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Abstract

Over the past years, mobile agent technology has attracted considerable attention, and a
significant body of literature has been published. To further develop mobile agent technology,
reliability mechanisms such as fault tolerance and transaction support are required. This
article aims at structuring the field of fault-tolerant and transactional mobile agent execution
and thus at guiding the reader to understand the basic strengths and weaknesses of existing
approaches. It starts with a discussion on providing fault tolerance in a system in which
processes simply fail. For this purpose, we first identify two basic requirements for fault-
tolerant mobile agent execution: (1) non-blocking (i.e., a single failure does not prevent
progress of the mobile agent execution) and (2) exactly-once (i.e., multiple executions of the
agent are prevented). This leads us to introduce the notion of a local transaction as the basic
building block for fault-tolerant mobile agent execution and to classify existing approaches
according to when and by whom the local transactions are committed. In a second part, we
show that transactional mobile agent execution additionally ensures execution atomicity and
present a survey of existing approaches. In the last part of the survey, we extend the notion of
fault tolerance to arbitrary Byzantine failures and security-related issues of the mobile agent
execution.

Keywords: ACID, agreement problem, asynchronous system, Byzantine failures, commit, crash
failures, fault tolerance, malicious places, mobile agents, replication, security, transaction

1 Introduction

A mobile agent1 is a computer program that acts autonomously on behalf of a user and moves
through a network of heterogeneous machines.2 Over the past years and originally triggered to a
large extend by the work on Telescript [89], the field of mobile agents has attracted considerable
attention, and mobile agent technology has been considered for a variety of applications [11, 12,
40] such as systems and network management [8], mobile computing [79], information retrieval
[80], and e-commerce [43]. However, before mobile agent technology can appear at the core of
tomorrow’s business applications, reliability mechanisms for mobile agents have to be established.
Among these reliability mechanisms, fault tolerance and transaction support are mechanisms of

1In the following, the term “agent” denotes a mobile agent unless explicitly stated otherwise.
2So far, the mobile agent research community has not agreed on a common definition for mobile agents. Hence,

various definitions exist. For the purpose of this article, we adopt the definition given in [44, 52].
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considerable importance. Currently, various approaches targeting different application fields exist.
Owing to the respective strengths and weaknesses of these approaches, it is often difficult for the
application developer to choose the one best suited to a given application. The article aims at
structuring the field of fault-tolerant and transactional mobile agent execution and at examining
the advantages and disadvantages of particular approaches.

In the first part, the article presents a survey of current approaches to fault-tolerant mobile
agent execution. It focuses on the algorithmic aspects; implementations of the current approaches
are not discussed. In this part, the crash failure model is assumed, i.e., components such as
agents, places (i.e., the logical environment that executes the mobile agent) and machines fail by
prematurely halting their execution. We begin by identifying the requirements for fault-tolerant
mobile agents: non-blocking and exactly-once. The non-blocking property ensures that the failure
of an infrastructure component (e.g., a machine, place, agent, or communication link) does not
prevent progress in the agent execution. A blocking execution is undesirable because it can lead
the agent owner to potentially wait a long time for the return of the agent. Replication prevents
blocking, but may result in multiple executions of the agent. The exactly-once property requires
that the code of an agent be executed exactly once. This is particularly important for operations
with side effects, e.g., an agent withdrawing money from an account. Our survey proposes a
novel classification of fault-tolerant mobile agent approaches. It is based on the time when the
modifications of the agent become permanent and visible to other agents: commit-after-stage
vs. commit-at-destination. In commit-after-stage approaches, the modifications are permanent
immediately after the stage execution (i.e., after each execution step of the agent), whereas commit-
at-destination approaches only commit the modifications when the agent has finished its entire
execution. Within these two approaches we further distinguish between solutions where the agent
and the commit decision execute on multiple places and those where they execute only on a single
place. We show how these characteristics influence the exactly-once and non-blocking properties.

In the second part, we present a survey of transactional mobile agents. Transactional mobile
agents execute the mobile agent transactionally. More specifically, a transactional mobile agent
execution ensures atomicity, consistency, isolation, and durability (i.e., the so-called ACID prop-
erties [29, 25]). Assume, for instance, that a mobile agent has to book (1) a flight from Zurich
to New York, (2) a hotel room, and (3) a rental car in New York. Clearly, the agent owner, i.e.,
the person or application creating and initializing the agent, wants to have either all of (1), (2),
and (3) or none at all. A rental car in New York, for instance, is of limited use if no airline ticket
is available. Hence the three operations all have to succeed or otherwise none of them should be
executed. This all-or-nothing property corresponds exactly to the atomicity property of a trans-
action. Note that this property is not ensured by fault-tolerant mobile agent execution discussed
in the first part of the paper.

Similar to fault-tolerant mobile agent execution, the non-blocking property is also desirable for
transactional mobile agents. We show how approaches to fault-tolerant mobile agent executions
can help to achieve non-blocking in a transactional context. In particular, we discuss how the
commit-at-destination approach can be extended to a transactional mobile agent approach.

In the third part, we extend our failure model from crash failures to more hostile environments,
in which malicious places can access and tamper with the mobile agent’s state and code. More
specifically, the place may read confidential data of the agent (e.g., the credit card information) or
modify previously collected data. We survey existing approaches and show why this issue is still
not adequately resolved.

The rest of this survey is structured as follows: Section 2 presents our model of mobile agents. In
Section 3 we specify fault-tolerant mobile agent execution in terms of two properties: non-blocking
and exactly-once. The basic building blocks to ensure these properties are identified in Section 4.
Section 5 defines the characteristics of fault-tolerant mobile agent approaches and provides a clas-
sification of these approaches. A survey of existing approaches in terms of our classification is
given in Section 6. In Section 7, we discuss mechanisms to ensure execution atomicity for trans-
actional mobile agents and we present a survey on the current approaches to transactional mobile
agents in Section 8. Section 9 contains the third part of this survey: fault-tolerant mobile agent
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execution in the context of malicious places. Finally, Section 10 concludes the paper.

2 Model

We assume an asynchronous distributed system, i.e., there are no bounds on transmission delays
nor on relative processor speeds. An example of an asynchronous system is the Internet. Processors
communicate via message passing.

2.1 Mobile Agent

A mobile agent executes on a sequence of machines, where a place3 pi (0 ≤ i ≤ n) provides the
logical execution environment for the agent [88]. Executing the agent at a place pi is called a
stage Si of the agent execution [45]. We call the places where the first and last stages of an
agent execute (i.e., p0 and pn) the agent source and destination, respectively [45]. The sequence
of places between the agent source and destination (i.e., p0, p1, ..., pn) is called the itinerary of
a mobile agent. Whereas a static itinerary is entirely defined at the agent source and does not
change during the agent execution, a dynamic itinerary is subject to modifications by the agent
itself.

Logically, a mobile agent executes in a sequence of stage actions (see Figure 1). Each stage
action sai consists of potentially multiple operations op0, op1, . . .. Agent ai (0 ≤ i ≤ n) at
the corresponding stage Si represents the agent a that has executed the stage actions on places
pj (j < i) and is about to execute on place pi. The execution of ai on place pi results in a new
internal state of the agent as well as potentially a new state of the place (if the operations of an
agent have side effects).4 We denote the resulting agent ai+1. Place pi forwards ai+1 to pi+1 (for
i < n).

p1 p2 p3p0

Agent
Source

Agent
Destination

a1 a2 a3a0
a2a1 a3

Stage S1Stage S0 Stage S2 Stage S3

Figure 1: Model of a mobile agent execution with four stages.

In this article, we focus on the execution of a single agent. Hence, we denote by agent execution
the execution of a single agent in a sequence of stages. The case of multiple agents coordinating
to solve a higher-level task is briefly discussed in Section 3.3.

2.2 Infrastructure Failures

Machines, places, or agents can fail and subsequently recover. A component that has failed but
not yet recovered is called down, whereas it is up otherwise. In this paper, we first focus on
crash failures (i.e., processes that halt prematurely). In Section 9 we extend this view to also
accommodate malicious failures (i.e., Byzantine failures) of places and security-related issues. A
failing place causes all agents running on it to fail as well. Similarly, a failing machine causes all
places and agents on this machine to fail as well. We do not consider catastrophic failures such
as deterministic, repetitive programming errors (i.e., programming errors that occur on all agent
replicas or places) in the code or the place to be relevant failures in this context. In general, we
call a failure catastrophic if it violates our failure assumption. To address catastrophic failures,

3Also called landing pad in [33].
4We assume that the mobile agent accesses only resources that are local to the place.
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Johansen et al. [33] introduce a so-called rally point. On detection of a catastrophic failure the
agent is sent to the rally point, where the agent owner can debug it.

Finally, a link failure causes the loss of the messages or agents currently in transmission on
this link. Failures of machines, places, agents, and links are called infrastructure failures.

The detection of infrastructure crash failures is generally encapsulated into a failure detec-
tor module [10]. Failure detectors are defined in terms of completeness and accuracy properties.
Completeness requires that failed processes be eventually suspected, whereas accuracy limits the
number of false suspicions, i.e., processes that are suspected but have not failed. In [10], the au-
thors introduce several types of failure detectors defined by completeness and accuracy properties.
Perfect failure detectors, which eventually detect all failures (strong completeness) and make no
false suspicions (strong accuracy), are unrealistic in the Internet. Hence, assuming unreliable fail-
ure detectors – that can make false suspicions – is a more realistic assumption. ♦S is an example
of an unreliable failure detector [10]: correct processes can falsely be suspected, but eventually
some correct process is no more suspected.

2.3 Unfavorable Outcome

An unfavorable outcome is different from an infrastructure failure in the sense that neither machine,
place, nor agent initiating the request fail. Rather, it occurs when a requested service is not
delivered because of the application logic or because the service has failed. For instance, a request
for an airline ticket is declined if no seats are available on a particular flight. Nevertheless in
this case, the agent’s operation, i.e., the request for a ticket, executes in its entirety (although no
ticket is issued). Actually, in this example no real “failure” has occurred, as the result is a valid
outcome of the service. However, from the perspective of the agent (i.e., the client of the service),
the outcome of the service request is undesired. Hence, we call this outcome an “unfavorable
outcome”. We assume that the request of a mobile agent to a service always returns. Therefore,
an unfavorable outcome does not include programming errors such as infinite loops.

2.4 Transactional vs. Non-Transactional Mobile Agents

The execution of two stage actions sai and saj is atomic if and only if both stage actions succeed or
none at all. Atomicity addresses both infrastructure failures and unfavorable outcomes. Assume,
for instance, that stage action sai books a flight, whereas saj reserves a hotel room at the flight
destination. Clearly, there is no need for the hotel room if no seat is available on any flight to the
destination. Hence, sai and saj must execute atomically, i.e., we want both to succeed. If either
one fails (because of an infrastructure failure or an unfavorable outcome such as no seat being
available) then the other one has to be aborted as well. We call these mobile agents transactional
mobile agents.

On the other hand, general fault-tolerant mobile agent executions do not require atomicity.
Rather, they address infrastructure failures only and ignore unfavorable outcomes. For instance,
a mobile agent execution that buys a book (i.e., sak) and shoes (i.e., sa l) acquires the book even
if no shoes are available, or vice versa. In this sense, sak and sa l are independent.

Note that non-transactional fault-tolerant mobile agent executions can be implemented us-
ing transactions [5, 68]. However, the use of transactions still does not ensure atomicity in the
entire mobile agent execution. In other words, our classification into “transactional” and “non-
transactional” executions is related to the provided properties (e.g., atomicity), and not to the
mechanisms used in the implementation. To distinguish between the properties and the mecha-
nism, we refer to the properties using the word “transactional”, whereas we use “transaction” to
refer to the mechanism.

In the following, we first focus on non-transactional mobile agents, i.e., general fault-tolerant
mobile agent execution. Transactional mobile agents are discussed in Section 7.
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3 Specification of Fault-Tolerant Mobile Agent Execution

In this section we specify the desired fault-tolerant mobile agent execution in terms of two prop-
erties: non-blocking and exactly-once execution.

3.1 Infrastructure Failures and the Blocking Problem

While a mobile agent is executing on a place pi, an infrastructure failure of pi might interrupt
the execution of ai and prevent any progress of the mobile agent execution. During the time pi is
down, the execution of ai and consequently the entire mobile agent execution cannot proceed. We
say that the execution of ai is blocked. Provided the availability of suitable recovery mechanisms,
the execution of ai on pi proceeds when pi recovers from the failure. Generally, a mobile agent
execution is called blocking if a single failure renders progress in the mobile agent execution
impossible until the failed component (e.g., machine, place, agent, or communication link) recovers.
In contrast, a non-blocking mobile agent execution can continue the execution despite a single
failure. We generalize this definition to t-blocking, i.e., an approach blocks if t or more failures
occur. Correspondingly, an approach is t-non-blocking if it can sustain t failures and still continue
its execution. Hence, t in t-non-blocking specifies the degree of non-blocking. Unless explicitly
defined otherwise, we use blocking to refer to 1-blocking or 0-non-blocking, and non-blocking to
refer to 1-non-blocking. Generally, blocking mobile agent executions are undesired. In particular,
if the failed component does not recover, then the agent is lost and never returns to the agent
owner. Moreover, long downtimes of components lead to very long response times and may be
unacceptable for the agent owner. Hence, mobile agent executions are preferably non-blocking.
Note that unfavorable outcomes (see Section 2.3) do not lead to blocking.

3.2 Agent Replication and the Exactly-Once Execution Problem

3.2.1 Replication to Prevent Blocking

Blocking can only be overcome by introducing redundancy. More specifically, if a place fails, the
agent is executed on another place. However, redundancy of execution may result in multiple
executions of (parts of) the mobile agent. While this is not a problem for idempotent operations
(for instance, operations without side effects) it should not occur for non-idempotent operations.
Take, for instance, an agent that retrieves money from the agent owner’s bank account. This is
clearly a non-idempotent operation and multiple executions of this operation have the undesired
effect of multiple money retrievals. Therefore, non-idempotent stage actions must be executed
exactly-once [68]. On the other hand, operations such as reading an account balance allow multiple
executions. Clearly, blocking in a mobile agent execution consisting only of idempotent operations
is easily prevented by sending multiple agents.

The redundancy introduced by replication masks failures and ensures progress of the mobile
agent execution. Figure 2 illustrates the replication approach. At stage Si, a set of places Mi =
{p0

i , p
1
i , p

2
i , ..} executes the agent ai. Even if place p0

2 fails the agent a2 is not lost, as the other
places in M2 have also received a2 and can start executing it. Note that there is no need to replicate
the agent at the agent source and destination. At the agent source, the agent is still under the
control of the agent owner. The agent destination may be a mobile device, that is connected only
intermittently to the network. Hence, mechanisms need to be implemented to store the agent
until the mobile device connects again to the network. As the agent only presents the results
to the agent owner at the agent destination, which is generally an idempotent operation, these
mechanisms at the same time also address failures at the agent destination.

3.2.2 Properties of Places Mi

In Section 3.2.1 we have introduced replication as a way to overcome the problem of blocking.
Replication occurs at the agent level: the agent replicas execute on different places pj

i ∈ Mi at
a stage Si. Depending on the relation among these places, we distinguish among three different
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a4a0 p1
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p2
2 a2

p3
1 a3

p3
2 a3

a1 a2 a3
a4

Stage S0

Stage S1 Stage S2 Stage S3

Stage S4

M1 M2 M3

M 4
M0

Figure 2: Agent execution with redundant places, where a place fails. The redundant places mask
the place failure.

classes of places: iso-places, hetero-places, and hetero-places with witnesses [58, 77]. Iso-places
correspond to the traditional case of server replication: the set Mi consists of replica places,
where all places are provided by the same company. Revisiting our airline example, all places are
provided by Swiss International Air Lines: modifications to one place are visible to the others
as well. Consequently, executing a fault-tolerant mobile agent on iso-places leads to two levels of
replication: server replication in the places (i.e., Swiss International Air Lines’ servers) and client
replication on the agent level.

Within the class of iso-places, we can further distinguish between places pj
i , where the modi-

fications are propagated (1) by the places themselves or (2) by the agent replicas. In (1), called
replicated iso-places, the places run a replication protocol, which ensures consistency among the
place replicas. Note that executing the mobile agent ai on two such iso-places in Mi at stage Si

causes all iso-places in Mi to reflect the modifications twice.5 In (2), on the other hand, the agent
replicas update the iso-places in Mi. The mobile agent thus ensures consistency of the replicas.
However, this requires that an instance of the agent (i) execute on all replicas and (ii) must not
fail as long as the service is up and running. We refer to this case as independent iso-places6.
Independent iso-places are assumed for instance in [73].

Hetero-places correspond to a set Mi of places (see Figure 2) that all provide a similar service
such as selling airline tickets from Geneva to New York. However, the places are provided by
different airlines, e.g., Swiss International Air Lines, Delta Airlines, and Lufthansa.

Finally, hetero-places with witnesses are a generalization of hetero-places.
Whereas hetero-places all provide the particular service (i.e., airline tickets from Geneva to New
York), in hetero-places with witnesses only a subset of the places provides the service. The others
(i.e., the witnesses), although they can execute the agent, do not provide an airline ticket service
to the agent and thus the service request of the agent fails. However, the agent is not lost and
proceeds with the execution, while potentially reporting the failed ticket acquisition to the agent
owner. In general, a witness is a place that can execute the mobile agent (e.g., provides a Java
Virtual Machine capable of executing the mobile agent), but does not provide the particular ser-
vice required by the agent. Hence, the agent request to the service fails (for instance, raises an
exception that is caught by some exception handler), but the agent can continue its execution
despite an infrastructure failure of a place in Mi. Note that the execution of an agent replica on
a witness generally results in an unfavorable outcome, as the requested service is not installed on
the witness place.

Approaches for fault-tolerant mobile agent executions generally address replicated7 iso-places,
hetero-places, and hetero-places with witnesses. Clearly, it is desirable that the agent execute on
only one place per stage unless a failure occurs. This allows a significant reduction of the overhead

5This is true, unless a mechanism (e.g., transaction IDs) is provided that prevents iso-places from executing the
same operation twice. See Section 3.2.3 for a discussion on multiple executions of mobile agents.

6In [58], replicated iso-places are called non-integrated iso-places, whereas independent iso-places are called
integrated iso-places.

7In the following, the term “iso-places” refers to replicated iso-places unless explicitly stated otherwise.
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and improves the performance of the system.

Despite agent replication, network partitions can still prevent the progress of the agent. Indeed,
if the network is partitioned such that all places currently executing the agent at stage Si are in
one partition, and the places of stage Si+1 are in another partition, then the agent cannot proceed
with its execution. Generally (especially in the Internet) multiple routing paths are possible for
a message to arrive at its destination. Therefore, a link failure may not always lead to network
partitioning.

In the following, we assume that a single link failure merely partitions one place from the rest
of the network. Clearly, this is a simplification, but it allows us to concisely define blocking (see
Section 3.1).

Moreover, catastrophic failures may still cause the loss of the entire agent. A failure of all places
in M2 (see Figure 2), for instance, is such a catastrophic failure. As no copy of a2 is available any
more, the agent a2 is lost and, obviously, the agent execution cannot proceed. In other words,
replication does not solve all problems. It is important to keep this in mind.

3.2.3 Replication and the Exactly-Once Problem

Replication allows executions to be non-blocking. However, it may also lead to multiple agent
executions. Assume, for instance, that p0

i fails (see Figure 3). Place p1
i starts executing ai, which

results in agent ai+1 and Mi+1. In the meantime, p0
i recovers and continues the execution of ai.

Clearly, this requires that the agent’s state and code have been checkpointed to stable storage upon
arrival of the agent on p0

i . If p0
i and p1

i commit the agent’s stage action, the agent is executed
multiple times and results in duplicate agents ai+1 and a′

i+1. Although blocking of the agent
execution because of a failure to pi is prevented, the mechanism to prevent blocking results in
multiple agent executions. Consequently, the problem of multiple agent executions and blocking
are related problems in the sense that preventing blocking may lead to multiple agent executions.

Another source of a violation of the exactly-once execution property is unreliable failure de-
tection. In asynchronous systems such as the Internet, it is impossible to detect failures correctly
(see Section 2.2). Even if a place pk

i suspects the failure of another place pj
i (i.e., believes that

pj
i has failed), pj

i may not have failed in reality. Indeed, slow communication or processor speeds,
or network partitioning may have caused pk

i to erroneously suspect pj
i . Therefore, when place p1

i

suspects the failure of p0
i , it starts executing ai (see Figure 3). If the suspicion of p1

i was erroneous,
the execution of ai at stage Si results in two agents ai+1 and a′

i+1; a violation to the exactly-once
property.

In summary, we require that a fault-tolerant mobile agent execution satisfy the following live-
ness and safety properties [2]:

t-Non-blocking t failures must not prevent the termination of the agent execution (liveness).

Exactly-once The mobile agent’s stage actions are executed exactly-once (safety).

3.3 Agent Coordination

So far, we have not discussed the case of coordinating multiple agents to solve a higher-level task.
For instance, an agent could split its task into subtasks and assign them to new agents, called
child agents. Eventually, these child agents and the parent agent meet again to share the results.
This case is more difficult to handle than the case of a single mobile agent execution and involves
the creation of child agent(s) and, later, the coordination among them and the parent agent again.

3.3.1 Spawning Child Agents

The agent ai at stage Si can spawn a new agent b, which causes two agents to be forwarded by
stage Si(a) (the identifier within the parenthesis distinguishes the stages of agent a from those
of b): ai+1 and b1 (see Figure 4). Assume, for instance, that the execution of ai on place p0

i has
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M' i+1
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Figure 3: Replication potentially leads to a violation of the exactly-once property.

led to agent b. If ai on p0
i fails, then all its modifications have to be undone. In particular, the

spawned agent b has to be undone.

3.3.2 Rejoin

The agent b spawned by agent a may rejoin agent a at a later stage in a’s execution, say Sk(a) (k >
i). In other words, the agents a and b meet again at stage Sk(a). Between the stage at which a
has created b and Sk(a), a and b may follow different itineraries. As agent a is replicated at stage
Sk(a), a replica of agent b must be received on every place in Mk(a) as well.8 This ensures that
no replica agent aj

k waits forever for the arrival of agent b. Indeed, assume that a replica of agent
b only arrives on place p0

k and that this place fails. In this case, the other replicas a1
k and a2

k still
await the arrival of b and thus the execution of a cannot proceed. Clearly, agents a and b have to
agree on their meeting point, i.e., Mk(a).

4 Basic Building Block: Local Transaction

In Section 3.1 we have specified the fault-tolerant mobile agent execution in terms of the non-
blocking and exactly-once properties. In this section, we define a basic building block that is
fundamental to enforce the exactly-once property and thus implicitly also the non-blocking prop-
erty: the local transaction.

4.1 Local Transaction

The stage action sai of mobile agent ai encompasses a set of operations op0, op1, . . ., that act on
the local services (see Figure 5). Locally, on the place pi, the agent executes the set of operations,
thereby transforming a consistent state of the agent and the place into another consistent state9

(consistency). The effects of executing sai have to be durable, i.e., reflected by the place (new

8Actually, it may be sufficient under certain conditions that a majority of places in Mk(a) receive a replica of b.
9The resulting agent is called ai+1 (see Section 2.1).
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pi
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0 b1 Stage S1(b)

b2
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Stage Si(a) Stage Si+1 (a)

...

ai+1

ai+1

a
i+1

Figure 4: Agent ai spawns a new agent b1 at stage Si(a).

state of the place) as well as by the agent ai+1, and not to be lost anymore (durability). Moreover,
we require that sai execute entirely or not at all (atomicity). Only when sai has completed its
execution should the results, including the modifications to the place, generated messages, or
spawned child agents, be visible to other agents (isolation). These four properties correspond to
the specification of an ACID transaction. Hence, sai has to run transactionally. This is ensured
using a local transaction to execute sai. The concept of a local transaction is an important building
block for fault-tolerant mobile agent execution.

op0
op1
op2

.

.

begin local
 transaction

end local
transaction

stage action sai of a i

Figure 5: Stage action of agent ai runs as a local transaction.

The local transaction consisting of operations op0, op1, . . . terminates either by a commit or
an abort decision. If the decision is to commit, the effects of executing op0, op1, . . . become
durable, otherwise, all the modifications are undone. We classify the approaches for fault-tolerant
mobile agent execution according to when and by whom this commit/abort decision is taken (see
Section 5).
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4.2 Enforcing Exactly-Once Execution Property

Executing the stage action sai transactionally is the basic mechanism allowing us to enforce the
exactly-once property for mobile agent executions. Actually, whereas the entire mobile agent is
executed exactly-once, the local operations op0, op1, . . . of a stage action are executed at-most-
once.

4.2.1 At-Most-Once Ensured on Place pi

Failures during the execution of an agent’s stage action sai potentially leave the execution in an
inconsistent state. More specifically, some of the operations op0, op1, . . . that correspond to the
stage action may have been executed, whereas others have not. The agent ai as well as the place
(or rather, its services) are thus in an incorrect, transitory state. Executing sai transactionally
prevents such inconsistent states, as either all the operations op0, op1, . . . are executed or none at
all.

4.2.2 Exactly-Once for the Entire Mobile Agent Execution

In Section 3.2 we have shown how replication can prevent blocking. Replication may lead to
multiple executions of a stage action sai on different places pj

i and pk
i . To prevent a violation to

the exactly-once execution property, only one of the executions must be committed, whereas the
other(s) have to be aborted. This is why stage actions are executed exactly-once. In Figure 3,
for instance, the execution of ai on place p0

i has to be aborted, whereas the execution of ai on
p1

i is committed. Running the stage executions as local transactions allows us, by controlling the
commit/abort decision, to enforce the exactly-once property.

Note that terminating local transactions at stage Si (i.e., issuing either abort or commit)
requires that the place running the local transaction eventually recover from a failure and that
potential link failures (i.e., network partitions) be resolved. However, such a link failure or place
failure should not prevent the continuation of the agent execution, i.e., they should not lead to
blocking.

4.3 Handling Isolation of Local Transactions

Local transactions related to the execution of some agent can either make their results immediately
visible to other mobile agents, or they only make the results visible when the outcome of the mobile
agent execution is known. The former local transactions are called open local transactions, while
the latter are closed local transactions. Undoing open local transactions related to the execution
of some agent a potentially requires one to undo the operations of other agents that have used
a’s results in their computations, thus resulting in cascading undo operations. In practice, this
is generally avoided. In the context of mobile agents, an open local transaction is immediately
committed after its execution. If at a later stage this local transaction has to be undone, a so-
called compensating transaction [24, 38, 23] is run, which semantically undoes the effects of the
corresponding local transaction. However, compensating transactions are not always possible. For
instance, operations that send a message, print a check, or launch a rocket generally cannot be
compensated. Moreover, if the local transaction has spawned a child agent (see Section 3.3.1),
then this child agent may already have moved off. Hence, another agent has to be sent after
this child agent to compensate all its activities. This requires that the compensating agent can
deterministically recompute the exact itinerary of the original agent, and that all actions of the
child agent are also compensatable. Note that sending an undo message to the child agent to
trigger its rollback is not always successful either. Indeed, a slow undo message may never reach
a fast-moving mobile agent, causing the undo to be delayed and increasing dependencies.10 In
summary, open local transactions are only suited for particular applications in a mobile agent
environment.

10Murphy and Picco [50] provide an approach to ensure reliable message delivery to an agent. However, this
approach only works in an environment without failures and at a considerable cost.
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In contrast, closed local transactions make their results only visible to other mobile agents
when the outcome of the mobile agent execution is known, i.e., when it is ensured that the local
transaction will not be undone any more. Until the local transaction is committed, other agents
can generally not access the data items that are accessed by the local transaction. Assume, for
instance, that the local transaction uses a pessimistic concurrency control scheme based on locking.
Any other agent can only access the locked data items when the local transaction commits and
releases the locks on the data items. Besides locking, multiple concurrency control schemes exist.
The reader is referred to [87] for an overview on existing concurrency control schemes.

5 Classification of Fault-Tolerant Mobile Agent Approaches

In Section 4, we have identified the local transaction as the basic building block for fault-tolerant
mobile agent execution (i.e., for addressing infrastructure failures). The stage actions of the mobile
agent are executed as local transactions. Once the operations of the stage action are executed,
the local transaction is either committed or aborted. We call this decision about which local
transaction of a given stage to commit and which local transaction to abort the commit decision.
This commit decision can happen at different moments in the execution of the mobile agent: (1)
at the end of the stage execution (called commit-after-stage), or (2) at the end of the mobile agent
execution, i.e., at the agent destination (called commit-at-destination). Whereas in case (2), this
decision is only made once for the entire mobile agent execution, case (1) requires one decision for
every intermediate stage.

We first discuss the commit-after-stage and commit-at-destination cases in detail in Sections 5.1
and 5.2, and then compare them in Section 5.3.

5.1 Commit-After-Stage Approaches

The commit-after-stage approaches commit the stage actions at the end of every stage Si before
the agent moves to the next stage Si+1. The commit is of particular importance if the mobile
agent execution is replicated at stage Si (see Figure 2). More specifically, the commit decision
prevents multiple executions of the agent and thus ensures the exactly-once property. In this
context, we need to distinguish between two cases: the execution of ai (1) on a single place (i.e., a
non-replicated agent execution) and (2) on a set of places Mi (i.e., a replicated agent execution).
Moreover, the commit decision can be made by a single place or it can be distributed, i.e., the
decision can be made by multiple places. Finally, the commit decision can be collocated with the
execution of ai or not. Combinations of these three criteria lead to eight solutions, which can be
represented in a three dimensional space (see Figure 6): (1) location of the agent execution, (2)
location of the commit decision, (3) collocated / distributed.

In Section 3, we have shown how blocking can occur in the agent execution. Blocking also occurs
in the commit decision. In particular, if the commit decision is made by only a single place, there
is a risk of blocking or violating the exactly-once execution property to the mobile agent execution.
For instance, in a two-phase commit (2PC) protocol, blocking occurs if the coordinator fails at a
certain point in the protocol [7]. Moreover, network partitions may also prevent progress in the
commit decision. Some protocols implementing the commit decision require the participation of a
majority of places to reach a decision. However, the network may partition in such a way that no
partition contains a majority of places and thus the commit decision protocols can only terminate
when the partitions are merged again. We discuss now all eight solutions.

5.1.1 Single/Single/Collocated - SSC

The SSC solution encompasses the approaches where the stage action of an agent executes on a
single place pi, commits, and then the agent moves to the next place pi+1. In other words, both
the execution of the stage action and the commit decision occur on the same place (see Figure 7a).
Actually, the outcome of the commit decision is always commit; abort is never decided, as there is
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Figure 6: Classification of fault-tolerant mobile agent approaches along three axes: (x) location of
the agent execution, (y) location of the commit decision, and (z) collocated or distributed.
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Figure 7: Four solutions of collocated commits. E and C specify the places involved in the agent
execution and the commit decision, respectively.
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no reason from the perspective of pi to abort the agent execution. However, a failure of pi causes
blocking of the agent execution (see Figure 8). The SSC solution is thus 1-blocking. Moreover, if
pi does not recover, the agent (i.e., its code and state) is lost. Interestingly, the loss of the agent
also leads to blocking, as the agent owner awaits the return of the agent. The use of standard
logging and checkpointing mechanisms [25] for the state and code of the agent on the current place
prevents the loss of the agent. However, it is still a blocking approach, as a failing place causes
blocking of the mobile agent execution. Progress of the agent execution is only possible again
when the failed place recovers. The recovering place thereby uses the latest local checkpoint to
recover the agent ai.

pi-1 pipi-2
ai-2

ai-1

Stage Si-1Stage Si-2 Stage Si

aiai-1 ai

Figure 8: Agent execution where place pi fails while executing ai. While pi is down, the execution
of ai is blocked.

A SSC solution is most suited to environments in which failures are rare or where blocking
is not a problem, either because of the nature of the application or because failed components
recover quickly. The exactly-once execution property is ensured if a suitable recovery mechanism
is used. Moreover the agent must execute on a particular place in some applications. For instance,
an agent that increments the value of a configuration parameter on a set of network switches must
visit these switches. As network switches rarely fail (if they do, they are restarted quickly), paying
the overhead of replication may not be appropriate in this context.

In SSC solutions based on checkpointing, the loss of the agent is generally prevented even in
case of catastrophic failures. Both single and catastrophic failures prevent the progress of the
agent, but the agent’s code and state are preserved.

5.1.2 Single/Multiple/Collocated - SMC

Similar to the SSC solution, the stage action of the agent ai is executed on one place pi only.
The commit decision, on the other hand, is distributed over multiple places (see Figure 7b).
Consequently, a failure of pi leads to blocking of the mobile agent execution. On the other hand,
the commit decision is non-blocking, as it is distributed. The degree of non-blocking thereby is
either constant or depends on the number of replicas that participate in the commit. It seems
strange to distribute the commit decision, whereas the execution happens on a single place. Thus
the SMC solution has not been discussed in the literature.11

5.1.3 Multiple/Single/Collocated - MSC

The stage action of agent ai is executed by multiple places, whereas the commit decision is made
by a single place pk

i (see Figure 7c). Revisiting Figure 3, p0
i , p

1
i , and p2

i execute the agent, while p2
i ,

for instance, executes the commit protocol. In the MSC solution, the commit decision determines
the place that has executed the agent, called primary and denoted pprim

i . All other places pj
i �=

pprim
i abort all the modifications of ai. For instance, p2

i decides that p1
i can commit the agent’s

operations, whereas p0
i and p2

i must abort them (if ai has started execution on this particular
place). This prevents multiple executions of ai and thus a violation to the exactly-once property.

Although the execution of the stage action is non-blocking, blocking may occur in the commit
protocol. This is because a single place executes the commit protocol. If this place fails, the

11The SMC solution may be applicable for scenarios where a mobile agent has to execute on very specific places.
For example, the agent owner may want to fly only with Swiss International Air Lines, which only supports a
non-replicated service.
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commit decision blocks and thus the entire mobile agent execution is blocked. Consequently, MSC
solutions decrease the probability of blocking compared to SSC solutions. This is especially true
as the execution time for the commit decision is generally much shorter than the time needed for
the agent execution.

Moreover, MSC solutions have practical relevance in environments where some places rarely
fail. The commit decision can be executed on these places to reduce the probability of blocking.

5.1.4 Multiple/Multiple/Collocated - MMC

The MMC solution is a generalization of the solutions where the execution of the stage action
and the commit decision are collocated. In other words, both the execution and the commit
decision are distributed over multiple places (see Figure 7d). This distribution avoids blocking,
but leads to the danger of violating the exactly-once execution property. To preserve the exactly-
once property, the places that have executed the agent need to agree on the primary pprim

i that
commits the modifications performed by the agent while all other places abort them. In other
words, unless an agreement is reached, i.e., unless a so-called agreement problem is solved, among
these places, multiple executions of the mobile agent cannot be prevented.

This solution makes the fewest assumptions about the environment. The overhead added by
replication only makes sense for applications that have stringent requirements regarding fault
tolerance and non-blocking, such as e-commerce applications.

5.1.5 Single/Single/Distributed - SSD

The SSD solution corresponds to SSC, except that the execution of the agent and the commit
decision are not collocated (see Figure 9a). In other words, the place that executes the agent and
the place that makes the commit decision are not the same. More specifically, any place pk can
make the commit decision, which then has to be communicated to pi. This communication is
prone to link failures. Moreover, the separation of the execution of ai and the commit decision
actually weakens the fault tolerance of the agent execution. Indeed, the probability that pi and
pk do not fail is smaller than the probability that pi does not fail. Consequently, the probability
of blocking is higher, and this solution is less interesting than SSC.

pi
0 ai

pi
1 ai

pi
2 ai

Stage Si

E

pi
ai

Stage Si

E C

a) b)

pk
C pk

Figure 9: Two solutions of distributed commits by place pk. E and C specify the places involved
in the agent execution and the commit decision, respectively.

To our knowledge, the SSD approach has not been implemented. However, we show below
that this solution is of considerable interest to transactional mobile agents (see Section 7).

5.1.6 Single/Multiple/Distributed - SMD

This solution is similar to SMC and is not discussed further. It is depicted in Figure 10a.
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5.1.7 Multiple/Single/Distributed - MSD

A set of places executes the stage action of ai, whereas the commit decision is located on any
single place pk (see Figure 9b). The execution of the stage action is non-blocking, but the commit
decision can block. Failures in the communication channel between pk and the places that execute
the stage action of ai may also lead to blocking.
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Figure 10: Two solutions of distributed commits by multiple places. E and C specify the places
involved in the agent execution and the commit decision, respectively.

5.1.8 Multiple/Multiple/Distributed - MMD

To circumvent the problem of blocking, both the execution of the stage action of ai as well as the
commit decision are distributed to a disjoint set of places (see Figure 10b). The main difference to
MMC is that MMC can exploit the locality of commit decision and the execution of ai. Moreover,
MMC does not suffer from communication failures (i.e., network partitioning) between the places
executing the stage action (i.e., pj

i ) and the places executing the commit protocol (i.e., pj
k).

5.2 Commit-At-Destination Approaches

In contrast to commit-after-stage approaches, the stage actions of the mobile agent are only com-
mitted at the end of the agent execution. Whereas in commit-after-stage approaches duplicate
agents are detected and discarded at each stage, duplicates continue their execution in commit-
at-destination approaches. Duplicates can only be detected at a common place, where they and
the original agent meet. Generally, only the agent destination is such a common place, because
dynamic itineraries may be different for the original agent and among the duplicates. Hence, the
agent destination is the only place where a correct decision about which agent (original or dupli-
cates) to commit and which to discard is possible. Usually, the first arriving agent is committed,
whereas the later arriving agent(s) are aborted and their stage actions undone. This allows us to
ensure the exactly-once property for fault-tolerant mobile agent execution.

Until the agent has reached the agent destination, the local transactions are not commit-
ted/aborted. Rather, they are kept unterminated until the outcome of the agent execution is
determined. Indeed, at the moment of executing stage action sai of agent a it is not clear whether
a is committed or whether a duplicate agent will arrive first at the agent destination and a thus
needs to be aborted. With closed local transactions (see Section 4.3), data items that are accessed
by the mobile agent a are generally only accessible to another agent b when the corresponding local
transaction is committed. During this time, b has to wait until the data items become available.
Committing the agent’s stage actions only at the agent destination makes all data accessed data
items only available when agent a arrives at the agent destination. As other agents have to wait
before accessing the data items until a finishes its execution, overall system throughput is seri-
ously reduced. Moreover, this approach requires sending additional messages to all places of the
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itinerary to either commit or abort the stage actions once the agent has arrived at its destination
(see Figure 11).

Liberating data items only when the agent has reached the agent destination and the sequential
access to the data items of different stages may lead to deadlocks. Deadlocks can be handled by
waiting for data items only for a limited time. If a timeout occurs, a deadlock is assumed and
the agents back off. If other places with similar services are available, they may try those, or
otherwise retry the same service. Although this approach does not completely rule out livelocks,
their probability can be made sufficiently small.

p1 p2 p3p0 p4

Agent
Source

Agent
Destination

a1 a2 a3 a4a0
a2a1 a3 a4

commitcommit commitcommit

Stage S0 Stage S1 Stage S2 Stage S3 Stage S4

Figure 11: Local transactions are only committed when the agent arrives at the agent destination.
In this example, we assume pessimistic concurrency control.

As discussed in Section 4.3, some applications allow open local transactions. Using this ap-
proach, data items are made available to other agents immediately after stage execution. Revisiting
the example in Figure 11, the compensating transactions are run in the inverse order of the agent
execution (i.e., on p3, p2, . . . , p0). Indeed, executing sai followed by the corresponding compen-
sating transaction may result in an agent different from ai. Assume, for instance, that sai buys
a book using e-cash [78]. Undoing this local transaction means to return the book and be reim-
bursed the amount paid, potentially less some penalty. As the change of the agent’s state may
also have an impact on the compensation of stage Si−1, the inverse order is necessary. Note that
if the agent state is the same for every stage as before executing the stage action, then compen-
sation may run in parallel. To execute the compensating transactions, compensating agent ca is
created (see Figure 12). Recall that not all applications can be compensated (see Section 4.3).
Although feasible, compensation may also be unsuitable because of unacceptable run-time costs.
This is especially true in environments with frequent false failure detections. Indeed, the use of
compensation transactions makes an abort very expensive.

p1 p2p0

Agent
Source

a1 a2a0 a2
a1 a3

Stage S1
Stage S0 Stage S2

ca1 ca2

p3

a3

Stage S3

ca 3ca1 ca2ca0ca0

a4

p4

a4

Stage S4

ca4ca 3

Agent
Destination

Figure 12: At the agent destination, a compensation agent ca is created that runs the compensating
transactions.

We classify the approaches similar to Section 5.1, but focus on the only two meaningful classes:
SSD and MSD.

5.2.1 Single/Single/Distributed - SSD

This solution is similar to the SSD solution for commit-after-stage approaches, except that the
commit decision occurs only at the agent destination for all stage actions (see Figure 11). It
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is blocking, but on the other hand also prevents duplicate agents. Clearly, the SSD commit-at-
destination solution is only of theoretical interest. As the commit decision is always commit, the
local transactions could be committed immediately after the stage execution (as in SSD commit-
after-stage) instead of waiting until the agent reaches the agent destination. We present this
solution here because it clarifies the difference between non-transactional and transactional mobile
agent execution (Section 7.1).

5.2.2 Multiple/Single/Distributed - MSD

Contrary to the SSD approach, blocking is prevented by executing the agent on multiple places,
if necessary. Because previous places already have a copy of the agent, they generally take over
once the current place fails. More specifically, while the agent is executing on place pi at stage
Si, its execution is monitored by the previous place pi−1. In addition, pi−1 maintains a copy of
the agent ai. If a failure occurs at the current place pi, place pi−1 launches its copy of the agent
and sends it to another place p′i (see Figure 13). Sending ai to p′i, however, may lead to duplicate
agents, especially in the presence of unreliable failure detection. Duplicates are only detected at
the agent destination, where the commit decision is made. This allows to enforce the exactly-once
property to non-blocking fault-tolerant mobile agent executions. In Figure 14, duplicate agent a′

is undone, i.e., its stage actions on p′i+2, . . . , p
′
i are undone.

pi-1 pi

ai-1 ai

ai
ai-1

Stage Si-1 Stage Si

a
i

p'i

Stage S' i

pi+1

Stage Si+1

pi+2

Agent
Destination

ai+2

Stage Si+2

ai
ai+1

ai+1 ai+2

...

Figure 13: Local transactions are only committed when the agent arrives at the agent destination.

With open local transactions, compensating transactions are run on the places p′i+1 and p′i,
when it recovers. Executing compensating transactions generally modifies the state of the agent
and the place. However, compensating duplicate agents must lead to the same state the agent
had on the place that erroneously detected the failure. In Figure 14, the duplicate agent has been
created by pi−1. Compensating the duplicated agent must lead again to agent ai. Otherwise, the
state of the agent at the agent destination (ai+2) is no longer valid. Compensating transactions
are thus only possible if the state of the agent is not changed on pi−1. Assume, for instance, that
agent ai carries $100 of electronic cash with it. If compensating the stage actions on places p′i+1

and p′i costs a penalty of $20, then the state of agent ai on place pi−1 is now $80. However, the
agent ai+1 is not aware of this and thus an inconsistency arises.

The degree of fault tolerance is determined by the number of copies stored on places where
the agent has previously executed. In other words, if the agent is currently executing on place
pi, places pi−1, pi−2, . . . may store their copy ai, ai−1, . . ., respectively, of the agent. The higher
this number, the more concurrent failures can be tolerated. For instance, assume that copies of
the agent are stored at d predecessor places. In this case, the MSD solution is d-non-blocking.
However, a high number also increases the probability of duplicate agents.

On recovery of a failed agent, we have to distinguish between two cases: the agent (1) has
executed only partially on this place or (2) has executed the entire stage action and forwarded the
agent to the next place. In (1) the recovering agent can abort/undo the partial execution of the
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Figure 14: Unreliable failure detection may lead to duplicate agents. They can generally only be
detected at the agent destination.

stage action. Case (2) is more complex because the agent does not know whether the forwarding
has succeeded and whether it is part of the successful mobile agent execution. Hence, it has to
wait until it receives either a commit or an abort message. This message may arrive from its
successor if the agent has reached the agent destination or from its predecessor if the forwarding
to the next place has failed (e.g., from pi−1 in Figure 13).

5.3 Comparison

In the case of approaches with agent execution on multiple places (i.e., MSC, MSD, MMC, MMD),
the most important differences between committing at the agent destination and committing at
the stage execution are (1) the lifetime of duplicate agents and (2) the number of commit decisions.
The lifetime is crucial as it influences the time data items are unavailable to other agents. The
greater the lifetime, the longer data items remain unavailable. During this time, other mobile
agents cannot access the data items and have to wait, which limits overall system throughput.
Committing at the stage execution generally detects duplicates on a stage level; their lifetime
is limited to a stage execution. In contrast, a commit at the agent destination generally only
makes the data items available at the end of the agent execution. Clearly, this is a disadvantage
of the commit-at-destination approach. At the agent destination, the modifications of one agent
are committed, while all duplicate agents are detected and their effects undone. Undoing and
committing agent stage actions requires that additional messages be sent to all places of the
itinerary.

Using open local transactions (i.e., compensating transactions), data items can be accessed by
other agents at the end of the stage execution, similar to commit-after-stage approaches. However,
duplicate agents become very costly, as their stage actions have to be compensated. The longer
the lifetime of a duplicate agent, the more costly its undoing becomes.

Another disadvantage of commit-at-destination approaches is the need to store copies of the
agent’s state as well as code at multiple locations. This requires a considerable amount of storage.
Although mobile agents are generally small, a large number of them still imposes considerable
storage requirements on the places. Generally, the copies of the mobile agent have to be maintained
until the mobile agent execution has terminated, i.e., until the commit/abort message has been
received. In the commit-after-stage approach, copies of the agent are stored on the places in Mi

only during the stage Si and then discarded.
On the other hand, committing at the agent destination is more efficient with respect to the

number of commit decisions. Whereas committing at the agent destination requires only one
commit decision, committing at the stage execution requires n − 2, i.e., one at all places except
agent source and destination. Moreover, agent replicas are only launched if a failure is (potentially
erroneously) detected. In contrast, commit-after-stage approaches send multiple replica agents to
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the next stage although no failure may have been detected.

6 Approaches to Fault-Tolerant Mobile Agent Execution

In this section, we present a survey of existing approaches to fault-tolerant mobile agents. Each
approach is classified according to the classification presented in Section 5. First, we present
commit-after-stage approaches (Section 6.1). Wherever possible, we estimate the message com-
plexity of a stage execution. More specifically, we indicate the total number of messages sent
and the messages in the critical path, i.e., the messages that are needed by the agent execution
to continue. We do not consider messages between processes on the same machines. For these
calculations, we assume that all stages support replication degree m (where applicable) and that
no infrastructure failures occur. Commit-at-destination approaches are discussed in Section 6.2.
The results of our classification are summarized in Table 1. Table 2 at the end of the section
summarizes the message overhead of approaches for which sufficient information was available.

Note that several mobile agent systems provide a mechanism to make mobile agents persistent.
This mechanism trivially achieves some level of fault tolerance. In particular, it allows a place to
recover the state and code of a mobile agent in case of a failure and to restart the agent. However,
persistence on its own is not sufficient, as the modifications to the state of the place by the failed
agent need to be undone, especially with non-idempotent stage actions. In this survey, we thus do
not consider any further approaches that only provide persistency and instead focus on approaches
that provide more elaborate mechanisms.

Table 1: Classification of the existing approaches.
commit-after-stage commit-at-destination

SSC [85] (6.1.2), -
[83, 84] (6.1.12)

MSC [68] (6.1.11) -
MMC [73] (6.1.1), -

[58] (6.1.5),
[47] (6.1.9, SG-ARP),

[33] (6.1.10)
SMD [42] (6.1.7), -

[47] (6.1.9, UC-ARP,
WC-ARP)

MSD - [48] (6.2.1),
[76] (6.2.2)

MMD [54] (6.1.3), -
[53] (6.1.4),
[76] (6.1.6),
[15] (6.1.8),
[5] (6.1.11)

6.1 Commit-After-Stage Approaches

We consider the following commit-after-stage approaches: the Byzantine failures approach [45, 73],
Concordia [85], the exception handling approach [54], FANTOMAS [53], Fatomas [58, 59], Lyu
and Wong’s approach [42], MAgNET [15], Mishra and Huang’s ARP family of protocols [47],
NAP [33], the transaction and leader-election based approaches of [68] and [5], and Vogler et al.’s
approach [83, 84].
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6.1.1 Byzantine Failures Approach

Minsky et al. [45] and Schneider [73] propose multiple executions of the mobile agent as a fun-
damental approach to provide invulnerability against Byzantine failures, more specifically against
attacks from malicious hosts on the mobile agent. As such, their approach also addresses non-
blocking and exactly-once in the context of crash failures. Clearly, as it is designed to address
Byzantine failures, it is not very efficient if only crash failures occur. Nevertheless, we present this
approach here for completeness. A more detailed discussion of this approach is given in Section 9.

To achieve fault tolerance, all places pj
i ∈ Mi of a stage Si execute ai and commit the modi-

fications. Although an adversary may corrupt a number of agents at a stage, this approach still
allows one to safely deduce the true result of the stage execution if enough uncorrupted agents are
left. Hence, the exactly-once execution property is not desired in this approach. The places in Mi

are independent iso-places as defined in Section 3.2.2: Schneider assumes replica places without
replica update mechanisms to maintain consistency and prevent stale data. Actually, an accurate
level of consistency is maintained by executing the agent on all places. Schneider’s approach can
be classified as an MMC approach, where the places always unilaterally decide to commit the
agent replica’s modifications.

Schneider proposes an (m, k) threshold scheme12 to correctly deduce the result of the previous
stage execution. Hence, at each stage, k places have to receive at least k agents of the previous
stage. No additional messages are needed for the commit, as every place decides commit unilat-
erally. As a result, k2 messages are in the critical path. In total, m2 messages are sent from the
places at Si to the places at Si+1.

6.1.2 The Concordia Approach

Concordia provides a framework for the development and execution of mobile agent applications
[85]. Similar to the approach in [83] (see Section 6.1.12), the agent is forwarded to the next stage
using transactional message queues. Hence, Concordia uses a SSC approach. The loss of the agent
is prevented by the use of a so-called persistent store manager (PSM). The PSM allows the agent
to regularly checkpoint its state to stable storage. After a failure, the agent is retrieved from
stable storage and restarted. However, this scheme only guarantees exactly-once for idempotent
operations. Indeed, the new execution of the agent may lead to different effects.

6.1.3 The Exception Handling Approach

Pears et al. [54] address fault-tolerant mobile agent execution in the particular case where the
agent execution has no effect on the state of the places. Such operations are idempotent with
respect to the place state. To prevent the loss of the mobile agent, the agent source (called home
agent server in [54]) monitors the agent execution and upon detection of a crash sends a duplicate
agent.

The drawback of this approach is that the agent is always executed from the beginning. As a
remedy, Pears et al. adopt an approach based on a logger agent as proposed in FANTOMAS [53].
The concept of a logger agent is discussed in more detail in Section 6.1.4.

6.1.4 FANTOMAS

In [53], Pals et al. present FANTOMAS, an MMD approach that addresses transparent fault tol-
erance for distributed and parallel applications in cluster systems. Its fault tolerance mechanisms
can be activated on request, according to the needs of the agent’s task. FANTOMAS assumes
only one place failure at a time. Associated with each agent is a so-called logger agent la, which
follows the agent at distance d. For example, if the agent executes on pi and the logger agent is
on pi−2, then d equals 2 (see Figure 15). The logger agent stores checkpoints of the agent with
which it is associated. For this purpose, the agent periodically captures its state and sends it

12A (n, k) threshold scheme divides a secret into n fragments, where only possession of at least k fragments will
allow the secret to be restored [74].
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to the logger agent. The agent and its logger agent monitor each other and, upon a failure of
one of them, the other can be restored from the information stored in the surviving one. Unless
more than one place fails simultaneously, non-blocking is achieved. Hence, FANTOMAS is 1-non-
blocking. Unfortunately, unreliable failure detection may lead to a violation of the exactly-once
execution property. Indeed, assume that the logger agent erroneously detects the failure of the
agent and recovers it. This results in two agents and thus in multiple executions of the agent’s
code. However, FANTOMAS addresses cluster systems, where erroneous failure suspicions can be
assumed to be very rare. The problem of network partitioning is not addressed by FANTOMAS,
i.e. reliable communication is assumed. Indeed, network partitions would violate the exactly-once
property if the network is partitioned such that the logger agent is in one partition and the agent
in the other.

pi-1

ai

Stage  Si-1

........
ai-1pi-2

ai-1

Stage Si-2

ai-2

ai-2

pi

ai+1

Stage  Si

ai

lai

Figure 15: Agent ai with logger agent lai and distance 2.

The approach in [53] is efficient and can be dynamically switched on and off without interference
of the agent owner. Moreover, the fault tolerance mechanisms are transparent to the agent owner.

FANTOMAS has a very low message complexity. Indeed, it requires that four messages be
sent per stage: one message to send the updates to the logger agent and one to acknowledge
its reception by the logger agent, one message to forward the logger agent, and one message to
forward the agent. The number of messages in the critical path is the same as the total number
of messages.

6.1.5 Fatomas

Pleisch and Schiper [58, 59, 63] present a MMC commit-after-stage approach, called Fault-Tolerant
Mobile Agent System (Fatomas). The redundancy illustrated in Figure 2 enables the mobile agent
execution to proceed despite failures, i.e., it prevents blocking. However, the algorithm that
prevents blocking while ensuring a consistent execution is not as easy as one might guess. This is
related to the fact that [58, 59] assume a system model in which failure detection is unreliable. The
solution presented in [58] consists, for all agent replicas at stage Si, of solving the stage agreement
problem, which leads the agent replicas to agree on:

• the place that has executed the agent, called the primary and denoted pprim
i ,

• the resulting agent ai+1, and

• Mi+1, the set of places for stage Si+1.

Hence, the fault-tolerant mobile agent execution leads to a sequence of agreement problems.
Figure 16 shows an example of a mobile agent execution spanning four stages (S0 to S3). Note
that at stage S2, place p0

2 fails, which causes p1
2 to take over the execution. Solving an agreement

problem leads all places in M2 to agree on p1
2 as the place that has executed a2. This would be of

particular importance if p0
2 had been erroneously suspected by the other places in M2.

At every stage Si (1) one (or potentially multiple) of the replica agents aj
i executes the stage

operation phase, then (2) solves an agreement problem with all replica agents of stage Si, and (3)
finally 〈ai+1, Mi+1〉 is sent to the next stage.

Items (1) and (2) are performed together as part of a variant of the consensus problem, called
Deferred Initial Value Consensus (DIV consensus for short) [16]. DIV consensus is the first build-
ing block of the Fatomas system. In the consensus problem, each process has an initial value at the
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Figure 16: Agent execution where p0
2 fails. An erroneously suspected place p0

2 leads to the same
situation.

beginning of consensus [10]. Here, the initial value at stage Si for place pj
i is obtained by executing

agent ai. Executing ai on all the places of stage Si is not desirable (too costly). DIV consensus
allows us to defer the computation of the initial value of some place pj

i and only perform the com-
putation (i.e., execute the agent) when requested by the DIV consensus algorithm. For example,
if p0

i succeeds in computing its initial value and does not fail, no other place pj
i , j > 0, will be

required to provide (i.e., compute) an initial value. DIV consensus assumes that a majority of
participants does not fail.

Finally, item (3) is an instance of the reliable broadcast problem. Traditional reliable broadcast
protocols assume a 1 − m communication scheme where one process broadcasts a message to m
destination processes. In this case we have a r − m communication schema: r senders have the
same message to reliably broadcast to m destinations.

Fatomas is � (m−1)
2 �-non-blocking. Catastrophic failures and network partitions may prevent

progress of the mobile agent execution (liveness). However, the exactly-once property (safety) is
always enforced.

The message complexity of Fatomas is as follows: 2�m+1
2 	 + 2 messages are in the critical

path of the fault-tolerant mobile agent execution at a stage. Reliable forwarding requires �m+1
2 	

messages, which are sent concurrently in the optimal case. Overall, the stage execution and reliable
forwarding of the mobile agent requires 4m + m�m+1

2 	 messages.

6.1.6 JAMES

JAMES [76] is a system that belongs to MMD. However, it also has elements of a commit-at-
destination approach and will be discussed in more detail in Section 6.2.2.

6.1.7 Lyu and Wong’s Approach

Lyu and Wong [42] propose an SMD approach, in which all duplicates of agent ai execute on
the same place. As a consequence, failed places must eventually recover, but the mobile agent
execution is blocked while the place is down. The stage actions of the agent are executed as
local transactions. Checkpointing of the agent’s state and logging of its operations are applied to
facilitate the recovery of a failed agent, and to ensure exactly-once using rollback recovery.

The agent ai at stage Si is monitored by a monitoring agent13 wi−1 executing at the place of
the previous stage Si−1. However, recursively, any monitoring agent wk in turn is monitored by

13Note that monitoring agents are called witness agents in [42]. To avoid confusion with witnesses in the context
of heterogeneous places, we use the term monitoring agent in this article.
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wk−1 executing on place pk−1 with (k > 0). It is assumed that the monitoring agent w0 does not
fail.

Upon the recovery of a failed place pk, the monitoring agent wk is recovered by wk−1. If the
agent ai is suspected to have failed, wi−1 sends a probe to pi, which, based on the information in
the log, recovers the agent from the checkpoint (if the agent has really failed), or simply stops (if
the agent has been erroneously suspected). Although not explicitly mentioned in [42], Lyu and
Wong assume a shared variable on place pi to detect duplicate executions. Using this approach,
they are able to handle concurrent failures of multiple monitoring agents.

In Lyu and Wong’s approach, the execution of the agent at stage Si requires four messages:
one message to forward the agent ai+1 to the next stage, one message to send the witness wi, and
two messages to notify wi−1 of the arrival and departure of ai and ai+1, respectively. These four
messages are also in the critical path.

6.1.8 MAgNET

The fault tolerance mechanisms in MAgNET are geared towards e-commerce applications [15].
MAgNET distinguishes between failures of agents and places, and failures of communication links
and machines. While the former are handled using checkpointing (more particularly, the persis-
tence feature of Aglets [39]), the latter are dealt with by using the following approach: at each stage
Si in the agent itinerary, a copy of the agent ai+1 is sent to all remaining places pi+1, . . . , pn (i < n)
in the itinerary, which acknowledge the receipt of the agent. Place pi also retains a copy of ai+1. In
contrast to most other approaches, MAgNET does not use predecessor places to store replicas of
the agent, but the successor places. However, this limits the application of the MAgNET approach
to static itineraries. Successor places that fail to send an acknowledgment to pi are removed from
the itinerary. Agent ai+1 is then sent again to the successor places in the updated itinerary. Upon
reception of all acknowledgments from these places, the execution of the agent is started on the
next place in the (updated) itinerary. Hence, MAgNET uses a MMD approach. Although not
explicitly said in [15], Dasgupta seems to assume perfect failure detection to maintain consistency.
Indeed, while most duplicate agents can be prevented because of the static itinerary, the agent
may still execute on a place that is removed from the itinerary because of a false suspicion.

At each stage Si (0 < i < n) of the mobile agent execution, place pi sends n − i copies
of the agent to the successor places and waits for n − i acknowledgments. After reception of
the acknowledgments, pi sends an acknowledgment to pi−1 and a message to pi+1 to start the
execution of ai+1. Finally, pi+1 notifies all places that have received a copy of ai+1 that it is
executing ai+1. The total number of messages is 3n − 3i + 1. The number of messages in the
critical path is the same.

6.1.9 Mishra and Huang’s ARP Family of Protocols

In [47], Mishra and Huang present three protocols to ensure fault-tolerant mobile agent execution:
UC-ARP, WC-ARP, and SG-ARP. These protocols are based on the assumption that the agent
source never fails.

In UC-ARP, which stands for user-controlled agent recovery protocol, the agent leaves a moni-
toring agent (called watchdog in [47]) at each place and checkpoints its state before moving to the
next place. Failures of the agent are detected by the agent owner, who contacts the latest moni-
toring agent in order to trigger recovery of the agent. With unreliable failure detection, duplicate
agents may occur. Moreover, the consistency of the place and agent state is not ensured. Indeed,
when the agent recovers, its state must reflect the changes its stage action has caused to the state
of the place. This is also referred to as output commit property [17].

In WC-ARP, which stands for watchdog-controlled agent recovery protocol, the task of recover-
ing the failed agent is left to the monitoring agents. This protocol suffers from the same limitations
as UC-ARP. To prevent duplicate agents, the protocol may be forced to block upon a single infras-
tructure failure. Hence, we classify these protocols as SMD. Note that they could also be classified
as MMD or commit-at-destination MSD, if duplicate agents were allowed to occur. However, no
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solution to the problem of duplicate agents is given in [47]. This is why we consider these protocols
as SMD.

Finally, SG-ARP (server-group agent recovery protocol) prevents duplicate agents and ensures
place and agent state consistency. SG-ARP is an MMC approach and is based on replicated iso-
places. As in the case of Fatomas (see Section 6.1.5), this requires that the iso-places agree on
the place that executes the mobile agent. If (parts of) the mobile agent are executed multiple
times, then consistency of the place state is no longer given. To our understanding, the iso-places
use passive replication among themselves [46]. Hence, the agent is only executed on one replica
(called the primary) and its updates to the place state are then applied to the backups. The use
of passive replication suggests that SG-ARP is � (m−1)

2 �-non-blocking. To prevent reexecution of
a failed agent from the beginning, the mobile agent and place state is periodically checkpointed.
For this purpose, all the iso-places have access to common stable storage. The execution of the
mobile agent is then continued from the last checkpoint by another replica.

In [47], the authors claim that this approach enables load balancing. However, load balancing
is only possible if two agents a and b executed on iso-places pj

i and pk
i , respectively, do not access

the same data items. Otherwise, a and b have to be executed sequentially. Executing a on pj
i and

b on pk
i in this case requires to change primary, which is expensive.

6.1.10 NAP

NAP [33] uses the MMC approach to fault-tolerant mobile agent execution. It assumes a fail-
stop model, which corresponds to a perfect failure detector [70]. Blocking is prevented by the
nature of the MMC approach, whereas the exactly-once execution property is ensured by the
assumption of perfect failure detector. Hence, no agreement as proposed in [58] is required.
Rather, perfect failure detectors allow the reliable detection of process crashes. In particular,
no process is suspected unless it has failed, which eliminates one source for a violation of the
exactly-once execution property. Still, local transactions are required in order to ensure at-most-
once execution on the stage actions. Unfortunately, perfect failure detectors are impossible in
the Internet and therefore NAP is only applicable in systems where perfect failure detectors can
be assumed. Consequently, the NAP approach does not handle link failures nor does it consider
recovery of places (see Section 2.2). The NAP approach is (m − 1)-non-blocking, where m is the
degree of replication at a stage.

The message complexity for NAP is 1 for the messages in the critical path and 2m for the
total number of messages. However, this does not include the message overhead to implement the
so-called fault-tolerant actions, that are at the basis of NAP. A fault-tolerant action consists of
the action itself, say A, and an associated recovery action Ā, which is executed exactly-once if the
execution of A fails [33].

6.1.11 Transaction and Leader-Election-Based Approaches

Rothermel and Strasser’s Approach Rothermel and Strasser’s approach [68] corresponds to
MSC, which is blocking. Indeed, a failure of the single commit place blocks the commit decision and
thus also the mobile agent execution. The approach is based on transactions and leader election.
The agent is forwarded between two consecutive stages Si and Si+1 using transactional message
queues. More specifically, a place pj

i puts the agent ai+1 into the input message queue of pk
i+1

as part of a global transaction. This global transaction corresponds to the entire stage execution
at Si and encompasses (1) getting the agent ai from the input message queue, (2) executing the
agent’s stage action, and (3) putting the resulting agent ai+1 into the message queue of the places
in Mi+1. Multiple places in Mi potentially execute this transaction, but only the leader, elected by
a leader election protocol, commits. All other places abort the agent’s stage actions. Coupled with
the use of local transactions this approach ensures exactly-once execution of the mobile agent, but
is unfortunately vulnerable to blocking. This vulnerability is caused by the use of a 2PC protocol
to atomically commit the transactions, which is known to be blocking on a single failure [7]. The
reader may argue that the use of a 3-phase-commit (3PC) [7] alleviates the blocking problem.
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However, blocking stems from the combination of leader election and transactions and the nature
of MSC and thus cannot be prevented by the use of a 3PC. Indeed, if the orchestrator that is
managing the voting and is acting as resource manager fails after receiving a majority of YES
votes and the 2PC or 3PC decides abort, then no new orchestrator can reach a majority of YES
votes until the former orchestrator explicitly resigns. This, however, can only be done when the
former orchestrator recovers from its failure, which is a blocking situation.

In Rothermel and Strasser’s approach, 4(m − 1) messages are needed for voting [68], and
2(�m+1

2 	−1) of them are in the critical path. The 2PC protocol involves communication primarily
among local processes, but also among the transactional message queues. Indeed, sending the agent
to the next stage and the 2PC protocol require 4m messages (4�m+1

2 	 in the critical path). In
summary, 6�m+1

2 	 − 2 messages are in the critical path of a stage execution. The total number of
messages generated is 8m − 4.

Assis Silva and Popescu-Zeletin’s Approach Assis Silva and Popescu-Zeletin [5] improve
Rothermel and Strasser’s algorithm by overcoming some of its limitations. In particular, to pre-
vent the blocking problem in [68], they use a different leader election protocol and commit the
local transaction using a 3PC protocol [7]. As a consequence, Assis Silva and Popescu-Zeletin’s
approach achieves �m−1

2 �-non-blocking. However, this particular combination of leader election
and transaction model may lead to a violation of the exactly-once property. Hence, [5] relies on
a so-called distributed context database to prevent more than one concurrent leader and thus to
enforce the exactly-once property. In summary, the commit decision is made in collaboration with
the distributed context database, a leader election protocol, and the 3PC. The distributed context
database runs on the places of the stage Si. However, to our understanding, the context database
will generally be run by another process than the execution of the agent. Moreover, it can be
implemented as a separate service. Consequently, we consider [5] a MMD approach.

Similarly to [68], the approach in [5] uses transactions and leader election to model fault-
tolerant mobile agent execution. Combining the two models makes it more difficult to understand
the approach. Another disadvantage of this approach are the rather high maintenance costs for
the distributed context database, which needs to be replicated (to provide fault tolerance).

According to [3], writing a value into the distributed context database and committing it
requires 7(m − 1) messages. In addition, forwarding the agent to the next stage and running
the 3PC protocol requires 5(m + m − 1) messages. Finally, 2(m − 1) messages are needed to
notify the places of the current stage of the termination of the stage execution. In summary, the
message complexity is 19m−14. To compute the number of messages in the critical path, we only
consider the messages from a majority of places in the 3PC: 7(�m+1

2 	 − 1) + 5(m + �m+1
2 	 − 1).

The termination notification messages are not in the critical path. In total, 5m + 12�m+1
2 	 − 12

messages are in the critical path.

6.1.12 Vogler et al.’s Approach

Vogler et al. [83, 84] use the SSC approach. Their main focus is to ensure exactly-once semantics
for the transfer of the agent between two consecutive places pi and pi+1. To achieve this, pi starts
a transaction, which encompasses sending the agent, storing the agent at pi+1, initiating the agent
at pi+1, and deleting the copy of the agent at pi. A 2PC protocol is used to ensure the ACID
properties of this transaction. To our understanding, failures of the agent while executing the
stage action at the place are not addressed. However, the fact that a copy of the agent is stored
at the destination allows to recover from a place failure and redo the local transaction from the
beginning (see Section 4). This corresponds to a checkpointing approach (see Section 5.1.1) where
a checkpoint is taken before executing the stage action sai. Clearly, Vogler et al.’s approach is
1-blocking, but ensures exactly-once mobile agent execution properties provided that the stage
actions run as local transactions.

Vogler et al.’s approach needs one message to send the agent and one message to acknowledge
its receipt.
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6.1.13 Pipelined Mode

One drawback of the approaches where multiple places handle the execution of the stage action
(i.e., MSC, MSD, MMC, MMD) is the need for multiple places Mi at each stage Si. This also
adds an overhead to the communication between consecutive stages. Reusing places of previous
stages for the current stage execution improves the performance and prevents high messaging costs
[77, 33, 58]. Figure 17 illustrates the pipelined mode with replication degree 3. At stage Si, only
place pi is given as next destination, while pi−1 and pi−2 are reused. Usually, pi−2 and pi−1 are
witnesses (see Section 3.2.2) to the execution on pi. However, iso-places and hetero-places are also
supported by the pipelined mode, although their practical use is limited.
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Figure 17: Pipelined mode.

6.2 Commit-At-Destination Approaches

The most prominent example of commit-at-destination approaches is a system called NetPebbles
[48]. It belongs to the class of commit-at-destination MSD approaches. The James system [76]
can also be classified into this category, although it has some elements of the commit-after-stage
MMD approach.

6.2.1 NetPebbles

The NetPebbles environment [48] defines an agent as a script that moves among places. This
script contains the code to be executed at any place. Fault tolerance is based on the observation
that choices exist in the task to execute (i.e., the stage actions) as well as in the location where
to execute a task (i.e., the itinerary). Based on these choices, the script can route around failures
of both the network and the places. Fault tolerance is achieved by the following mechanism in
NetPebbles: As shown in Figure 13, place pi−1 keeps a copy of ai. When it detects a failure of agent
ai on place pi, this copy is sent to another place p′i. Monitoring the current agent execution ai by
place pi−1 of the previous stage allows NetPebbles to tolerate any number of sequentially occurring
failures to pi, p

′
i, p

′′
i , . . . . Indeed, assume that p′i also fails. The failure of p′i is eventually detected

by pi−1 and a copy of ai is also sent to another place p′′i . However, a simultaneous failure of pi

and pi−1 results in the loss of the agent and thus in a blocking execution. NetPebbles overcomes
this problem by setting up a monitoring scheme where places of previous stages monitor their
successor places. Every place sends heartbeat messages to the previous places within a certain
distance. This distance is defined as the difference between the indices, i.e., j−k, of two places pk

and pj , (j > k). The heartbeat frequency decreases with increasing distance. In other words, the
greater the difference between j and k, the lower the frequency pj uses to send heartbeats to pk.
Place pk sends the agent ak+1 to another place p′k+1 if and only if it suspects that all successor
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Table 2: Message overhead of existing commit-after-stage approaches. We assume replication
degree m at all stages and no infrastructure failures nor false suspicions.

number of total characteristics
msgs in number

critical path of msgs
Assis Silva and Popescu-Zeletin’s 12�m+1

2 	 19m− 14 non-blocking
approach (6.1.11) +5m − 12
[5]
FANTOMAS (6.1.4) 4 4 violation of
[53] exactly-once
Fatomas (6.1.5) 2�m+1

2 	 + 2 4m+ non-blocking
[58] m�m+1

2 	 a

Lyu and Wong’s approach (6.1.7) 4 4 blocking
[42]
MAgNET (6.1.8) 3n − 3i + 1 3n − 3i + 1 static itinerary
[15]
NAP (6.1.10) 1 2m a assumes reliable
[33] failure detection
Rothermel and Strasser’s 6�m+1

2 	 − 2 8m− 4 blocking in the
approach (6.1.11) protocol implementing
[68] the commit decision
Schneider’s approach k2 b m2 Byzantine
[73] (6.1.1) failure model
Vogler et al.’s approach (6.1.12) 2 2 blocking
[83, 84]
a Assuming a linear strategy for reliable multicast [28].
b k is the threshold needed to reconstruct the result in a (m, k) threshold scheme.

27



places have failed, i.e., if it stops receiving heartbeat messages. This allows NetPebbles to handle
a number of concurrent failures equivalent to the distance value. In other words, NetPebbles is
(j − k)-non-blocking.

As the places within this distance do not solve any agreement problem, they cannot prevent
agent duplicates. NetPebbles, however, assumes that the agent destination is the same as the agent
source. Hence, all surviving duplicate agents (including the original agent) eventually arrive at
the agent destination. At this point, the first arriving agent (either the original or any duplicate)
is committed, whereas the actions of all others have to be aborted. The problem of how to commit
or abort the actions of the duplicate agents is left open in [48].

Using closed local transactions, data items are not available to any other agent until the end
of the agent execution, even if the agent does not fail. Indeed, assume that the agent executes
at stage Si (see Figure 18). Owing to a network partition or slow communication links, place pk

no longer receives heartbeat messages from any pj (j > k) and thus suspects the failure of all
successor places. It sends a copy of the agent ak+1 to a place p′k+1, resulting in a duplicate agent
a′

k+2, although the original agent execution has long passed stage Sk and is currently executing
on pi (i > k + 2). Hence, data items can only be liberated at the agent destination.
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Figure 18: Duplicate agents caused by unreliable failure detection in the commit-at-destination
approach.

6.2.2 JAMES

JAMES [76], a Java-based mobile agent infrastructure, is a platform that provides a running
environment for mobile agents, with enhanced support for network management. An agency of
the JAMES platform corresponds to a place in our model. JAMES defines agent managers, which
act as agent source and allow them to manage and monitor running agents. It provides fault
tolerance support for mobile agents, but does not ensure exactly-once agent execution. Rather,
it uses at-most-once or at-least-once execution semantics. These semantics are weaker than the
exactly-once property (exactly-once stage action is equivalent to a stage action that is executed
at-least-once and at-most-once). In addition, the mobile agent either executes on all places of its
itinerary (called atomic) or on the maximum possible (best-effort). The occurrence of duplicate
agents is justified for certain execution semantics, such as best-effort agent execution and at-least-
once execution of the agent’s stage actions. These execution semantics seem to address the aspects
of network management considered in [76], although no explicit examples are given.

When the failure of the agent currently executing, i.e., ai, is detected, the place with the most
recent copy of the agent starts executing the agent. This place is elected using an election protocol
and generally defaults to the predecessor place pi−1 (see Figure 13). With this approach, blocking
is prevented but agent duplicates may occur (see Section 5.2). In JAMES a fault-tolerant lookup
directory prevents agent duplicates that are not caused by network partitions. Network partitions
may disrupt the communication between places and the lookup directory and thus either cause
blocking or duplicate agents. The lookup directory is replicated and provides exclusive access
to its methods. Every agent ai, once it has executed the stage action, inserts a corresponding
entry into the lookup directory. If such an entry exists already, then another agent has already
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executed the actions of this stage and the current agent rolls back its stage actions and commits
suicide. Otherwise ai sets the corresponding entry in the lookup directory to reflect the fact that
the stage action of ai has terminated. The replicated, fault-tolerant lookup directory can be seen
as the distributed commit decision in MMD, which decides which agent to commit (i.e., ai, a

′
i, . . .).

This, together with the execution of ai on potentially multiple places (i.e., pi, p
′
i, . . .), shows that

JAMES has some elements of a commit-after-stage MMD approach.
However, the lookup directory is not sufficient to ensure the exactly-once semantics. Assume

that the agent currently executes on place pi+1. Hence, the corresponding entry in the lookup
directory indicates that the execution of ai has finished. Assume further that pi and pi+1 are
suspected by the previous places. A run of the election protocol identifies pi−1 as the place with
the latest available state of the agent (i.e., ai−1). To our understanding, the entry in the lookup
directory is of limited use in such a case. When pi−1 sends agent ai to p′i, the place p′i has two
choices: (1) take into consideration the information in the lookup directory and discard ai, with the
risk of blocking if suspecting pi and pi+1 was accurate, or (2) ignore the status entry and execute
ai. The latter choice leads to a duplicate agent if pi and pi+1 have been erroneously suspected.
Duplicate agents can generally only be detected at the agent destination. This problem does not
seem to be addressed in [76].

The fault-tolerant, replicated lookup directory used in [76] violates to some extent the auton-
omy assumption of mobile agent execution. Moreover, frequent updates to the lookup directory,
such as in JAMES, are costly, as all replicas have to remain consistent.

7 Transactional Mobile Agents

In this section, we present approaches for transactional mobile agents that address infrastructure
and unfavorable outcomes and ensure atomicity of the entire mobile agent execution. Recall,
that a transactional mobile agent is an agent whose stage actions execute atomically, i.e., either
all or none at all (see Section 2.4). We start with a comparison with non-transactional mobile
agents, before presenting a model for transactional mobile agents based on open/closed nested
transactions.

7.1 Commit in Non-Transactional Mobile Agents vs. Commit in Trans-
actional Mobile Agents

In Section 5 we have classified non-transactional mobile agent approaches according to when and by
whom the commit decision of the stage action is performed. In the context of non-transactional
mobile agents, the commit decision helps to ensure the exactly-once execution property of the
mobile agent. Indeed, only the stage action on the primary of stage Si is committed in the
commit-after-stage approach, while the stage actions on other places in Mi are aborted. In the
commit-at-destination approach, the commit decision leads to the selection of the duplicate agents
arriving at the agent destination that have to be undone. This undo/abort occurs although the
agent may have successfully executed at all stages. In contrast, transactional mobile agents use
the commit to ensure atomicity in the execution of one mobile agent.

Consider, for instance, a non-transactional mobile agent using the commit-at-destination ap-
proach.14 The difference between a commit-at-destination approach and a transactional mobile
agent is best shown in the case where no failures and no false suspicions occur. In this context,
a commit-at-destination approach always successfully executes the agent and commits the agent’s
stage operations. On the other hand, even with no failures and no false suspicions, transactional
mobile agents might decide to abort the agent’s stage operations; the success of the agent execution
does not depend exclusively on the fact that the agent has reached the agent destination. Rather,
it also depends on whether the stage operations were semantically successful. Revisiting the first
example in Section 2.4, commit-at-destination approaches commit the agent’s stage operation (i.e.,

14A similar reasoning also applies to commit-after-stage approaches.
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book a hotel room and rent a car) although no flight is available. In contrast, transactional mobile
agents either commit all three operations or abort them all. In other words, if no flight is avail-
able, all agent operations will be aborted. Whereas a commit-at-destination approach eventually
commits, transactional mobile agents can also abort. This is because commit-at-destination ap-
proaches only need the commit to prevent agent duplicates, whereas transactional mobile agents
use it to address unfavorable outcomes.

Because transactional mobile agent executions also address unfavorable outcomes, they have
additional requirements. Indeed, a transactional mobile agent execution is specified in terms
of the ACID properties. While in Section 4 we require ACID properties for local transactions,
transactional mobile agents have to guarantee that the ACID properties encompass the entire
mobile agent execution, i.e., that the sequence sa0, . . . , san runs transactionally.

7.2 Open Nested Transaction Model

A transactional mobile agent execution can be modelled as open nested transactions [86]. An
open nested transaction is a transaction that is (recursively) decomposed into subtransactions.
Every subtransaction forms a logically related subtask and can be either open or closed. An
open subtransaction makes its results visible to other transactions as soon as its computation
has successfully terminated, independent of the outcome of its parent transaction. In contrast, a
successful closed subtransaction only makes its updates visible to other transactions, i.e., commits,
if its parent transaction commits. The case when all subtransactions are closed subtransactions
corresponds to the (closed) nested transactions of Moss [49].15 Contrary to flat transactions (i.e.,
non-nested transactions), in open nested transactions, a parent transaction can commit (provided
that its parent transactions all commit in the case of closed subtransactions) although some of
its subtransactions may not have been successful. In other words, some subtransactions may be
aborted, but the parent transaction still commits.

In a transactional mobile agent execution, the top-level transaction (i.e., the transaction that
has no parent) corresponds to the entire transactional mobile agent execution. The first level of
subtransactions is composed of the stage actions sai. If replication is applied, each stage action,
in turn, can be modelled by yet another level of subtransactions, which correspond to the agent
replicas a0

i , . . . , a
m
i running on the places in Mi and executing the set of operations op0, op1, . . . .

Transactional mobile agents are a simplification of general open nested transactions as the sub-
transactions generally neither conflict nor deadlock among themselves. Indeed, the subtransactions
aj

i execute on different places and thus run in complete isolation from each other. To further im-
prove the level of concurrency, the services running on the places decide themselves whether to
allow concurrent access to their data. For this purpose, each service has a so-called commutativity
matrix [64], which shows potential conflicts among operations of this service and allows operations
that do not conflict to be executed concurrently. The parent transaction of subtransaction saj

i

(i.e., sai) only commits if exactly one of its subtransactions has committed. More specifically,
it issues a commit only to one of its subtransactions (i.e., the primary saprim

i ), and aborts all
others. The top-level transaction only commits if all the subtransactions sai that must succeed
are ready to commit (in the case of a closed subtransaction) or have already committed (open
subtransaction).

If a service request fails on one place, the subtransaction sai can be aborted and retried on
another place without aborting the top-level transaction. Assume, for instance, that an agent ai

attempts to book a flight on Swiss International Air Lines, but no seat is left. We do not consider
replication at the moment and assume that no failures or false suspicions occur. Consequently,
the corresponding subtransaction sai has an unfavorable outcome and is aborted. However, the
agent may move on to the Lufthansa server and attempt to book a flight with Lufthansa. If
this subtransaction sai+1 is successful, the agent continues and the top-level transaction can still
commit. More generally, the agent may perform a partial rollback to pi that involves several stages
(e.g., pi+1, pi+2), and then continue the execution along an alternative itinerary (e.g., pk, pk+1, . . .)

15See also [13] for a formal description of open and closed nested transactions.
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[78]. Note that this is fundamentally different from commit-after-stage approaches, where these
servers are usually visited concurrently at the same stage. To simplify our discussion, we assume
that all stage actions sai of a transactional mobile agent execution must succeed for the transaction
to commit. Our observations remain valid for the general case, in which only a subset of the stage
actions needs to succeed.

Mobile agents can be composed of open or closed subtransactions. A mobile agent execution
that is composed of closed nested transactions suffers from the drawback that results of the stage
actions are only visible to other agents at the end of the mobile agent execution. For long-living
agents, this has a negative impact on the performance, as the agent has to wait until other agents
have terminated their execution. In contrast, open nested transactions do not suffer from this
problem and are thus more suited to long-living agents. However, to ensure atomicity, committed
subtransactions may need to be compensated. Unfortunately, not all stage actions can easily be
compensated (see Section 4.3), or can only be compensated at a considerable cost. Indeed, be-
tween executing the stage action sai and its compensating transaction, another agent b can access
data items modified by sai. Executing the compensation transaction semantically undoes the
modifications performed by sai. Agent b may have now read an inconsistent value. Consequently,
b needs to be aborted, leading to cascading aborts. Hence, compensatable transactions work best
in an environment where compensating transactions can be run without causing cascading aborts.
This is the case for a large number of applications (e.g., flight reservations).

Compensation may also be unsuitable although feasible, because of unacceptable run-time
costs. This is especially true in environments with frequent aborts. The use of compensation
transactions makes an abort very expensive. Moreover, all compensation transactions must even-
tually commit. Consequently, failures during the compensation transactions lead to blocking. In
contrast, an abort with closed nested transactions is not more expensive than a commit in the
sense that the message sent to all places contains the directive to abort instead of commit.

Hence, an ideal approach to transactional mobile agent execution supports both closed and
open subtransactions. We distinguish between blocking and non-blocking approaches, but also
indicate whether the approach supports closed nested transactions or open nested transactions.
In the following, we discuss atomicity in more detail in the context of transactional mobile agents.

7.3 Execution Atomicity

In this section we show how the ACID properties, in particular atomicity and durability (consis-
tency and isolation are discussed in Section 4.3), can be ensured for a transactional mobile agent
execution. Among the ACID properties of the top-level transaction, atomicity and durability16 are
the hardest to achieve. Atomicity encompasses unfavorable outcomes (see Section 2.4) by ensuring
that either all stage actions are executed successfully or none of them. Note that in the case of
open nested transactions the atomicity property is achieved if the modifications of all stage actions
are reflected [86] or none at all. The latter case occurs if the modifications have been compensated
for. Hence, the atomicity property is achieved on a more abstract level than in the case of closed
subtransactions. To achieve atomicity, the agent a can decide at every stage Si whether to continue
or abort the transactional mobile agent execution, denoted Ta. If one subtransaction sai (i < n)
has an unfavorable outcome, i.e., is not executed successfully, Ta is immediately aborted (see Fig-
ure 19). Otherwise, ai continues the execution of Ta. Commit can only be decided at the agent
destination,17 when all the saj (0 < j ≤ n) have been successfully executed. For both commit or
abort, ai reliably multicasts the decision to all pk (k < i) (in the case of closed subtransactions)
or sends a compensating agent in the case of abort (open subtransactions). Similar to the case of
commit-at-destination approaches (see Section 5.2), the compensating agent itinerary generally is

16Atomicity and durability are tightly coupled. Assume a transaction that executes write[x] and write[y].
Assume further that the transaction commits, but a crash causes the modification to y to be lost, whereas the
operation to x is made permanent. It is difficult to say whether atomicity or durability has been violated.

17Actually, the decision can be made on pn−1 [60], as the agent destination generally contains only idempotent
operations and may only be intermittently connected to the network if it is a mobile device. For simplicity, we thus
assume in the following that the agent destination does not fail and is always connected.
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the inverse itinerary of the corresponding agent a.

p1 p2p0

Agent
Source

a1 a2a0
a2a1

abort

Stage S0
Stage S1 Stage S2

Figure 19: Abort is immediately communicated to all predecessor places in the transactional
mobile agent execution.

7.4 Addressing Infrastructure Failures

Infrastructure failures do not lead to the abort of the mobile agent execution, but may cause
blocking (while the place currently executing the mobile agent fails, the transactional mobile
agent execution is blocked). Aborting the transaction if infrastructure failures occur (i.e., on pi)
may lead to a violation of the atomicity property. Assume that the previous place pi−1 monitors
the execution of the agent on place pi. Incorrect failure detection may cause pi−1 to suspect pi

and thus to abort the transactional mobile agent Ta. However, ai continues executing on pi and is
forwarded to pi+1. If the agent destination decides commit, then all places pi, . . . , pn commit the
agent’s stage actions, whereas the places p0, . . . , pi−1 have already previously aborted the stage
actions. Clearly, this is a violation of the atomicity property. Consequently, transactional mobile
agent approaches are generally either blocking or employ fault tolerance techniques (see Section 5)
to prevent blocking.

7.5 A Simple Approach to Ensure Atomicity

The simplest approach to ensure atomicity is to reuse the SSD commit-at-destination approach
(see Section 5.2.1), which is based on checkpointing. At every place, the agent’s stage and code
is checkpointed using standard checkpointing approaches [25]. Upon recovery from a failure, the
agent’s execution is continued from the previous checkpoint. The local transactions are only
committed when the agent reaches the agent destination, i.e., it uses the model of closed nested
transactions [49]. Messages are sent to all previous places p1, . . . , pn−1 to commit the local trans-
actions. Note that the stage action sa0 does not have to be committed, as we assume that they
are outside the scope of the transactional mobile agent execution. The transactional mobile agent
execution is immediately aborted if an unfavorable outcome occurs that renders any further exe-
cution obsolete. For instance, if the agent owner only flies with Swiss International Air Lines, but
Swiss International Air Lines does not have any seats available for the required destination, the
agent execution can be immediately aborted.

8 Approaches to Transactional Mobile Agents

In this section, we present a survey of approaches to transactional mobile agent executions. We
classify the approaches into blocking and non-blocking solutions.

8.1 Blocking Solutions

8.1.1 Assis Silva and Krause’s Approach

Assis Silva and Krause [4] provide a model of transactional mobile agents that corresponds essen-
tially to the checkpointing approach discussed in Section 7.5. However, their model assumes open
subtransactions.
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8.1.2 Sher et al.’s Approach

In [75], Sher et al. present an approach to transactional mobile agents. It is based on the commit-at-
destination SSD approach and ensures the ACID properties on the entire mobile agent execution.
However, blocking is inherent in any SSD approach and [75] suffers from this problem. The
probability of blocking is relaxed by allowing parallel transactions to run over different parts of
the itinerary that are combined again using so-called mediators, which govern how the parallel
transactions are processed further. For instance, the mediator ANDjoin dictates that all parallel
transactions have to arrive, whereas with XORjoin, only one has to arrive. Figure 20 depicts the
example of an XORjoin mediator. The transactional mobile agent execution of a splits into two
parallel transactions represented by agents b and c. For instance, bi−1 tries to book a flight with
Swiss, while ci−1 books a flight with Delta Airlines. At stage Si, the mediator XORjoin keeps only
one of the subtransactions (represented by ci and bi), while the other is aborted. The agent a then
continues to reserve a hotel room at stage Si+1. The places that run a join mediator (i.e., pi) must
be visited by the partial mobile agents executing in parallel. This generally limits the itinerary to a
(partially) static itinerary. Moreover, failures to non-parallel transactions and mediators result in
blocking of the execution. Eliminating non-parallel transactions thus prevents blocking, i.e., a split
mediator resides at the agent source and a join mediator at the agent destination. The entire mobile
agent execution then runs as parallel transactions. However, executing parallel transactions from
which only one is committed at the end, even if no failure occurs, causes considerable overhead.

pi-1

ci-1

Stage  S i-1Stage Si-2 Stage  Si Stage Si+1

p'i-1

bi-1

ci

bi

pi-2

ci-1

bi-1

pi

ai-2 ai+2

XOR
join

AND
split... ...ai+1

pi+1

ai+1

Figure 20: Mediators (rectangles) allow the execution of parallel transactions.

8.1.3 Strasser and Rothermel’s Approach

Strasser and Rothermel [78] address the issue of partial rollbacks to a savepoint in a mobile agent
execution. If this savepoint is located at S0, then their approach ensures atomicity on the entire
mobile agent execution. Strasser and Rothermel’s approach is based on the protocol in [68]. Hence,
the transactional mobile agent execution may block if the coordinator of the 2PC fails during the
forward execution of the transactional mobile agent (see Section 6.1.11). As open subtransactions
and thus compensating transactions are used, only the resources of a stage execution are unavail-
able; resources of other stages are still available to other transactional mobile agents. The use of
compensation transactions limits the applicability but improves the performance by making the
accessed resources available again immediately after the stage execution. However, compensating
transactions may not be suitable in an environment with frequent aborts of transactional mo-
bile agents, i.e., with frequent unfavorable outcomes. The issue of closed subtransactions is not
addressed in [78].

Blocking may occur in the execution of the compensating transactions. As a consequence,
partial rollback involving the rollback of more than the current stage execution may block, thus
blocking the entire mobile agent execution.
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8.2 Non-Blocking Solutions

8.2.1 Extending NetPebbles

The approach in [48] (see Section 6.2) could be extended directly into a transactional mobile
agent approach, although this is not done by the authors. This can be done by having a XORJoin
mediator (see Section 8.1) running at the agent destination. The approach in [48] uses the MSD
commit-at-destination solution, and thus is non-blocking unless the agent destination fails. Instead
of a priori executing parallel transactions to avoid blocking [75], parallel transactions are started
only if a failure is detected. Hence, if no failures occur or are detected, no parallel transactions
occur.

8.2.2 Assis Silva and Popescu-Zeletin’s Approach

The approach presented by Assis Silva and Popescu-Zeletin [6, 3] also builds transaction support
on top of fault-tolerant mobile agent execution. For this purpose, [6] reuses the approach in [5].
Assis Silva and Popescu-Zeletin’s approach uses the model of open nested transactions and thus
relies on compensatable transactions. In [3], the authors mention that their approach also supports
closed subtransactions, although no details are given.

8.2.3 TranSuMa

Pleisch and Schiper [61, 62] suggest an approach, called TranSuMa, to non-blocking transactional
mobile agents based on their approach to fault-tolerant mobile agents [58]. This approach can
support open nested transactions that consist of both open and closed subtransactions [57]. In the
case of closed subtransactions, instead of immediately committing the operations on the primary
of stage Si the local transaction is kept unterminated. If a subsequent stage action sak aborts,
all the predecessing local transactions saj(j < k) are also aborted. On the other hand, if all
stage actions succeed, then the local transactions are only committed when the agent reaches the
destination. All other places pj

i �= pprim
i immediately abort the local transactions they may have

(partially) executed. On the primary, the agent leaves a so-called stationary agent, which awaits
either an abort or a commit message. On reception of such a message, it either aborts or commits
the operations of the local transaction corresponding to the message. The other ACID properties
are achieved using the usual mechanisms.

9 Mobile Agent Execution Under a Byzantine Failures Model

In the previous sections, we have only considered crash failures, i.e., machines, places, and agents
simply stop executing. With crash failures, the principle issues that need to be resolved are
blocking and exactly-once execution. In this section, we generalize the failure model to also
accommodate Byzantine failures. More specifically, failing components behave arbitrarily and
can, for instance, send arbitrary message to other components. Byzantine failures thus introduce
additional issues to the mobile agent execution that need to be resolved. Moreover, malicious
places can tamper with the code or internal state of the agent and thus modify the agent behavior.
Consequently, the agent may behave differently than originally defined by the agent owner, which
may lead to a (potentially financial) disadvantage for the agent owner.

In this survey, we focus on fault tolerance in the mobile agent execution and thus we are
concerned with attacks of malicious components on a mobile agent. Such attacks can be initiated
by malicious places or other malicious agents. As this survey considers single agent executions
(see Section 2.1), we do not address attacks by malicious agents here. Indeed, these attacks can
be prevented using mechanisms also applied in traditional distributed systems. Such mechanisms
are, for instance, authentication, which aims at making sure a client (or agent) is who he claims
to be, and authorization, which grants access to resources to an authenticated client (agent).
Authentication and authorization are also important mechanisms to prevent attacks on a place by
a malicious agent. Such attacks are addressed by most of the existing mobile agent platforms (e.g.,
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[26, 36, 55, 27, 30]), but are outside the scope of this survey. The interested reader is also referred
to the work in [21, 41, 51, 69] for further examples of how to cope with such attacks. Moreover,
we do not consider the problem of denial-of-service attacks. Finally, we assume that the agent
is protected while it is in transit between two authenticated places, which can be achieved using
standard mechanisms (e.g., Secure Socket Layer [20]).

Note that in a traditional client/server system the security issues are well known and adequate
solutions exist [56]. The clients and servers are generally grouped into an administrative domain
with a set of registered users. In addition, the client is executed on the user’s machine. Since
client and server run in the same administrative domain, a user trusts a server or can at least
prove that it has received incorrect results. The security in a mobile code environment cannot rely
on this trust relationship between the server and an agent because they are generally not part of
the same administrative domain.

9.1 The Problem of Protecting the Agent From Malicious Places

The problem of protecting the agent from malicious places is caused by fact that the code of
the agent is executed in an untrusted environment [11, 18, 45]. Without protection of the agent,
the execution environment (i.e., the place) can alter or destroy the agent’s code and the data
accumulated during its itinerary. Moreover, the agent may contain confidential data such as credit
card information, which should only be accessible by the place if the agent intends to perform a
purchase. For instance, consider an agent that books the cheapest flight to New York. After
visiting several airline places it arrives at a malicious place of a airline X . Airline X accesses the
prior offers the agent has collected and becomes aware that its price offer is not the lowest. As
a consequence, it is tempted to modify or simply delete the collected prices of the other airline’s
offers such that its price becomes the lowest. It is also already an unfair advantage for a server
to be able to read the current state of the mobile agent. This would allow it to learn about the
offers of other airlines and thus adapt its pricing policy accordingly. Hence, the agent’s code and
data needs to be protected.

In order to protect a mobile agent, the following properties are required:

• Privacy: A place can only access the data that the agent wants to divulge.

• Integrity: The data and the code of the mobile agent are protected from tampering, or, at
least, tampering can be detected.

Integrity for the immutable parts of the mobile agent, including its code, (or rather a hash of
it) can be easily verified by using digital signatures (e.g., RSA public keys [65]) [11]. Indeed, most
existing mobile agent systems provide this kind of protection. Privacy for the immutable data of
the agent requires a public key infrastructure, whereby the private parts of the agent are encrypted
with the public key of target place. However, this limits the agent execution to (partially) static
itineraries.

In the following, we first present replication-based approaches. Here, we also revisit the ap-
proach of [45, 73] (see Section 6.1.1), which we call privilege-based approach and which achieves
non-blocking mobile agent execution even with Byzantine failures. Then, we show concepts to
protect the state of the mobile agent from a malicious host, which generally are orthogonal to the
approaches for fault-tolerant mobile agent execution discussed in Section 5.

9.2 Replication-Based Approaches

In this section, we present two approaches that attempt to provide Byzantine fault-tolerant mobile
agent execution using replication.

9.2.1 Privilege-Based Approach

We have already shown how the approach in [45] and [73] achieves fault tolerance in the context
of crash failures in Section 6.1.1. However, Minsky et al. and Schneider also consider Byzantine
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failures, more specifically attacks from malicious hosts on the mobile agent. Using the MMC
approach, all places pj

i ∈ Mi of a stage Si execute agent ai. Although an adversary may corrupt
a number of agents at a stage, this approach still allows a place at stage Si+1 to safely deduce the
true result of the agent execution at stage Si if enough uncorrupted agents are left.

To protect the mobile agent from malicious hosts the agent is sent to all places of the next
stage Si+1 by every place of stage Si. Every place at stage Si+1 takes as input the majority of the
inputs that it receives from stage i. At this point the places in Mi+1 have to know the places in
Mi; otherwise, malicious places could simply produce a majority of bogus agents and send them
to the places in Mi+1. The agents thus have to carry a privilege. Corrupted agents can then
be identified and deleted. In [73], two protocols are proposed to implement such privileges; both
require at each stage that a majority of places in Mi are non-faulty.

• (Shared secret) These protocols ensure that only the source and the destination can learn
a secret. Suppose we have a system where each stage has 2k − 1 places. Each stage i thus
divides the secret into 2k− 1 fragments using a (2k− 1,k) threshold scheme. Each fragment
is then sent to a different place of Mi+1. To reconstruct the secret, a node needs at least k
fragments of it.

• (Authentication chains) In this scheme all agents carry unforgeable certificates describing
their itineraries. Whereas only a place p can construct the certificate, if non-faulty, any place
can check its validity. Every place uses sender authentication to reject corrupted agents and
selects any agent for which it received equivalent replicas from a majority of the places of
the previous stage.

The privilege-based approaches prevent malicious places from inserting faulty results into an
agent’s execution. However, additional mechanisms, such as encryption, have to be integrated to
ensure agent privacy.

Moreover, these approaches make the rather strong assumption that the replicated places fail
independently. While this assumption is adequate if only crash failures occur, it is much stronger
with Byzantine failures. Clearly, if all servers are exact replicas, then a successful attack on one
of the servers may easily also be successful on the replicas of these server. Hence, an attacker may
compromise all replicas of a particular server.

9.2.2 Comparing the Results of Two Agent Replicas

Yee [91] uses agent replication to address the particular case of a single malicious place in an
agent’s itinerary. Assume, for instance, that mobile agent a is to find the minimal airfare for a
particular flight. Hence, agent a visits the sequence of places p0, p1, . . . , pn = p0. A replica agent
a′ is created, which visits the places in the inverse order, i.e., pn, pn−1, . . . , p0. By comparing
the results of these two agent replicas, the agent owner can determine the true minimal airfare,
unless the malicious place is the one offering the minimal airfare. In this case, Yee’s approach
only achieves second best pricing. With this approach, violations to the integrity of the mobile
agent can be detected. Clearly, this approach only works for a very limited set of applications
and assumes only one malicious place in an agent’s itinerary. Moreover, the itinerary must be
statically known when the agent is instantiated.

9.3 Tamper-Proof Environments

A solution for protecting both the privacy and the integrity of the agent is based on a tamper-proof
environment (TPE) [90, 91]. Indeed, the TPE actively prevents tampering with the mobile agent,
while most of the other approaches only allow to detect a violation to the agent’s integrity. It can
be seen as a hardware blackbox, which provides a well-defined, restricted interface to the outside
environment as well as an execution environment for agents inside the blackbox. The restricted
interface does not allow the place to inspect or tamper with an agent’s code and data inside the
blackbox from the outside. The agent has to trust a TPE, or rather the TPE’s manufacturer,
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which is usually not the same company as the service provider of the place. During transmission,
the agent is encrypted with the public key of the TPE and therefore cannot be accessed by the
place itself. Rather, it is forwarded to the TPE, which decrypts it using its private key and finally
starts to execute the agent code. The interactions between the agent and the local environment
or other agents are also handled by the TPE.

Security is based on the agent owner’s trust towards the TPE manufacturer. The latter is
believed not to provide malicious TPEs because of its business interests. Clearly the TPE manu-
facturer would be out of business instantly if somebody could prove that it delivered a malicious
TPE or that its TPE is not secure from tampering (e.g., by malicious agents executed by it).

As the use of TPEs incurs considerable organizational and financial overhead we believe that its
application will be limited to particularly security-sensitive domains (e.g. banks, stock market).
To reduce the size of the TPE only the crucial parts of the agent, such as the certificates or
the keys, are kept in the TPE, instead of accommodating the entire agent. Smartcards are an
example of such a resource-constrained but low-cost TPE [22]. Such TPE’s are also used in [34]
in the context of distributed marketplaces.

To avoid the cost of TPE’s, the approach in [1] replaces the TPE by a generic secure compu-
tation service that is accessed by all places. The secure computation service can execute small
parts of an agent application while maintaining privacy. For larger applications, the associated
costs become prohibitive.

9.4 Achieving Forward Integrity of Partial Results

Several approaches address the issue of protecting the data that the agent has accumulated prior to
executing on place pi, i.e., the results of its execution on places p0, . . . , pi−1. This property is called
forward integrity. To prevent malicious hosts from modifying earlier results, a so-called chain [35]
needs to be established. Using this chain, the tampering of prior results can be detected. However,
these approaches generally have the limitation that cooperating malicious agents or a malicious
agent that is visited at least twice by the mobile agent can truncate the chain of results. Indeed,
assume that agent a visits the places p0, p1, . . . , pk, pi, . . . , pj , pk, . . . and that pk is malicious. Place
pk could remove all the results that have been contributed by the places pi to pj .

9.4.1 Yee’s Approach

Yee [91] was the first to devise protocols for achieving forward integrity in mobile agent executions.
His protocol is based on hashing and digital signatures. However, the protocol cannot prevent a
malicious place from modifying its prior offer, or the offer of a colluding malicious place. Moreover,
Yee’s protocol needs to have a priori knowledge about the length of the itinerary in order to detect
removed results.

9.4.2 KAG Family of Protocols

Karjoth et al. [35] improve the approaches in [91] in such a way that disallows a place to modify
its own earlier offer later again. They suggest several algorithms for protecting the results of free-
roaming agents. These algorithms allow to detect the tampering of the agent’s results. However,
two cooperating malicious hosts can still remove the results of the places between them from the
agent without being detected.

Whereas one class of algorithms is based on a per-server digital signature scheme, another
uses hash chains. In the per-server digital signature scheme the result of a stage’s computation
is encrypted using the public key of the agent authority. Then, place pi signs this encrypted
result and forwards it to pi+1. In order to detect the removal of results, some random number
is encrypted along with the result of the computation. In addition, a hash value over the result
at pi−1 and the ID of pi+1 chains the different stages together. Changing the order of encryption
and signing allows the identity of the previous places to be hidden. This scheme relies on the
availability of a public-key infrastructure.
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In contrast to the digital signature schemes, the hash chain algorithms in [35] do not rely on
a public key infrastructure. They are based on forwarding a value in addition to the encrypted
result to the next place. This value can be a hash value containing the computation’s result, a
random number, the previous hash value to build the chain, and the ID of pi+1.

9.4.3 Approach in the Ajanta mobile agent system

Ajanta is a Java-based mobile agent system [37]. It provides abstractions such as read-only agent
state and append-only logs. The read-only agent state corresponds to the immutable part of the
agent state and can be protected using digital signatures (see Section 9.1).

The append-only log allows a place to add new objects and ensures that any subsequent
modifications to these objects can be detected by the agent owner. The implementation of append-
only logs uses an encrypted checksum. The initial value of this checksum is based on some random
number, generated and kept secret on the agent source. On every place pi on which a new object
is appended, the new checksum consists of the concatenation of the following elements, encrypted
with the public key of the agent source:

1. the previous checksum,

2. the signature of the new object, and

3. the ID of the signer of the new object.

9.4.4 Multi-Hops Protocol

Corradi et al. propose a protocol similar to the append-only log [14]. As the chaining relation,
they use a message integrity code, which contains the previous message integrity code, the data
modified at the current place, an additional nonce, and the identity of the next place.

9.4.5 Roth’s Attacks

Roth [66] has devised an attack that breaks the protocols in [35], [37], and [14]. The basic idea
is for a malicious node to abuse a legitimate node as an oracle that decrypts, signs, or computes
protocol data on behalf of the malicious host. To improve the robustness of these protocols, Roth
introduces the notion of mobile agent kernel that identifies a particular instance of a mobile agent
[67]. Using the mobile agent kernel, the abuse of non-malicious places as oracles can be prevented.

9.5 Encrypted Functions

Sander and Tschudin [71] suggest computing with encrypted functions to achieve software-based
agent privacy and integrity. Assume that an agent knows how to compute f and requires f(x) from
a service located at place pi, but wants to keep f a secret. The agent owner therefore transforms
(encrypts) f to some other function E(f) that hides f and may also produce encrypted output
data. P (E(f)) describes the program that implements E(f) and is sent to pi. Therefore, pi only
learns about P (E(f)), which it applies to its input data x. The result P (E(f))(x) is sent back to
the agent, which decrypts it and obtains f(x).

While in [71] only polynomial and rational functions are supported, [72] and [9] extend this
support to non-interactive evaluation of functions that can be represented by circuits of logarithmic
depth and arbitrary functions, that can be mapped to polynomial-size circuits, respectively.

9.6 Cryptographic Traces

In [81], Vigna proposes cryptographic traces to detect illegal modifications of an agent’s code,
state, and execution. During the execution of the agent, data, called traces, is collected that
allows the agent owner to verify the execution of the agent at the agent destination.
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While Vigna’s approach can detect certain misbehavings of places, it cannot detect all of them.
For instance, it cannot detect whether additional side-effects have occurred at a place, as it only
takes the state of the agent into account. Assume, for instance, that the agent moves money from
account A to account B. The state of the agent may not reflect this transfer. Also, a malicious
place may fabricate a trace that fits the state of the agent resulting from a completely different
execution.

Moreover, the approach relies on a trusted third party and does not offer protection against
disclosure of data.

9.7 State Appraisal

In [18], Farmer et al. propose a mechanism called state appraisal to verify the integrity of the
mobile agent’s state. State appraisal functions are defined at the agent source and allow to verify
invariants in the agent’s state. Clearly, the applicability of state appraisal is limited, as the invalid
state needs to be foreseen at the agent source. In general, it is not possible to indicate the precise
state the agent will eventually have, in particular with dynamic itineraries.

9.8 Code and State Obfuscation

Hohl proposes an approach that is based on code and state obfuscation [31]. The mobile agent’s
code and state is obfuscated in a way that makes it difficult and time consuming for a place to
find out about private data of the mobile agent, while still allowing the agent to execute properly.
To limit the time a place has to try to find out about the agent’s private data, each agent is given
a time-to-live. Once its time-to-live is expired, the agent is not accepted any more by a legitimate
place.

Unfortunately, it is not always easy to predict an appropriate time-to-live that both gives the
agent time to execute and limits the time a malicious place has to break the agents obfuscation
mechanism. On one hand, a small time-to-live may prevent the agent from finishing its execution,
even with the absence of malicious places. On the other hand, obfuscation can still be broken if
sufficient time is available. Also, if a malicious place wants to read the state of the agent, it can
still do it, as it can keep the agent as long as it wants, thereby ignoring the time-to-live parameter.
As a consequence, privacy cannot be ensured with this approach. However, a place can detect
tampering when the tampering has lead to the expiration of the time to live.

9.9 Agent Security Based on the Itinerary or the Use of Child Agents

A certain degree of security can be achieved by carefully choosing the itinerary of a mobile agent.
Indeed, if the agent periodically returns to a trusted place, the damage done by malicious places
can be limited. Also, child agents can be used to visit untrusted places. In Gypsy [32], a company
runs a number of secure places in the network. The original agent, called supervisor agent, only
visits these trusted places. If it needs to visit an untrusted place, it sends a child agent, called
worker, which executes on the untrusted place and sends its results back to the supervisor agent.
Using this approach limits the damage that can be done by a malicious place.

10 Conclusion

In this paper we have presented a comprehensive survey on fault-tolerant and transactional mobile
agent execution. The survey has discussed these properties with respect to crash failures of
machines, places, and agents and Byzantine failures of places. To our knowledge, our work is the
first to present a comprehensive survey on fault-tolerant and transactional mobile agent execution.
Although other surveys exists, they do not consider the latest work or only address security issues.
Note also that several of the concepts presented in the survey have similarities with techniques used
in traditional client/server computing (without mobile agents). However, an in-depth discussion
of similarities and differences cannot be provided within the scope of the survey.
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In the context of non-transactional mobile agents, we have presented a novel classification of
fault-tolerant mobile agent approaches. We have first distinguished between commit-after-stage
approaches, where the stage actions are committed immediately after the stage execution, and
commit-at-destination approaches, where the stage actions are only committed at the agent des-
tination. Within these approaches, we have further classified solutions according to the following
characteristics: (1) whether the agent is executed by a single or multiple places, (2) at which point
in time the modifications of the mobile agent are committed, and (3) whether commit decision and
stage execution are collocated. This leads to various solutions, which have been discussed in terms
of their advantages and usability. Moreover, our classification allows the discussion of strengths
and limitations of these solutions solely based on the characteristics (1) to (3). Approaches that
replicate the mobile agent (i.e., approaches MSC, MMC, MSD, MMD) generally have higher re-
source costs and a greater message overhead. Moreover, approaches based on iso-places require
the service provider to provide replicated places. However, they have the clear advantage to be
non-blocking. In contrast, SSC approaches are less complex but may block upon the failure of a
place.

Besides infrastructure failures, transactional mobile agents also address unfavorable outcomes
of the agent execution at a place. We have presented a survey of transactional mobile agents. A
general solution to transactional mobile agents should support open and closed nested transactions.
Generally, blocking is less of a problem in the case of open nested transaction. Indeed, it only
increases potential dependencies with other mobile agents. In contrast, blocking in the case of
closed nested transactions seriously limits overall systems throughput and affects also places that
may not be directly involved in the blocking.

The article also surveys approaches that protect the mobile agent from malicious hosts. While
some of the approaches build on concepts that are also applied to crash failures (e.g., replication),
most of the approaches use concepts that are orthogonal to the ones used for crash failures.
Protecting mobile agents from malicious places is a difficult problem [19]. The only comprehensive
security is provided by TPEs. TPEs ensure both privacy and integrity. However, TPEs require
additional hardware and also impose an organizational overhead. The other approaches provide
partial mechanisms that address particular security aspects. Encrypted functions seem to be
another possible approach, but they are too limited to be of general use. All other approaches make
limiting assumptions or only address agent integrity. However, these approaches may be adequate
for applications and in environments that comply with the assumptions underlying the approaches.
This shows that protecting the agent from attacks is an issue that still is not adequately solved
and is still subject to ongoing research. It is not clear at this point, whether software-based
comprehensive security can be provided at all [11, 19]. As a consequence, nearly all existing
mobile agent systems only address the protection of places and mobile agents against malicious
mobile agents, and ensure integrity of the immutable parts of a mobile agent.

The survey shows that the research on fault tolerance and security in the context of mobile
agents has made substantial progress in recent years. Many different approaches have been devised,
with different strengths and weaknesses. These approaches vary in terms of message overhead and
resource consumption. As applications have different requirements to fault tolerance, transactional
execution, and security, the approaches best suited for a given application need to be carefully
chosen. Some applications can trade blocking against reduced message overhead and resource
consumption, and thus achieve better performance. Others have severe requirements with respect
to non-blocking and are ready to accept a performance overhead. It is the application developer’s
responsibility to choose the appropriate approach. This survey can help him with this task.

Despite recent advances, much work still needs to be done. Both fault-tolerant non-transactional
and transactional mobile agent systems have to prove their value in real applications. Not all of
the presented approaches have been implemented yet and have been quantitatively evaluated in
a practical setting. Quantitative evaluations, however, are needed in order to further understand
the advantages and limitations of the various approaches and to complement/confirm our results.
Moreover, as some approaches are very complex and their correct application requires extensive
theoretical knowledge and experience, they are not easily used by application developers. Hence,
good and self-explaining user interfaces and well-defined frameworks need to be provided to facil-
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itate the utilization of these approaches and to limit the potential of mistakes.
Although recently mobile agent technology has also found its way outside the academic com-

munity, its applications are still not very wide-spread. With more research into fault-tolerant,
transactional, and secure mobile agent execution, the development of mobile agent-based applica-
tions can be furthered.
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