the P-Grid overlay network [1,3] to evaluate the approach presented in
this paper. P-Grid is a structured overlay network based on the so-called dis-
tributed hash table (DHT) approach. In DHTs peer identifications and resource
keys are hashed into one key space. By this mapping responsibilities for parti-
tions of the key space can be assigned to peers, i.e., which peer is responsible
for answering queries for what partition. To ensure that each partition of the
key space is reachable from any peer, each peer maintains a routing table. The
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routing table of a peer is constructed such that it holds peers with exponen-
tially increasing distance in the key space from its own position in the key space.
This technique basically builds a small-world graph [16], which enables search in
O(log N) steps. Basically all systems referred to as DHTs are based on variants
of this approach and only differ in respect to fixed (e.g., P-Grid, Pastry [25])
vs. variable key space partitioning (e.g., Chord [27]), the topology of the key
space (ring, interval, torus, etc.), and how routing information is maintained
(redundant entries, dealing with network dynamics and failures, etc.).

Without constraining general applicability we use binary keys in P-Grid. This
is not a fundamental limitation as a generalization of the P-Grid system to k-
ary structures is natural, and exists. P-Grid peers refer to a common underlying
binary trie structure in order to organize their routing tables as opposed to
other topologies, such as rings (Chord), multi-dimensional spaces (CAN [24]), or
hypercubes (HyperCuP). Tries are a generalization of trees. A trie is a tree for
storing strings in which there is one node for every common prefix. The strings
are stored in extra leaf nodes. In the following we will use the terms trie and
tree conterminously.

In P-Grid each peer p € P is associated with a leaf of the binary tree. Each
leaf corresponds to a binary string m € II, also called the key space partition.
Thus each peer p is associated with a path w(p). For search, the peer stores
for each prefix 7(p,l) of w(p) of length I a set of references p(p,l) to peers ¢
with property 7 (p,l) = w(q,l), where 7 is the binary string 7 with the last bit
inverted. This means that at each level of the tree the peer has references to some
other peers that do not pertain to the peer’s subtree at that level which enables
the implementation of prefix routing for efficient search. The cost for storing the
references and the associated maintenance cost scale as they are bounded by the
depth of the underlying binary tree.

Each peer stores a set of data items 6(p). For d € §(p) the binary key key(d)
is calculated using an order-preserving hash function, i.e., Vs1,82 : 851 < 82 =
h(s1) < h(s2), which is pre-requisite for efficient range querying as information is
being clustered. key(d) has w(p) as prefix but it is not excluded that temporarily
also other data items are stored at a peer, that is, the set d(p,7(p)) of data
items whose key matches 7(p) can be a proper subset of §(p). Moreover, for
fault-tolerance, query load-balancing and hot-spot handling, multiple peers are
associated with the same key-space partition (structural replication), and peers
additionally also maintain references o(p) to peers with the same path, i.e., their
replicas, and use epidemic algorithms to maintain replica consistency. Figure 1
shows a simple example of a P-Grid tree. Note that, while the network uses a
tree/trie abstraction, the system is in fact hierarchy-less, and all peers reside at
the leaf nodes. This avoids hot-spots and single-points-of-failures.

P-Grid supports a set of basic operations: Retrieve(key) for searching a cer-
tain key and retrieving the associated data item, Insert(key, value) for storing
new data items, Update(key, value) for updating a data item, and Delete(key)
for deleting a data item. Since P-Grid uses a binary tree, Retrieve(key) is of
complexity O(log |II]), measured in messages required for resolving a search re-
quest, in a balanced tree, i.e., all paths associated with peers are of equal length.
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Fig. 1. P-Grid overlay network
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Skewed data distributions may imbalance the tree, so that it may seem that
search cost may become non-logarithmic in the number of messages. However,
in [2] it is shown that due to the randomized choice of routing references from the
complimentary subtree, the expected search cost remains logarithmic (0.5 log N),
independently of how the P-Grid is structured. The intuition why this works is
that in search operations keys are not resolved bit-wise but in larger blocks thus
the search costs remain logarithmic in terms of messages. This is important as
P-Grid’s order-preserving hashing may lead to non-uniform key distributions.

The basic search algorithm is shown in Algorithm 1.

Algorithm 1 Search in P-Grid: Retrieve(key,p)
1: if 7(p) C key or 7(p) D key then

2:  return(d € §(p)|key(d) = key);

3: else

4:  determine [ such that w(key,l) = w(p,);

5: r = randomly selected element from p(p,1);
6: Retrieve(key,r);

7: end if

p in the algorithm denotes the peer that currently processes the request. The
algorithm always terminates successfully, if the P-Grid is complete (ensured by
the construction algorithm) and at least one peer in each partition is reachable
(ensured through redundant routing table entries and replication). Due to the
definition of p and Retrieve(key, p) it will always find the location of a peer at
which the search can continue (use of completeness). With each invocation of
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Retrieve(key, p) the length of the common prefix of m(p) and key increases at
least by one and therefore the algorithm always terminates.

Insert(key, value) and Delete(key) are based on P-Grid’s more general update
functionality [10], Update(key, value), which provides probabilistic guarantees for
consistency and is efficient even in highly unreliable, replicated environments,
i.e., O(log |II| + replication factor). An insert operation is executed in two log-
ical phases: First an arbitrary peer responsible for the key-space to which the
key belongs is located (Retrieve(key)) and then the found peer notifies its repli-
cas about the inserted key using a light-weight hybrid push-and-pull gossiping
mechanism. Deleting and updating a data item works alike.

3 Basic index

The goal of structural indexing is to provide efficient means to find a peer or a
set of peers, that store pointers to XML documents or fragments containing the
path(s) matching the queried expression. As we target large-scale distributed
XML repositories, we try to minimize the messaging costs, measured in over-
lay hops, required to answer the query. The intuition of our approach is to use
standard database techniques for suffix indexing applied to XML path expres-
sions. Instead of symbols, the set of XML element tags is used as the underlying
alphabet.

Given an XML path P consisting of m element tags, P = l1/l2/ls/ ... [lm,
we insert m data items using the following subpaths (suffixes) as application
keys:

— Sp1 =l1/l2/.../lm
- Sp2=l2/.../lm

- $Pm = lm

The P-Grid key of each data item is generated using P-Grid’s prefix-preserving
hash function: key; = h(sp;). The insertion of the m data items requires O(mlog N)
overlay hops. Each data item stores the original XML path to enable local pro-
cessing and a URI to the XML source document /fragment. We refer to this index
as basic index in the following.

For example, for a path “store/book/title”, the following data items (we
represent them in a form of {key,data} pairs) will be created:

— {h(“store/book [title”), (“store/book [title/” ,URI)}
— {h(“book/title”), (“store/book [title/” ,URI)}
— {h(“title”), (“store/book /title/” ,URI)}

Any peer in the overlay network can submit a X Pathy, ;/3 query. For query-
ing purposes, wildcards (“*”) as a particular case of descendant axes (“//”) are
converted into “//” and are used only at the local lookup stage as a filtering
condition.
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Let gp denote the longest sequence of element tags divided by child axes
(“/”) only, which we will call the longest subpath of a query in the following. For
example, for the query “A//C/D//F”, qg = “C/D”.

When a query is submitted to a peer, the peer generates a query message
that contains the path expression and the address of the originating peer and
starts the basic structural querying algorithm as shown in Algorithm 2.

Algorithm 2 Querying using basic index: AnswerQuery(query, p)

compute gp of query;
key = h(qB)
if w(p) C key then
return(d € d(p) | isAnswer(d, query) = true);
else if w(p) D key then
Shower Broadcast(query, length(key), p);
else
determine [ such that w(key,l) = 7(p,);
r = randomly selected element from p(p,[);
AnswerQuery(query,r);
: end if

RO RIS

—_

The function AnswerQuery(query,p) extends Retrieve(key, p) described in
Algorithm 1 for answering the X Pathy, /3 query using the basic index. First
the search key is computed by hashing the query’s longest subpath ¢g. Then we
check whether the currently processing peer is the only one responsible for key.
If yes, the routing is finished and the result set is returned (line 4). Function
isAnswer(d, query) examines if the data item d is a correct answer for query.
Alternatively, if routing is finished at one of the peers from the sub-trie defined
by key (line 5) !, all peers from this sub-trie could store relevant data items and
have to be queried. To do this, we use a variant of the broadcasting algorithm
(line 6) for answering range queries described in [11] as shown in Algorithm 3,
where the range is defined as all peers for which key C 7(p).

Algorithm 3 ShowerBroadcast(query, leurrent, D)

1: for | = leyrrent to length(mw(p)) do

2:  r = randomly selected element from p(p,1);
3:  ShowerBroadcast(query,l + 1,r);

4: end for

5: return(d € d(p) | isAnswer(d, query) = true);

! Le., the key is a proper substring of the peer’s path (7(p) D key), which means that
all bits of the key have been resolved and the query has reached a sub-trie, in which
several peers may store data belonging to the query’s answer set, and all have to be
checked for possible answers (this is ensured by P-Grid’s clustering property)
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The algorithm starts at an arbitrary peer from the sub-trie, and the query
is forwarded to the other partitions in the trie using this peer’s routing table.
The process is recursive, and since the query is split in multiple queries which
appear to trickle down to all the key-space partitions in the range, we call it the
shower algorithm.

With basic indexing the expected cost (in terms of messages) of answering
a single query is O(L) + O(S) — 1, where L is the cost of locating any peer
in the sub-trie and S is the shower algorithm’s messaging cost. The expected
value of L is a length of the sub-trie’s prefix. The intuition for this value is that
it is analogous to the search costs in a tree-structured overlay of size 2L. The
expected value of L is N/2L which refers to the number of peers in the sub-trie.
The latency remains O(log N) because the shower algorithm works in a parallel
fashion.

To illustrate how a query is answered using the basic index, assume the
query = “AJ//C/D//E” is submitted at some peer p. Following Algorithm 2
the peer responsible for h(“C/D”) is located. Assume there is a sub-trie with a
prefix h(“C/D”) as it is depicted in Figure 2. The shower broadcast is executed
and every peer in the sub-trie performs a local lookup for query and sends the
result to the originating peer p.

4 Caching strategy

The basic index is efficient in finding all documents matching a X Pathy, ,/
query expression based on the longest sequence of element tags (¢g). It performs
well with queries containing a relatively long h(gg), such that the number and
the size of shower broadcasts is not excessive. However, the search cost might
be substantially higher for queries, which require large broadcasts, i.e., h(gg) is
short. For example, queries like “A//B” are answered by looking up the peer
responsible for h(“A”) and then a relatively expensive broadcast depending on
the data in the overlay may have to follow. The search would be more efficient
if knowledge about the second element tag “B” would be employed as well. In
this section we introduce a caching strategy to address this issue, which allows
us to reduce the number of broadcasts, and thus, decrease the average cost of
answering a query.

Each peer which receives a query determines if it belongs to one of the fol-
lowing types:

1. Queries that can be answered locally, i.e., 7(p) C h(gg). For example the
path “A/B/C//E” at the peer responsible for h(“A4/B”).

2. Queries that require additional broadcasts, i.e., m(p) D h(gg), but contain
only one subpath, query = ¢p. For example, the path “A” at the peer
responsible for h(“A/B”). In this case matching index items are stored on
all the peers responsible for h(“A”). As these type of queries may be very
expensive, for example “//”, they could be disabled in the configuration or
only return part of the overall answer set to constrain costs.
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3. Queries that require an additional broadcast, 7(p) D h(gg), but include at
least one descendant axis (“//”) or wildcard (“*”), i.e. ¢g # ¢. For example
the query “A//C//E” at the peer responsible for h(“A/C”). The result set
for such queries can be cached locally and accessed later without performing
a shower broadcast.

Type 1 queries are inexpensive and thus work well with basic indexing. Type
2 queries are so general that they return undesirably large result sets and the
system may want to block or constrain them. The most relevant type of queries
whose costs should be minimized are thus type 8 queries which we will address in
the following. For simplifying the presentation we assume that only one peer is
responsible for a given query and have resources to cache results. We can assume
that storage space is relatively cheap as the “expensive” resource in overlay
networks is network bandwidth. However, each peer is entitled to arbitrarily
limit the size of its cache at will.

4.1 Answering a query

As a first step Algorithm 2 is modified by changing the routing and adding cache
handling. If we sort the subpaths of a X Pathy, /3 query by their length in de-
scending order, we can “rewrite” the original query as go = concat(P,, P, ..., P,),
where P, is the i-st longest subpath. We will use g¢ for routing purposes instead
of g, which gives us the benefit that we use the whole query for generating the
routing key. The modified querying algorithm is shown in Algorithm 4.

Algorithm 4 Querying using basic index extended with cache:
AnswerQueryWithCache(query, p)

: compute gc of the query;

keyc = h(qc)

compute gp of the query;

keys = h(qB)

if 7(p) C keyr then
return(d € d(p) | isAnswer(d, query) = true);

else if (w(p) D keyr) and (ifCached(query) = false) then
Shower Broadcast(query, length(keys), p);

else if 7(p) C keyc then

10:  return(d € cache(p) | isAnswer(d, query) = true);

11: else

12:  determine ! such that w(keyc,!) = n(p,1);

13:  r = randomly selected element from p(p,!);

14:  AnswerQueryWithCache(query,r);

15: end if

In line 1 we compute gc which is used for routing (line 12) to the peer
(probably) storing a cached result set. Since P-Grid uses a prefix-preserving
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hash function and ¢g C q¢ (gB is always the first subpath of g¢), this peer is
located in the keyp = h(gp) sub-trie.

Similarly to the basic index’s search algorithm we check whether the currently
processing peer is the only one responsible for keyp (line 5). If yes, the result
set is returned (line 6). If the routing reached one of the peers from the sub-trie
defined by keyp, we execute the shower broadcast (line 8) to answer the query as
introduced in the previous section, but only if the query is has not already been
cached (line 7). Section 4.2 give the details for i fCached(query). If the query is
cached, the routing proceeds until the peer responsible for keyc is reached. This
peer answers the query by looking up a cached result set (line 10).

4.2 Cache maintenance

Each peer runs a cache manager, which is responsible for cache maintenance.
Two functions createCache(query) and deleteCache(query) are available, where
query is any query the peer is responsible for. In the following we explain how
these functions work. How the cache manager decides if a query is worth caching
or not will be described in 4.3.

To cache a query a peer determines a sub-trie’s prefix by hashing ¢p and
collects a result set for the query by executing a special version of the shower
broadcast algorithm. The only difference with regard to the ShowerBroadcast
listed in Algorithm 3 is that for cache consistency reasons all the peers in the
broadcast sub-trie add the query expression to their lists of cached queries Lcq.
Thus, in case the P-Grid is updated, i.e., insert, update, or delete of data items,
any peer from the sub-trie can contact the peer(s) that cache relevant queries,
to inform them of the change and they thus can keep their cache consistent.
This operation needs O(log N) messages per cache entry. Moreover, the function
ifCached(query) (line 7, Algorithm 4) looks up the Lo list to determine if the
query is cached. This solution requires additional storage space which can be
significantly decreased by the use of Bloom filters. Similarly, the cache deletion
operation requires updates of all L¢g lists.

When a data item is inserted, updated or deleted, all relevant cache entries are
updated respectively. A peer looks up the cached queries list and sends update
messages to the peers caching the relevant queries. Each cache update requires a
message to be routed with an expected cost of 0.5 log N. If we denote as C'(path)
the number of cached queries that have path as an answer, the update cost can
be estimated as O(log N) + O(C(path) * 0.5log N)

4.3 What to cache?

The cache manager analyzes the benefits of caching for each candidate query
the peer is responsible for. To do so, it estimates the overall messaging cost for
the query with and without caching. The decision to cache the query result or
to delete the existing cache entries is based on comparing these two values.

If the query is cached, each search operation for that query saves a shower
broadcast (the shower broadcast requires s — 1 messages where s is the number
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of peers in the trie). On the other hand each update operation for any data item
related to the query will cost additional O(log N) messages to update the cache.
Knowing the approximate ratio of search/update operations (obtained by local
monitoring) the peer can make an adaptive decision on caching of a particular
query.

The query is considered to be profitable to cache if:

UpdateCostxUpdate Rate(subtrie) < SearchCost(subtrie)xSearchRate(query)
where

— subtrie is the prefix of the g sub-trie, i.e., the basic index’s shower broadcast
sub-trie;

— UpdateCost is the cost of one update, which is equal to the routing cost,
i.e., O(log N);

— UpdateRate(subtrie) is the average update rate in the given sub-trie;

— SearchCost(subtrie) is the number of peers in the sub-trie to be contacted
to answer the shower broadcast; and

— SearchRate(query) is the search rate for the given query.

To estimate these values each peer collects statistics. For the SearchRate the
peer’s local knowledge is sufficient, whereas for the UpdateCost and SearchCost
values have to be gathered from the neighbors. To do so, we can periodically
flood the network or better employ the much more efficient algorithm described
in [4]. This algorithm gossips the information about the tree structure among
all the peers in the network. Each peer maintains an approximate number of
peers in each sub-trie it belongs to (as many values as the peer’s prefix length).
The values are exchanged via local interactions between peers and a piggyback
mechanism avoids sending additional messages. The same idea is used to gossip
the UpdateRate in every sub-trie a peer belongs to.

4.4 Example

An example illustrating the application of caching is shown in Figure 2.

Note, that in the Figure 2 each element tag is represented by one capital
letter and we omit child axes (“/”) to simplify the presentation. The numbers
1-4 written in brackets next to the arrows correspond to the following steps:

1. The cache manager at the peer II decides to cache a result set for the query
Q = “A//C/D//E”. The shower broadcast to the peers responsible for
h(“C/D”) is initiated to fill up the cache with all data items matching the
query. It reaches the peers I, IIT and IV. They add @ to their lists of cached
queries.

2. PeersIIT and IV send back the matching items. The shower broadcast reaches
peer V, which also adds @ to its list of cached queries. 4 messages were sent
to execute the shower broadcast in sub-trie h(“C'/D”).

10
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Fig. 2. Adaptive example 1

3. Assume, the query Q = “A//C/D//E” is submitted at the originating peer.
The search message is routed to the peer II (O(log N)), which can answer
a query locally by looking up its cache. The broadcast has to be executed
every time to answer the query @ if it is not cached.

4. The answer is sent back to the originating peer.

Assume now, a new path “A/C/D/E” is indexed. One of the four generated
data items with the key h(“C/D/E”) is added to the peer V. It checks the list
of cached queries and finds query Q = “A//C/D//E” to be concerned by this
change. Peer V sends a cache update message to the peer responsible for @), i.e.,
to Peer II, which ensures cache consistency.

5 Simulations

To justify our approach and its efficiency, we implemented a simulator of a
distributed XML storage, based on the P-Grid overlay network. The simulator
is written in Java and stores all data locally in a relational database. As the
simulation results in this section meet our theoretical expectations we will in a
next step implement our approach on top of our P-Grid implementation [22] and
test it on PlanetLab.

As input data for our experiments, we use about 50 XML documents (mainly
from [28]) from which we extracted a path collection of more than 1000 unique

11
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paths. Based on each path in the collection we generated four additional paths by
randomly distorting the element tags. Using the resulted path collection (about
5000 path) we generate a P-Grid network by inserting a corresponding number
of data items per each path (about 20000 data items overall). P-Grid networks
of different sizes can be obtained by limiting the maximum number of data items
a peer can store.

For our experiments we generated different query collections by randomly
removing some element tags from the paths in the path collection. A parameter
t specifies query construction and ensures percentage of type 3 (“cachable”)
queries in the collection.

To emulate the querying process we generated a query load of 10000 queries
by applying different distributions on the query collection. In the following ex-
periments an average search cost value for given parameters is computed by
processing all queries in the query load.

In the first experiment we assume that all possibly “cacheable” queries are
in fact being cached. We vary the network size and measure the average cost
of answering one query. The query load is uniformly distributed and different
t parameters are used. On the figure 3 the first four curves show the average
search cost for t = 0, 0.5, 0.75 and 1 respectively. Obviously, the more queries
are being cached, the lower the search cost becomes. The fifth curve shows the
cost of locating at least one peer responsible for the query, i.e., the search costs
without shower broadcasts. Evidently, the two last curves coincide because if all
queries are cached no shower broadcasts are required.

-—o-t=0 -
- X-1=0.5 e
20 | -a- 12075 &

—t=t -

————— no broadcasts 27 X

Average cost of answering a query (# msg)

0 200 400 600 800 1000 1200 1400
Number of peers

Fig. 3. Average number of messages required to answer a query depending on the
network size, t denotes the fraction of “cacheable” queries

However, query load does not necessary follow a uniform distribution. In-
stead, a Zipfian distribution is more realistic as shown in Figure 4. In the exper-
iment we fixed the network size to 1000 peers, t = 0.5 and vary the cache size.
The first curve shows the constant search cost if caching is disabled. The other
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three curves correspond to the different parameters of the Zipf distribution of
the query load and shows how our approach performs under these conditions.

----No caching
——Zipfs=0
—-a—--Zipfs=0.8
- Zipfs=1.2

Avg. cost of answering a query (# msg)

0 0.5 1 15 2 25 3 35 4 4.5 5
Percentage of cached queries (%)

Fig. 4. Average number of messages required to answer a query in the network of 1000
peers depending on the fraction of cached queries

However, the benefits we gain from caching for querying, come at the price
of increasing the update costs. To perform one update operation, for example,
to insert a new path containing m element tags, we have to contact all the
peers responsible for all the subpaths (O(mlog N)). We also have to update all
relevant cache entries (O(log N) per cache entry). Figure 5 shows the average
update costs depending on size of the network.

30
25

20

Avg. update cost (# msg)
o

4 —a— ~1 cached query per path
547 --%-~0.5 cached queries per path
------- basic index

0 200 400 600 800 1000 1200 1400
Number of peers

Fig. 5. Average update cost depending on the network size, ¢ denotes the percentage
of ”cacheable” queries
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In Section 4.3 we described the strategy for minimizing the overall messaging
costs. In the last experiment we show that for a given state of the system this
minimum can be achieved by choosing what queries to cache. In Figure 6 we
show that for the given fixed parameters (1000 peers, t = 0.5, Zipf s = 1.2,
average number of element tags in the path = 2.5) the overall messaging cost
can be minimized. We show two curves for search/update ratios of 1:2 and 2:1.
In these cases the minimal messaging costs are achieved if about 0.5% and 1.0%
of the queries are being cached.

—— search/update ratio = 1:2
---x--- search/update ratio = 2:1

Avg. cost of one query/update
operation (# msg)

Percentage of cached queries (%)

Fig. 6. Average number of messages (query + update) depending on the fraction of
cached queries

Evidently, if the search/update ratio is high (more searches than updates) the
minimum moves to the right (more queries are to be cached). In contrast, if the
update ratio is relatively high, the minimum moves to the left (up to 0, where
caching is not profitable anymore). Hence, (1) the higher the search/update
ratio is the more queries should be cached and (2) our solution is adaptive to
the current system state and minimizes the overall messaging costs.

The simulations show that the basic index strategy is sufficient for building a
P2P XML storage with support for answering structured queries. The introduc-
tion of caching decreases the messaging costs. Depending on the characteristics
of the query load the benefits from caching vary.

6 Related Work

Many approaches exist that deal with querying of XML data in a local setting.
Most of them try to improve the query-answering performance by designing
an indexing structure with respect to local data processing. Examples of such
index structures include DataGuides [13], T-indexes [20], the Index Fabric [7],
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the Apex approach [6] and others. However, these approaches are not designed
to support a large-scale distributed XML storage.

On the other hand, peer-to-peer networks yield a practical solution for storing
huge amounts of data. Thus, a number of approaches exist that try to leverage a
P2P network for building a large-scale distributed data warehouse. The impor-
tant properties of such system are:

— The flexibility of the querying mechanism (e.g. query language).
— The messaging and maintenance costs.

The use of routing indices [8] facilitates the construction of a P2P network
based on content. In such content-based overlay networks peers are linked, if
they keep similar data, i.e., each peer maintains summaries of the information
stored at its neighbors. While searching, a peer uses the summaries to determine
whom to forward a query to. The idea of clustering peers with semantically
close content is exploited in [9]. The approach presented in [17] proposes using
multi-level bloom filters to summarize hierarchical data, i.e., similarity of peers’
content is based on the similarity of their filters. The approach of [23] uses
histograms as routing indexes. A decentralized procedure for clustering of peers
based on their histogram distances is proposed. The content-based approaches
could efficiently solve the problem of answering structured queries, though lack
of structure affects the result set quality and significantly increases the search
cost for large-scale networks.

The Edutella project [21] is a P2P system based on a super-peer architec-
ture, where super-peers are arranged in a hypercube topology. This topology
guarantees that each node is queried exactly once for each query, which pre-
sumes powerful querying facilities including structured queries, but does not
scale well.

Leveraging DHTs to support structured queries decreases the communication
costs and improves scalability, but requires more complicated query mechanisms.
The approach presented in [12] indexes XML paths in a Chord-based DHT by
using tag names as keys. A peer responsible for an XML tag stores and maintains
a data summary with all possible unique paths leading to the tag. Thus only
one tag of a query is used to locate the responsible peer. Although ensuring high
search speed, the approach introduces considerable overhead for popular tags,
when the data summary is large. Our solution for this case is to distribute the
processing among the peers in a subtrie. The paper also addresses answering
branching XQuery expressions by joining the result sets obtained from different
peers. A similar mechanism can be employed for our approach.

[5] also uses a Chord network, but follows a different technique. Path frag-
ments are stored with the information about the super- and child-fragments.
Having located a peer responsible for a path fragment, it resolves the query
by navigating to the peers responsible for the descendant fragments. Additional
information has to be stored and maintained to enable this navigation, which
causes additional maintenance costs. For some types of queries the search oper-
ation may be rather expensive due to the additional navigation.

Some approaches also employ caching of query results in a P2P network to
improve the search efficiency. For example, [18] proposes a new Range Address-
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able Network architecture that facilitates range query lookups by storing the
query results in a cache. In [26] the authors leverage the CAN P2P network to
address a similar problem. In both cases queries are limited to integer intervals.
The ranges themselves are hashed, which makes simple key search operation
highly inefficient.

The PIER project [14,15] utilizes a DHT to implement a distributed re-
lational query engine bringing database query processing facilities into a P2P
environment. In contrast, our approach solves the particular problem of answer-
ing structured XPath queries, which is not addressed by PIER. However, many
of proposed in PIER query processing mechanisms (join, aggregation, etc.) can
be also employed for building a DHT-based large-scale distributed XML storage
with powerful query capabilities. The paper [19] leverages the PIER for build-
ing a file-sharing P2P system for answering multi-keyword queries. The authors
suggest using flooding mechanisms to answer popular queries, and use DHT’s
indexing techniques for rare queries.

7 Conclusions

In this paper we presented an efficient solution for indexing structural informa-
tion in a structured overlay network used as distributed P2P storage of XML
documents. We based the approach on the P-Grid structured overlay network,
however, the solution can be ported to similar tree-based DHTs. We demon-
strated the efficiency (low search latency and low bandwidth consumption) of
our approach via simulations and also showed that our proposed caching strategy
chooses the optimal strategy for minimizing messaging costs.

We envision that the presented solution can be used in a P2P XML querying
engine for answering structural (sub)queries. Such a system could be an alter-
native to the solutions based on the unstructured P2P networks (e.g., Edutella
[21]), but more scalable due to the considerably reduced messaging costs.
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