The Complexity of Asynchronous Byzantine Consensus

Partha Dutta, Rachid Guerraoui and Marko Vukolić
Distributed Programming Laboratory, EPFL CH-1015 Lausanne, Switzerland

Abstract

This paper establishes the first theorem relating resilience, round complexity and authentication in distributed computing. We give an exact measure of the time complexity of consensus algorithms that tolerate Byzantine failures and arbitrary long periods of asynchrony as in the Internet. The measure expresses the ability of processes to reach a consensus decision in a minimal number of rounds of information exchange, as a function of (a) the ability to use authentication and (b) the number of actual process failures, in those rounds, as well as of (c) the total number of failures tolerated and (d) the system configuration. The measure holds for a framework where the different roles of processes are distinguished such that we can directly derive a meaningful bound on the time complexity of implementing robust general services in practical distributed systems. To prove our theorem, we establish certain lower bounds and we give algorithms that match these bounds. The algorithms are all variants of the same generic asynchronous Byzantine consensus algorithm, which is interesting in its own right.

1 Introduction

1.1 Context

We establish a theorem on the complexity of the consensus problem in a general distributed system framework composed of three kinds of processes [21]: proposers, acceptors and learners (Fig. 1). Basically, the problem consists for the learners to decide on a common value among those proposed by the proposers, using acceptors as witnesses that help ensure the agreement. Every learner is supposed to eventually learn a value (liveness) that is the same proposed value for all learners (safety) [2]. Measuring the complexity of learning a decision in this framework automatically derives a measure of the complexity of state machine replication, a general technique to build robust distributed services $[19,31]$.

We study consensus algorithms that tolerate Byzantine failures. A Byzantine failure can either correspond to a crash or a malicious behavior (by default, a failure means a Byzantine failure). A process is malicious if it deviates from the algorithm assigned to it in a way that is different from simply stopping all activities (crashing). Besides process failures, the algorithms we consider also tolerate arbitrarily long periods of asynchrony, during which the relative speeds of processes and communication delays are unbounded. Such algorithms are sometimes called asynchronous [6,21]. We assume however that the duration of the asynchronous periods and their number of occurrences are both finite, otherwise consensus is known to be impossible [14]. Processes that do not fail are called correct processes, and they can eventually communicate among each other in a timely manner. The model assumed here, called the eventually synchronous model [12], matches practical systems like the Internet which are often synchronous and sometimes asynchronous. Whereas it is important to tolerate periods of asynchrony and the largest number of faults possible, it is also important to optimize algorithms for favorable, and most frequent, situations where the system is synchronous and very few processes fail.

Clearly, it is never possible to learn a decision in one round of information exchange (we say communication round) and yet ensure agreement despite possible Byzantine failures. There are however algorithms [6] where, in certain favorable situations, a decision is learned after three communication rounds by all correct learners: we talk about fast learning. In fact, as conjectured in [21], and as we show in this paper, there are even slightly more favorable situations, which are still very
plausible in practice, under which learning can be achieved in two communication rounds: we talk in this case about very fast learning and a proposer from which a value can be learned very fast is called a privileged proposer. The theorem we establish in this paper determines the exact conditions under which very fast (resp. fast) learning can be achieved. Underlying the theorem lies the notion of favorable (resp. very favorable) runs that precisely captures the favorable situations we mentioned above. Namely, a run r of a consensus algorithm A is said to be very favorable (resp. favorable) if: (1) r is synchronous, (2) a single (correct) privileged proposer p_{l} proposes a value in r and (3) at most $Q \leq F$ (resp. more than Q but at most F) acceptors are faulty (here, F is one of the resilience thresholds define below). Basically, very fast (resp. fast) learning is achieved in very favorable (resp. favorable) runs of algorithm A.

Our theorem is general in that it is parameterized by (1) different resilience thresholds, (2) different system configurations, as well as (3) the ability of processes to use authentication primitives (public-key cryptography) [30] to achieve fast (resp. very fast) learning.

1. We distinguish two resilience thresholds: M and $F ; M$ denotes the maximum number of acceptor malicious failures despite which consensus safety is ensured (the number of acceptor crash-only failures does not influence safety); F denotes the maximum number of acceptor failures despite which consensus liveness is ensured. Particularly interesting is the case where $M>F$: consensus safety should be preserved despite M acceptor malicious failures, but liveness is guaranteed only if the number of acceptor failures is at most F.
2. We distinguish two system configurations: C_{1} and $C_{2} ; C_{1}$ is the configuration where at least one privileged proposer might not be an acceptor, or there are at least two privileged proposers (Fig. 1(a)); C_{2} is the configuration where there is only one privileged proposer, which is also one of the acceptors (Fig. 1(b)).
3. Finally, we also distinguish the case where the processes are allowed to use authentication to achieve very fast (resp. fast) learning from the case where they are not. Note that, in both cases, we do not prevent processes from using authentication in runs that do not enable very fast or fast learning, typically non-favorable runs with proposer failures and asynchronous periods. Roughly, authentication allows the recipient of the message to validly claim to a third party that it received the message from the actual original sender of the message [30]. This ability is a major source of overhead $[24,27]$ and hence, we would typically like to avoid using authentication for (very) fast learning.

Fig. 1. Very fast and fast learning in each configuration

1.2 Theorem

The theorem states that there is a consensus algorithm that:

1. Achieves very fast learning in configuration C_{1} despite the failure of Q acceptors if and only if the total number of acceptors in the system $\left(N_{a}\right)$ is such that $N_{a}>2 M+F+2 Q$. In addition, the same algorithm achieves fast learning despite the failure of F acceptors,

- with authentication, given the same total number of acceptors, N_{a}.
- without authentication, if and only if N_{a} is also greater than $2 F+M+\min (M, Q)$.

2. Achieves very fast learning in configuration C_{2} with (resp. without) authentication despite the failure of Q acceptors if and only if $N_{a}>2(M-1)+F+2 Q$ (resp. $N_{a}>\max (2(M-1)+F+$ $2 Q, 2 M+F+Q)$). In addition, the same algorithm achieves fast learning despite the failure of F acceptors,

- with authentication, given the same total number of acceptors, N_{a}.
- without authentication, if and only if N_{a} is also greater than $2 F+(M-1)+\min (M-1, Q)$.

To help understand some of the parameters of the theorem, let us illustrate them through some specific interesting cases and focus on configuration C_{1} where authentication does not impact the ability to achieve very fast learning.

1. $F=M$. Here we consider consensus algorithms that are correct when at most $F=M$ acceptors fail. At one extreme, very fast (resp. fast) learning is possible without authentication when ($Q=0$) no acceptor fails (resp. F acceptors fail) if and only if $N_{a}>3 F$; i.e., less than one-third of the total number of acceptors can fail. At the other extreme, very fast learning is possible without authentication when the maximum possible number of acceptors fail $(Q=F)$ if and only if $N_{a}>5 F$; i.e., less than one-fifth of the total number of acceptors can fail. In the second case, very fast learning is possible whenever fast learning is also possible.
2. $F=3$ and $M=1$. Here we consider consensus algorithms that are correct when at most $F=3$ acceptors fail, out of which at most $M=1$ acceptors are malicious. For such algorithms, when for example $Q=1$ acceptor fails, very fast learning is possible only if $N_{a} \geq 2 M+F+2 Q+1=8$. However, with $N_{a}=8$ acceptors, fast learning is only possible with authentication. To achieve fast learning without authentication, $N_{a} \geq 2 F+M+\min (M, Q)+1=9$ acceptors are required.
3. $F=2, M=3$. Here we consider consensus algorithms that are correct when at most $F=2$ acceptors fail and possibly only safe when at most $M=3$ acceptors are malicious (i.e., these algorithms are correct when there are at most 2 failures, and they are safe but may not be live when there are 3 malicious failures). For such algorithms, when for example $Q=1$ acceptor fails, very fast learning is possible only if $N_{a} \geq 2 M+F+2 Q=11$. At the same time, the same number of acceptors allows fast learning without authentication (because N_{a} is greater than $2 F+M+\min (M, Q)=8)$.

In short, the theorem expresses, in a general and precise way, a fundamental trade-off between the resilience and complexity of asynchronous Byzantine consensus. Two sides of complexity are considered: the communication complexity (sometimes called latency), which depicts the number of rounds of information exchange before a decision is learned, as well as the authentication complexity, considered a major overhead factor in Byzantine computing [24,27].

1.3 Proof Overview

The necessary parts of our theorem consist of a set of lower bounds. We prove these bounds using indistinguishability arguments that simultaneously exploit the asynchrony of the network and the Byzantine failures of the processes, in order to contradict the ability to achieve very fast (resp. fast) learning. For example, to show that very fast learning is impossible given a certain number of failures, we first construct two very favorable runs where some learner l learns two distinct
values very fast (i.e., in two communication rounds). Second, we exhibit two asynchronous runs with Byzantine failures that are respectively indistinguishable at l from the two very favorable synchronous runs, and hence l learns distinct values in the two asynchronous runs. Third, we make use of asynchrony and Byzantine failures in a way that the two asynchronous runs are indistinguishable to any learner distinct from l. This helps us build an eventually synchronous run in which Agreement is violated. Assuming that the processes can use authentication in effect restrict the range of the possible Byzantine behavior that we can exploit in the proof.

The sufficiency parts of our theorem are shown by exhibiting algorithms that match the corresponding lower bounds. Interestingly, these algorithms can all be viewed as variants from the same generic algorithm, which we call "Distributed consensus à Grande Vitesse" (DGV). DGV is parameterized by F, M (and Q) as well as by the underlying configuration considered $\left(C_{1}\right.$ vs. $\left.C_{2}\right)$. The algorithm constitutes an appealing building block to implement robust yet efficient distributed services on the Internet. DGV allows learning in two communication rounds (i.e., very fast learning) in very favorable runs, and, at the same time, gracefully degrades to allow learning in three communication rounds (i.e., fast learning) when the conditions are slightly less desirable, i.e., in favorable runs. Roughly, in DGV, if some decision value v was learned at time t, it is guaranteed that no proposer can impose a value other than v after time t. To achieve this, the value that acceptors can indeed accept is carefully selected on the basis of the acceptors estimates of the decision value up to that point of the execution, not to miss a value that may have been learned. In certain cases, potential disputes on which value should be accepted may arise, but these are solved by detecting the existence of the malicious acceptors that cause these disputes. DGV is composed of two parts: (1) a Locking module and (2) an Election module. In short, the Locking module ensures consensus safety whereas the Election module ensures consensus liveness under eventual synchrony assumption. The key element of DGV is its choose() function, within the Locking module, that determines which value should be accepted by an acceptor at a given point of execution. Variants of DGV are mainly obtained by varying implementations of this function.

1.4 Roadmap

In Section 2 we discuss related work. In Section 3 we recall the consensus problem and we define the model we consider in this paper. In Section 4 we show the necessary part of our theorem, by establishing and proving certain lower bounds, for both configurations (C_{1}, followed by C_{2}). In Section 5 we give the algorithms that match these lower bounds, as variants of our generic DGV algorithm.

2 Related Work

In the following, we first recall the historical context of asynchronous Byzantine consensus and its solvability bounds. Then we mention previous complexity. Finally, we compare our algorithm with related ones.

Byzantine consensus was introduced by Pease, Shostak and Lamport [26] in a synchronous model of distributed computation, where they established that two-third of correct processes is necessary and sufficient to solve the problem if processes do not use authentication. The same bound was extended in [4] to the asynchronous case, even if processes can use authentication. In the general framework of [21], which we consider in this paper, this translates into $N_{a}>3 F$ and $M=F$. In that framework, and for the more general case where $M \neq F$, it is not very difficult to extend the proof of [4] and show that $N_{a}>2 F+M$ is a necessary and sufficient condition to solve asynchronous Byzantine consensus [21].

In $[8,13]$, it was shown that any synchronous Byzantine consensus algorithm needs $t+1$ rounds of information exchange (communication rounds) to reach consensus, where t is the number of failures tolerated. The bound is given considering the case where all processes must simultaneously reach a decision. If the decision does not need to be reached simultaneously, then early decision is possible and $\min (f+2, t+1)$ rounds are needed for deciding $[9,17]$ in runs where $f \leq t$ processes are faulty. The model with asynchronous periods, called the eventually synchronous model, was first introduced by Dwork, Lynch and Stockmeyer in [12] (with language abuse, and as we mentioned in the introduction, algorithms in this model have been called asynchronous [6,21]). For asynchronous algorithms with crash failures, it was established that $f+2$ rounds are needed to achieve consensus in synchronous runs with f failures [11]. All these complexity bounds were established in a restricted framework where all processes play the same role.

In [21], Lamport motivated the study of consensus complexity bounds in a general framework with distinct proposers, acceptors and learners, for the ability of this framework to better match the practical use of consensus within state machine replication protocols [19, 31]. He conjectured a fundamental tight bound on the maximum resilience to achieve very fast learning in asynchronous Byzantine consensus. Recently, and concurrently with this paper, Lamport proved his conjecture for non-Byzantine failures in [22]. Our theorem generalizes that conjecture, which we thus prove for the Byzantine case as well. Our generalization goes in two directions. First, we consider the possibility of fast learning, besides very fast learning, and this can be viewed as a nice graceful degradation flavor for runs that are not favorable enough to allow very fast learning, but are still favorable enough to allow fast learning. Second, we also consider the impact of using authentication [30]. By doing so, we highlight the fact that Lamport's conjecture [21] holds only if very fast learning with authentication is precluded. In many systems, the use of authentication is far more expensive than several rounds of communication [24, 27]. It is thus of primary importance to state the precise impact of authentication on the number of communication rounds needed to achieve consensus.

Certain Byzantine consensus algorithms are synchronous (e.g., [28]), or assume that a subset of the system is synchronous [7]. The first asynchronous Byzantine consensus algorithm was given by Castro and Liskov in [6]. The algorithm, called Practical Byzantine Fault Tolerance (PBFT), considered the special case where $M=F$ and $N_{a}=3 F+1$. In PBFT, fast learning is achieved in synchronous runs with up to $F=M$ malicious acceptors and assuming a correct leader (i.e., what we call favorable runs in this paper). Very fast learning, which is possible in their case for $Q=0$ was not considered. Our DGV algorithm enables very fast learning if the leader is correct, the run is synchronous and up to Q acceptors fail (called very favorable runs in this paper). However, if Q^{\prime} acceptors fail, where $Q<Q^{\prime} \leq F$, DGV degrades gracefully and features the same complexity as PBFT (i.e., fast learning).

A deconstruction of the Paxos algorithm, similar to the decomposition of DGV we give in this paper, was given in [3] for the non-Byzantine case. Our decomposition makes it possible to have a reusable Locking module (capturing consensus safety properties), that can be combined with different Election algorithms (providing consensus liveness), in the same vein as [10]. For instance, our Election module can easily be shifted to the level of proposers or implemented by a deterministic scheduler. In comparison, in PBFT, the techniques used for ensuring safety were incorporated into the liveness providing part (the leader change algorithm). By introducing a pair of additional messages in certain (non-favorable) runs of DGV which, by the way, do not critically degrade the performance of the algorithm in these runs, we make the safety providing part of the algorithm (i.e., Locking module) independent from the liveness providing part of the algorithm (i.e., Election module). In practical implementations, one might of course consider removing these messages.

A few asynchronous Byzantine consensus algorithms enabling very fast learning have been recently proposed. Namely, these are Kursawe's optimistic Byzantine Agreement [18], Martin and

Alvisi's FaB Paxos (Fast Byzantine Paxos) [25], the oracle-based protocol by Friedman, Mostefaoui and Raynal [15], and Lamport's algorithm [23]. Kursawe's algorithm considers the specific case of $M=F$ and $N_{a}=3 F+1$, and enables very fast learning when $Q=0$. It does not allow fast learning if some acceptor actually fails (which is feasible in this case). Developed concurrently with this paper, Martin and Alvisi's FaB Paxos algorithm is simple and elegant: it considers configuration C_{1} and the case where $M=F=Q$ (therefore assuming $N_{a}=5 F+1$ acceptors), while enabling very fast learning despite F failures. This algorithm does not match the lower bound in configuration C_{2}, nor does it adapt to the general case where $M \neq F \neq Q$, in configuration C_{1}. The oracle-based randomized protocol by Friedman et al. considers the case where $M=F$ and $Q=0$ in configuration C_{1}, and achieves very fast learning with $N_{a}=5 F+1$ acceptors (more than required by our lower bound). Lamport's algorithm achieves very fast learning in configuration C_{1}.

To summarize, while certain algorithms, for some special values of Q, for the special case where $M=F$ and in configuration C_{1} were suggested in the literature, our DGV algorithm is the first generic one with respect to M, F and Q, that delivers optimal performance. Furthermore, even for the special case where $M=F$, we are not aware of any solution that handles the case where $Q \neq 0$ in configuration C_{2}. In addition, no algorithm combines very fast learning and fast learning: achieving both properties is not trivial, especially when handling the general values of M, F and Q and precluding authentication.

3 Preliminaries

In this paper we address the consensus problem, as defined in [21], in a distributed system composed of three sets of processes: (1) proposers $=\left\{p_{1}, p_{2}, \ldots, p_{N_{p}}\right\}$, (2) acceptors $=\left\{a_{1}, a_{2}, \ldots, a_{N_{a}}\right\}$, and (3) learners $=\left\{l_{1}, l_{2}, \ldots, l_{N_{l}}\right\}[20,21]$. In this problem, every proposer starts with a proposal value. Proposers may never propose a value, or may propose several times. Learners need to learn the same proposal value. Acceptors act as witnesses to help learners agree. On proposing a value, a proposer communicates with acceptors, and learners learn a value on receiving appropriate messages from the acceptors. More precisely, in every run of a consensus algorithm, only proposers propose values and learners learn values, such that the following properties hold:

- (Validity:) If a learner learns a value v, then some proposer proposes v^{1};
- (Agreement:) No two learners learn different values;
- (Termination:) If a correct proposer proposes a value, then eventually, every correct learner learns a value.

Processes may fail by arbitrarily deviating from the algorithm assigned to them. When a process fails by crashing, i.e., simply stop its execution, we say that it has crashed, and if it deviates from the algorithm in a way different from crashing, we say that it is malicious. We consider consensus algorithms that provide safety properties, i.e., Validity and Agreement, despite at most M malicious acceptors. Safety properties of consensus are preserved regardless of the number of acceptor that crashed, as long as the number of malicious acceptors is at most M. However, we consider consenus algorithms that provide liveness, i.e., Termination, only if the total number of acceptor failures is at most F. In the case where $M \geq F$, Validity and Agreement have to be preserved in all runs in which at most M acceptors fail. However, Termination might be violated and it is guaranteed only if the number of actual acceptor failures is at most F. Finally, any number of learners might fail by crashing. As in [21], we assume that learners are not malicious.

[^0]Every pair of processes is connected by a bi-directional channel that may duplicate, delay or lose messages, or may deliver them out of order. However, channels do not alter messages. We assume that every message m that is sent is unique and has a m.sender field that is supposed to contain a unique identifier of the sending process. We assume a computationally bounded adversary as well as standard cryptographic techniques in the design of Byzantine consensus algorithms [6]. We consider public-key cryptography [30] (PKC), message authentication codes [32] and message digests [29], where $D(m)$ denotes a digest of the message m and $\langle m\rangle_{\sigma_{p}}$ denotes m, accompanied by $D(m)$ digitally signed by process p. It is commonly admitted that PKC is usually considered pretty expensive [24,27]. As a consequence, and as pointed out in the introduction, we distinguish the case where processes can always use PKC (we say use authentication), including in favorable (or very favorable) runs to achieve fast (or very fast) learning, from the case where the processes can only use authentication when fast (or very fast) learning is not possible.

To circumvent the impossibility of fault-tolerant consensus in an asynchronous system [14], we make the following eventual synchrony assumptions [12]: in any run, there is a bound Δ_{c} and a time GST (Global Stabilization Time), such that any message sent by a correct process to a correct process at time $t^{\prime} \geq G S T$ is received by time $t^{\prime}+\Delta_{c} . \Delta_{c}$ and $G S T$ do not need to be known by the processes. We also assume an upper bound $\Delta_{\text {auth }}$ on the local computation related to PKC. We assume all other local computations to require negligible time.

Assume that every process starts consensus with some estimate of Δ_{c} and $\Delta_{\text {auth }}$ (the bounds on message transmission delay and local computations). We say that a run of the consensus algorithm is synchronous if: (1) all correct processes have the same estimates of Δ_{c} and $\Delta_{\text {auth }}$, say δ_{c} and $\delta_{\text {auth }}$, respectively, (2) $\delta_{c} \geq \Delta_{c}$ and $\delta_{\text {auth }} \geq \Delta_{\text {auth }}$, and (3) GST $=0$. Roughly speaking, in a synchronous run, no correct process times out waiting for messages from another correct process.

4 Lower Bounds

To precisely state the lower bounds underlying our theorem, we assume full information protocols in a round-by-round eventually synchronous model [16]. In each round, the processes send messages to all processes, receive messages in that round, update their states and move to the next round, such that the following properties hold. Denote by alive (k) the set of processes that complete round k. There is a round k such that for every round $k^{\prime} \geq k$, every message sent by a correct process in alive $\left(k^{\prime}\right)$ to another correct process in alive $\left(k^{\prime}\right)$ is delivered in round k^{\prime}. A synchronous run is then simply a run in which $k=1$. In our lower bounds, we assume that there are always at least two proposers and at least two learners.

First we prove the lower bounds for configuration C_{1}. Recall that the system is in configuration C_{1} if: (a) there is a single privileged proposer that is not an acceptor (configuration $C_{1 a}$), or (b) there is more than one privileged proposer (regardless of whether they are also acceptors or not - configuration $C_{1 b}$). Then we will consider configuration C_{2}, where there is a single privileged proposer, that is also an acceptor.

4.1 Configuration C_{1}

Consider the case with a single privileged proposer that is not an acceptor (configuration $C_{1 a}$).
Proposition L.1. Let A be any algorithm and p_{l} the only privileged proposer, which is furthermore not an acceptor. If in every very favorable run of A every correct learner learns a value by round 2 despite the failure of Q acceptors, then $N_{a}>2 Q+F+2 M$.

Fig. 2. Illustration of proof L.1: lower bound on very fast learning, configuration $C_{1 a}$ - case with a single privileged proposer that is not an acceptor

Proof L.1. Suppose by contradiction that $N_{a} \leq 2 Q+F+2 M$. We divide the set of acceptors into five sets, $Q_{1}, Q_{2}, F_{1}, M_{1}$ and M_{2}, where the first two sets are of size at most Q, the third set is of size at most F, and the last two sets are of size at most M, respectively. Without loss of generality we assume that each of these five set consists of only one process. If a set has more than one process, we simply modify the runs so that all processes inside a set receive the same set of messages, and if they fail, they fail at the same time, in the same way; the proof also holds if any of the bounds Q, F or M is 0 . Assume there are two learners l_{1} and l_{2}, and there are two proposers: the privileged proposer p_{l}, and proposer p_{x}.

Suppose p_{l} is correct and proposes a value at the beginning of round 1 . If a proposal value is learned in round 2 , then the only possible communication pattern is the following (remember that on proposing a value, the proposer communicate with acceptors, and learners learn a message on receiving appropriate messages from the acceptors): (Round 1) proposer p_{l} sends messages to all acceptors; (Round 2) every acceptor forwards the message received in the first round to every process. Learners on receiving a sufficient number of messages from acceptors learn a value.

We only consider the cases where p_{l} proposes 0 or 1 at the beginning or round 1 (as this is sufficient to prove the lower bound). Let $m 1$ and $m 0$ be the authenticated messages, sent by p_{l} in round 1 , when p_{l} is correct and proposes 1 or 0 , respectively. We say that an acceptor a_{i} plays 1 (resp. 0) to some acceptor or learner q_{j} in round k of some run r, if q_{j} cannot distinguish at round k, the run r from some run in which (1) a_{i} has received $m 1$ (resp. $m 0$) from p_{l} in the first round, and (2) a_{i} is correct. It is important to note that, due to the cryptographic assumptions we make, a_{i} can play 1 (or 0) only if a_{i} has received $m 1$ (resp. $m 0$) from p_{l}. (If p_{l} is faulty then p_{l} may send $m 1$ to a_{i} even if p_{l} proposed 0 , and thus, a_{i} may play 1.)

A very favorable partial run is a prefix of a very favorable run. From our assumption, in every very favorable run, the correct learners learn the proposal value (of p_{l}) by round 2. Consider the following two very favorable partial runs, R1 and R2 (The message patterns of the first rounds of these runs are illustrated in Figure 2).

R1: All processes except l_{1} and Q_{1} are correct. Proposer p_{l} proposes 1 in round $1, Q_{1}$ crashes before sending any message in round 2 , and learner l_{1} receives round 2 messages from all acceptors except Q_{1}. From our assumption on A, l_{1} learns 1 at the end of round 2 , and then, l_{1} crashes before sending any message in round 3 .

R2: All processes except l_{1} and Q_{2} are correct. Proposer p_{l} proposes 0 in round $1, Q_{2}$ crashes before sending any message in round 2 , and learner l_{1} receives round 2 messages from all acceptors except Q_{2}. From our assumption on A, l_{1} learns 0 at the end of round 2 , and then, l_{1} crashes before sending any message in round 3 .

We now construct three runs that are not very favorable.
R3: All processes are correct except (1) the proposer p_{l}, which is malicious, (2) acceptor F_{1}, which crashes before sending any message in round 2 , and (3) l_{1} which crashes before sending any message in round 3. In round 1 , proposer p_{l} sends $m 0$ to the acceptors Q_{1} and M_{1}, and $m 1$ to the rest of the acceptors. Acceptor F_{1} crashes such that no process receives round 2 message from F_{1}, and l_{1} crashes such that no process receives any round 3 message from l_{1}. From round 2, acceptors Q_{1} and M_{1} play 0 to all processes, and Q_{2} and M_{2} play 1 to all processes. In round 3 , correct proposer p_{x} proposes 0 . Since a correct proposer proposes, eventually correct learner l_{2} learns some value $v \in\{0,1\}$, say at round K.

R4: All processes are correct except (1) the proposer p_{l} and the acceptor M_{1}, which are malicious, and (2) learner l_{1} which crashes before sending any message in round 3 . In round 1 , proposer p_{l} sends $m 0$ to acceptor Q_{1}, both $m 1$ and $m 0$ to M_{1}, and $m 1$ to the rest of the acceptors. In round 2 and higher rounds, acceptor Q_{1} plays 0 to all processes, acceptors Q_{2}, F_{1} and M_{2} play 1 to all processes. However, malicious acceptor M_{1} plays 1 to learner l_{1} and plays 0 to all other processes. (M_{1} can do so because it has received both $m 1$ and $m 0$.) Learner l_{1} receives round 2 message from all acceptors except Q_{1}. Clearly, at the end of round 2, l_{1} cannot distinguish R4 from R1 (because it receives the same set of messages from the acceptors in round 2 of both runs), and hence, learns 1 . Then learner l_{1} crashes before sending any message in round 3 . In round 3 , correct proposer p_{x} proposes 0 . Up to round K, all non-crashed (i.e., processes that are correct or malicious) processes receive messages from all other non-crashed processes distinct from F_{1} (i.e., all messages sent by F_{1} are lost up to round K). At the end of round K, no correct process distinct from F_{1} can distinguish R4 from R3 (because every non-crashed acceptor different from F_{1} plays identical values in both runs), and hence, learner l_{2} learns $v \in\{0,1\}$ at round K. All non-crashed processes receive messages from all other non-crashed processes (including F_{1}) in rounds higher than K.

R5: All processes are correct except (1) the proposer p_{l} and the acceptor M_{2}, which are malicious, and (2) learner l_{1} which crashes before sending any message in round 3 . In round 1 , proposer p_{l} sends $m 1$ to acceptor Q_{2}, both $m 1$ and $m 0$ to M_{2}, and $m 0$ to the rest of the acceptors. In round 2 and higher rounds, acceptor Q_{2} plays 1 to all processes, acceptors Q_{1}, F_{1} and M_{1} play 0 to all processes. However, malicious acceptor M_{2} plays 0 to learner l_{1} and plays 1 to all other processes. (M_{2} can do so because it has received both $m 1$ and $m 0$.) Learner l_{1} receives round 2 message from all acceptors except Q_{2}. Clearly, at the end of round $2, l_{1}$ cannot distinguish R5 from R2 (because it receives the same set of messages from the acceptors in round 2 of both runs), and hence, learns 0 . Then learner l_{1} crashes before sending any message in round 3 . In round 3 , correct proposer p_{x} proposes 0 . Up to round K, all non-crashed processes receive messages from all other non-crashed processes distinct from F_{1} (i.e., all messages sent by F_{1} are lost up to round K.) At the end of round K, no correct process distinct from F_{1} can distinguish R5 from R3 (because every non-crashed acceptor different from F_{1} plays identical values in both runs), and hence, learner l_{2} learns $v \in\{0,1\}$ at round K. All non-crashed processes receive messages from all other non-crashed processes (including F_{1}) in rounds higher than K.

Clearly, either R4 or R5 violates consensus Agreement: l_{2} decides v in both runs, but l_{1} decides 1 in R4 and 0 in R5. However, in both runs, at most M acceptors are faulty: a contradiction with the requirement that A does not violate Validity and Agreement if M processes are faulty.

Remarks (L.1). In round 3 of R3, the proposal by p_{x} is required to ensure that l_{2} decides in R3. If p_{x} does not propose then the only (possible) proposal in the run is by the malicious proposer p_{l}, and hence, the Termination property does not require any learner to decide. Secondly, for ease of presentation we state in the proof that p_{l} sends two messages ($m 1$ and $m 0$) to M_{1} in round 1 of R4. In fact, p_{l} may sends a single message such that M_{1} can recover both $m 1$ and $m 0$ from it. Since both p_{l} and M_{1} are malicious in R4, they collude to achieve this. (A similar argument holds for messages from p_{l} to M_{2} in round 1 of R5.)

Now we sketch the proof of the same bound in the case of configuration $C_{1 b}$, i.e. where there are two (or more) privileged proposers (that do not necessarily have to be malicious). The proof is very similar to proof L.1. We will refer to this proof as to proof L.2.

Proposition L.2. Let A be any algorithm, and p_{v} and p_{w} two privileged proposers. If, in every very favorable run of A, in which a single privileged proposer proposes, every correct learner learns
a value by round 2 , then $N_{a}>2 Q+F+2 M$. (To strengthen this proposition, we assume that privileged proposers may fail only by crashing.)

Proof L. 2 (sketch). The proof of this part of the theorem is a trivial modification of proof L.1, obtained as follows. Each run in proof L. 1 (R1 to R5) is modified to get five new runs (R1' to R 5 '). To get run $\operatorname{Ri}{ }^{\prime}$ from $\operatorname{Ri}(1 \leq i \leq 5)$, in round 1 , we remove the propose by proposer p_{l} and add propose(1) by p_{v} and propose(0) by p_{w}, and we define $m 1^{\prime}$ to be the message sent by p_{v} (on proposing 1) and $m 0^{\prime}$ to be the message sent by p_{w} (on proposing 0). In round 1 of Ri^{\prime}, an acceptors receives $m 1^{\prime}$ if it receives $m 1$ in Ri (and similarly for $m 0^{\prime}$). (Thus M_{1} receives messages from both p_{v} and p_{w} in round 1 of R4.) Acceptors play 1 on receiving $m 1^{\prime}$ and play 0 on receiving $m 0^{\prime}$. The rest of the proof remains the same. ${ }^{2}$

Now we prove the rest of part 1 of the theorem. This establishes the bound on the number of acceptors required for achieving fast learning without authentication combined with very fast learning (with or without authentication) in configuration $C_{1 a}$ (the proof can be migrated to configuration $C_{1 b}$ in the similar way proof L. 2 is derived from proof L.1). We refer to this proof as proof L.3. Clearly, any algorithm that achieves fast learning without authentication combined with very fast learning has a restricted authentication pattern:

1. The messages sent from the privileged proposer to acceptors in round 1 , and the messages sent from the acceptors to the learners in round 2 , may or may not be authenticated, and
2. The messages exchanged among acceptors in round 2 , and the messages sent from acceptors to the learners in round 3 , are not authenticated.

In this proof we use indistinguishability arguments, that exploit the fact that a malicious process can claim that it received a different value from a correct process than the one the correct process actually sent. This is possible, as we assume that the messages that are used for fast, but not for very fast learning, are not authenticated. In addition, we exploit the asynchrony of the network and the fact that malicious processes can cooperate.

Proposition L.3. Let A be any algorithm and p_{l} the only privileged proposer, which is a furthermore an acceptor, such that, in every very favorable (resp. favorable) run of A every correct learner learns a value by round 2 (resp. 3). In addition, suppose A satisfies the restricted authentication pattern. Then, $N_{a}>2 F+M+\min (M, Q)$.

Proof L.3. First, we consider the case where $M \geq Q$. Suppose, by contradiction, that $N_{a} \leq$ $2 F+M+Q$. We divide the set of acceptors into five sets, $F_{1}, F_{2}, M Q_{1}, Q_{1}$ and Q_{2}, where the first two sets are of size at most F, the third set is of size at most $M-Q$, and the last two sets are of size at most Q. Without loss of generality, we assume that each of these five sets consists of only one process. (If a set has more than one process, we just modify the runs so that all processes inside a set receive the same set of messages, and if they fail, they fail at the same time, in the same way. The proof also holds if any of Q, F or $M-Q$ is 0 .) We assume at least two learners, l_{1} and l_{2}, and two proposers: the potentially malicious privileged proposer p_{l}, and the proposer p_{x}.

We only consider the cases where p_{l} proposes 0 or 1 (as this is sufficient to prove the lower bound). Let $m 1$ and $m 0$ be the authenticated messages sent by p_{l} in round 1 , when p_{l} is correct and proposes 1 or 0 , respectively. We say that an acceptor a_{i} plays 1 (resp. (0) to some process a_{j} in round 2 of some run r if a_{j} cannot distinguish, at round 2 , run r from some run in which

[^1](1) a_{i} has received $m 1$ (resp. $m 0$) from p_{l} in the first round, and (2) a_{i} is correct. Furthermore, we say that an acceptor a_{i} plays a tuple $\left(f_{1}, f_{2}, m q_{1}, q_{1}, q_{2}\right)$ to some process a_{j} in round 3 of some run r if a_{j} cannot distinguish, at round 3 , the run r from some run in which (1) a_{i} has received the value f_{1} from F_{1}, f_{2} from $F_{2}, m q_{1}$ from $M Q_{1}, q_{1}$ from Q_{1} and q_{2} from Q_{2} in round 2 , and (2) a_{i} is correct. Here, a_{i} receives a value $x_{j}(0$ or 1$)$ from X_{j} means that X_{j} played x_{j} to a_{i} in round 2 and a_{i} received this message during the round 2 . If correct acceptor a_{i} does not receive any message from X_{j} in round $2, a_{i}$ plays $^{\prime}-^{\prime}$ in place of x_{j} in round 3.

A very favorable partial run is a prefix of a very favorable run. Similarly, a favorable partial run is a prefix of a favorable run. From our assumption, in every very favorable run (i.e., in the synchronous run in which up to Q acceptors fail and in which a single correct privileged proposer p_{l} proposes), the correct learners learn the proposal value (of p_{l}) by round 2 . Furthermore, in every favorable run (i.e., in the synchronous run in which up to $Q^{\prime}, Q<Q^{\prime} \leq F$, acceptors fail and in which the single correct privileged proposer p_{l} proposes), the correct learners learn the proposal value (of p_{l}) by round 3 . Keeping in mind that A satisfies restricted authentication pattern, consider the following runs: a favorable partial run R1 and a very favorable partial run R2. (The patterns of the messages exchanged in the initial rounds of runs are depicted in Figure 3.)

R1: All processes, except F_{1} and l_{1}, are correct. Proposer p_{l} proposes 1 in round $1, F_{1}$ crashes before sending any message in round 2 , and learner l_{1} receives round 3 messages from all acceptors, except from F_{1}. From our assumption on A, l_{1} learns 1 at the end of round 3 , and then l_{1} crashes before sending any message in round 4 .

R2: All processes, except l_{1} and Q_{1}, are correct. Proposer p_{l} proposes 0 in round $1, Q_{1}$ crashes before sending any message in round 2 , and learner l_{1} receives round 2 messages from all acceptors, except from Q_{1}. From our assumption on A, l_{1} learns 0 at the end of round 2 , and then, l_{1} crashes before sending any message in round 3 .

We now construct three non-favorable runs.

R3: All processes are correct except (1) the proposer p_{l}, which is malicious, (2) acceptor F_{2}, which crashes after sending the round 3 message to l_{1}, and (3) l_{1} which crashes before sending any message in round 4 . In round 1 , the proposer sends $m 1$ to the acceptors $F_{2}, M Q_{1}, Q_{1}$ and Q_{2}, and $m 0$ to F_{1}. In round 2, messages sent from F_{2} to $F_{1}, M Q_{1}$ and Q_{1} and messages sent from F_{1} to F_{2} are lost (this is possible as F_{2} crashes). All other messages of round 2 are delivered by the end of round 2 , except for the message sent from F_{1} to Q_{2}, that is delivered in round 3 . Note that, in round $3, F_{1}$ plays $(0,-, 1,1,1), F_{2}$ plays $(-, 1,1,1,1), M Q_{1}$ plays $(0,-, 1,1,1), Q_{1}$ plays $(0,-, 1,1,1)$ and Q_{2} plays $(-, 1,1,1,1)$. Note that, at the end of round $2, F_{2}$ and Q_{2} cannot distinguish R 3 from R1, so, in round 3 they send the same messages as in round 3 of run R1, including those they send to l_{1}. Learner l_{1} crashes such that no process receive any round 4 message from l_{1}. In round 4 , the correct proposer p_{x} proposes 0 . Since a correct proposer proposes, eventually a correct learner l_{2} learns some value $v \in\{0,1\}$, say at round K.

R4: All processes are correct except (1) the proposer p_{l} and the acceptors $M Q_{1}$ and Q_{1}, which are malicious, and (2) learner l_{1} which crashes before sending any message in round 4 . In round 1 , proposer p_{l} sends $m 0$ to acceptor F_{1}, and $m 1$ to $F_{2}, M Q_{1}, Q_{1}$ and Q_{2}. All messages in round 2 are delivered as in R3. From round 3 up to round K, all non-crashed processes receive messages from all other non-crashed processes distinct from F_{2}. Only round 3 message from F_{2} to l_{1} is de-

Fig. 3. Illustration of proof L.3: lower bound on combining very fast learning (with authentication) and fast learning without authentication - configuration $C_{1 a}$
livered, and the delivery of all other messages sent by F_{2} up to round K, is delayed until round $K+1$. Furthermore, in round 3, malicious acceptors $M Q_{1}$ and Q_{1} play ($-, 1,1,1,1$) instead of $(0,-, 1,1,1)$ (as if they had received the same round 2 messages as in R1) to l_{1} (this is possible as messages exchanged among acceptors in round 2 are not authenticated), and to all other processes play according to the algorithm from that point on. Learner l_{1} upon receiving round 3 messages from $F_{2},(M-Q)_{1}, Q_{1}$ and Q_{2}, learns 1, as l_{1} cannot distinguish R4 from R1 (because l_{1} receives the same set of messages from the acceptors in round 3 of both runs). Then learner l_{1} crashes before sending any message in round 4 . In round 4 , the correct proposer p_{x} proposes 0 . Up to round K, all non-crashed processes receive messages from all other non-crashed processes distinct from F_{2} (i.e., all messages sent by F_{2} up to round K are delayed until round $K+1$). At the end of round K, no correct process can distinguish R4 from R3 (because every acceptor different from F_{2} plays identical values in both runs). Hence, learner l_{2} learns $v \in\{0,1\}$ at round K. All correct processes receive messages from all other correct processes (including F_{2}) in rounds higher than K.

R5: All processes are correct except (1) the proposer p_{l} and the acceptors $M Q_{1}$ and Q_{2}, which are malicious, and (2) the learner l_{1} which crashes before sending any message in round 3 . In round 1 , proposer p_{l} sends $m 1$ to acceptor $Q_{1}, m 0$ to all other correct acceptors and both $m 0$ and $m 1$ to $M Q_{1}$ and Q_{2}. In round 2 , acceptor Q_{1} plays 1 to all processes, acceptors F_{1} and F_{2} play 0 to all processes. However, the malicious acceptors $M Q_{1}$ and Q_{2} play 0 to learner l_{1} and play 1 to all other processes. All round 2 messages are delivered as in R3. Furthermore, in round 3, Q_{2} plays $(-, 1,1,1,1)$ and $M Q_{1}$ plays $(0,-, 1,1,1)$ (as per algorithm). ${ }^{3}$ Learner l_{1} receives round 2 message from all acceptors except Q_{1}. Clearly, at the end of round $2, l_{1}$ cannot distinguish R5 from R2 (because l_{1} receives the same set of messages from the acceptors in round 2 of both runs), and hence, learns 0 . Then learner l_{1} crashes before sending any message in round 3 . In round 4 , the correct proposer p_{x} proposes 0 . From round 3 up to round K, all non-crashed processes receive messages from all other non-crashed processes distinct from F_{2} (i.e., all messages sent by F_{2} up to round K are delayed until round $K+1$.) At the end of round K, no correct process can distinguish R5 from R3 (because every acceptor different from F_{1} plays identical values in both runs), and hence, learner l_{2} learns $v \in\{0,1\}$ at round K. All non-crashed processes receive messages from all other non-crashed processes (including F_{2}) in rounds higher than K.

Clearly, either R4 or R5 violates Agreement: l_{2} decides v in both runs, but l_{1} decides 1 in R4 and 0 in R5. However, in both runs, at most M acceptors are malicious: a contradiction with the requirement that A does not violate Validity and Agreement if M acceptors are malicious.

In the case where $Q>M$, again we divide the set of acceptors, this time into four sets F_{1} and F_{2}, of size at most F, and M_{1} and M_{2}, of size at most M. To prove the lower bound in this case, we can use similar runs we used in case where $M \geq Q$, where acceptor M_{1} plays the role of acceptor Q_{1} and M_{2} the role of Q_{2}, and where acceptor $M Q_{1}$ does not exist.

Now, we prove part 2 of the theorem, for configuration C_{2}.

4.2 Configuration C_{2}

First, we sketch the proof of the lower bound on the number of acceptors required for very fast learning, even with authentication, in configuration C_{2}. We refer to this proof as proof L.4.

[^2]Proposition L.4. Let A be any algorithm and p_{l} the only privileged proposer, which is, furthermore, also an acceptor. If, in every very favorable run of A every correct learner learns a value by round 2 , then $N_{a}>2 Q+F+2 M-2$.

Proof L. 4 (sketch). The proof is again a simple modification of proof L.1. However, if we try to directly apply that proof, since p_{l} is now an acceptor, in run R4 (and R5) $M+1$ acceptors are faulty, and in run R3 F acceptors are crash-stop faulty and one acceptor is malicious. Hence, from the property of A, Agreement need not hold in $R 4$ and R5, and Termination need not hold in $R 3$. Consequently, we cannot show the desired contradiction. Thus we modify proof L.1, such that M_{1} and M_{2} have only $M-1$ acceptors each, and F_{1} has $F-1$ acceptors.

Suppose by contradiction that $N_{a} \leq 2 Q+F+2 M-2$. Then, we can divide the set of acceptors, that are distinct from p_{l}, into five sets, $Q_{1}, Q_{2}, F_{1}, M_{1}$ and M_{2}, where the first two sets are of size at most Q, the third set is of size at most $F-1$, and the last two sets are of size at most $M-1$, respectively. In the runs, p_{l} acts as proposer, as well as an acceptor (sending messages to the learner and other acceptors from round 2). For each run, in round $1, p_{l}$ receives the same message as processes in M_{1}, and in higher rounds, plays the same value as the processes in M_{1}. We continue as in the proof of L. 1 to obtain a contradiction. The diagrams depicting the runs are presented in Figure 4. Notice that, since M_{1} and M_{2} are each of size at most $M-1$, in runs R24 and R25 run at most M acceptors are faulty, and in run R23 at most F acceptors are faulty (p_{l} being the additional faulty acceptor).

Now, we prove another bound on the possibility of very fast learning in configuration C_{2}, with a restriction that authentication cannot be used for very fast learning. We refer to this proof as proof L.5.

Proposition L.5. Let A be any algorithm and p_{l} the only privileged proposer, which is, furthermore, also an acceptor. If, in every very favorable run of A every correct learner learns by round 2 without using authentication, then $N_{a}>2 Q+F+2 M-2$.

Proof L.5. Suppose by contradiction that $N_{a} \leq Q+F+2 M$. Then, we can divide the set of acceptors, that are distinct from p_{l}, into four sets, Q_{1}, F_{1}, M_{1} and M_{2}, where the first set is of size at most Q, the second set is of size at most $F-1$, and the last two sets is of size M. In the following we say that an acceptor a_{i} plays 2 in a run if no process different from a_{i} can distinguish this run from some run in which a_{i} does not receive any message in round 1 . We now construct five partial runs to derive a contradiction. The runs are depicted in Figure 5; we give short descriptions below.

R31 and R32: Runs R1 and R2 are very favorable partial runs in which correct proposer p_{l} proposes 1 and 0 respectively, and l_{1} receives messages from all acceptors except Q_{1} in round 2 . From the property of A, it follows that l_{1} learns 1 and 0 , respectively, at the end of round 2 . Subsequently, l_{1} crashes before sending any message in round 3 .

R33: In run 3, every process except p_{l}, l_{1} and F_{1} is correct. Malicious proposer p_{l} sends $m 1$ to M_{2}, $m 0$ to M_{1}, and does not send messages to F_{1} and $Q_{1} . F_{1}$ and p_{l} crash before sending any message in round 2. (Note that at most F acceptors crash.) From round 2, M_{1} plays $0, M_{2}$ plays 1 , and Q_{1} plays 2 . Proposer p_{x} proposes 0 in round 3 . From the Termination property of A, it follows that learner l_{2} decides some value $v \in\{0,1\}$, say at round K.

R34: Every process except M_{1} and l_{1} are correct. Proposer p_{l} proposes 1 and sends $m 1$ to all acceptors, of which, the message to Q_{1} is lost. From round 2 onwards, p_{l}, M_{2} and F_{1} play 1 to all processes, Q_{1} plays 2 to all processes, and malicious acceptor M_{1} plays 1 to l_{1} and 0 to all other

Fig. 4. Illustration of proof L.4: lower bound on the possibility of very fast learning in configuration C_{2}
processes. At the end of round 2, l_{1} cannot distinguish R34 from R31, and hence, learns 1, and then crashes before sending any message in round 3 . Proposer p_{x} proposes 0 in round 3 . However, from round 3 to round K , all messages send by p_{l} and F_{1} are lost. At the end of round K, learner l_{2} cannot distinguish R34 from R33, and hence, learns v.

R35: This run is similar to R34, except that p_{l} proposes 0 , and instead of M_{1}, M_{2} is malicious: it plays 0 to l_{1} and plays 1 to all other processes. Learner l_{1} cannot distinguish R35 from R32, and hence learns 0 , and then crashes. As in R34, at the end of round K, l_{2} cannot distinguish R35 from R33 and decides v.

Clearly, either R34 or R35 violates consensus Agreement: l_{2} decides v in both runs, but l_{1} decides 1 in R34 and 0 in R35. However, in both runs, at most M acceptors are faulty: a contradiction with the requirement that A does not violate Validity and Agreement if M processes are faulty.

It is easy to see that runs R34 and R35 in proof L. 5 cannot be constructed when authentication is used in the first communication round (for very fast learning): M1 cannot play 1 as well as play 0 on receiving only message $m 1$ from correct proposer p_{l} (and similarly for M2 in R35). To circumvent this problem in the presence of authentication, we need to assume that p_{l} is malicious in R34 and R35, and hence (to maintain the upper bound M on the number of malicious acceptors), $M 1$ and $M 2$ each contains $M-1$ acceptors. This gives us a lower bound of $Q+F+2 M-2$ on N_{a}. However, this bound is strictly weaker than the bound $N_{a}>2 M+F+2 Q-2$, shown by proof L.4.

Finally we show how to modify proof L. 3 to prove the rest of part 2 of the theorem, i.e., to prove the bound on the number of acceptors required for achieving fast learning without authentication combined with very fast learning (with or without authentication) in configuration C_{2}. We refer to this proof to proof L. 6 .

Proposition L.6. Let A be any algorithm and p_{l} the only privileged proposer, which is, furthermore, also an acceptor, such that, in every very favorable (resp. favorable) run of A every correct learner learns a value by round 2 (resp.3). In addition, let m be the message that is used for learning in 3 rounds (fast learning), but m is not used for learning in 2 rounds (very fast learning). Suppose also that in A no such a message m is authenticated. Then, $N_{a}>2 F+M-1+\min (M-1, Q)$.

Proof L. 6 (sketch). Basically, the proof relies on proof L. 3 and we show how it can be reused in configuration C_{2}, in a similar way we reused proof L. 1 in proof L.4. Namely, we use the runs similar to runs R1-R5 of proof L.3; we only change the size of acceptors sets. Again, we distinguish two cases: (1) the case where $M \geq Q+1$, and (2) the case where $M<Q+1$. In the case (1), where $M \geq Q+1$, we adapt proof L. 3 in the following way: the size of the set F_{2} is now at most $F-1$ (instead of at most F) and the size of the set $M Q_{1}$ is now at most $M-Q-1$ (instead of at most $M-Q)$. Finally, one additional proposer/acceptor plays the roles of both the privileged proposer p_{l} and the acceptor that belongs to the set F_{2} in proof L.3.

In the case (2), where $Q+1>M$, again we divide the set of acceptors, this time into four sets: F_{1}, of size at most F, F_{2}, of size at most $F-1$, and M_{1} and M_{2}, of size at most $M-1$. To prove the lower bound in this case, we can use similar runs we used in proof L.3, where acceptor M_{1} plays the role of acceptor Q_{1} and M_{2} the role of Q_{2}, and where acceptor $M Q_{1}$ does not exist. In addition, as in the case (1), where $M \geq Q+1$, one additional proposer/acceptor plays the roles of both the privileged proposer p_{l} and the acceptor that belongs to the set F_{2} in proof L.3.

Fig. 5. Illustration of proof L.5: lower bound on the possibility of very fast learning without authentication in configuration C_{2}

5 The DGV Algorithm

To complete the proof of our theorem we describe here algorithms that match our lower bounds. Our algorithms are all variants of the same Byzantine consensus algorithm.

In the following, we first detail one variant of the algorithm, denoted by $D G V_{\text {Alg.1 }}$, that matches the lower bounds of part 1 of the theorem, for configuration C_{1} in the case of a single privileged proposer. In fact, the variant we consider here also matches the interesting case of configuration C_{2}, where all proposers are acceptors and authentication is not used for very fast learning. Namely, we show that:

Proposition Alg.1. There is a consensus algorithm A, with a single privileged proposer p_{l}, such that: if p_{l} is not an acceptor (resp. if all proposers are acceptors), then in every very favorable run of A every correct learner learns a value by round 2 without using authentication despite the failure of Q acceptors whenever $N_{a}>\max (2 M+Q+2 F)\left(\right.$ resp. $\left.N_{a}>\max (2(M-1)+Q+2 F, 2 M+Q+F)\right)$. This matches the bound established by proposition L. 1 (resp. the bound established by combining propositions L. 4 and L.5) from Section 4.

In addition, in every favorable run of A, every correct learner learns a value by round 3 despite the failure of F acceptors:
(a) using authentication when $N_{a} \leq 2 F+M+\min (M, Q)\left(\right.$ resp. $N_{a} \leq 2 F+(M-1)+\min (M-$ $1, Q)$),
(b) without using authentication when $N_{a}>2 F+M+\min (M, Q)\left(\right.$ resp. $N_{a}>2 F+(M-1)+$ $\min (M-1, Q))$; (b) matches the bound established by proposition L. 3 (resp. L.6) from Section 4.

As we discuss in the following, it is not difficult to modify $D G V_{\text {Alg. } 1}$ to obtain an algorithm $D G V_{A l g .2}$ that achieves the following:

Proposition Alg.2. There is a consensus algorithm A, with more than one privileged proposer, such that, in every very favorable run of A in which a single privileged proposer p_{l} proposes, every correct learner learns a value by round 2 without using authentication despite the failure of Q acceptors whenever $N_{a}>\max (2 M+Q+2 F)$. This matches the bound established by proposition L. 2 from Section 4.

In addition, in every favorable run of A, every correct learner learns a value by round 3 despite the failure of F acceptors:
(a) using authentication when $N_{a} \leq 2 F+M+\min (M, Q)$,
(b) without using authentication when $N_{a}>2 F+M+\min (M, Q)$.

We prove proposition Alg. 1 (and show how proposition Alg. 2 can be derived) by proving the correctness of $D G V_{\text {Alg.1 }}$ in Section 5.6. Finally, in Section 5.7, we describe DGV variants that match the lower bounds from part 2 of our theorem, in configuration C_{2} in general, and highlight how DGV can be efficiently adapted to the special case where $Q=F$.

5.1 Overview

DGV is composed of two parts: (1) a Locking module and (2) an Election module. In short, the Locking module ensures consensus safety whereas the Election module ensures consensus liveness under eventual synchrony assumption. The key element of DGV is its choose() function, within the Locking module, that determines which value should be accepted by an acceptor at a given point in time. The pseudocodes of Locking and Election modules are given in Section 5.5, in Figures 8 and 9 , respectively.

The algorithm proceeds in a sequence of views (Fig. 6). A view is a time frame in which some pre-determined proposer is the leader. A leader is the only proposer whose messages are considered by the acceptors within a view. DGV is based on the rotating coordinator paradigm [12], where the leader of the view number w is p_{k}, for $k=w \bmod N_{p}$. The algorithm starts in the initial view, InitView, which is a constant known to all processes (e.g., InitView $=0$). Privileged proposer $p_{\text {Init }}$ (where Init $=0$ for Initview $=0$), is the leader of InitView.

A view leader executes the Locking module of DGV, which consists of two phases: READ and WRITE phase. Basically, the READ phase makes sure that, if any value was learned by some learner in some previous view, it will be proposed in the new view. This is determined by the key part of the READ phase, the choose() function. Since the algorithm starts in InitView, if $p_{\text {Init }}$ proposes in the InitView, $p_{\text {Init }}$ skips the READ phase and executes only the WRITE phase. In the WRITE phase, the leader tries to impose to learners its estimate of the decision value, with the intermediation of acceptors. The WRITE phase allows very fast learning in very favorable runs and at the same time provides graceful degradation, to allow fast learning in favorable runs. In other words, if a correct privileged proposer $p_{\text {Init }}$ proposes at the very beginning of the algorithm, it achieves very fast (resp. fast) learning in a very favorable (resp. favorable) run. If there is more than one privileged proposer (proposition Alg.2), it is not difficult to obtain a variant of DGV where we allow any privileged proposer $\left(p_{x}\right)$ to achieve (very) fast learning, provided that p_{x} is the only proposer that actually proposes a value in a (very) favorable run. This is done by setting InitView to -1 and by allowing acceptors to accept a value from any privileged proposer p_{x} in InitView.

Fig. 6. Communication pattern and structure of DGV

A view leader that is suspected of not making any progress is changed on the basis of timeouts within the Election module of the algorithm. As soon as the acceptors initialize the algorithm, they start a timer that is permanently stopped as soon as they hear from at least one correct learner that it had learned a value. Otherwise, upon expiration of the timer, the acceptor suspects the leader. If $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ correct acceptors suspect the current leader, the leader is (eventually) changed. The set of $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors is a non-malicious majority set, i.e., every set of size $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$, for every run r, always contains a majority of non-malicious acceptors in $r .{ }^{4}$.

In the following, we describe the WRITE phase of the Locking module.

[^3]
5.2 WRITE Phase

In the first communication round, the leader sends the PRE-PREPARE message to all acceptors, including the proposal value v and the view number w, together with the WriteProof, set of authenticated messages that certifies the proposal value v. We come back to the generation of this set in Section 5.4. For the time being, it is enough to assume that the acceptors can check the validity of the WriteProof. In InitView, WriteProof $=$ nil.

Every acceptor a_{i}, if it is in view w, upon reception of the PRE-PREPARE message from the leader with the valid W riteProof, adds the PRE-PREPARE message to its set $K_{a_{i}}$ (for simplicity, we say that: (a) a_{i} pre-prepares v in w and (b) $K_{a_{i}}:=(v, w)$). Acceptors pre-prepare a value at most once in the particular view. Then, acceptors begin the second communication round by echoing the PRE-PREPARE message to learners, within a PREPARE message, with the same value and the view number. The Writeproof set does not have to be echoed. Furthermore, acceptors send the PREPARE message, to all other acceptors. If $N_{a} \leq 2 F+M+\min (M, Q)$ in the case of configuration C_{1} or $N_{a} \leq 2 F+(M-1)+\min (M-1, Q)$ in the case of configuration C_{2}, the PREPARE messages exchanged among the acceptors are authenticated.

Upon reception of $N_{a}-Q$ PREPARE messages from different acceptors, with the same value v and view number w, a learner learns v. Upon reception of $N_{a}-F$ PREPARE messages from different acceptors, with the same value v and view number w, that furthermore match the value and the view number in $K_{a_{i}}$ and the current view of the acceptor, acceptor a_{i} adds these PREPARE messages to its set $P_{a_{i}}$. For simplicity, we say that: (a) a_{i} prepares v in w and (b) $K_{a_{i}}:=(v, w)$ (when we say that a_{i} accepts v in w, we mean that a_{i} pre-prepares or prepares v in w). Then, a_{i} sends a COMMIT message (third communication round) containing v and w to all learners. Upon reception of $N_{a}-F$ COMMIT messages with the same v and view number w from different acceptors, learner learns v, unless it had already learned a value.

5.3 Changing Leader

Upon initialization, acceptors trigger the timer SuspectTimeout, that is initially equal to some value InitTimeout, conveniently chosen with respect to the estimates of Δ_{c} and $\Delta_{\text {auth }}$. If SuspectTimeout expires, the acceptor suspects the current leader. If a sufficient number of acceptors suspect the current leader, then the leader is changed. Basically, the leader of the view is changed if it is faulty, or if the run is not synchronous. This is done within the Election module of DGV.

When an acceptor suspects the leader, it sends the signed VIEW-CHANGE message to the leader of the next view, doubles the SuspectTimeout and triggers it again. If the new leader is not elected until the expiration of SuspectTimeout, the acceptors send signed VIEW-CHANGE messages to the next leader, and so on. When some proposer p_{j} receives $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor V I E W$ CHANGE messages from different acceptors, with valid signatures and the same view number w, such that $w \bmod N_{p}=j, p_{j}$ becomes the leader (we say p_{j} is elected). A leader uses a set of received signed VIEW-CHANGE messages as the view proof (ViewProof f_{w}), the proof that it is a legitimate leader of the view w. The new leader sends to all acceptors the NEW-VIEW message containing the view number and the view proof. Upon reception of a valid NEW-VIEW message for a higher view, an acceptor updates its view number and view proof, and updates the value for future timeouts (line 17, Fig. 9). The values for SuspectTimeout are chosen in such way that all acceptors trigger the same timeout value after sending a VIEW-CHANGE message for a particular view number.

SuspectTimeout is stopped when the acceptor receives the confirmation from some learner that it learned a value. When a learner learns a value v, it sends (periodically) the signed DECISION message that contains a value v to all acceptors and learners (for presentation simplicity, we use
authenticated DECISION messages from learners, to enable acceptors to halt Locking and Election modules. The authentication can be avoided in this case by using a variation of consistent broadcast of [4], as we show in Appendix 5.7). When an acceptor receives a DECISION message from some learner, it stops permanently the SuspectTimeout and halts Locking and Election modules. Learners that do not learn a value for some time, start to periodically query acceptors for the DECISION message. Upon reception of such a query, an acceptor, if it has received a signed DECISION message from some learner, forwards the DECISION message to all learners. Upon reception of a correctly signed DECISION message that contains a value v, a learner learns v if it did not already learn a value. Note that a learner can learn a value on the basis of a DECISION message that is correctly signed by some learner, because learners are assumed not to be malicious.

5.4 READ Phase and choose() function

Upon being elected, a new leader of view w, p_{w}, sends a $\left\langle N E W-V I E W, w, V i e w P r o o f_{w}\right\rangle$ message to all acceptors, where $V i e w \operatorname{Proo}_{w}$ is the proof, based on authenticated messages, that p_{w} is a legitimate, elected leader of w. Upon reception of the NEW-VIEW message for view w, sent by p_{w}, an acceptor a_{i}, if it is in $w_{a_{i}} \geq w$, replies to p_{w} with the signed $N E W-V I E W-N A C K$ message that includes the valid proof, ViewProof $w_{a_{i}}$, of the fact that it is in $w_{a_{i}} \geq w$, (where ViewProof $f_{w_{a_{i}}}$, is view proof a_{i} received from the leader of $w_{a_{i}}$).

Else, a_{i} updates its view number $\left(w_{a_{i}}\right)$ to w, and its view proof (ViewProof $f_{w_{a_{i}}}$) to ViewProof f_{w}. If $N_{a}-M-2 F>M$ or PREPARE messages in the WRITE phase are authenticated, then a_{i} replies with the signed $N E W$-VIE W-ACK message, containing its sets $K_{a_{i}}$ and $P_{a_{i}}$. Else, if $N_{a}-M-2 F \leq$ M and authentication is not used in WRITE phase, a_{i} sends a $\left\langle S I G N-R E Q, v_{a_{i}}, w_{a_{i}}\right\rangle$ message to the set of acceptors from which a_{i} received $\left\langle P R E P A R E, v_{a_{i}}, w_{a_{i}}\right\rangle$ messages from the set $P_{a_{i}}$ (when $N_{a}-M-2 F \leq M$, acceptors have to keep track of PREPARE messages they have sent). Upon reception of SIGN-REQ message, acceptors respond with a signed SIGN-ACK message that contains a signed PREPARE message corresponding to request SIGN-REQ if they have sent that PREPARE message. As liveness has to be guaranteed only if at most F acceptors fail, in this case, a non-malicious acceptor a_{i} is guaranteed to obtain $N_{a}-2 F \geq M+1 S I G N-A C K$ messages. The acceptor a_{i} includes the $N_{a}-2 F$ received signed SIGN-ACK messages in the NEW-VIEW-ACK message that it sends to the leader of the new view. The pair $\left(v_{a_{i}}, w_{a_{i}}\right)$ reported by $P_{a_{i}}$ in the NEW-VIE W-ACK message sent by a_{i} is considered valid by the leader of the new view, only if it is accompanied with a matching, valid set of $N_{a}-2 F$ signed $S I G N-A C K$ messages. This technique is a generalization of what is known as a "lazy" proof obtaining (LPO) technique [5].

Upon reception of $N_{a}-F$ valid $N E W-V I E W-(N) A C K$ messages, if there is any valid $N E W$ -VIEW-NACK message, the leader updates its view number and aborts its current proposal. If the leader did not receive any $N E W$-VIE W - $N A C K$ message, adds $N_{a}-F$ received $N E W$-VIEW-ACK messages to the set WriteProof. We define the candidate values of the WriteProof in the following way:

Definition 1 (Candidate values). We say that a value v is Candidate- 2 or Candidate- 3 value in the set WriteProof, with the cardinalities S_{v}^{2} and S_{v}^{3}, respectively, if:
(Candidate-2) $S_{v}^{2} \geq N_{a}-Q-M-F$ different $K_{a_{i}}$ sets of NEW-VIEW-ACK messages in the WriteProof contain the value $v\left(K_{a_{i}}=(v, *)\right)$.
(Candidate-3) $S_{v}^{3} \geq N_{a}-2 F-M$ different valid $P_{a_{i}}$ sets of NEW-VIEW-ACK messages in the W riteProof contain the value v, associated ${ }^{5}$ with the same view number $w\left(P_{a_{i}}=(v, w)\right.$).

[^4]Finally, a new leader p_{w} chooses the value that it is going to propose to acceptors using the choose() function, which we give in Figure 7.

```
1:choose \((v\), WriteProof) returns \((v\), view \()\) is \{
    view \(_{2}\), view \(_{3}:=-1 ; v_{2}, v_{3}:=\) nil; flag \(:=\) true
    sort all (if any) candidate-3 values by their associated view no.; let \(w_{3}\) be the highest among those view no.
    if \(\exists\) a single candidate- 3 value \(v_{3}^{\prime}\) associated with \(w_{3}\) then \(v_{3}:=v_{3}^{\prime} ;\) view \(w_{3}:=w_{3}\)
    elseif \(\exists\) more than one such a value then flag \(:=\) false; abort
    endif
    if there is a single candidate- 2 value \(v^{\prime}\) then \(v_{2}:=v^{\prime}\);
    elseif there are two candidate- 2 values \(v^{\prime}\) and \(v^{\prime \prime}\) then
        order sets \(K_{*}^{\prime}\) and \(K_{*}^{\prime \prime}\), that contain \(v^{\prime}\) and \(v^{\prime \prime}\), respectively, by descending view numbers
            let view \({ }^{\prime}\) and view \({ }^{\prime \prime}\) be the view numbers of \(M+1^{\text {st }}\) highest view number associated to \(v^{\prime}\) and \(v^{\prime \prime}\), respectively.
            if \(v i e w^{\prime}>\) view \({ }^{\prime \prime}\) then \(v_{2}:=v^{\prime}\) elseif view \({ }^{\prime \prime}>\) view' then \(v_{2}:=v^{\prime \prime}\);
            else \(\quad \%\) view'=view"
            if \(N E W\)-VIE \(W-A C K\) sent by leader of view \(v i e w^{\prime}=v i e w^{\prime \prime}\) is in Writeproof then abort
            elseif \(S_{v^{\prime}}^{2} \geq N_{a}-Q-F-M+1\) then \(v_{2}:=v^{\prime}\) elseif \(S_{v^{\prime \prime}}^{2} \geq N_{a}-Q-F-M+1\) then \(v_{2}:=v^{\prime \prime}\) endif
            endif
            endif
        endif
        if \(v_{2} \neq\) nil then view \(_{2}:=M+1^{\text {st }}\) highest view number associated to \(v_{2}\) in \(K_{*}\) sets endif
        if view \(_{2}>\) view \(_{3}\) then return \(\left(v_{2}\right.\), view \(\left._{2}\right)\) elseif view \(_{3}>\) view \(w_{2}\) return \(\left(v_{3}\right.\), view \(\left.w_{3}\right)\) else
            if view \({ }_{2}=\) view \(w_{3} \neq-1\) and \(\left(v_{2}=v_{3}\right.\) or \(\left(v_{2} \neq v_{3}\right.\) and \(\left.S_{v_{3}}^{3}>M\right)\) or PREPARE messages authenticated)
            then return \(\left(v_{3}\right.\), view \(\left._{3}\right)\)
            elseif view \(_{2}=\) view \(_{3} \neq-1\) and \(v_{2} \neq v_{3}\) and \(S_{v_{3}}^{3} \leq M\) and PREPARE messages not authenticated then
                if system configuration is \(C_{1}\) then flag \(:=\) false; abort
            else \(\%\) system configuration is the case of \(C_{2}\) (all proposers are also acceptors)
                if \(N E W-V I E W-A C K\) sent by leader of view \(v i e w_{2}=\) view \(_{3}\) is in Writeproof then abort
                    else case
                        \(\left(\left(S_{v_{3}}^{3} \geq N_{a}-M-2 F+1\right.\right.\) and \(\left.S_{v_{2}}^{2}<N_{a}-Q-M-F+1\right)\) or \(\left.S_{v_{3}}^{3}=M\right):\) return \(\left(v_{3}, v i e w_{3}\right)\)
                    \(\left(S_{v_{3}}^{3}<N_{a}-M-2 F+1\right.\) and \(\left.S_{v_{2}}^{2} \geq N_{a}-Q-M-F+1\right)\) : return( \(v_{2}\), view \(\left.w_{2}\right)\)
                    \(\left(M>S_{v_{3}}^{3} \geq N_{a}-M-2 F+1\right.\) and \(\left.S_{v_{2}}^{2} \geq N_{a}-Q-M-F+1\right):\) flag:=false; abort
                    endif
            endif
        endif
        endif
        return \((v, \perp)\)
\}
```

Fig. 7. Choose() function

The function choose() has two input parameters: (1) v, the initial proposal value of p_{w} and the W riteproof, set of the $N_{a}-F$ valid NEW-VIEW-ACK messages for view w. The main idea behind choose() is that, if a value v_{2} (resp. v_{3}) was learned by some learner in some previous view w_{2} (resp. w_{3}) upon reception of $N_{a}-Q$ (resp. $\left.N_{a}-F\right)\left\langle P R E P A R E, v_{2}, w_{2}\right\rangle$ (resp. $\left\langle C O M M I T, v_{2}, w_{2}\right\rangle$) messages, then v_{2} (resp. v_{3}) will certainly be the candidate- 2 (resp. candidate-3) value in Writeproof of view w (and every subsequent view). This is true as out of $N_{a}-Q$ (resp. $N_{a}-F$) acceptors that sent the same PREPARE (resp. COMMIT) message to learners, there are at least $N_{a}-Q-M-F$ (resp. $\left.N_{a}-2 F-M\right)$ non-malicious acceptors whose NEW-VIE W-ACK messages will be part of the Writeproof.

However, it may happen that there are multiple candidate values in the Writeproof. We say that the candidate- 2 value v_{2} is associated with a view number view ${ }_{2}$, where view w_{2} is the $M+1^{\text {st }}$ highest view number associated to v_{2} in $K_{a_{i}}$ sets of the $N E W-V I E W-A C K$ messages that belong to the W riteproof. In addition, we say that the candidate- 3 value v_{3} is associated with a view
number view ${ }_{3}$, if for at least $N_{a}-2 F-M$ valid $P_{a_{i}}$ sets of the NEW-VIEW-ACK messages that belong to the Writeproof $P_{a_{i}}=\left(v_{3}\right.$, view $\left._{3}\right)$. If there is more than one candidate value in the Writeproof happens, a candidate value with the highest associated view number will be selected. If there are multiple candidate values associated with the same (highest) view number, choose() is finely tuned to always return a value that was learned in some previous view (if any), rather than some other candidate value. For details on how this is obtained, we refer the reader to the correctness proof of this DGV variant given in Section 5.6. In any case, if some value v was learned by some learner in some previous view, choose() will never return a value different than v (to ensure Agreement). Informally, when there is a dispute between two (or even more) candidate values with the same associated view number w, where one of the candidate values was actually learned in some previous view, either: (a) a leader of w was malicious (in case this proposer is also an acceptor), or (b) the Writeproof contains malicious acceptors. In case (a), if the Writeproof contains the message from the leader of w, choose () aborts. If this is not the case, we exploit the fact that one malicious acceptor (leader of view w) is out of the Writeproof so we adapt our calculations with respect to this (e.g., a candidate-2 value that was actually learned will have a cardinality of at least $N_{a}-Q-M-F+1$ in the W riteproof, see lines 13-14, Fig. 7). In case (b), where malicious acceptor is not necessarily the leader of the disputed view w, choose () aborts again.

When choose (v, Writeproof) aborts (lines 5, 13, 23, 25 and 29, Fig. 7), we are sure that the Writeproof contains at least one malicious acceptor. Therefore, a new leader can wait for one additional $N E W$-VIEW-ACK message ($N_{a}-F+1^{s t}$), when it invokes choose() on every possible valid W riteproof, i.e. on every subset of received $N E W-V I E W-A C K$ messages of size $N_{a}-F$. If choose aborts on every such subset, new leader waits for another NEW-VIEW-ACK message and so on. Termination is guaranteed in presence of $N_{a}-F$ correct acceptors as choose() never aborts when the Writeproof consists of NEW-VIEW-ACK messages sent only by the correct acceptors.

Upon finding a W riteproof for which choose() returns a value v, the new leader sends the PREPREPARE message to all acceptors, in the same way as the leader of InitView, except that this time WriteProof \neq nil. An acceptor checks the Writeproof (as mentioned in Section 5.2) using the same choose() function and accepts the PRE-PREPARE message if the proposed value v can be extracted from the WriteProof. Then the WRITE phase continues as described in Section 5.2.

5.5 Modularizing DGV

We distinguish two main parts of the DGV algorithm. One is the Locking part of the algorithm, described in Figure 8, which consists of the READ and the WRITE phase. This part of the algorithm captures the Safety properties of the algorithm - Validity and Agreement. The two phases of the Locking part are explained in Section 5.

Note that at lines 34 and 37 in the Locking module (Fig. 8), in the WRITE phase, acceptors and learners can wait for $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ instead of $N_{a}-F$ PREPARE and COMMIT messages, respectively, when the PREPARE messages exchanged among acceptors in the WRITE phase are authenticated (line 32, Fig. 8. The set of $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors is a non-malicious majority set, i.e., every set of size $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$, for every run r, always contains a majority of nonmalicious acceptors in r. This optimization of DGV makes it possible to have, in the described case, fast learning in the synchronous run in which a privileged proposer is correct, despite the failure of $N_{a}-\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor \geq F$ acceptors.

The second part of the algorithm is the Election module, which is described in Figure 9. The Election module, under the assumption of an eventually synchronous system, provides liveness. This part of the algorithm elects new leaders on the basis of timeouts.

In Figure 10 we give the simple wrap-up algorithm. Upon entering a view in which proposer p_{j} is a leader (this is done within a Election module of the algorithm, p_{j} executes the Locking module

```
at every proposer \(p_{j}\) :
propose \(\left(v, w\right.\), View \(_{\text {Proo }}^{w}\) ) is
    WriteProof:= nil
    if ( \(w \neq\) Initview) then
    READ phase
        send to all acceptors \(\left\langle N E W-V I E W, w, V i e w \operatorname{Proof}_{w}\right\rangle\)
        wait until reception of \(N-F\) valid signed
            \(\left\langle N E W-V I E W-(N) A C K, w, K_{a_{i}}, P_{a_{i}}\right.\), proof \(\left._{P_{a_{i}}}, V i e w P r o o f_{w_{a_{i}}}, w_{a_{i}}\right\rangle\) messages,
            where \(\forall K_{a_{i}}=(*\), view \(<w)\) and \(\forall P_{a_{i}}=(*\), view \(<w)\)
                WriteProof: = set of \(N_{a}-F\) received \(\langle N E W-V I E W-(N) A C K\rangle\) messages
            if received any valid \(\langle N E W-V I E W-N A C K\rangle\) message then
                    \(w:=\) highest valid \(w_{a_{i}}\) from WriteProof
                    ViewProof \(f_{w}:=\) ViewProof \(w_{w_{a_{i}}}\) corresponding to view \(w\)
            return
                else choose ( \(v\), WriteProof) endif
    end
    WRITE phase
    send to all acceptors \(\langle P R E-P R E P A R E, v, w\), WriteProof \(\rangle\)
    every acceptor \(a_{j}\) :
    READ phase
    3:upon reception of \(\left\langle N E W-V I E W, w\right.\), View \(\left.^{\text {Proof }}{ }_{w}\right\rangle\) from \(p_{i}\)
    if \(\left(w_{a_{j}}<w\right)\) and (ViewProof \(f_{w}\) matches \(w\) ) then
        \(w_{a_{j}}:=w ;\) ViewProof \(_{\text {viewa }}^{j}{ }:=\) ViewProof \(_{w}\)
        proof \(P_{P_{j}}:=\) nil
        if \(\left(2 F+M+\min (M, Q)<N_{a} \leq 2 F+2 M\right.\) in configuration \(\left.C_{1}\right)\) or
        \(\left(2 F+M-1+\min (M-1, Q)<N_{a} \leq 2 F+2 M\right.\) in configuration \(\left.C_{2}\right)\) then \(\% L P O\)
            send \(\left\langle S I G N-R E Q, P_{a_{j}} \cdot v, P_{a_{j}} \cdot w\right\rangle\) to all acceptors whose \(\langle P R E P A R E, v, w\rangle\) message is in \(P_{a_{j}}\)
            upon reception of \(N_{a}-2 F\) signed \(\langle S I G N-A C K\rangle\) messages that correspond to sent \(\langle S I G N-R E Q\rangle\)
                \(\operatorname{proof}_{P_{a_{j}}}:=\) set of received signed \(\langle S I G N-A C K\rangle\) messages
        endif
        send signed \(\left\langle N E W-V I E W-A C K, w, K_{a_{j}}, P_{a_{j}}, \operatorname{proof}_{P_{a_{j}}}\right.\), nil, nil \(\rangle\) to \(p_{i}\)
        else
            send signed \(\left\langle N E W-V I E W-N A C K, w\right.\), nil, nil, nil, \(\left.\operatorname{proof}_{a_{j}}, w_{a_{j}}\right\rangle\) to \(p_{i}\)
        upon reception of \(\langle S I G N-R E Q, v, w\rangle\) from \(a_{i} \% L P O\)
        if \(\langle P R E P A R E, v, w\rangle\) already sent then send \(\left\langle S I G N-A C K\langle P R E P A R E, v, w\rangle_{\sigma_{a_{j}}}\right\rangle\) to \(a_{i}\) endif
        WRITE phase
        upon reception of \(\langle P R E-P R E P A R E, v, w\), WriteProof, fresh \(\rangle\) from \(p_{i}\), with a valid \(W\) riteProof \(f_{w}\)
        if \(\left(w_{a_{j}}=w\right)\) and \(\left(w \bmod N_{p}=i\right)\) and \(\langle P R E-P R E P A R E, *, w, *, *\rangle\) received for the \(1^{s t}\) time and
        \(\left(\left(w_{a_{j}}=\right.\right.\) InitView \()\) or ( \(v\) matches choose \((v\), WriteProof \(\left.\left.)\right)\right)\) then
            \(K_{a_{j}}:=\) received \(\langle P R E-P R E P A R E\rangle\) message \(\quad\left\{K_{a_{j}}:=(v, w)\right\}\)
            \(m:=\langle P R E P A R E, v, w\rangle\)
            send \(m\) to all learners
            if \(\left(N_{a} \leq 2 F+M+\min (M, Q)\right.\) in configuration \(\left.C_{1}\right)\) or
        \(\left(N_{a} \leq 2 F+M-1+\min (M-1, Q)\right.\) in configuration \(\left.C_{2}\right)\) then \(m:=\left\langle m,\langle m\rangle_{\sigma_{a_{j}}}\right\rangle\)
        send \(m\) to all acceptors
    4:upon reception of \(N_{a}-F\) signed \(\langle\langle P R E P A R E, v, w\rangle, \ldots\rangle\) matching \(K_{a_{j}}, w=w_{a_{j}}\)
        \(P_{a_{j}}:=\) set of received \(\langle P R E P A R E\rangle\) messages \(\quad\left\{P_{a_{j}}:=(v, w)\right\}\)
        send to all learners \(\langle C O M M I T, v, w\rangle\)
            at every learner \(l_{j}\) :
            37:upon reception of \(N_{a}-Q\langle P R E P A R E, v, w\rangle\) or \(N_{a}-F\langle C O M M I T, v, w\rangle\) with the same \(v, w\)
            38: if \(l_{j}\) has not yet learned a value then learn \((v)\) endif
```

Fig. 8. Pseudocode of the DGV Locking module

```
at every learner \(l_{j}\) :
1:upon learning a value \(v\)
2: periodically send signed \(\langle D E C I S I O N, v\rangle\) to all acceptors and all other learners
3:upon reception of a valid signed \(\langle D E C I S I O N, v\rangle\)
4: if \(l_{j}\) has not yet learned a value then learn(v) endif
5:upon value not learned
6: wait some preset time; send \(\langle D E C I S I O N-P U L L\rangle\) to all acceptors;
at every acceptor \(a_{j}\) :
7:upon initialization
8: SuspectTimeout \(:=\) InitTimeout
9: \(\quad \operatorname{trigger}\) (SuspectTimeout)
10:upon expiration of (SuspectTimeout)
11: SuspectTimeout \(:=\) SuspectTimeout \(* 2\)
12: NextView \(a_{j}:=\) NextView \(_{a_{j}}+1 ;\) NextLeader \(=\) NextView \(a_{a_{j}} \bmod N_{p}\)
13: send to \(p_{\text {NextLeader }}\left\langle V I E W-C H A N G E, N e x t V i e w_{j}\right\rangle_{\sigma_{a_{j}}}\)
14: trigger(SuspectTimeout)
15:upon reception of a valid \(\left\langle N E W-V I E W, w\right.\), ViewProof \(\left._{w}\right\rangle\), such that \(w>w_{a_{j}}\);
16: NextView \(a_{a_{j}}:=w\)
17: SuspectTimeout \(:=\) InitTimeout \(* 2^{w}\)
18:upon reception of a valid \(\langle D E C I S I O N, v\rangle\) from some learner;
19: stop(SuspectTimeout)
20:upon reception of a \(\langle D E C I S I O N-P U L L\rangle\) from some learner \(l_{j}\)
21: if received a valid signed \(\langle D E C I S I O N, v\rangle\) then
                forward \(\langle D E C I S I O N, v\rangle\) to \(l_{j}\)
    endif
at every proposer \(p_{j}\) :
24:upon reception of \(\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor\) signed \(\left\langle V I E W-C H A N G E\right.\), NextView \(\left.{ }_{a_{i}}\right\rangle\) with the same NextView \(a_{a_{i}}\)
25: if \(\left(\right.\) NextView \(\left._{a_{i}} \bmod N_{p}=j\right)\) and \(\left(\right.\) NextView \(\left._{a_{i}}>w_{p_{j}}\right)\) then
26: ViewProof \({w_{p_{j}}}:=\cup\) received signed \(\left\langle V I E W-C H A N G E, N e x t V i e w w_{a_{i}}\right\rangle\)
27: \(\quad w_{p_{j}}:=\) NextView \({ }_{i}\)
28: send to all proposers signed \(\left\langle N E W-V I E W, w_{p_{j}}, V i e w P r o o f_{w_{p_{j}}}\right\rangle\)
29:upon reception of a valid signed \(\left\langle N E W-V I E W, w^{\prime}, V^{\prime}\right.\) iew \(\left.\operatorname{Proof}_{w^{\prime}}\right\rangle\), such that \(w^{\prime}>w_{p_{j}}\)
30: \(\quad w_{p_{j}}:=w^{\prime}\)
31: \(\quad\) ViewProof \({w_{p_{j}}}:=\) ViewProof \(_{w}\),
```

Fig. 9. Pseudocode of the DGV Election module
of the algorithm. We assume that privileged proposer proposes in the Initview due to an external event. To achieve (very) fast learning privileged proposer should propose at the very beginning of the algorithm.

```
at every process \(P R_{j}\) :
1: \(w_{P R_{j}}:=\) InitView \(:=\) NextView \(a_{j}:=0 \quad\) \{Initialization \(\}\)
2: ViewProof \(f_{w_{P R_{j}}}:=\) nil
3:upon \(\left(w_{p_{j}} \bmod N_{p}=j\right)\) and \(\left(w_{p_{j}} \neq\right.\) InitView)
4: \(\operatorname{propose}\left(v, w_{p_{j}}\right.\), ViewProof \(f_{w_{p_{j}}}\) ) \(\quad\) \{propose() can be invoked also due to an external event \(\}\)
```

Fig. 10. Pseudocode of the DGV Wrap-Up algorithm

5.6 DGV Correctness

In this section, we prove the correctness of the DGV variation described in Section 5 ($D G V_{A l g .1}$, i.e., we prove proposition Alg.1. First, we give few definitions.

Definition 2 (Value learned in a view). We say that a value v is Learned-2 or Learned-3 in view w, if there is a learner l that eventually learns a value by receiving (respectively):

- (Learned-2) $\langle P R E P A R E, v, w\rangle$ messages from $N_{a}-Q$ different acceptors.
- (Learned-3) $\langle C O M M I T, v, w\rangle$ messages from $N_{a}-F$ different acceptors.

Definition 3 (Pre-prepares). We say that an acceptor a_{i} pre-prepares a value v in view w, if it eventually adds a $\langle P R E-P R E P A R E, v, w, *, *\rangle$ message to its $K_{a_{i}}$ set, i.e., if eventually $K_{a_{i}}:=(v, w)$ (line 29, Fig. 8).

Definition 4 (Prepares). We say that an acceptor a_{i} prepares a value v in view w, if it eventually adds a $N_{a}-F$ different signed $\langle P R E P A R E, v, w\rangle$ messages to its $P_{a_{i}}$ set, i.e., if eventually $P_{a_{i}}:=$ (v, w) (line 35, Fig. 8).

Definition 5 (Accepts). We say that an acceptor a_{i} accepts a value v in view w, if it pre-prepares or prepares v in view w.

It is trivial to see that if a learner learns a value, it was Learned-2 or Learned-3 in some view. Note that if non-malicious acceptor a_{i} prepared a value v in view w, it follows that a_{i} pre-prepared a value v in view w.

We proceed with the correctness proof by proving two simple, yet crucial lemmas.
Lemma 1. $N_{a}-F \geq\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$.
Proof. Our algorithm assumes $N_{a}>2 F+M$ (general bound on solvability of consensus). If $N_{a}=2 F+M+1$, then $N_{a}-F=F+M+1$, while $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor=\lfloor F+M+3 / 2\rfloor=$ $F+M+1$. Therefore, $N_{a}-F=\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$. On the other hand, if $N_{a}>2 F+M+1$, then $N_{a} \geq 2 F+M+2 \Rightarrow 2 N_{a}-2 F \geq N_{a}+M+2$. As $N_{a}+M+2 \geq 2\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$, we conclude that $N_{a}-F \geq\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$.

Lemma 2. - (a) Two sets, A and B, each containing at least $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors, intersect in at least one non-malicious acceptor.

- (b) Set A of $N_{a}-F$ acceptors and set B of $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors, intersect in at least one non-malicious acceptor.
- (c) Two sets, A and B, each containing at least $N_{a}-F$ acceptors, intersect in at least one non-malicious acceptor.
- (d) Set A of $N_{a}-Q$ different acceptors and set B of $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors, intersect in at least one non-malicious acceptor.
- (e) Set A of $N_{a}-Q$ different acceptors and set B of $N_{a}-F$ different acceptors intersect in at least $N_{a}-Q-M-F$ non-malicious acceptors.
- (f) Every set of at least $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors is a non-malicious majority.
- (g) Every set of at least $N_{a}-Q-M-F$ acceptors contains at least $M+1$ acceptors.

Proof. (a). From the inequality $N_{a}+M+1 \leq 2\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$, it is obvious that A and B intersect in at least $M+1$ acceptors. As at most M acceptors are malicious, we conclude that A and B intersect in at least one non-malicious acceptor.
(b),(c). Follow directly from Lemma 1 and part (a) of the lemma.
(d). $Q \leq F \Rightarrow N_{a}-Q \geq N_{a}-F$. Applying part (b) of the lemma, we conclude that A and B intersect in at least one non-malicious acceptor.
(e). Sets A and B intersect in at least $\left(N_{a}-Q\right)+\left(N_{a}-F\right)-N_{a}=N_{a}-Q-F$ acceptors, out of which are at most M malicious. Therefore, A and B intersect in at least $N_{a}-Q-M-F$ non-malicious acceptors.
(f). Straightforward from part (a) of the lemma.
(g). In configuration $C_{1}: N_{a} \geq 2 M+F+2 Q+1 \Rightarrow N_{a}-Q-M-F \geq M+Q+1 \geq M+1$. In configuration $C_{2}: N_{a} \geq 2 M+F+Q+1 \Rightarrow N_{a}-Q-M-F \geq M+1$.

Lemma 3. If two values v and v^{\prime} are Learned-2 in view w, then $v=v^{\prime}$.
Proof. Suppose $v \neq v^{\prime}$. From Def. 2, a set X of at least $N_{a}-Q$ acceptors sent $\langle P R E P A R E, v, w\rangle$ messages and a set Y of at least $N_{a}-Q$ acceptors sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ messages. As sets X and Y intersect in at least $N_{a}-2 Q$ acceptors, out of which at least $N_{a}-2 Q-M$ are non-malicious, and $N_{a} \geq 2 Q+2 M+F+1$, we have $N_{a}-2 Q-M \geq 1$. That is, there exists a non-malicious acceptor that has sent different PREPARE messages in the same view: a contradiction.

Lemma 4. Ifv is Learned-2 in view w, and a set of at least $N_{a}-F$ acceptors sent the $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ message, then $v=v^{\prime}$.

Proof. Suppose $v \neq v^{\prime}$. From Def. 2, a set X of at least $N-Q$ acceptors sent $\langle P R E P A R E, v, w\rangle$ messages in the view w. Let Y be the set of at least $N_{a}-F$ acceptors that sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$. As sets X and Y intersect in at least one non-malicious acceptor a_{i} (Lemma 2(d,g)), we conclude that a_{i} sent different PREPARE messages in the same view: a contradiction.

Lemma 5. If v is Learned-2 in view w, and v^{\prime} is Learned-3 in the same view w, then $v=v^{\prime}$.
Proof. This Lemma is a simple corollary of the Lemma 4.
Lemma 6. If two values v and v^{\prime} are Learned-3 in view w, then $v=v^{\prime}$.

Proof. Suppose $v \neq v^{\prime}$. From Def. 2, a set X of at least $N_{a}-F$ acceptors sent $\langle C O M M I T, v, w\rangle$ messages and a set Y of at least $N_{a}-F$ acceptors sent $\left\langle C O M M I T, v^{\prime}, w\right\rangle$ messages. As sets X and Y intersect in at least one non-malicious acceptor a_{i} (Lemma 2(c)), we conclude that a_{i} sent different COMMIT messages with the same view number: a contradiction.

Lemma 7. No two different values can be learned in the same view.
Proof. Follows directly from Lemmas 3, 5 and 6.
Lemma 8. If choose (v, WriteProof) in view w^{\prime} returns (v, w) and v is a candidate value in Writeproof, then at least one non-malicious acceptor a_{i} pre-prepared the value v in a view higher or equal to w.

Proof. Assume choose(v, Writeproof) in view w^{\prime} returns v, w where v is a candidate- 3 value in the Writeproof. From Definition 1, it follows that a set X of at least $N_{a}-2 F-M$ acceptors reported a valid $P_{*}=(v, w)$. A P_{*} set is valid if: (a) PREPARE messages exchanged among acceptors are signed, (b) PREPARE messages are not signed, but P_{*} is accompanied with a "lazy" proof of $N_{a}-2 F$ signed SIGN-ACK messages (when $N_{a} \leq 2 F+2 M$) and (c) PREPARE messages are not signed, but $N_{a} \geq 2 F+2 M+1$. We prove that in each of these three exhaustive cases, there is a set Y of at least $N_{a}-F$ acceptors that sent $\langle P R E P A R E, v, w\rangle$ messages.
Case (a): P_{*} sets that acceptors from set X reported contain signed PREPARE messages from $N_{a}-F$ acceptors. Applying Lemma 2(f) and Lemma 1, we conclude that a set Y contains at least one non-malicious acceptor a_{i} that pre-prepared v in view w.
Case (b): Every P_{*} set is basically accompanied with $N_{a}-2 F$ signatures. As $N_{a} \geq 2 F+M+1 \Rightarrow$ $N_{a}-2 F \geq M+1$ we conclude that at least one of these signatures comes from a non-malicious acceptor a_{i} that pre-prepared v in view w.
Case (c): A cardinality of set X is $S_{v}^{3} \geq N_{a}-2 F-M \geq M+1$, i.e., at least one of the P_{*} sets is reported by the non-malicious acceptor a_{i} that pre-prepared v in view w.

Assume now that w is a candidate- 2 value in the Writeproof. This implies (Definition 1) that there exists a set X of at least $N_{a}-Q-M-F$ acceptors that reported that they pre-prepared v, out of which a set Y of at least $M+1$ acceptors pre-prepared v in the view higher or equal to w (note that Lemma 2(g) implies that the set X contains at least $M+1$ acceptors). As there are at most M malicious acceptors, we conclude that the set Y contains at least one non-malicious acceptor that pre-prepared the value v in a view higher or equal to w.

Lemma 9. (Validity) If a learner learns a value v, then some proposer proposed v.
Proof. If a learner learns v in w, v was pre-prepared by $N_{a}-Q>M$ acceptors or prepared by $N_{a}-F>M$ acceptors in view w, i.e. at least one non-malicious acceptor accepted v in w.

We prove the following statement using induction on view numbers: if a non-malicious acceptor accepts v, then v was some proposer proposed v.
Base Step: We prove that if a non-malicious acceptor accepted v in Initview, then some proposer proposed v.

As non-malicious acceptors accept only values proposed by $p_{\text {Init }}$, we conclude that v was proposed by some proposer.

Remark: Again, we highlight that it is impossible to ensure that a malicious proposer $P_{\text {Init }}$, on proposing a value, will not pretend that it has proposed a different value. A more precise definition of Validity would be: if a learner l learns a value v in run r, then there is a run r^{\prime} (possibly different) such that some proposer proposes v in r^{\prime}, and l cannot distinguish r from r^{\prime}. Proof that corresponds
to this Validity definition follows the same footsteps as this proof.

Inductive Hypothesis (IH): For every view $w, k>w \leq$ Initview, if a non-malicious acceptor accepted v in w, then some proposer proposed v.
Inductive Step: We prove the statement is true for the view k. In view k acceptor accept only values returned by choose $(*$, Writeproof $)$, where Writeproof is valid. If choose $(*, W$ riteproof) returns a candidate value v, by Lemma 8 , some non-malicious acceptor accepted v in view $w, w<k$, and by IH, v was proposed by some proposer. If choose $(*, W$ riteproof $)$ returns v in line 34 , Figure 7, then v is initial proposal value of the leader of k. We conclude (with the same remark as in the Base Step) that v was proposed by some proposer.

Lemma 10. After sending a NEW-VIEW-ACK message for view w, a non-malicious acceptor cannot accept a value v with view number $w^{\prime}<w$.

Proof. It is not difficult to see that this lemma holds, as non-malicious acceptor a_{j} accept a value v with view number w^{\prime} only if a_{j} is in view lower or equal to w^{\prime}. As a_{j} already replied with a $N E W-V I E W-A C K$ message for view $w>w^{\prime}$ and thus is in view $w_{a_{j}} \geq w>w^{\prime}, a_{j}$ cannot accept v.

Lemma 11. If w is the lowest view number in which some value v is Learned-2, then no nonmalicious acceptor a_{i} pre-prepares any value $v^{\prime}, v^{\prime} \neq v$ in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no non-malicious acceptor a_{i} can pre-prepare any value different from v in view $w+1$. A non-malicious acceptor a_{i} in $w+1$ pre-prepares a value v^{\prime} only if the emphchoose() function on the valid WriteProof of view $w+1$ returns v^{\prime}. Therefore, it is sufficient to prove that for any valid Writeproof, choose(${ }^{*}$, Writeproof) returns v.

Assume, without loss of generality, that v was Learned-2 by learner l in view w. Then (Def. 2, 3), a set X of at least $N_{a}-Q$ acceptors pre-prepared v in w. As the valid WriteProof of view $w+1$ consists of $N E W-V I E W-A C K$ messages from a set Y of $N_{a}-F$ acceptors, there is a subset Z of the set $X \cap Y$, of cardinality $S_{Z} \geq N_{a}-Q-F-M$, that contains only non-malicious acceptors (Lemma 2(e)). By Lemma 10, every acceptor $a_{i} \in Z$ pre-prepared v in w, before replying with the $N E W$-VIE $W-A C K$ message to the leader of view $w+1$. In the meantime, no acceptor from Z pre-prepared any other value, as this would mean that it would be in the higher view then $w+1$ when replying with $N E W-V I E W-A C K$ for $w+1$, which is impossible. Therefore, $\forall a_{i} \in Z,\left(K_{a_{i}}=\right.$ $(v, w)) \in$ WriteProof. As $S_{Z} \geq N_{a}-Q-F-M, v$ is the candidate- 2 value in Writeproof of view $w+1$, with $M+1^{\text {st }}$ highest view number (that exists, as follows from Lemma $2(\mathrm{~g})$) equal to w. Note that, in the case the size of Z equals $N_{a}-Q-F-M$ and v was Learned- 2 by l in view w, then every acceptor a_{j}, out of F acceptors whose $N E W-V I E W-A C K$ messages are not in the W riteProof, is non-malicious and a_{j} pre-prepared v in w, before a_{j} replied with the $N E W-V I E W-A C K$ for view $w+1$ (if a_{j} replied to the $N E W$-VIE W message for view $w+1$ at all).

If v is the only candidate- 2 value in the WriteProof, then $v_{2}:=v$ (line 7, Fig. 7) and view w_{2} assignw (line 18, Fig. 7).

If there is another candidate- 2 value $v^{\prime 6}$ with its $M+1^{\text {st }}$ view number view ${ }^{\prime}<w$ (chosen as in lines 9-10, Fig. 7, again $v_{2}:=v$ and $v i e w_{2}:=w$ (line 11, Fig. 7). As it is impossible that $v i e w^{\prime}>w$ in the valid Writeproof of view $w+1$ (line 4, Fig. 8), we now consider the case where view ${ }^{\prime}=w$. In this case, it is not difficult to see that the leader of view w is faulty. Indeed, there is a set of at least $N_{a}-Q-F-M \geq M+1$ acceptors (Lemma 2(g)) that accepted v in the view w, and another set of at least $M+1$ acceptors that accepted v^{\prime} in the view w, which implies that there are two non-malicious acceptors which accepted different values in w, i.e., the leader of view w is

[^5]malicious. From the choose() function, if this case (view $=w$) occurs, the valid Writeproof does not contain the $N E W-V I E W-A C K$ message from the leader of view w (line 13 of Fig. 7). In this case, the size of the set Z is at least $S_{Z}=S_{v}^{2} \geq N_{a}-Q-F-M+1$, as we are sure that the $N E W$ $V I E W-A C K$ message from at least one malicious acceptor (the leader of view w) is not included in the WriteProof. As there are no two non-intersecting subsets of size $N_{a}-Q-F-M+1$ in the set of size $N_{a}-F$ (if $N_{a}-F \geq 2\left(N_{a}-Q-M-F+1\right)$ then $N_{a} \leq 2 M+F+2 Q-2$, which would contradict our assumptions on the number of acceptors), $v_{2}:=v$ at line 14, Fig. 7).

If there is no candidate- 3 value v^{\prime}, or if there is such a value with the associated view number $v i e w^{\prime}<w$, or if $v^{\prime}=v$, then choose() returns v, w (lines 19-20, Fig. 7). Again, it is not possible that $v i e w^{\prime}>w$, so we discuss the case where $v i e w^{\prime}=w$ and $v^{\prime} n e q v$. There are three exhaustive possibilities: (a) PREPARE messages exchanged among acceptors are authenticated, (b) PREPARE messages exchanged among acceptors are not authenticated and the cardinality of the candidate-3 value is $S_{v^{\prime}}^{3} \geq M+1$ and (c) PREPARE messages exchanged among acceptors are not authenticated and $S^{3} \leq M$.
In case (a), digital signatures from the sets P_{*} that contain v^{\prime}, certify that $N_{a}-F$ different acceptors sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ message. Due to Lemma $4, v^{\prime}=v$, a contradiction.
In case (b), existence of at least $M+1 P_{*}$ sets that contain v^{\prime}, i.e., including at least one that is sent by a non-malicious acceptor, certifies that $N_{a}-F$ different acceptors sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ message. Similarily as in the case (a), we reach a contradiction.
Consider case (c). If configuration is C_{1}, then the Writeproof is not valid (line 23, Fig. 7. Consider now configuration C_{2}. As in this case, P_{*} sets are accompanied with "lazy" proofs, every valid $P_{a_{i}}$ set is certified with at least $N_{a}-2 F \geq M+1$ signatures, including at least one signature from nonmalicious acceptor. In other words, there are two distinct non-malicious acceptors that accepted different values in w, i.e., the leader of view w is malicious. From the choose() function, if this case occurs, the valid W riteproof does not contain the $N E W$-VIE W - $A C K$ message from the leader of view w (lines 25, Fig. 7). In this case, the size of the set Z is at least $S_{Z}=S_{v}^{2} \geq N_{a}-Q-F-M+1$, as we are sure that the $N E W-V I E W-A C K$ message from at least one malicious acceptor (the leader of view w) is not included in the WriteProof. Again, there are three exhaustive subcases: (1) $S_{v^{\prime}}^{3}<N_{a}-M-2 F+1,(2) N_{a}-M-2 F+1 \leq S_{v^{\prime}}^{3}<M$ and (3) $S_{v^{\prime}}^{3}=M$. In case (1), choose () returns v (line 28, Fig. 7). In case (2), Writeproof is not valid (line 29, Fig. 7). In case (3), as there are at most $M-1$ messages in the Writeproof are from the malicious acceptors (as the message from the malicious leader of view w is not in the Writeproof), one non-malicious acceptor a_{i} sent $P_{a_{i}}$ that contains v^{\prime}. Similarily as in the case (a), we conclude that, due to Lemma $4, v=v^{\prime}-\mathrm{a}$ contradiction.
Inductive Hypothesis (IH): Assume that no non-malicious acceptor a_{i} can pre-prepare any value different from v in any view from $w+1$ to $w+k$. We prove that no non-malicious acceptor a_{i} can pre-prepare any value different from v in the view $w+k+1$.
Inductive Step: Again, it is sufficient to prove that any choose() function on any valid Writeproof of view $w+k+1$ returns v. From Lemma $2(\mathrm{e})$, there is a set Z of size at least $N_{a}-Q-M-F$, that contains only non-malicious acceptors, such that every acceptor in Z pre-prepared v in w and its $N E W$-VIE W - $A C K$ message is part of the W riteProof of view $w+k+1$. In fact, as the set Z contains only non-malicious acceptors, applying IH yields that $\forall a_{i} \in Z \exists w_{i} \geq w,\left(K_{a_{i}}=\right.$ $\left.\left(v, w_{i}\right)\right) \in$ WriteProof. Therefore, v is the candidate- 2 value and the $M+1^{\text {st }}$ highest view number associated with v in Z is $w_{v} \geq w$. Therefore, choose (${ }^{*}$, Writeproof) in view $w+k+1$ can only return $\left(*, w^{\prime} \geq w\right)$. The sets K_{*} and P_{*} in the valid WriteProof of view $w+k+1$ contain only values with associated view numbers up to $w+k$ (line 4, Fig. 8). Let choose(${ }^{*}$, Writeproof) return $\left(v^{\prime}, w^{\prime} \leq w+k\right)$. If $w^{\prime}>w$, then $v^{\prime}=v$ because, by IH a value pre-prepared by any non-malicious acceptor in view w^{\prime}, such that $w<w^{\prime} \leq w+k$ can be only v, and by Lemma 8 , in order for
choose (${ }^{*}$, WriteProof) to return $\left(v^{\prime}, w^{\prime}\right)$, one non-malicious acceptor must have pre-prepared v^{\prime} in w^{\prime}. Now we consider the case where $w^{\prime}=w=w_{v}$ and $v^{\prime} \neq v$ (it is not difficult to see that $v=v^{\prime}$ results in choose() returning v).

If v^{\prime} is another candidate- 2 value, then we conclude that there exists one non-malicious acceptor a_{j} that accepted $v^{\prime} \neq v$ in some view higher or equal to w (as w^{\prime} is the $M+1^{\text {st }}$ highest view number associated to v^{\prime}). From IH, we know that this view can not be higher than w, so we conclude that a_{j} accepted v^{\prime} in view w. As we know that every acceptor from the set Z accepted v in w and as Z contains only non-malicious acceptors, we conclude that the leader of view w was malicious. In this case, from the modified choose() function, the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of view w (lines 13 of Fig. 7). In this case, the size of the set Z is at least $S_{Z}=S_{v}^{2} \geq N_{a}-Q-M-F+1$, as we are sure that the $N E W$-VIE W-ACK message from at least one malicious process (the leader of view w) is outside the WriteProof. As there are no two non-intersecting subsets of size $N_{a}-Q-M-F+1$ in the set of $N_{a}-F$ acceptors, $v_{2}:=v$ at line 14, Fig. 7).

Assume $v^{\prime} \neq v$, with $w^{\prime}=w$ is a candidate- 3 value. Here we use the same reasoning as in the Base step, which is repeated here for completeness. Again, there are three exhaustive possibilities: (a) PREPARE messages exchanged among acceptors are authenticated, (b) PREPARE messages exchanged among acceptors are not authenticated and the cardinality of the candidate- 3 value is $S_{v^{\prime}}^{3} \geq M+1$ and (c) PREPARE messages exchanged among acceptors are not authenticated and $S^{3} \leq M$.
In case (a), digital signatures from the sets P_{*} that contain v^{\prime}, certify that $N_{a}-F$ different acceptors sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ message. Due to Lemma $4, v^{\prime}=v$, a contradiction.
In case (b), existence of at least $M+1 P_{*}$ sets that contain v^{\prime}, i.e., including at least one that is sent by a non-malicious acceptor, certifies that $N_{a}-F$ different acceptors sent $\left\langle P R E P A R E, v^{\prime}, w\right\rangle$ message. Similarly as in the case (a), we reach a contradiction.
Consider case (c). If configuration is C_{1}, then the W riteproof is not valid (line 23, Fig. 7. Consider now configuration C_{2}. As in this case, P_{*} sets are accompanied with "lazy" proofs, every valid $P_{a_{i}}$ set is certified with at least $N_{a}-2 F \geq M+1$ signatures, including at least one signature from nonmalicious acceptor. In other words, there are two distinct non-malicious acceptors that accepted different values in w, i.e., the leader of view w is malicious. From the choose() function, if this case occurs, the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of view w (lines 25, Fig. 7). In this case, the size of the set Z is at least $S_{Z}=S_{v}^{2} \geq N_{a}-Q-F-M+1$, as we are sure that the $N E W$-VIE $W-A C K$ message from at least one malicious acceptor (the leader of view w) is not included in the WriteProof. Again, there are three exhaustive subcases: (1) $S_{v^{\prime}}^{3}<N_{a}-M-2 F+1$, (2) $N_{a}-M-2 F+1 \leq S_{v^{\prime}}^{3}<M$ and (3) $S_{v^{\prime}}^{3}=M$. In case (1), choose() returns v (line 28, Fig. 7). In case (2), Writeproof is not valid (line 29, Fig. 7). In case (3), as there are at most $M-1$ messages in the W riteproof are from the malicious acceptors (as the message from the malicious leader of view w is not in the Writeproof), one non-malicious acceptor a_{i} sent $P_{a_{i}}$ that contains v^{\prime}. Similarly as in the case (a), we conclude that, due to Lemma $4, v=v^{\prime}-\mathrm{a}$ contradiction.

Lemma 12. If w is the lowest view number in which some value v is Learned-3, then no nonmalicious acceptor a_{i} pre-prepares any value $v^{\prime}, v^{\prime} \neq v$ in any view higher than w.

Proof. We prove this lemma by induction on view numbers.
Base Step: First, we prove that no non-malicious acceptor a_{i} can pre-prepare any value different from v in view $w+1$. A non-malicious acceptor a_{i} in $w+1$ pre-prepares a value v^{\prime} only if the emphchoose() function on the valid WriteProof of view $w+1$ returns v^{\prime}. Therefore, it is sufficient to prove that for any valid Writeproof, choose(${ }^{*}$, Writeproof) returns v.

Assume, without loss of generality, that v was Learned- 3 by learner l in view w. Then (Def. 2, 3), a set X of at least $N_{a}-F$ acceptors pre-prepared v in w. As the valid WriteProof of view $w+1$ consists of NEW-VIEW-ACK messages from a set Y of $N_{a}-F$ acceptors, there is a nonempty subset Z of the set $X \cap Y$ that contains only non-malicious acceptors with cardinality $S_{Z}=S_{v}^{3} \geq N_{a}-2 F-M$. By Lemma 10, every acceptor $a_{i} \in Z$ pre-prepared and prepared v in w, before replying with the message $N E W-V I E W-A C K$ to the leader of view $w+1$. Therefore, $\forall a_{i} \in Z,\left(P_{a_{i}}=(v, w)\right) \in$ WriteProof, i.e. v is the candidate- 3 value. In a valid W riteproof there are no two candidate-3 values with the same view number (line 5, Fig. 7). As w is the highest view number that can appear in the WriteProof of $w+1$, it follows that the $v_{3}:=v, v i e w_{3}=w$ at line 4, Figure 7.

Similarly there cannot be a candidate- 2 value $v^{\prime} \neq v$, with $M+1^{\text {st }}$ highest associated view number $w^{\prime}>w$ in the valid W riteproof of view $w+1$. Let v_{2} be the candidate- 2 value selected by the lines $7-17$ of Figure 7, with associated view number view (line 18, Fig. 7). If there is no such a value, or if $v i e w_{2}<w$, or if ($v_{2} \neq v$ and $S_{v}^{3}>M$), or if PREPARE messages exchanged among acceptors are authenticated, or if, finally, $v_{2}=v$, then choose (${ }^{*}$, Writeproof) returns (v, w) (lines 19-21, Fig. 7). Now we consider the only possible case left, the case where: (a) PREPARE messages exchanged among acceptors are not authenticated, (b) $v i e w_{2}=w$, (c) $v_{2} \neq v$ and (d) $S_{Z}=S_{v}^{3} \leq M$. If system configuration is C_{1}, then the Writeproof is not valid. Consider now configuration C_{2}. As in this case, P_{*} sets are accompanied with "lazy" proofs, every valid $P_{a_{i}}$ set is certified with at least $N_{a}-2 F \geq M+1$ signatures, including at least one signature from non-malicious acceptor. Furthermore, as v_{2} is a candidate- 2 value with associated view number $v i e w_{2}=w$, there are at least $M+1$ (Lemma 2(g)) acceptors, out of which at least one is non-malicious, that accepted $v_{2} \neq v$ in w. In other words, there are two distinct non-malicious acceptors that accepted different values in w, i.e., the leader of view w is malicious. From the choose() function, if this case occurs, the valid Writeproof does not contain the NEW-VIEW-ACK message from the leader of view w (line 25, Fig. 7). In this case, the size of the set Z is at least $S_{Z}=S_{v}^{3} \geq N_{a}-Q-F-M+1$, as we are sure that the $N E W$-VIEW-ACK message from at least one malicious acceptor (the leader of view w) is not included in the WriteProof. From the lines 27-29, Figure 7 it is not difficult to see that, in this case, either choose (*, Writeproof) returns (v, w) (line 27), or the Writeproof is not valid (line 29).
Inductive Hypothesis (IH): Assume that no non-malicious acceptor a_{i} pre-prepares any value different from v in any view from $w+1$ to $w+k$. We prove that no non-malicious acceptor a_{i} can pre-prepare any value different from v in view $w+k+1$.

Inductive Step: Again, it is sufficient to prove that any valid Writeproof of view $w+k+1$ witnesses v. As in the Base step, we can argue that there is a set Z containing at least $S_{Z}=S_{v}^{3} \geq N_{a}-2 F-$ M non-malicious acceptors that pre-prepared and prepared v in w and whose NEW-VIEW-ACK message is part of the WriteProof of view $w+k+1$. The sets K_{*} and P_{*} in the valid WriteProof of view $w+k+1$ contain only values with associated view numbers up to $w+k$ (line 4, Fig. 8). Assume choose($*$, Writeproof) returns ($v^{\prime}, w^{\prime} \leq w+k$. If $w^{\prime}>w$ then $v^{\prime}=v$ because, by IH a value pre-prepared by any non-malicious acceptor in view $w^{\prime}, w<w^{\prime} \leq w+k$ can be only v, and by Lemma 8 , in order for choose ($*$, WriteProof) to return v^{\prime}, w^{\prime}, one non-malicious acceptor must have pre-prepared v^{\prime} in a view higher or equal to w^{\prime}. On the other hand, it is not possible that $w^{\prime}<w$, as the presence of the messages sent by the acceptors from the set Z in the Writeproof guarantees that v will be the candidate- 3 value with an associated view number higher than or equal to w. Therefore, choose ($*$, WriteProof) will always return a value with the associated view number $w^{\prime} \geq w$. Finally, if $w^{\prime}=w$, we can use similar reasoning as in the Base Step and conclude that there can not be more than one candidate-3 values with the associated view number w in the
valid WriteProof, nor some candidate- 2 value $v^{\prime} \neq v$ with associated view number $w^{\prime}=w$ can be selected before candidate-3 value v. Hence, we conclude that the choose($*, W$ riteProof) returns v.

Lemma 13. If w is the lowest view number in which some value v is learned, then no non-malicious acceptor a_{i} pre-prepares any value $v^{\prime} \neq v$ in any view higher than w.

Proof. Follows directly from Lemmas 7, 11 and 12.
Lemma 14. (Agreement) No two different values can be learned.
Proof. Follows from Lemma 13 and the fact that if some value v^{\prime} is learned in view w some nonmalicious acceptor pre-prepared v^{\prime} in w.

Lemma 14 proves Agreement.
To help prove liveness (i.e., the Termination property) and the show that DGV allows very fast (resp. fast) learning, we identify three Weak Termination properties of the Locking part of our algorithm.

- Very Fast Weak Termination (VFWT) If (a) run r is synchronous, (b) a correct privileged proposer p_{k} is the only proposer that proposes a value (for a sufficiently long time) in r and (c) at most Q acceptors are faulty, then every correct learner learns a value in two communication rounds.
- Fast Weak Termination (FWT) If (a) run r is synchronous, (b) a correct privileged proposer p_{k} is the only proposer that proposes a value (for a sufficiently long time) in r and (c) Q^{\prime}, where $Q<Q^{\prime} \leq F$ acceptors are faulty, then every correct learner learns a value in three communication rounds.
- Eventual Weak Termination (EWT) If (a) run r is eventually synchronous, (b) a correct proposer p_{k} proposes a value at time t, after GST $(t>G S T)$, with the highest view number out of all proposals invoked up to time t, (c) no proposer proposes a value after t with a higher view number (for a sufficiently long time) and (d) at most F acceptors are faulty, then every correct learner eventually learns a value.

The notion of "sufficiently long time" in the case of VFWT, means that no proposer other than p_{k} proposes before $N_{a}-Q$ correct acceptors receive the PRE-PREPARE message from $p_{\text {Init }}$. In the synchronous run in which up to Q acceptors are faulty, this time $\left(\Delta_{c}\right)$ is bounded and correctly estimated by every acceptor. In the case of FWT, "sufficiently long time" means that no proposer other than p_{k} proposes before $N_{a}-F$ correct acceptors receive the $N_{a}-F$ PREPARE messages that correspond to PRE-PREPARE message sent by $p_{\text {Init }}$. In the synchronous run in which up to F acceptors are faulty, this time $\left(\Delta_{c}\right)$ is bounded and correctly estimated by every acceptor. Finally, in the case of EWT, "sufficiently long time" means that either no proposer proposes the value before $N_{a}-Q$ correct acceptors receive the PRE-PREPARE message from the p_{k}, or $N_{a}-F$ correct acceptors receive each $N_{a}-F$ PREPARE messages corresponding to p_{k} 's proposal.

Lemma 15. The Locking module, from Figure8, satisfies Very Fast Weak Termination.
Proof. As the run is synchronous, correct acceptors receive the PRE-PREPARE message from the correct privileged proposer within a known time period (i.e., Δ_{c}). As no other proposer proposes for a sufficiently long time, i.e. until $N_{a}-Q$ correct acceptors receive PRE-PREPARE message, $N_{a}-Q$ correct acceptors pre-prepare leader's proposal and send a PREPARE message to learners. Again, as the run is synchronous, every correct learner receives $N_{a}-Q$ PREPARE messages within $2 \Delta_{c}$ after the value was proposed, when it learns a value,. Therefore, every correct learner learns a value in two communication rounds after the correct proposer proposed a value.

Lemma 16. The Locking module, from Figure 8, satisfies Fast Weak Termination.
Proof. The proof is analogous to that of Lemma 15.
Using the $V F W T$ property of the Locking part, we can prove that DGV provides very fast learning.
Lemma 17. If the run is synchronous and up to Q acceptors fail and the privileged proposer $p_{\text {Init }}$ $\left(p_{0}\right)$ is correct and proposes a value (very favorable run), then DGV algorithm provides very fast learning.

Proof. To prove this lemma, we assume that $p_{\text {Init }}$ proposes immediately after the initialization of the algorithm. From line 2, Figure 8, we see that when the correct $p_{\text {Init }}$ proposes, it skips the $R E A D$ phase and directly sending the PRE-PREPARE message to the acceptors. As the run is synchronous, all messages sent among correct processes are delivered within a correctly estimated (by every correct process) bound on the message transmission delay $\left(\Delta_{c}\right)$. This guarantees that no correct acceptor receives PRE-PREPARE message after Δ_{c} and that the timers at acceptors are set according to Δ_{c} (i.e., no acceptor times out at $t=\Delta_{c}$). In other words, as the $p_{\text {Init }}$ proposes immediately after initialization of the algorithm, no correct acceptor will suspect the leader at Δ_{c} and all correct acceptors will receive a $P R E-P R E P A R E$ message before any other proposer proposes (with a valid view proof), i.e., no other proposer proposes for a sufficiently long time. From the $V F W T$ property of the Locking module we conclude that all the correct learners learn a value within two communication rounds.

Lemma 18. If the run is synchronous and up to F acceptors fail and the privileged proposer $p_{\text {Init }}$ (p_{0}) is correct and proposes a value (very favorable run), then DGV algorithm provides fast learning.

Proof. The proof is analogous to that of Lemma 17.
We proceed with few more lemmas to prove Termination.
Lemma 19. If a valid Writeproof consists only of NEW-VIEW-ACK messages sent by nonmalicious acceptors, choose ($*$, Writeproof) never aborts.

Proof. It is sufficient to prove that if choose(*, Writeproof) aborts, then the Writeproof contains a $N E W-V I E W-A C K$ message from at least one malicious acceptor. First, consider the case where choose (*, Writeproof) aborts with flag = true (in lines 13 and 25, Figure 7). We consider the following two exhaustive subcases:
Case (a): choose() aborts in line 13, as there are two candidate- 2 values v^{\prime} and $v^{\prime \prime} \neq v^{\prime}$ with the same $M+1^{\text {st }}$ highest associated view number w and the leader of the view w is in the Writeproof. Therefore, in Writeproof there are (at most) three acceptors: a_{w}, the leader of the view w, a_{i}, that claims it received v^{\prime} from a_{w} in view w, and a_{j}, that claims that it received $v^{\prime \prime}$ from a_{w} in view w. It is not difficult to see that at least one of these acceptors is malicious.

Case (b): choose() aborts in line 25, as there is a candidate- 2 values v_{2} with the $M+1^{\text {st }}$ highest associated view number w, and a candidate- 2 value v_{3} with the same associated view number w and the leader of the view w is in the Writeproof. Similarly as in the case (a), in Writeproof there are (at most) three acceptors: a_{w}, the leader of the view w, a_{i}, that claims it received v_{2} from a_{w} in view w, and a_{j}, that claims it received v_{3} from a_{w} in view w. It is not difficult to see that at least one of these acceptors is malicious.

Consider now the case where choose ($*$, Writeproof) function with flag $=$ false (lines 5,23 and 29 of Fig. 7. We consider the following three exhaustive subcases:

Case (a): flag $=$ false because there is more than one candidate- 3 value (line 5). In this case, there are two acceptors a_{i} and a_{j} that claim that a set A of $N_{a}-F$ acceptors accepted a value v and a set B of $N_{a}-F$ acceptors accepted a value $v^{\prime} \neq v$ in the same view w. As $N_{a}>2 F+M$, the sets A and B intersect in at least one non-malicious acceptor, so either acceptor a_{i} or acceptor a_{j} is malicious.

Case (b): flag $=$ false because there is a candidate- 2 value v_{2} and a candidate- 3 value v_{3}, with the same associated view number, such that $v_{2} \neq v_{3}$ and $S_{v_{3}}^{3} \leq M$ in configuration C_{1}, where PREPARE messages exchanged among acceptors are not authenticated (line 23). In this case, the bound on the number of acceptors is $N_{a} \geq 2 F+M+Q+1$, where $M>Q$ (otherwise $S_{v_{3}}^{3} \geq N_{a}-2 F-M \geq M+1$). In the WriteProof, there is a set A of at least $N_{a}-Q-M-F \geq F+1$ acceptors that claim they accepted v_{2}. Also, there is a set B of at least $N_{a}-M-2 F \geq Q+1$ acceptors that claim that they received (independently of each other) v_{3} from $N_{a}-F$ acceptors. Therefore, every acceptor from the set B claims that some acceptor from A sent v_{3} to it. Obviously, there is at least one malicious acceptor in the set $A \cup B$.

Case (c): flag $=$ false because there is a candidate-2 value v_{2}, with cardinality $S_{v_{2}}^{2} \geq N_{a}-Q-M-$ $F+1$ and a candidate-3 value v_{3}, with cardinality $S_{v_{3}}^{3} \geq N_{a}-M-2 F+1$ and $M>S_{v_{3}}^{3}$, where v_{2} and $v_{3} \neq v_{2}$ have the same associated view number w, in configuration C_{2}, in the case PREPARE messages exchanged among acceptors are not authenticated and the NEW-VIEW-ACK message from the (malicious) leader of view w is not in the WriteProof (line 29). In this case, the bound on the number of acceptors is $N_{a} \geq 2 F+M+Q$, where $M-1>Q$ (otherwise, if $M-1 \leq Q$, $N_{a} \geq 2 F+2 M-1$ and $S_{v_{3}}^{3} \geq N_{a}-M-2 F+1$ yields $S_{v_{3}}^{3} \geq M$). In Writeproof, there is a set A of at least $N_{a}-Q-M-F+1 \geq F+1$ acceptors that claim they accepted v_{2}. Also, there is a set B of at least $N_{a}-M-2 F+1 \geq Q+1$ acceptors that claim that they received (independently of each other) v_{3} from $N_{a}-F$ acceptors. Therefore, every acceptor from the set B claims that some acceptor from A sent v_{3} to it. Obviously, there is at least one malicious acceptor in the set $A \cup B$.

For the EWT property of the Locking module to hold, malicious acceptors need to be prevented from sending false, but valid NEW-VIEW-NACK messages. To satisfy this, it is sufficient to guarantee that no acceptor can have a valid view proof of the view number that has not been proposed. ${ }^{7}$ We call this property the No-Creation property of the view proofs.

Lemma 20. The Locking module, from Figure 8, satisfies Eventual Weak Termination, given that the view proofs satisfy the No-Creation property.

Proof. As (a) the run is eventually synchronous, (b) a correct proposer p_{k} proposes at time t after $G S T$, with a highest view number among all proposals up to t, (c) no proposer other than p_{k} proposes the value for a sufficiently long time, we conclude that $N_{a}-F$ correct acceptors receive the $N E W$-VIE W message from p_{k}, complete the LPO subprotocol (if necessary) and reply with the NEW-VIE W - $A C K$ message to p_{k} which eventually receives all messages from correct acceptors. By Lemma 19, the choose ($v_{p_{k}}$, Writeproof) does not abort and returns v. Furthermore, as the No-Creation property of the view proofs holds, no malicious acceptor can reply with a valid $N E W$ -VIEW-NACK message to p_{k}. Therefore, p_{k} sends the PRE-PREPARE message containing the proposal value v. As no other process proposes until (a) $N_{a}-Q$ correct acceptors receive PREPREPARE message from p_{k} or (b) $N_{a}-F$ correct acceptors receive each $N_{a}-F$ PREPARE messages, we conclude that (a) at least $N_{a}-Q$ PREPARE messages or (b) at least $N_{a}-F$

[^6]COMMIT messages are sent to every correct learner. Note that $N_{a}-Q$ correct acceptors from the case (a) might not exist, as only $N_{a}-F \leq N_{a}-Q$ correct acceptors are guaranteed to exist. If there are more than Q acceptor failures, $N_{a}-F$ COMMIT messages will be sent as there are at least $N_{a}-F$ correct acceptors which pre-prepare p_{k} 's proposal and no proposer other than p_{k} proposes a value for a sufficiently long time. As the run is eventually synchronous and PREPARE messages in case (a) and COMMIT messages in case (b) are sent after GST, eventually every correct learner l_{j} receives $N_{a}-Q$ PREPARE messages or $N_{a}-F$ COMMIT messages, and thus, l_{j} learns a value if it did not learn some value before. Therefore, eventually every correct learner learns a value.

Lemma 21. View proofs generated in the Election module of the DGV algorithm satisfy the NoCreation property.

Proof. To prove this lemma, we show that the way the view proofs are generated (lines 13,24-26, Fig. 9) together with Lemma 2(f), guarantee that no process other than the leader of the view w can generate a valid ViewProof ${ }_{w}$ before the leader of w received all signed VIEW-CHANGE messages from correct acceptors contained in ViewProof f_{w}. Note that a valid ViewProof f_{w} contains VIEW-CHANGE messages from $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ acceptors, i.e. from at least a majority of nonmalicious acceptors (Lemma 2(f)) and non-malicious acceptors send the VIEW-CHANGE message for a view w only to the leader of the view w. By lines 26-27 of Figure 9 and lines 3-4 of Fig 10, a correct proposer p_{k}, leader of view w, will immediately propose the value upon reception of necessary VIEW-CHANGE messages, so no acceptor can receive the view proof for the view w, ViewProof f_{w}, before p_{k} proposes the value. On the other hand, a malicious proposer might not follow the algorithm. Note that, however, it is safe to make the assumption that the malicious leader of the view w, p_{B}, proposed the value as soon as some other (malicious) process generated the valid ViewProof f_{w}. This is reasonable, as we can not distinguish the case in which p_{B} does not invoke propose() from the case in which p_{B} invokes propose() with a valid view proof, but p_{B} does not send any protocol message. As p_{B} must receive the signed VIEW-CHANGE messages sent by non-malicious acceptors before any other process receives them, we can safely argue that, if p_{B} had followed the algorithm, it could have had proposed. Therefore, we say that p_{B} proposed but did not send any protocol message. Therefore view proofs that we use in our algorithm satisfy the No-Creation property.

Now we prove the Termination property. This requires the correct learners to learn a value, if a correct proposer proposes and at most F acceptors are faulty, under the assumption of the eventually synchronous system. Note also that immediately after the initialization of the algorithm, correct acceptors trigger the SuspectTimeout timer. After triggering the SuspectTimeout, no correct acceptor will stop its timer permanently until it receives a DECISION message from at least one learner.

Lemma 22. (Termination) If a correct proposer proposes a value, then eventually, every correct learner learns a value.

Proof. Suppose there is a single, correct proposer p_{k} that proposes at time t, after GST, with with a highest view number w among all proposals invoked up to t. Let δ^{\prime} be the upper bound on the time interval required for the execution of the following sequence of operations (after GST): the last acceptor sends the VIEW-CHANGE message necessary for ViewProof f_{w}, p_{k} checks the signatures and generates the ViewProof ${ }_{w}, p_{k}$ sends NEW-VIEW message to acceptors, p_{k} completes successfully the READ phase (including the possible LPO), p_{k} generates the WriteProof and chooses proposal value, p_{k} sends PRE-PREPARE messages, acceptors receive the proposal, check the Writeproof and proposal value, send PREPARE messages to all learners and acceptors and, finally, all correct acceptors prepare the p_{k} 's proposal. As we assume that there is an upper bound
on the time required for every local computation related to authentication, $\Delta_{\text {auth }}$, and that there is an upper bound Δ_{c} on the message transmission delay after GST, such finite upper bound δ^{\prime} exists (actually, it is sufficient that $\delta^{\prime}>7\left(\Delta_{c}+\Delta_{\text {auth }}\right)$, as there are at most seven communication rounds in the above described sequence of rounds, some of which involve local computations related to authentication).

Suppose, by contradiction, that some correct learner never learns a value even if some correct proposer proposes. We distinguish two cases: (a) when no correct acceptor receives a DECISION message from any learner and (b) when some correct acceptor receives a DECISION message from some learner.

We first consider case (a). First, we claim that, in this case, every correct acceptor goes through an infinite number of views. Basically, we show that there will be an infinite number of new views after GST, as the system is eventually synchronous.

Suppose that there is a finite number of views and let w be the highest view number among them. Due to our assumption that no correct acceptor receives a DECISION message, no correct acceptor stops its SuspectTimeout permanently. Therefore, SuspectTimeout keeps expiring and being reset at every acceptor and, consequently, every correct acceptor issues VIEW-CHANGE messages for an infinite number of views. As we assume that there are at least $N_{a}-F$ correct acceptors, $N_{a}-F \geq\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor$ (Lemma 1) and as the messages among correct processes are delivered in a timely manner after GST, there will be a view number w^{\prime} higher than w for which some correct proposer sends a NEW-VIEW message. Therefore, every correct acceptor will accept the $N E W$-VIE W message for the view w^{\prime} unless it is already in the higher view than w^{\prime}. In any case, every correct acceptor will be in the higher view than w - a contradiction. Therefore, every correct acceptor goes through an infinite number of views and the SuspectTimeout grows infinitely at every correct acceptor.

Note that when an acceptor sends a VIEW-CHANGE message for a view w, it triggers a timeout of duration InitTimeout $* 2^{w}$, where InitTimeout is the initial value of SuspectTimeout. The value of InitTimeout is the same at every acceptor. Let $t_{\text {delivery }}$ be the time at which all the $V I E W-C H A N G E$ messages sent before GST that are not lost are delivered. The time $t_{\text {delivery }}$ exists as there is a finite number of VIEW-CHANGE messages sent before GST and as the messages that are not lost are eventually delivered. Let $t>\max \left(G S T, t_{\text {delivery }}\right)$ be the time where $\forall a_{i} \in C, w_{a_{i}}>$ $\left\lceil\log _{2}\left(\delta^{\prime} /\right.\right.$ InitTimeout $\left.)\right\rceil$, where C is a set of correct acceptors. Let $w_{\min }=\min \left\{w_{a_{i}} \mid a_{i} \in C\right\}$ and NextView $\max =\max \left\{N e x t V i e w_{a_{i}} \mid a_{i} \in C\right\}$ at time t. In other words, t is the time at which all correct acceptors are in the view higher or equal to $w_{\text {min }}$, where InitTimeout $* 2^{w_{\text {min }}}>\delta^{\prime}$.

Let w be the lowest view number higher than NextView $\max +1$ in which some correct proposer p_{k} is the leader. As there is an infinite number of view changes, all correct acceptors will send a VIEW CHANGE message for view w, at latest at $t_{w}=t+$ InitTimeout $*\left(2^{w_{m i n}+1}+\ldots+2^{w-1}\right)$. Furthermore, no correct acceptor will send any VIEW-CHANGE message for any view higher than w before $t_{w+1}=t+$ InitTimeout $* 2^{w}$. Note that for the time $t_{w+1}-t_{w}$ there will be no proposer that proposes with a higher view number than the $p_{k} . P_{k}$ will propose at the latest right after t_{w}, when it receives $\left\lfloor\left(N_{a}+M\right) / 2+1\right\rfloor V I E W-C H A N G E$ messages. Note that $t_{w+1}-t_{w}=$ InitTimeout $*\left(2^{w_{\text {min }}}+\ldots+2^{1}+2^{0}+1\right)>$ InitTimeout $* 2^{w_{\text {min }}}>\delta^{\prime}$ Basically, p_{k} will be the only proposer that proposes a value for a period of time greater than δ^{\prime}, with a highest view number of all proposals up to t_{w}. In other words, p_{k} will propose at $t_{w}>G S T$, with a highest view number up to t_{w}, for a sufficiently long time. By the Eventual Weak Termination property of the Locking module, every correct learner eventually decides - a contradiction.

Consider now the case (b) where some correct acceptor receives a DECISION message from some learner. As a correct learner periodically sends a query to acceptors if it does not learn a value and as, after GST, all messages sent among correct processes are delivered, a correct acceptor will eventually forward a $D E C I S I O N$ message to a correct learner that will thus learn a value.

As a_{i} is correct and as after GST messages among correct processes are delivered within a bounded of time, new leader can wait for additional $N E W-V I E W-(N) A C K$ message if choose() function detects a malicious acceptor within the WriteProof. After the reception of an additional message the new leader invokes choose() function on every subset of size $N_{a}-F$ of the set of received NEW-VIEW-ACK messages (e.g., in a set of $N_{a}-F+1$ NEW-VIEW-ACK messages, there are $N_{a}-F+1$ subsets of size $\left.N_{a}-F\right)$. If every choose() invocation aborts with flag $=$ false on every subset of received $N E W-V I E W-A C K$ messages of size $N_{a}-F$, the leader waits for another $N E W-V I E W-A C K$ message and so on.

5.7 DGV variants

First, we give the DGV variants that match the lower bounds for configuration C_{2}. This is followed by discussing DGV optimization in a special case of parameter values, namely $Q=F$.

Configuration C_{2} As we pointed out earlier the DGV variation $D G V_{\text {Alg. } 1}$ addressed a special case of configuration C_{2}, where all proposers are also acceptors and where authentication is not used for very fast learning. This variant is optimized for using in the state-machine replication in a model where there can be more than one privileged proposer that is also an acceptor, but, for a single consensus instance, there is only one privileged proposer/acceptor. However, to give a generic lower bound matching solution for configuration C_{2} (part 2 of the theorem), we need to modify $D G V_{\text {Alg.1 }}$. First, we give the general solution for configuration C_{2} in the case authentication is not used for very fast learning. Namely we show that:

Proposition Alg. 3 There is a consensus algorithm A, with a single proposer p_{l}, where p_{l} is also an acceptor, such that: in every very favorable run of A every correct learner learns a value by round 2 without using authentication despite the failure of Q acceptors whenever $N_{a}>\max (2(M-1)+$ $Q+2 F, 2 M+Q+F)$. This matches the bound established by combining propositions L. 4 and L. 5 from Section 4.

In addition, in every favorable run of A, every correct learner learns a value by round 3 despite the failure of F acceptors:
(a) using authentication when $N_{a} \leq 2 F+(M-1)+\min (M-1, Q)$,
(b) without using authentication when $N_{a}>2 F+(M-1)+\min (M-1, Q)$. This matches the bound established by proposition L.6) from Section 4.

Interestingly, to prove proposition Alg.3, we simplify the $D G V_{A l g .1}$ in a way that we use very fast learning techniques only in Initview. Namely,

1. Acceptors do not send PREPARE messages to learners in any view other than Initview.
2. Acceptors do not modify their $K_{a_{i}}$ sets in a view other than InitView.

The rest of the algorithm stays the same (performance optimizations are possible). Practically, these small changes significantly simplify the DGV variation $D G V_{A l g .1}$ and, especially, its proof. Basically, solving potential disputes among candidate values becomes a lot easier whenever there is a candidate (namely candidate-3) value with associated view number higher than Initview).

Now we match the lower bound from part 2 of the theorem in the case authentication is used in very fast learning. Namely we show that:

Proposition Alg. 4 There is a consensus algorithm A, with a single proposer p_{l}, where p_{l} is also an acceptor, such that: in every very favorable run of A every correct learner learns a value by round

2 (using authentication) despite the failure of Q acceptors whenever $N_{a}>2(M-1)+Q+2 F$. This matches the bound established by proposition L. 4 from Section 4.

To prove proposition Alg.4, we need to introduce two additional changes to $D G V_{\text {Alg.1. }}$. Namely, in addition to changes (1) and (2), i.e., not using very fast learning techniques in any view other than Initview, we introduce the following modifications:

- Privileged proposer $p_{\text {Init }}$ authenticates (signs) its PRE-PREPARE message in Initview.
- We simplify and somewhat modify the choose() function.

Note that for simplicity, we give a variant of DGV that satisfies proposition Alg.4, but does not consider fast learning. The DGV Alg. 4 variant that allows fast learning, both with and without using authenticated (very) fast learning messages (with respect to the number of available acceptors) can be obtained by merging the original Alg. 1 choose() function we gave in Section 5.4 in Figure 7 with the variant of choose() function we give below.

The choose() function for Alg. 4 variant of DGV is given in Figure 11. Note that this special variant of DGV assumes $N_{a}>\max (2 F+M, 2(M-1)+F+2 Q)$. This special case is interesting only in the cases where $Q=0,1$, as for $Q \geq 2,2(M-1)+F+2 Q>2 M+F+Q$ and, according to part 2 of the lower bound theorem, DGV variant that does not use authentication for very fast learning (i.e., Alg.3) is feasible.

```
choose \((v\), WriteProof) returns \((v\), view \()\) is \(\{\)
    view \(_{2}\), view \(_{3}:=-1 ; v_{2}, v_{3}:=\) nil
    sort all (if any) candidate-3 values by their associated view no.; let \(w_{3}\) be the highest among those view no.
    if \(\exists\) a candidate- 3 value \(v_{3}^{\prime}\) associated with \(w_{3}\) then \(v_{3}:=v_{3}^{\prime} ;\) view \(w_{3}:=w_{3}\) endif
    if there is a single candidate- 2 value \(v^{\prime}\) then \(v_{2}:=v^{\prime}\);
    elseif there are two candidate- 2 values \(v^{\prime}\) and \(v^{\prime \prime}\) then
        if \(N E W-V I E W-A C K\) sent by the privileged proposer \(p_{\text {Init }}\) is in \(W\) riteproof then abort
        elseif \(S_{v^{\prime}}^{2} \geq N_{a}-Q-F-M+1\) then \(v_{2}:=v^{\prime}\) elseif \(S_{v^{\prime \prime}}^{2} \geq N_{a}-Q-F-M+1\) then \(v_{2}:=v^{\prime \prime}\)
        endif
    endif
    if \(v_{2} \neq\) nil then view \(2:=\) Initview endif
    if view \(w_{2}>\) view \(w_{3}\) then return \(\left(v_{2}\right.\), view \(\left.w_{2}\right)\) elseif view \(w_{3}>\) view \(w_{2}\) return \(\left(v_{3}\right.\), view \(\left.w_{3}\right)\) else return \((v, \perp)\) endif
```

Fig. 11. DGV-Alg.4: Configuration C_{2}, matching the lower bound when authentication is used for very fast learning - choose() function

We sketch the correctness proof for the Alg. 4 variant of DGV. If the value was learned in Initview it will be reported by $N_{a}-Q-M-F$ acceptors in any WriteProof. First, as the inequality $N_{a}-Q-M-F \geq M+1$ does not hold in this case, we need to show that $N_{a}-Q-M-F>0$. From $N_{a}>\max (2 F+M, 2(M-1)+F+2 Q)$, we have $N_{a}-Q-M-F>\max (F-Q, M+Q-2)$. As $F \geq Q$, we conclude $N_{a}-Q-M-F>0$. Therefore, if a value was learned in Initview it will certainly be a candidate- 2 value in every W riteproof as at least $N_{a}-Q-M-F$ acceptors will report it and non-malicious acceptors do not change their $K_{a_{i}}$ set in any view $w>$ Initview. If the value v is learned in $w>$ Initview we can use the similar reasoning as in Lemma 12, Section 5.6 to conclude that every $\operatorname{choose}(*, W$ riteproof $)$ in any view $w^{\prime}>w$ must return v. It is also not difficult to see that if the value is learned in view $w>$ Initview it was accepted by at least one non-malicious acceptor in w. However, this is not true for Initview.

Therefore, we show that if v was learned in Initview non-malicious acceptors accept only v in every $w>$ Initview. The proof uses induction on view numbers, but we prove here only the Base Step. If v is the only candidate- 2 value in Writeproof of Initview +1 than choose $(*$, Writeproof) returns v. If there is another candidate- 2 value, obviously privileged proposer $p_{\text {Init }}$ is malicious and the valid Writeproof does not contain a message sent by $p_{\text {Init }}$. Therefore, in this case, in valid W riteproof $S_{v}^{2} \geq N_{a}-Q-M-F+1$ and as there cannot be two candidate- 2 values with cardinalities of at least $N_{a}-Q-M-F+1$ (as this would contradict $N_{a}>2(M-1)+F+2 Q$), choose(*, Writeproof) returns v. Therefore, Agreement cannot be violated.

One may argue that Validity can be violated as a set of malicious acceptors can make up a (single) candidate-2 value from a "thin" air. However, this is not the case. To see this, consider the case where $p_{\text {Init }}$ is not malicious. In this case, as $p_{\text {Init }}$ authenticates the PRE-PREPARE message, malicious acceptors cannot forge this signature and, therefore, cannot make up a candidate- 2 value. On the other hand if $p_{\text {Init }}$ is malicious, any value that malicious acceptors can make up, $p_{\text {Init }}$ could have had proposed, without non-malicious acceptors distinguishing these cases.
$\mathbf{Q}=\mathbf{F}$ When $Q=F$, the fast learning does not provide any additional guarantees with respect to the very fast learning. Therefore, in every WRITE phase of any DGV variation PREPARE messages exchanged among acceptors in Initview are not necessary. In the case of DGV variants Alg. 1 and Alg.2, this extends to WRITE phase in every view. The algorithm becomes much simpler as the WRITE phase of the Locking module consists always of only 2 communication rounds, regardless of the other algorithm parameters, namely M and F.

Acknowledgements

We are very grateful to Lorenzo Alvisi, Gildas Avoine, Leslie Lamport, Jean-Philippe Martin and Piotr Zielinski for their very helpful comments.

References

1. Marcos Aguilera, Carole Delporte-Gallet, Hugues Fauconnier, and Sam Toueg. Consensus with Byzantine failures and little system synchrony. Technical Report 2004-008, Université Denis Diderot, Laboratoire d'Informatique Algorithmique, Fondements et Applications (LIAFA), September 2004.
2. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing Letters, 21:181-185, 1985.
3. Romain Boichat, Partha Dutta, Svend Frölund, and Rachid Guerraoui. Deconstructing paxos. SIGACT News in Distributed Computing, 34(1):47-67, 2003.
4. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols. Journal of the ACM, 32(4):824-840, October 1985.
5. Miguel Castro and Barbara Liskov. Authenticated Byzantine fault tolerance without public-key cryptography. Technical Report MIT/LCS/TM-589, MIT Laboratory for Computer Science, 1999.
6. Miguel Castro and Basrbara Liskov. Practical Byzantine fault tolerance. In Proceedings of the Third Symposium on Operating Systems Design and Implementation, New Orleans, USA, February 1999.
7. Miguel Correia, Nuno Ferreira Neves, L. C. Lung, and Paulo Veríssimo. Low complexity Byzantine-resilient consensus. DI/FCUL TR 03-25, Department of Informatics, University of Lisbon, August 2003.
8. D. Dolev and H.R. Strong. Authenticated algorithms for Byzantine agreement. SIAM Journal on Computing, 12(4):656-666, 1983.
9. Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in Byzantine agreement. Journal of the ACM, 37(4):720-741, 1990.
10. Assia Doudou, Benoît Garbinato, and Rachid Guerraoui. Encapsulating failure detection: from crash to Byzantine failures. In Proceedings of the Int. Conference on Reliable Software Technologies, Vienna, May 2002.
11. Partha Dutta and Rachid Guerraoui. The inherent price of indulgence. In Proceedings of the twenty-first annual symposium on Principles of distributed computing, pages 88-97. ACM Press, 2002.
12. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial synchrony. Journal of the ACM, 35(2):288-323, April 1988.
13. M. Fischer and N. Lynch. A lower bound for the time to assure interactive consistency. Information Processing Letters, 14(4):183-186, 1982.
14. Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impossibility of distributed consensus with one faulty process. Journal of the ACM, 32(2):374-382, April 1985.
15. Roy Friedman, Achour Mostefaoui, and Michel Raynal. Simple and efficient oracle-based consensus protocols for asynchronous Byzantine systems. In 23rd IEEE International Symposium on Reliable Distributed Systems, pages 228-237, Florianpolis, Brazil, October 2004. IEEE Computer Society Press.
16. Eli Gafni. Round-by-round fault detectors (extended abstract): unifying synchrony and asynchrony. In Proceedings of the seventeenth annual ACM symposium on Principles of distributed computing, pages 143-152. ACM Press, 1998.
17. Idit Keidar and Sergio Rajsbaum. A simple proof of the uniform consensus synchronous lower bound. Information Processing Letters, 85(1):47-52, 2003.
18. Klaus Kursawe. Optimistic Byzantine agreement. In Proceedings of the 21st IEEE Symposium on Reliable Distributed Systems, page 352. IEEE Computer Society, 2002.
19. Leslie Lamport. Time, clocks and the ordering of events in a distributed system. Communications of the ACM, 21(7):558-565, July 1978.
20. Leslie Lamport. The part-time parliament. ACM Transactions on Computer Systems, 16(2):133-169, 1998.
21. Leslie Lamport. Lower bounds for asynchronous consensus. In Future Directions in Distributed Computing, Springer Verlag (LNCS), pages 22-23, 2003.
22. Leslie Lamport. Lower bounds for asynchronous consensus. Technical Report MSR-TR-2004-72, Microsoft Research, 2004.
23. Leslie Lamport. Private communication. November 2004.
24. Dahlia Malkhi and Michael Reiter. A high-throughput secure reliable multicast protocol. Journal of Computer Security, 5(2):113-127, 1997.
25. J-P. Martin and L. Alvisi. Fast Byzantine paxos. Technical Report TR-04-07, The University of Texas at Austin, Department of Computer Sciences, 2004.
26. M. Pease, R. Shostak, and L. Lamport. Reaching agreements in the presence of faults. Journal of the ACM, 27(2):228-234, April 1980.
27. Michael K. Reiter. Secure agreement protocols: reliable and atomic group multicast in rampart. In Proceedings of the 2nd ACM Conference on Computer and communications security, pages 68-80. ACM Press, 1994.
28. Michael K. Reiter and Kenneth P. Birman. How to securely replicate services. ACM Transactions on Programming Languages and Systems, 16(3):986-1009, 1994.
29. Ronald L. Rivest. The MD5 message-digest algorithm. Internet RFC-1321, 1985.
30. Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signatures and publickey cryptosystems. Communications of the ACM, 21(2):120-126, 1978.
31. Fred B. Schneider. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM Computing Surveys, 22(4):299-319, December 1990.
32. Gene Tsudik. Message authentication with one-way hash functions. In Proceedings of the 11th Annual Joint Conference of the IEEE Computer and Communications Societies, pages 2055-2059, 1992.

Appendix: Removing authentication from DECISION messages

In Section 5.3, we argued that the signing of the DECISION message that learners send upon learning a value can be avoided. A DECISION message permanently stops the SuspectTimeout, and, thus, the Election at an acceptor module. The idea is to use the generalized consistent broadcast (GCB) subroutine [1,4]. GCB has three primitives: (1) gcBcast(v), (2) gcDeliver (v) and (3) gc WeakDeliver (v). GCB has the following properties:

- (Validity) If a correct learner gcBcasts v, then all correct acceptors $g c$ Deliver v.
- (No Creation) If some learner $g c$ WeakDelivers v, then v was $g c B c a s t e d ~ b y ~ s o m e ~ l e a r n e r . ~$
- (Relay) If a correct acceptor gcDelivers v, then all correct acceptors eventually gcDeliver v.
- (Priority) If a correct acceptor gcDelivers v, then all correct learners eventually $g c$ WeakDeliver v.

Implementation of the general consistent broadcast is given in Figure 12. It is slightly modified (generalized with respect to M and F and configuration where learners and acceptors are distinct) from the implementation of [1]. Every message sent within the GCB subroutine is retransmitted periodically, to circumvent our assumption on unreliable channels, i.e., to implement virtual reliable channels.

```
at every learner l}\mp@subsup{l}{j}{}\mathrm{ :
to gcBcast(v):
    send \langleINIT,v\rangle to all acceptors
    upon reception of }\langleREADY,v\rangle\mathrm{ from M+1 different acceptors
    if no value already gcWeakDelivered then gcWeakDeliver(v)
t every acceptor }\mp@subsup{a}{j}{}\mathrm{ :
upon reception of }\langleINIT,v\rangle\mathrm{ from some learner
    if no }\langleECHO,*\rangle\mathrm{ message already sent then send }\langleECHO,v\rangle\mathrm{ to all acceptors
upon reception of }\langleECHO,v\rangle\mathrm{ from \(Na}+M)/2+1\rfloor\mathrm{ different acceptors
        if no }\langleECHO,*\rangle\mathrm{ message already sent then send }\langleECHO,v\rangle\mathrm{ to all acceptors
        if no }\langleREADY,*\rangle\mathrm{ message already sent then send }\langleREADY,v\rangle\mathrm{ to all acceptors and learners
    upon reception of }\langleREADY,v\rangle\mathrm{ from M+1 different acceptors
        if no }\langleECHO,*\rangle\mathrm{ message already sent then send }\langleECHO,v\rangle\mathrm{ to all acceptors
        if no }\langleREADY,*\rangle\mathrm{ message already sent then send }\langleREADY,v\rangle\mathrm{ to all acceptors and learners
        upon reception of }\langleREADY,v\rangle\mathrm{ from N}\mp@subsup{N}{a}{}-F\mathrm{ different acceptors
        if no value already gcDelivered then gcDeliver(v)
```

Fig. 12. Implementation of a Generalized Consistent Broadcast

Having the implementation of GCB, Election module is modified to have every learner $l_{j} g c B c a s t$ a value v, once l_{j} learns v and, furthermore to have l_{j} learn v, once that l_{j} gcWeakDelivered v, unless l_{j} already learned a value. Furthermore, acceptor a_{j} permanently stops its SuspectTimeout once it $g c$ Delivers some value.

Proof of correctness of GCB is similar to the proof of consistent unique broadcast given in [1], using Lemmas 1 and 2 from Section 5.6 to prove intersection of subsets of acceptors. We omit the complete proof.

[^0]: ${ }^{1}$ Here we adopt language abuse for presentation simplicity. In fact, it is impossible to ensure that a malicious proposer, on proposing a value, will not pretend that it has proposed a different value. A more precise definition of Validity would be: if a learner l learns a value v in run r, then there is a run r^{\prime} (possibly different from r) such that some proposer proposes v in r^{\prime}, and l cannot distinguish r from r^{\prime}.

[^1]: ${ }^{2}$ We can however slightly simplify the proof L.2: proposer p_{x} may be removed. Recall that, in $R 3$, proposal by correct proposer p_{x} was introduced to ensure that l_{2} eventually learns a value. However, in $R 3^{\prime}$ both p_{v} and p_{w} are correct and proposes a value, and hence, even without the proposal of p_{x}, l_{2} is required to learn a value.

[^2]: ${ }^{3}$ The absence of authentication is exploited also in this point of the proof, where Q_{2} is allowed to play $(-, 1,1,1,1)$ in round 3, although Q_{2} falsely claims that it received 1 from a correct acceptor F_{2} in round 2. If the messages exchanged among acceptors were authenticated in round 2 this would not be possible.

[^3]: ${ }^{4}$ We prove this statement in Section 5.6 (Lemma 2).

[^4]: ${ }^{5}$ We say that the view number w and the value v are associated if there is some set K_{*} or P_{*}, such that $K_{a_{i}}=(v, w)$ or $P_{a_{i}}=(v, w)$. Note that one value can be associated with multiple view numbers and vice versa.

[^5]: ${ }^{6}$ This case is not possible in configuration C_{1}.

[^6]: ${ }^{7}$ Under the notion of proposing, we consider only propose() invocations with the valid view proofs.

