
A Scalable Method for Multiagent Constraint Optimization

Adrian Petcu and Boi Faltings
{adrian.petcu, boi.faltings}@epfl.ch
http://liawww.epfl.ch/
Artificial Intelligence Laboratory

Ecole Polytechnique Fédérale de Lausanne (EPFL)
IN (Ecublens), CH-1015 Lausanne, Switzerland

Technical Report IC/2005/002

Abstract

We present in this paper a new complete method for
distributed constraint optimization. This is a utility-
propagation method, inspired by the sum-product
algorithm [Kschischang et al., 2001]. The origi-
nal algorithm requires fixed message sizes, linear
memory and linear time in the size of the prob-
lem. However, it is correct only for tree-shaped
constraint networks. In this paper, we show how
to extend that algorithm to arbitrary topologies us-
ing a pseudotree arrangement of the problem graph.
We compare our algorithm with ”standard” back-
tracking algorithms, and present experimental re-
sults. For some problem types we report orders of
magnitude less messages, and even the ability to
deal with arbitrary large problems. Our algorithm
is formulated for optimization problems, but can be
easily applied to satisfaction problems as well.

1 Introduction
Distributed Constraint Satisfaction (DisCSP) was first stud-
ied by Yokoo [Yokoo et al., 1992] and has recently at-
tracted increasing interest. In distributed constraint satis-
faction each variable and constraint is owned by an agent.
Systematic search algorithms for solving DisCSP are gen-
erally derived from depth-first search algorithms based on
some form of backtracking [Silaghi et al., 2000; Yokoo et al.,
1998; Yokoo and Hirayama, 2000; Meisels and Zivan, 2003;
Hamadi et al., 1998]. Recently, the paradigm of asyn-
chronous distributed search has been extended to constraint
optimization by integrating a bound propagation mechanism
(ADOPT - [Modi et al., 2003]).

In general, optimization problems are much harder to solve
than DisCSP ones, as the goal is not just to find any solution,
but the best one, thus requiring more exploration of the search
space. The common goal of all distributed algorithms is to
minimize the number of messages required to find a solution.

Backtracking algorithms are very popular in centralized
systems because they require very little memory. In a dis-
tributed implementation, however, they may not be the best
basis since in backtrack search, control shifts rapidly between
different variables. Every state change in a distributed back-
track algorithm requires at least one message; in the worst

case, even in a parallel algorithm there will be exponentially
many state changes [Kasif, 1986], thus resulting in exponen-
tially many messages. So far, this has been a serious draw-
back for the application of distributed algorithms in the real
world, especially for optimization problems (also noted in
[Maheswaran et al., 2004]).

This leads us to believe that other search paradigms, in par-
ticular those based on dynamic programming, may be more
appropriate for DisCSP. For example, an algorithm that incre-
mentally computes the set of all partial solutions for all pre-
vious variables according to a certain order would only use
a linear number of messages. However, the messages could
grow exponentially in size, and the algorithm would not have
any parallelism.

Recently, the sum-product algorithm [Kschischang et al.,
2001] has been proposed for certain constraint satisfaction
problems, for example decoding. It is an acceptable com-
promise as it combines a dynamic-programming style explo-
ration of a search space with a fixed message size, and can
easily be implemented in a distributed fashion. However, it is
correct only for tree-shaped constraint networks.

In this paper, we show how to extend the algorithm to arbi-
trary topologies using a pseudotree arrangement of the prob-
lem graph, and report on experiments with randomly gener-
ated problems. The algorithm is formulated for optimization
problems, but can be easily applied to satisfaction problems
by having relations with utility either 0 (for allowed tuples) or
negative values (for disallowed tuples). Utility maximization
produces a solution if there is an assignment with utility 0.

2 Definitions & notation
A discrete multiagent constraint optimization problem
(MCOP) is a tuple < X ,D,R > such that:
• X = {X1, ..., Xm} is the set of variables/agents;
• D = {d1, ..., dm} is a set of domains of the variables,

each given as a finite set of possible values.
• R = {r1, ..., rp} is a set of relations, where a relation ri

is a function di1 × .. × dik → <
+ which denotes how

much utility is assigned to each possible combination of
values of the involved variables.

In this paper we deal with unary and binary relations, being
well-known that higher arity relations can also be expressed

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902833?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in these terms with little modifications. In a MCOP, any value
combination is allowed; the goal is to find an assignment X ∗

for the variables Xi that maximizes the sum of utilities.
For a node Xk, we define: Ri(Xk) = constraints of arity i

on Xk (where i is 1 or 2); Ngh(Xk) = the neighbors of Xk;
Rk(Xj) = constraints between Xk and its neighbor Xj .

3 Distributed constraint optimization for
tree-structured networks

For tree-structured networks, polynomial-time complete opti-
mization methods have been developed (e.g. the sum-product
algorithm [Kschischang et al., 2001] and the DTREE algo-
rithm from [Petcu and Faltings, 2004]).

In DTREE, the agents send UTIL messages (utility vectors)
to their parents. A child Xl of node Xk would send Xk a
vector of the optimal utilities u∗

Xl
(vj

k) that can be achieved
by the subtree rooted at Xl plus Rl(Xk) , and are compatible
with each value v

j
k of Xk.

For the leaf nodes it is immediate to compute these valu-
ations by just inspecting the constraints they have with their
single neighbors, so they initiate the process. Then each node
Xi relays these messages according to the following process:
• Wait for UTIL messages from all children. Since all of

the respective subtrees are disjoint, by summing them
up, Xi computes how much utility each of its values
gives for the whole subtree rooted at itself. This, to-
gether with the relation(s) between Xi and its parent Xj ,
enables Xi to compute exactly how much utility can be
achieved by the entire subtree rooted at Xi, taking into
account compatibility with each of Xj’s values. Thus,
Xi can send to Xj its UTIL message. Xi also stores its
optimal values corresponding to each value of Xj .

• If root node, Xi can compute the optimal overall util-
ity corresponding to each one of its values (based on all
the incoming UTIL messages), pick the optimal one, and
send a VALUE message to its children, informing them
about its decision.
Upon receipt of the VALUE message from its parent,
each node is able to pick the optimal value for itself (as
the previously stored optimal value corresponding to the
value its parent has chosen), and pass it on to its children.
At this point, the algorithm is finished for Xi.

The correctness of this algorithm was shown in the original
paper, as well as the fact that it requires a linear number of
messages.

4 Distributed constraint optimization for
general networks

To apply a DTREE-like algorithm to a cyclic graph, we first
need to arrange the graph as a pseudotree (it is known that
this arrangement is possible for any graph).

4.1 Pseudotrees
Definition 1 A pseudo-tree arrangement of a graph G is a
rooted tree with the same vertices as G and the property that

Figure 1: Example of a pseudotree arrangement.

adjacent vertices from the original graph fall in the same
branch of the tree (e.g. X0 and X11 in Figure 1).

Pseudotrees have already been investigated as a means
to boost search ([Freuder, 1985; Freuder and Quinn, 1985;
Dechter, 2003; Schiex, 1999]). The main idea with their use
in search, is that due to the relative independence of nodes
lying in different branches of the pseudotree, it is possible to
perform search in parallel on these independent branches.

We define the following elements (refer to Figure 1):
• P(X) - the parent of a node X: the single node higher in

the hierarchy of the pseudotree that is connected to the
node X directly through a tree edge (e.g. P (X4) = X1)

• C(X) - the children of a node X: the set of nodes lower
in the pseudotree that are connected to the node X di-
rectly through tree edges (e.g. C(X1) = {X3, X4})
• PP(X) - the pseudo-parents of a node X: the set of

nodes higher in the pseudotree that are connected to the
node X directly through back-edges (PP (X8) = {X1})

• PC(X) - the pseudo-children of a node X: the set of
nodes lower in the hierarchy of the pseudotree that are
connected to the node X directly through back-edges
(e.g. PC(X1) = {X8})

In the example from Figure 1 one can see that some of the
edges of the original graph are not part of the spanning tree
(otherwise the problem would be a tree). We call such edges
back-edges (e.g. the dashed edges 8 − 1, 12 − 2, 4 − 0),
and the other ones tree edges. We call a path in the graph
that is entirely made of tree edges, a tree-path. A tree-path
associated with a back-edge is the tree-path connecting the
two nodes involved in the back-edge (please note that since
our arrangement is a pseudotree, such a tree path is always
included in a branch of the tree).

For each back-edge, the node higher in the hierarchy that
is involved in that back-edge is called the back-edge handler
(in Figure 1, the dark nodes 0, 1 and 2 are handlers).

As it is already known, a DFS (depth-first search) tree is
also a pseudotree (although the inverse does not always hold).
So, a DFS tree obtained from the DFS traversal of the graph
starting from one of the nodes (chosen through a distributed
leader election algorithm) will do just fine. Due to the lack of
space we do not present here a procedure for the creation of a
DFS tree, and refer the reader to techniques like [Gallager et
al., 1979; Barbosa, 1996; Hamadi et al., 1998].



X8 → X3 X3 = v0
3 X3 = v1

3 ... X3 = vm−1
3

X1 = v0
1 u∗

X8
(v0

1) u∗

X8
(v0

1) ... u∗

X8
(v0

1)
... ... ... ... ...

X1 = vn−1
1 u∗

X8
(vn−1

1 ) u∗

X8
(vn−1

1 ) ... u∗

X8
(vn−1

1 )

Table 1: UTIL message sent from X8 to X3, in Figure 1

4.2 The DPOP algorithm
The algorithm has 3 phases. First, the agents establish the
pseudotree structure (see section 4.1) to be used in the fol-
lowing two phases. The next two phases are the UTIL and
VALUE propagations, which are similar to the ones from
DTREE - section 3.

Please refer to Algorithm 1 for a formal description of the
algorithm, and to the rest of this section for a detailed descrip-
tion of the UTIL phase. The VALUE phase is the same as in
DTREE.

UTIL propagation
As in DTREE, the UTIL propagation starts from the leaves
of the pseudotree and propagates up the pseudotree, only
through the tree edges. It is easy for an agent to identify
whether it is a leaf in the pseudotree or not: it must have a
single neighbor connected through a tree edge (e.g. X7 to
X13 in Figure 1).

In a tree network, a UTIL message sent by a node to its par-
ent is dependent only on the subtree rooted at the respective
node (no links to other parts of the tree), and the constraint
between the node and its parent. For an example see Fig-
ure 1, and consider the message (X6 → X2). This message is
clearly dependent only on the target variable X2, since there
are no links between X6 or X13 and any node above X2.

In a network with cycles (each back-edge in the pseudotree
produces a cycle), a message sent from a node to its parent
may also depend on variables above the parent. This hap-
pens when there is a back-edge connecting the sending node
with such a variable. For example, consider the message
(X8 → X3) in Figure 1. We see that the utilities that the
subtree rooted at X8 can achieve are not dependent only on
its parent X3 (as for X6 → X2). As X8 is connected with X1

through the backedge X8 → X1, X8 must take into account
this dependency when sending its message to X3.

This is where the dynamic programming approach comes
into play: X8 will compute the optimal utilities its subtree can
achieve for each value combination of the tuple 〈X3, X1〉. It
will then assemble a message as a hypercube with 2 dimen-
sions (one for the target variable X3 and one for the back-
edge handler X1), and send it to X3 (see Table 1).

This is the key difference between DTREE and DPOP:
messages travelling through the network in DTREE always
have a single dimension (they are linear in the domain size of
the target variable), whereas in DPOP, messages have multi-
ple dimensions (one for the target variable, and another one
for each context variable).

Combining messages - dimensionality increase
Let us consider the example from Figure 1: X5 receives 2
messages from its children X11 and X12; the message from

Algorithm 1: DPOP - Distributed pseudotree-
optimization procedure for general networks.

1: DPOP(A,X ,D,R)
Each agent Xi executes:

2:
3: Phase 1: pseudotree creation
4: elect leader from all Xj ∈ X
5: elected leader initiates pseudotree creation
6: afterwards Xi knows P(Xi), PP(Xi), C(Xi) and PC(Xi)
7: Phase 2: UTIL message propagation
8: if |Children(Xi)| == 0 (i.e. Xi is a leaf node) then
9: UTILXi

(P(Xi))← Compute utils(P(Xi), PP(Xi))
10: Send message(P(Xi), UTILXi

(P(Xi)))
11: activate UTIL Message handler()
12: Phase 3: VALUE message propagation
13: activate VALUE Message handler()
14: END ALGORITHM
15:
16: UTIL Message handler(Xk,UTILXk

(Xi))
17: store UTILXk

(Xi)
18: if UTIL messages from all children arrived then
19: if Parent(Xi)==null (that means Xi is the root) then
20: v∗

i ← Choose optimal(null)
21: Send V ALUE(Xi, v

∗

i ) to all C(Xi) and PC(Xi)
22: else
23: UTILXi

(P(Xi))← Compute utils(P(Xi), PP(Xi))
24: Send message(P(Xi), UTILXi

(P(Xi)))
25: return
26:
27: VALUE Message handler(Xk,vk)
28: add Xk = vk to agent view
29: if VALUE messages came from P (Xi) and all PP (Xi)

then
30: Xi ← v∗

i = Choose optimal(agent view)
31: Send V ALUE(Xi, v

∗

i ) to all C(Xi) and PC(Xi)
32:
33: Choose optimal(agent view)
34:

v∗

i ← argmaxvi

∑

Xl∈C(Xi)

UTILXl
(vi, PP (Xi), P (Xi))

35: return v∗

i

36:
37: Compute utils(P(Xi), PP(Xi))
38: for all combinations of values of Xk ∈ PP (Xi) do
39: let Xj be Parent(Xi)
40: similarly to DTREE, compute a vector UTILXi

(Xj)
of all

{

UtilXj
(v∗

i (vj), vj)|vj ∈ Dom(Xj)
}

41: assemble a hypercube UTILXj
(Xi) out of all these

vectors (with |PP (Xi)|+ 1 dimensions).
42: return UTILXj

(Xi)



X11 has X0 as context, and the one from X12 has X2 as con-
text. Both have one dimension for X5 (target variable) and
one dimension for their context variable (X0 and X2 respec-
tively), therefore, their dimensionality is 2. X5 needs to send
out its message to its parent (X2). X5 considers all possible
values of X2, and for each one of them, all combinations of
values of the context variables (X0 and X2) and X5 are con-
sidered; the values of X5 are always chosen such that the opti-
mal utilities for each tuple < X0 ×X2 ×X2 > are achieved.
Note that since X2 is both a context variable and the target
variable, the resulting message has 2 dimensions, not 3.

One can think of this process as the cross product of mes-
sages X11 → X5 and X12 → X5 resulting in a hypercube
with dimensions X0, X2 and X5, followed by a projection on
the X5 axis, which retains the optimal utilities for the tuples
< X0 ×X2 > (optimizing w.r.t. X5 given X0 and X2).
Collapsing messages - dimensionality decrease
Whenever a multi-dimensional UTIL message reaches a tar-
get variable that occupies one dimension in the message (a
back-edge handler), the target variable optimizes itself out of
the context, and the outgoing message looses the respective
dimension.

We can take the example of X1, which is initially present
in the context of the message X8 → X3: once the message
arrives at X1, since X1 does not have any more influence on
the upper parts of the tree, X1 can ”optimize itself away” by
simply choosing the best value for itself, for each value of its
parent X0 (the normal DTREE process). Thus, one can see
that a back edge handler (X1 in our case) appears as an extra
dimension in the messages travelling from the lower end of
the back edge (X8) to itself, through the tree path associated
with the back edge (X8 → X3 → X1).

5 Complexity analysis
The message propagation is similar to DTREE, so the num-
ber of messages is linear. The complexity of this method lies
in the size of the messages (they are exponential in their di-
mension). We have seen that a back-edge only influences the
dimensionality of the messages travelling through its associ-
ated tree-path, and otherwise has no influence on other parts
of the pseudotree. It follows that increases of dimensional-
ity can happen only when such tree-paths overlap for at least
one edge. Furthermore, if we consider the case of several
back-edges having the same handler, we see that their tree-
paths necessarily overlap, but this produces only an increase
of 1 dimension (the handler variable itself), and not one for
each back-edge. Thus, it is easy to see that the overall com-
plexity is exponential in the maximal number of overlaps be-
tween tree-paths associated with back-edges that have differ-
ent handlers. As an example, consider Figure 1: the overall
complexity is given by the two back-edges X11 → X0 and
X12 → X2, whose associated tree-paths intersect on the edge
X5 → X2.

We will show in the following that the maximal message
size can be characterized by the induced width of the graph
ordered according to the DFS traversal of the pseudotree.
Dechter ([Dechter, 2003], chapter 4, pages 86-88) gives us
a way to obtain this parameter: ”the fillup method”. First, we

build the induced graph from the original graph as follows:
we choose an ordering of the graph and process the nodes re-
cursively (bottom up) along the chosen order; when a node
is processed, all its parents are connected (if not already con-
nected). The induced width is the maximum number of par-
ents of any node in the induced graph.

If we consider as an ordering the DFS traversal of the pseu-
dotree, we easily see that any given node cannot have more
than one parent, except when there is at least one back-edge
connecting it with one (or more) pseudoparents.

If no node in the pseudotree has more than one parent, the
graph is obviously a tree (no extra edges). Dechter showed
that in this case, the width of the graph is 1. This case reduces
to DTREE, which requires linear time and memory.

If there is a node Xi with more than one ancestor, the fillup
method connects Xi’s parent (Xk) with its pseudoparent Xj

(the handler of the back-edge Xi → Xj). Then, Xk is pro-
cessed, which now has two ancestors: its own parent, and
Xj (Xk was connected with Xj in the previous step). There-
fore, another link is added between Xk and Xj . Recursively,
the process repeats along the tree-path between Xi and Xj ,
adding one edge between Xj and each node along that path.

We see that the width of the nodes along that tree-path has
increased by 1 (giving an increase of 1 also for the induced
width of the graph), and that nothing else is affected (edges
are added only between Xj and the nodes along the tree-path
Xi → Xj).

Let us consider what would happen if there were another
back-edge in the pseudotree. There are 3 possible cases:

1. the associated tree-paths of the back-edges do not over-
lap: the fill-up method adds one edge to all nodes along
the two tree-paths, from their lower-ends all the way up
the pseudotree to their respective back-edge handlers;
however, since the tree-paths are disjoint, each node
increases its width only by one; therefore the induced
width of the graph also increases only by one;

2. the associated tree-paths of the back-edges overlap, and
they have the same back-edge handler: edges are added
only once (one handler) from the handler to the nodes on
the tree-paths of the back-edges, even when they over-
lap; therefore, there is an increase in width only by one;

3. the associated tree-paths of the back-edges overlap, and
they have different back-edge handlers.
Consider an example tree-path X1 −X2 −X3 −X4 −
X5 − X6; suppose there are 2 back-edges X5 → X2,
and X6 → X3. We see that their respective tree-paths
overlap on the edges X5 → X4 and X4 → X3. The
recursive process begins from the lowest node in the or-
dering (X6), and starts adding edges: X3 → X5 and
X2 → X4. The result is that we have two back-edges
(X5 → X2 and X6 → X3) with overlapping tree-paths
and different back-edge handlers (X2 and X3); thus, the
induced width of the graph is given by the width of node
5, which is 3.

We can conclude that the width of the graph induced by the
ordering given by the DFS traversal of the pseudotree is ac-
tually given by the number of back-edges with different han-
dlers whose corresponding tree-paths overlap.



Theorem 1 Algorithm 1 requires a linear number of mes-
sages, the largest one being space-exponential in the induced
width of the pseudotree.

PROOF.
There are n − 1 UTIL messages (one through each tree-

edge), and then m VALUE messages (one through each one
of the m edges of the graph).

As for the second part of the claim (maximal message
size equals induced width), we saw in the previous section
that both these quantities are equal to the maximal number
of overlaps between tree-paths associated with back-edges
that have different handlers. Thus, we can conclude that the
largest message is exponential in the width of the graph in-
duced by the pseudotree ordering.

2

Exponential size messages are not necessarily a problem in
all setups (depending on the resources available and on the in-
duced width - low width problems generate small messages!)

However, when the maximum message size is limited, one
can serialize big messages using a simple technique: the
back-edge handlers ask explicitly for valuations for each one
of their values sequentially, so each message can have cus-
tomizable size.

A workaround against exponential memory is possible by
renouncing exactness, and propagating valuations for the
best/worst value combinations (upper/lower bounds) instead
of all combinations.

6 Comparison with other approaches
Schiex [Schiex, 1999] notes the fact that so far, pseudotree
arrangements have been mainly used for search procedures
(essentially backtrack-based search, or branch-and-bound for
optimization). All these procedures have a worst case com-
plexity exponential in the depth of the pseudotree arrange-
ment (basically because all the variables on the longest
branch from root to a leaf have to be instantiated sequentially,
and all their value combinations tried out).

Our approach exhibits a worst case complexity exponential
in the width of the graph induced by the pseudotree ordering.

Arnborg shows in [Arnborg, 1985] that finding a min-width
ordering of a graph is NP-hard; however, the DFS traversal
of the graph has the advantage that it produces a good ap-
proximation, and is really easy to implement in a distributed
context.

It was shown in [Bayardo and Miranker, 1995] that there
are ways to obtain shallow pseudotrees (within a logarith-
mic factor of the induced width), but these require intri-
cate heuristics like the ones from [Freuder and Quinn, 1985;
Maheswaran et al., 2004], which have so far not been adapted
to a distributed setting (also noted by the authors of the sec-
ond paper).

Furthermore, it was shown by Dechter in [Dechter and Fat-
tah, 2001] that the induced width is always less than or at
most equal with the pseudotree height; thus we can conclude
theoretically that our algorithm will always do at least as well
as a pseudotree backtrack-based algorithm on the same pseu-
dotree ordering.

It is also to our advantage that our algorithm will nicely do
with a simple DFS ordering, without the need to employ so-
phisticated heuristics to minimize its depth, because the depth
of the pseudotree is irrelevant to the complexity. To see this
fundamental difference, consider a problem that is a ring with
100 nodes. A DFS ordering of such a graph would yield a
pseudotree with height 100, and one back edge, thus induced
width 2. A backtracking algorithm would be exponential in
100, whereas our algorithm is exponential in 2.

7 Experimental evaluation
One of our experimental setups is the sensor grid testbed from
[Bejar et al., 2005]. Briefly, there is a set of targets in a sensor
field, and the problem is to allocate 3 different sensors to each
target. This is a NP-complete resource allocation problem.

In [Bejar et al., 2005], random instances are solved by
AWC (a complete algorithm for constraint satisfaction). The
problems are relatively small (100 sensors and maximum 18
targets, beyond which the problems become intractable). Our
initial experiments with this setup solve to optimality prob-
lems in the 400 sensors grid, with up to 40 targets.

Another setup is the one from [Maheswaran et al., 2004],
where there are corridors composed of squares which indi-
cate areas to be observed. Sensors are located at each ver-
tex of a square; in order for a square to be ”observed”, all
4 sensors in its vertices need to be focused on the respective
square. Depending on the topology of the grid, some sensors
are shared between several squares, and they can observe only
one of them at a time. The authors test 4 improved versions
of ADOPT (current state of the art) on 4 different scenarios,
where the corridors have the shapes of capital letters L, Z, T
and H (their results and a comparison with DPOP are in Ta-
ble 2). One can see the dramatic reduction of the number of
messages required (in some cases orders of magnitude), even
for these very small problem instances (16 variables). The ex-
planation is that our algorithm always produces a linear num-
ber of messages. This fact translates into our algorithm’s abil-
ity to solve arbitrarily large instances of this particular kind of
real-world problems.

There is of course a question about the size of the mes-
sages. However, these problems have graphs with very low
induced widths (2), basically given by the intersections be-
tween corridors. Thus, our algorithm employs linear mes-
sages in most of the parts of the problems, and only in the in-
tersections are created 2 messages with 2 dimensions (in this
case with 64 values each). In real world scenarios, sending
a few larger messages is preferable to sending a lot of small
messages because of the much lower overheads implied (dif-
ferences can go up to orders of magnitude speedups).

8 Conclusions and future work
We presented in this paper a new complete method for dis-
tributed constraint optimization. This method is a utility-
propagation method that extends tree propagation algorithms
like the sum-product algorithm or DTREE to work on arbi-
trary topologies using a pseudotree structure. It requires a
linear number of messages, the largest one being exponen-
tial in the induced width along the particular pseudotree cho-



Algo/Scenario Test L Test Z Test T Test H
MCN , No Pass 626.4 1111.64 1841.28 1898.04
MLSP, No Pass 597.88 663.32 477.56 679.36

MCN , Pass 95.67 101.90 94.93 258.07
MLSP , Pass 81.77 91.5 107.77 255.2

DPOP 30 30 18 30

Table 2: DPOP vs 4 ADOPT versions: number of messages.

sen. This method reduces the complexity from domn (stan-
dard backtracking) to domw, where n=number of nodes in the
problem and w=the induced width along the particular pseu-
dotree chosen. For loose problems, n � w holds and our
method produces important speedups (even orders of magni-
tude fewer messages). Our experiments show that our method
is the first one to be able to handle effectively arbitrarily large
instances of practical problems while using a linear number
of messages.

Finding the minimum width pseudotree is a NP-complete
problem, so in our future work we will investigate heuristics
for finding low width pseudotrees.

9 Acknowledgements
We would like to thank Rina Dechter and Radu Marinescu for
insightful discussions and Jonathan Pearce for provinding us
with experimental data from sensor networks simulations.

References
[Arnborg, 1985] S. Arnborg. Efficient algorithms for combi-

natorial problems on graphs with bounded decomposabil-
ity - a survey. BIT, (25):2–23, 1985.

[Barbosa, 1996] Valmir Barbosa. An Introduction to Dis-
tributed Algorithms. The MIT Press, 1996.

[Bayardo and Miranker, 1995] Roberto Bayardo and Daniel
Miranker. On the space-time trade-off in solving constraint
satisfaction problems. In Proceedings of the 15th Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-
95, 1995.

[Bejar et al., 2005] Ramon Bejar, Cesar Fernandez, Magda
Valls, Carmel Domshlak, Carla Gomes, Bart Selman, and
Bhaskar Krishnamachari. Sensor networks and distributed
CSP: Communication, computation and complexity. Arti-
ficial Intelligence, 161(1-2):117–147, 2005.

[Dechter and Fattah, 2001] Rina Dechter and Yousri El Fat-
tah. Topological parameters for time-space tradeoff. Arti-
ficial Intelligence, 125(1-2):93–118, 2001.

[Dechter, 2003] Rina Dechter. Constraint Processing. Mor-
gan Kaufmann, 2003.

[Freuder and Quinn, 1985] Eugene C. Freuder and
Michael J. Quinn. Taking advantage of stable sets
of variables in constraint satisfaction problems. In
Proceedings of the 9th International Joint Conference on
Artificial Intelligence, IJCAI-85, 1985.

[Freuder, 1985] Eugene C. Freuder. A sufficient condition
for backtrack-bounded search. Journal of the ACM, 1985.

[Gallager et al., 1979] R.G. Gallager, P.A. Humblet, and
P.M. Spira. A distributed algorithm for minimum weight
spanning trees. Technical Report LIDS-P-906-A, Mas-
sachusetts Inst. of Technology, 1979.

[Hamadi et al., 1998] Y. Hamadi, C. Bessière, and J. Quin-
queton. Backtracking in distributed constraint networks.
In ECAI-98, pages 219–223, 1998.

[Kasif, 1986] Simon Kasif. On the parallel complexity of
some constraint satisfaction problems. In Proceedings of
the National Conference on Artificial Intelligence, AAAI-
86, pages 349–353, Philadelphia, PA, 1986.

[Kschischang et al., 2001] Frank R. Kschischang, Brendan
Frey, and Hans Andrea Loeliger. Factor graphs and the
sum-product algorithm. IEEE Transactions On Informa-
tion Theory, 2001.

[Maheswaran et al., 2004] Rajiv T. Maheswaran, Milind
Tambe, Emma Bowring, Jonathan P. Pearce, and Pradeep
Varakantham. Taking DCOP to the realworld: Efficient
complete solutions for distributed multi-event scheduling.
In AAMAS, 2004.

[Meisels and Zivan, 2003] Amnon Meisels and Roie Zivan.
Asynchronous forward-checking on DisCSPs. In Proceed-
ings of the Distributed Constraint Reasoning Workshop,
IJCAI 2003, Acapulco, Mexico, 2003.

[Modi et al., 2003] P. Modi, W. Shen, M. Tambe, and
M. Yokoo. An asynchronous complete method for dis-
tributed constraint optimization, 2003.

[Petcu and Faltings, 2004] Adrian Petcu and Boi Faltings. A
distributed, complete method for multi-agent constraint
optimization. In CP 2004 - Fifth International Work-
shop on Distributed Constraint Reasoning (DCR2004) in
Toronto, Canada, September 2004.

[Schiex, 1999] Thomas Schiex. A note on CSP graph param-
eters. Technical report, INRA, 1999.

[Silaghi et al., 2000] Marius-Calin Silaghi, Djamila Sam-
Haroud, and Boi Faltings. Asynchronous search with ag-
gregations. In AAAI/IAAI, pages 917–922, Austin, Texas,
2000.

[Yokoo and Hirayama, 2000] Makoto Yokoo and Katsutoshi
Hirayama. Algorithms for distributed constraint satisfac-
tion: A review. Autonomous Agents and Multi-Agent Sys-
tems, 3(2):185–207, 2000.

[Yokoo et al., 1992] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, and Kazuhiro Kuwabara. Distributed con-
straint satisfaction for formalizing distributed problem
solving. In International Conference on Distributed Com-
puting Systems, pages 614–621, 1992.

[Yokoo et al., 1998] Makoto Yokoo, Edmund H. Durfee,
Toru Ishida, and Kazuhiro Kuwabara. The distributed con-
straint satisfaction problem - formalization and algorithms.
IEEE Transactions on Knowledge and Data Engineering,
10(5):673–685, 1998.


