
Introducing Reset Patterns: an Extension to a Rapid
Dialogue Prototyping Methodology

I&C T ECHNICAL REPORTIC/2004/58

Silvia Quarteroni and Martin Rajman
Artificial Intelligence Laboratory

Information and Communication Sciences Faculty
EPFL, Lausanne

July 9th, 2004

Abstract

This paper exposes the Rapid Dialogue Prototyping Methodology [1, 2,
3], a methodology allowing the easy and automatic derivation of an ad hoc
dialogue management system from a specific task description. The goal of
the produced manager is to provide the user with a dialogue based interface to
easily perform the target task. In addition, reset patterns, an extension of the
prototyping methodology allowing a more flexible interaction with the user,
are proposed in order to improve the efficiency of the dialogue. Reset patterns
are justified and theoretically validated by the definition of an average gain
function to optimize. Two approaches to such an optimization are presented,
focusing on a different aspect of the gain function. Eventually, experimental
results are presented and a conclusion is drawn on the usefulness of the new
feature.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902787?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

1 Introduction 3

2 The Rapid Dialogue Prototyping Methodology 3
2.1 Producing the Task Model . 4
2.2 Deriving the Initial Dialogue Model 5

2.2.1 Generic Dialogue Nodes 5
2.2.2 Global Dialogue Flow Management 5

2.3 Limitations of RDPM . 6

3 Reset Patterns: methodology 6
3.1 The gain function . 7

3.1.1 Use of Reset Patterns . 8
3.1.2 The average gain functionG(i1) 9

3.2 SimplifyingG . 10
3.2.1 Hypotheses forP (i2|i1) 10

3.3 Estimating theP (i2|i1) . 11
3.3.1 Action types . 11
3.3.2 Action type transition probabilities 12

3.4 Extracting the reset patterns . 12
3.4.1 The "brute force" approach 12
3.4.2 Dealing with large numbers of attributes 12
3.4.3 Example . 13

3.5 Validating the logfile approach 13
3.5.1 Computing the scores . 14
3.5.2 Comparing results . 14

3.6 Application example . 14
3.6.1 Computing the scores . 15
3.6.2 Comparing results . 16
3.6.3 Considering propagation 16

3.7 Corollary . 17

4 Experimental Results 18
4.1 TheP (i2|i1) = K andP (i2|i1) = P (i1) cases 18
4.2 Random probabilities (P (i2|i1) = random) 19
4.3 Further experimentation . 19

5 Conclusions and Further Work 20

2

1 Introduction

The Rapid Dialogue Prototyping Methodology [1, 2, 3] (or RDPM) aims at creating
task-oriented dialogue models according to the following general idea: the target
dialogue model is a finite-state model that can be easily and systematically derived
from a frame based representation of the task. Such an approach is innovative when
compared to traditional dialogue prototyping methods which start from a generic
dialogue model and apply it to concrete cases; RDPM builds the dialogue manager
specifically for a given task, thus ensuring that only necessary features are present
and that the dialogue model is not too complex for the target task. Three projects
have been carried out using this approach: InfoVox1, consisting in the deployment
of a dialogue-based vocal server providing information about the restaurants in the
city of Martigny, Switzerland; secondly, the European INSPIRE project2, aiming
at a dialogue based control of various home devices within a Smart Home envi-
ronment; finally the MDM project3, aiming at a dialogue based interaction with
a database containing multimodal meeting transcriptions. The InfoVox project [4]
served to fully test the original version of RDPM, while the methodology is cur-
rently further investigated in the context of various extensions of RDPM.
We will first give a brief overview of the key features of RDPM and then focus
on an extension, reset patterns, motivating it and showing its efficiency. Finally, a
conclusion on the use of the extension is drawn.

2 The Rapid Dialogue Prototyping Methodology

The Rapid Dialogue Prototyping Methodology basically consists in five main steps:

1. producing a task modelfor the target application (see subsection 2.1);

2. deriving an initial dialogue modelfrom the produced task model (see 2.2);

3. carrying out a Wizard-of-Oz experiment, a simulated human-machine inter-
action where the user is exposed to a system he believes fully automatic,
while a hidden human operator is manually operating some of the system
functionalities that have not yet been fully implemented. This enables de-
velopers to obtain an early evaluation of their prototype, and therefore to
improve their dialogue model.

4. carrying out an internal field testto further refine the dialogue model, and
to validate the evaluation procedure. The initial field test is conducted with

1jointly realized by EPFL, IDIAP, and the Swisscom and Omedia companies. This project is
partly funded by a Swiss national CTI grant program.

2See http://www.inspire-project.org; the INSPIRE project is funded by the European FP5 IST
research grant program.

3See http://www.im2.ch; the IM2.MDM project is partly funded by a Swiss national FNRS NCCR
grant program.

3

the cooperation of "friendly" users, namely system designers, colleagues and
friends, who are not necessarily representative of the target users of the ap-
plication.

5. carrying out an external field testto evaluate the final dialogue model ac-
cording to the evaluation procedure defined during the internal field test.

The first two steps will be described in more detail in the following subsections,
while the three remaining ones are not relevant to this contribution and therefore
will not be explained further.

2.1 Producing the Task Model

In RDPM, a task model is described in the form of a set of relational tables (frames),
where columns are the attributes needed to identify the actions to be performed and
lines, or "solutions", are the possible action candidates. More precisely, a task is
modeled as a function, the arguments of which correspond to the above-mentioned
attributes and the call to which results in the fulfillment of the task, or in other
words, the selection of the action corresponding to the values selected for the at-
tributes.
For example, in the InfoVox restaurant application, the task model simply re-
duces to a single functionselect_restaurant(Cuisine, Location,
Opening_time, Opening_days, Price_range) , the attributes of which
identify the 5 selection features available for the restaurant search. Therefore, the
task model of the Infovox project is simply a table with 5 attributes:Cuisine ,
Location , Opening_time , Opening_days , andPrice_range , the lines
of which are the various value combinations of the attributes corresponding to ex-
isting restaurants.

Table 1: Task model in the InfoVox application

Cuisine Location Opening_time Opening_days Price_range

Italian City center 11:30 - 23:30 Thu-Tue 20 - 40 CHF
Chinese West 11:00 - 00:00 Wed-Mon 10 - 20 CHF
.

In the case of more complex models consisting of several interconnected tables
(for example a main table and several additional tables relating the values present
in the main table to additional attributes), standard database normalization proce-
dures, such as joint operations, are first applied to transform the original tables into
a single one.

4

2.2 Deriving the Initial Dialogue Model

In the RDPM approach, a dialogue model is defined as a set of interconnected
Generic Dialogue Nodes (or GDNs), where each node is associated with one of the
attributes in the solution table. For any given slot, the role of the associated GDN
is to perform the simple interaction with the user that is required to obtain a valid
value for the associated attribute.

2.2.1 Generic Dialogue Nodes

To deal with the various attributes appearing in the relational tables defining the
task model, we consider two main types of GDNs: simple GDNs (also called Static
GDNs) associated withstatic fields(i.e. fields the values of which do not change
in time, or change only very slowly; for example the devices in a given room), and
list processing GDNs (also called Dynamic GDNs) associated withdynamic fields
(i.e. the values of which quickly change in time; i.e. the list of films that might be
recordedat a given date and time).
To perform the interaction it is responsible for, each GDN contains 2 types of com-
ponents: prompts and grammars. Prompts are the messages uttered by the GDN
during the interaction. Several types of prompts are defined, handling all the possi-
ble interaction situations with the user, for instance requests for help or repetition
concerning the last system question. In all cases, there is an upper limit to the
number of consecutive times that a given GDN can be activated; if it is exceeded,
control is handed back to the global dialogue manager with the appropriate error
message.
The role of grammars is to make the connection between the surface forms appear-
ing in the natural language user utterances and the "canonical values" used in the
task model, that is the set of values defined for the attributes associated with the
GDNs in the solution table.

2.2.2 Global Dialogue Flow Management

In the architecture that we have selected for implementation, the processing of the
GDNs (i.e. the actual interaction with the user) is taken in charge by a specific
module called thelocal dialogue manager. In addition, a branching logic respon-
sible for the management of the global dialogue flow needs to be specified as well:
in our approach, this branching logic is hard-coded in a specific module called the
global dialogue manager.
The Global Dialogue Flow Management consists of several complementary strate-
gies: a branching logic, defining the next GDN to be activated; a dialogue dead
end management strategy to deal with dialogue situations where no solution corre-
sponds to the request expressed by the user; a confirmation strategy to provide the
systems with validation possibilities for the values acquired during the interaction;
a dialogue termination strategy to define when the interaction with the user should
be terminated (i.e. a solution proposed); and a strategy to deal with incoherences.

5

2.3 Limitations of RDPM

RDPM is a bottom-up methodology: it starts from a precise task and builds up a
dialogue manager specifically for that task. This implies that no unnecessary fea-
tures are produced, but on the other side that there are several limitations in the
final dialogue manager.
One of these limitations is the absence of global memory in the system: as soon as
an action has been performed, all request fields are reset to "zero" and there is there-
fore no way to exploit previous interaction with the system. This implementation
choice can be justified by the will to create a "light" dialogue manager; however,
the need of a more intelligent reset strategy than "total" reset is quite clear.
A typical example would be the following, where the user interacts with a smart
home and searches for a film to record for the evening; in the current version of
RDPM, the interaction would sound like:

• System: What can I do for you?

• User: I want to search for a movie on TV this evening.

• System: I have found "Star Wars" on ABC.

At this point, the task (providing information about the movie) has been performed
and the dialogue memory is then reset to zero. A new interaction is instantiated,
and the next prompt is:

• System: What else can I do for you?

If, on the basis of past interactions, the system could predict that the user will want
to record the film it could memorize some of the past information and prevent the
user from specifying a whole request from scratch. The system might then sim-
ply ask "Would you like to record the film on ABC tonight?". Implementing such
memory based behavior in RDPM is the motivation behind the extension exposed
in the following section, the reset patterns. Although there is yet no proof of the
correlation between the use of reset patterns and increased user satisfaction. Our
assumption is that entering a smaller number of parameters and therefore shorten-
ing the interaction time is a great advantage to the user; we plan to analyze user
satisfaction during the ongoing WoZ experiments with the INSPIRE and MDM
prototypes.

3 Reset Patterns: methodology

The main goal of reset patterns is enabling the system to adapt itself to the behavior
of one specific user or population of users and to anticipate his/their next decisions.
The idea is to develop an intelligent reset algorithm that sets the dialogue model
field values to zero only if there is no way of accurately estimating their most
probable values according to previous interactions with the user. Otherwise the

6

system should keep the most probable values according to the previous request.
This probability can be formalized as:

P (D(t+1)
i = vh|A(t), Uk)

that is, the probability that, at stept+1, the attributeDi in the request will have
valuevh, knowing that the actionA was uttered by the userUk at stept.
Before introducing the algorithm computing the optimal reset pattern for each ac-
tion, we will define in section 3.1 a criterion allowing us to assess the performance
of reset patterns: a function calledgain to be optimized in order to validate reset
patterns.

3.1 The gain function

Let us consider the ith action in the solution table associated with the dialogue
model:

v11 v12 . . .

. . .

vi1 vi2 . . . vij . . .

. . .

wherevij is the value of thejth attribute of theith solution. If thejth attribute is
not relevant for theith solution, we writevij = NREL. We then define, for each
solutioni:

• Def(i) = {j|vij 6= NREL}: Def(i) is the set of the attributes that are
relevant for theith solution;

• Set(i) is the set of the attributes for which a reset valuevi
j is defined.

The reset patternV (i) for the ith solution is therefore the vector of valuesvi
j de-

fined by:

vi
j =

{
vij ifj ∈ Set(i)
undefined otherwise

In addition, we also define:

• Cmp(Set(i)) = {i′|∀j ∈ Set(i), vij = vi′j}: Cmp(V (i)) is the set of solu-
tions compatible with the reset patternV (i); notice also that, by definition,
∀i′ ∈ Cmp(Set(i)), Set(i) ⊂ Def(i′).

and, for any set of attributesA ∈ Def(i),

• n(i, A) is the average number of attribute values (also called information
units hereafter) that the user has to provide to the dialogue system in order
to set all the elements ofA to values compatible withi, provided that all the
attributes in(Def(i) \A) have already been set to compatible values.

7

At this point we must consider the effects of propagation, i.e. the phenomenon
where, due to the constraints imposed by the solution table, entering values for one
or more attributes may directly imply that the values of some other attributes are
uniquely determined. The actual number of attribute values to be acquired may
therefore depend on the order in which the values are provided by the user.
If none of the values of the attributes inA can be derived by propagation, we simply
have:n(i, A) = |A| (where|A| is the size of the setA).
In case of propagation, the computation ofn(i, A) is more difficult: if we make
the assumption that the user has no preference on the order in which the values for
the attributes in A are provided, thenn(i, A) is the average number of information
units to be provided when computed on all the permutations ofA. In any case, we
have:n(i, A) <= |A|.

3.1.1 Use of Reset Patterns

Given these definitions, the use of reset patterns is the following:

1. as soon as the action associated with solutioni1 is performed, the dialogue
is restarted with all attributes inSet(i1) set to the values defined by the reset
patternV (i1) and the next prompt is produced accordingly;

2. (a) if the next solutioni2 sought by the user is inCmp(i1), then the dia-
logue continues as if the values for the attributes inSet(i1) had been
normally obtained from the user. The number of information units to
be provided by the user in order to perform the action associated with
solutioni2 can therefore be computed in the following way:

• if no reset pattern is used, the average number of information units
to provide would be:n(i2, Def(i2));

• if the reset patternV (i1) is used, the dialogue starts with the at-
tributes inSet(i1) already set to their correct values; the average
number of information units to be provided is

n(i2, Def(i2) \ Set(i1)).

Consequently the gain in terms of information units is:

g(i2|Set(i1)) = n(i2, Def(i2))− n(i2, Def(i2) \ Set(i1)).

(b) if the next solutioni2 is not in Cmp(Set(i1)), then the user has to
trigger the "reset" action in order to clear the dialogue memory from
all reset values; the user therefore has to provide one more information
unit than in the case of a dialogue without any reset pattern; in this
case, the gain is therefore

g(i2|Set(i1)) = −1.

8

Let us define, for each actionAj , ni
j as the number of values to enter to requestAj

assuming thatAi is the action for which the optimal reset value (i.e.(Set(i))) is
computed; this number is determined by:

ni
j =

{
mi

j if user agrees with pattern
nj + 1 if user doesn’t agree

(1)

where

• mi
j is simplified notation forn(j,Def(j) \ Set(i)), i.e. the average num-

ber of information units to be entered to complete actionAj when the reset
pattern associated to actionAi has been applied. Hence, if there is no prop-
agation,mi

j = |Def(i)| − |Set(i)|.

• nj is the average number of information units which are necessary to identify
Aj . This value corresponds ton(j, Def(j)) .

Notice that the gain can be written as:

g(j|Set(i)) = nj − ni
j .

3.1.2 The average gain functionG(i1)

If we denote byP (i2|i1) the probability that the action associated withi2 is per-
formed once the action associated withi1 has been performed, the average gain
G(i1), computed over all the possible actions, is defined by:

G(i1) =
∑
i2

(P (i2|i1) ∗ g(i2|Set(i1)))

=
∑

i2∈Cmp(Set(i1))

(P (i2|i1) ∗ g(i2|Set(i1)))−
∑

i2 /∈Cmp(Set(i1))

(P (i2|i1))

=
∑

i2∈Cmp(Set(i1))

(P (i2|i1)∗g(i2|Set(i1)))−(
∑

i2=1→n

(P (i2|i1)−
∑

i2∈Cmp(Set(i1))

(P (i2|i1)))

= (
∑

i2∈Cmp(Set(i1))

(P (i2|i1) ∗ (g(i2|Set(i1)) + 1)))− 1.

OnceG(i1) is formally defined, we can use it as a quality measure for the se-
lection of the optimal reset patterns; indeed, it seems quite intuitive to consider
that the best reset patterns to choose for the actionAi1 is the one that maximizes
G(i1), i.e. the one that, in average, minimizes the number of information units to
be provided to perform the action. Notice that, as already mentioned in section 2.3,
minimizing the average number of information units does not necessarily guarantee

9

that the the use of reset patterns will systematically lead to an increase of the user
satisfaction. However, as we have already observed (in the InfoVox and INSPIRE
projects), a reduction of the interaction duration often implies an increased user
satisfaction. Of course, this hypothesis will be experimentally validated through
specific WoZ experiments.
In this section, we present two approaches to implement the maximization of
G(i1); in the first one (section 3.2), we make strong assumptions to simplify the
estimation ofP (i2|i1), while in the second approach (section 3.3) we adopt a more
sophisticated technique for estimatingP (i2|i1) in the case where interaction log-
files are available.

3.2 Simplifying G

MaximizingG(i1) is obviously equivalent to maximizing, for eachi1,

A(i1) =
∑

i2∈Cmp(Set(i1))

(P (i2|i1) ∗ (g(i2|Set(i1)) + 1)).

In order to derive an optimal reset pattern definition, we need to computeA(i1)
in a more precise way. For this, additional assumptions need to be made for the
computation ofg(i2|Set(i1)) andP (i2|i1). First of all, we have:

g(i2|Set(i1)) = n(i2, Def(i2))− n(i2, Def(i2) \ Set(i1))

If Set(i1) is not inDef(i2), theng(i2|Set(i1)) = 0; this means that:

g(i2|Set(i1)) = g(i2|Set(i1) ∩Def(i2))

and we can write:

g(i2|Set(i1)) = n(i2, Def(i2))− n(i2, Def(i2) ∩ Set(i1)).

If we assume that there is no propagation, we have:

g(i2|Set(i1)) = |Set(i1)|.

Therefore, if we consider a given reset patternV and want to maximizeA(V), we
have to maximize the following function:

A(V) =
∑

i2∈Cmp(V)

P (i2|i1) ∗ (|Def(i2) \ V |+ 1).

3.2.1 Hypotheses forP (i2|i1)

We can now consider three hypotheses forP (i2|i1):

1. P (i2|i1) = K, i.e. all probabilities are the same;

10

2. P (i2|i1) = P (i2), i.e. we are only interested in the frequency of occurrence
of each action without caring about sequencing;

3. the sequence betweeni1 andi2 is considered and no simplification is made.

If we consider the first two hypotheses, we can easily see that the computation of
A(V) will lead to a value ofV which is completely independent fromi1.
As a matter of fact, in the case of the first hypothesis, we have :

A(V) = K ∗
∑

i2∈Cmp(V)

(|Def(i2) \ V |+ 1)

and in the case whereP (i2|i1) = P (i2), we have:

A(V) =
∑

i2∈Cmp(V)

P (i2) ∗ (|Def(i2) \ V |+ 1).

This implies that the result will be a single optimal reset pattern optimal for all the
actions. Moreover, the most compatible reset pattern reflects the most frequently
occurring attribute values. This has been confirmed by experimental data as ex-
plained in section 4.
This means that ignoring the dependencies between subsequent actions is a too
strong assumption and that such sequences should be considered if we want to
compute actually useful reset patterns.

3.3 Estimating theP (i2|i1)

3.3.1 Action types

If we want to take into account the experience gathered from the previous interac-
tions with the user, we can elaborate a more complex approach to the estimation of
P (i2|i1). Interaction logfiles can be used as a source for extracting the frequency
of transition from an action to another; a possible solution is to store a large amount
of interactions in order to derive reliable values for transition probabilities.
However, deriving transition probablility estimates from these transition frequen-
cies may not be an easy task, as, for complex applications, the number of actions
could become large and the number of observed occurrences very low. A possi-
ble solution is to cluster actions into classesAi (hereafter called "action types")
characterized by simplified action descriptions reduced to a subset of the origi-
nal attributes and associated values, and to compute transition probabilities only
for such action types. For instance, a possible action type in the INSPIRE Smart
Home could be a two-column entry, like:

Ai operation device

A0=TURNON_TV turn on TV

wheredevice identifies the device on which the commandcmd should be per-
formed.

11

3.3.2 Action type transition probabilities

One possibility for storing the transition probabilities could be a transition matrix,
that is, a matrixA whereajl represents the probability that action typeAj is fol-
lowed by action typeAl. Such matrix should be computed every time the system is
restarted, once a day for instance, so that the values for the transition probabilities
are up to date. The reset pattern algorithm, after identifying the action typeAj

of the request issued at timet, would read on lineaj in the matrix the valuesaji,
which represent the transition probabilities to the values of action typeA(t+1) and
hence extract the transition probability values.

3.4 Extracting the reset patterns

3.4.1 The "brute force" approach

Once these transition probabilities have been estimated, we then have to elaborate
an algorithm to extract the optimal reset pattern for any given action. A first pos-
sible approach is to directly use the notion of gain as defined in section 3.1. For
this, we used a "brute force" approach consisting in computing, for each action (or
action type), the average gain corresponding to each of the possible reset patterns,
so to select the one corresponding to the maximal gain value. Results for this ap-
proach have been computed for the INSPIRE system and are provided in section 4.
However, as the computational complexity of this procedure grows exponentially
with the number of attributes present in the solution table, it is not realistic for large
numbers of attributes.
A first option to solve this problem is to restrain to action types instead of actions,
thus reducing the number of attributes to be taken into account.
To deal with the cases where it is not possible nor desirable to reduce the number of
considered attributes to a tractable value, we have also developed a second solution
that does not use the notion of gain. This solution is briefly presented in the rest of
this section.

3.4.2 Dealing with large numbers of attributes

The idea here is to use the interaction logfiles to compute the transition probabil-
ities between action types and attribute-value pairs. The aim is to build the reset
pattern for action typeAi from the attribute-value pairs that have a probability of
occurrence afterAi higher than a predefined threshold number.
If we establish a threshold for the minimal acceptable probability for an attribute-
value pair, we will obtain a group ofn tuples of the form(attribute, value, probability),
such thatprobability ≥ threshold, among which to choose the values to be in-
serted in the target reset pattern. If no tuple exceeds the threshold, the reset pattern
corresponding to the reset of all attributes is simply used; otherwise, we must de-
termine whether the selected attribute values such values can be used to build a
reset pattern: we must therefore verify that there exists an action type with which

12

the attribute-value pairs are compatible.
If such action type exists, then the values can be used; otherwise, we must group
then attribute-value pairs in subsets of sizen−1 and perform the same test; if there
is only one possible action type compatible with all the pairs, then those values will
be used to build the next pattern; if there are more than one, the most eligible set
is the one where the product of transition probabilities is the highest. If there is no
compatible action, the same procedure must be applied on subsets ofn − 2 pairs,
until the compatibility condition is met.

3.4.3 Example

Let us suppose that, after filtering with a threshold, the list of action types for a
given application is:

Action ID Action name

A0 TURNON_TV
A1 TURNOFF_TV
A2 RAISE_SHADES
A3 LOWER_SHADES

We suppose that after filtering with a threshold value of 0.3, we obtain the following
attribute-value tuples for a given action type, e.g.A0:

attribute value probability

D0 turn off 0.7
D0 lower 0.3
D1 TV 0.4
D1 shades 0.3

Since the list contains only two different attribute types (D0 andD1), we can di-
rectly examine the subsets made of two attribute-value pairs:

set (attribute, value, probability) prob. product

s1 {(D0, lower, 0.3), (D1, TV, 0.4)} 0.12
s2 {(D0, lower, 0.3), (D1, shades, 0.3)} 0.09
s3 {(D0, turnoff, 0.7), (D1, shades, 0.3)} 0.21
s4 {(D0, turnoff, 0.7), (D1, TV, 0.4)} 0.28

Since we can only retain subsets that are compatible with actual action types,
we can only choose betweens2 ands4. Sinces4 has the highest probability prod-
uct,s4 is therefore selected as the reset pattern.

3.5 Validating the logfile approach

In order to validate reset patterns computed according to the logfile probabilities,
we can compute the gaing, i.e. the difference between the number of information
units to be entered by the user for a given action (hereafter calledscore) in absence
and in presence of reset patterns.

13

3.5.1 Computing the scores

First of all, we will assume that all actions in the action table are equiprobable,
as there is no need to complicate the validation by the opposite assumption; the
distribution of request units is also assumed to be equiprobable4. We will first
compute, for each actionAi, the score, i.e. the average number of request units to
identify Ai, when reset patterns are not active. In this case the score corresponds
to n(i,Def(i)), which has been simplified toni.
Once we have obtained the valuesni, we must compute the optimal reset pattern
for each action and then consider the average number of request units required for
each action when reset patterns are active.

3.5.2 Comparing results

We will now consider the expected gain when one actionAi is performed, which
we define asEi(g(j|Set(i))). The purpose is to compare the values for the ex-
pected gain in the case when reset patterns are active and when they are not. Ob-
viously, the larger is the difference, the more profitable is the use of reset patterns
for the specific case we are dealing with. We can say that:

Ei(g(j|Set(i))) = Ei(nj − ni
j) = nj − Ei(ni

j)

sincenj does not depend oni. Now, we can easily expressEi(ni
j), the expected

number of units to be entered by the user when actionAi is followed by actionAj ,
by:

Ei(ni
j) =

∑
i

P (j|i) · ni
j .

In this formula, theP (j|i) probability can be evaluated as the ratio between the
productπ∗i of tuple probabilities for the reset pattern and the sum of productsπk

of the probabilities of the tuples corresponding to incompatible actions, regardless
of the threshold.
We can conclude that the expected gain can be written as5:

Ei(g(j|Set(i))) = nj −
∑

i

P (j|i) · ni
j .

3.6 Application example

To validate reset patterns, we will make an example based on a simplified version
of the INSPIRE application. The action table is the following:

4Notice that assuming that action distributions are equiprobable does not imply that probabilities
of transitions between actions are equivalent.

5Notice that, ifP (j|i) = 1/N , Ei(g(j|Set(i))) = nj − 1/N ·
∑

nj .

14

ActionID D0 D1 D2 D3

A0 turn on light left -
A1 turn off light left -
A2 search TV - today
A3 record VCR - today
A4 lower shades left -

3.6.1 Computing the scores

We can start by computingni, i.e. the average number of request units to provide
to identify each actionAi: when propagation isn’t taken into account and no reset
pattern is active (i.e. every field is reset to "zero"), such value is trivially 3.
Let us now discuss the case where reset patterns are active. As said before, we
consider the logfile storing the sequence of actions performed by a single user in a
given amount of time and extract the relative frequencies of such actions. We then
obtain the transition matrix, which we suppose to be the following:

A =


0 0.25 0.25 0 0.5

0.25 0 0.5 0 0.25
0 0.3 0 0.4 0.3

0.33 0.33 0 0 0.33
0.4 0.3 0.1 0 0.2


According to the algorithm in 3.4.1, where a threshold probability of 0.3 has been
taken for each attribute-value pair, the reset patterns obtained for each action are:

Ai Vi π∗i
A0 D0=lower (0.5) ,D1= shades (0.5),D2=left (0.5) 0.125
A1 D0=search (0.5),D1= TV (0.5),D3=today (0.5) 0.125
A2 D0=record (0.4),D1= VCR (0.4),D3=today (0.4) 0.064
A3 D0=turn on (0.33),D1= light (0.66),D2=left (1) 0.22
A4 D0=turn on (0.4),D1= light (0.7),D2=left (0.9) 0.252

The values between parentheses are the probabilities associated to the preceding
attributes and values.
If we apply formula (1) to compute the number of request units to provide in our
example, we obtain the following values (the number in linei and columnj in the
table is the number of values to enter to requestAj assuming thatAi is the action
for which the optimal reset value is computed):

A0 A1 A2 A3 A4

A0 4 4 4 4 0
A1 4 4 0 4 4
A2 4 4 4 0 4
A3 0 4 4 4 4
A4 0 4 4 4 4

15

Notice that, as we assume that action descriptors are made of three attribute-value
pairs, if one action type is compatible with a reset pattern, no more values must be
provided by the user; hence,mi

j = 0.

3.6.2 Comparing results

To compute the expected number of unitsEi(n
j
i) to enter, we must now evaluate

the probabilities for the different actions. Let us take actionA0. If we consider all
transition probabilities, regardless of the threshold, we have the following options:

A1 A2 A4

turn off 0.25 search 0.25 lower 0.5
light 0.25 TV 0.25 shades 0.5
left 0.75 today 0.25 left 0.75
π1= 0.047 π2 = 0.016 π4 = 0.187

the optimal reset pattern being the one compatible with actionA4. This leads
us to a computation of:

P (4|0) =
π4

π1 + π2 + π4
= 0.75.

This means thatE0(n4
0) = 0.25 · 4 + 0.75 · 0 = 1. Applying the same procedure,

we obtain the following values:

Ai Ei

A0 0.25 · 4 + 0.75 · 0 = 1
A1 0.33 · 4 + 0.67 · 0 = 1.32
A2 0.63 · 4 + 0.37 · 0 = 2.52
A3 0.6 · 4 + 0.4 · 0 = 2.4
A4 0.535 · 4 + 0.465 · 0 = 2.14

The total sum is 9.38, giving an average of 1.876 units to enter against 3 in the case
without reset patterns. This implies a gain of 1.124 and proves that reset patterns
give better results than the usual reset strategy.

3.6.3 Considering propagation

If we consider the previous action table description, we can notice that dependence
relations can be drawn on the attributes, based on the entries in the solution table;
for instance,D0 ⇒ D1. Therefore, the number of request units to be entered by
the user varies according to the order in which such attributes are entered.
For instance, if the user entersD0= "turn on", he will not need to enterD1= "light",
since this value always appears with value "turn on" forD0 and therefore it will
be propagated by the branching logic; however, if the user entersD1= "light", the
system will not be able to propagate a unique value forD0.

16

The following table shows, for each actionAi, which sets of subsequent values are
sufficient to identify such action description, and the average size of such sets, i.e.
the average number of request units to provide:

Ai possible sets of request units ni

A0 (turn on), (light, turn on), (left, turn
on), (left, light, turn on)

2

A1 (turn off), (light, turn off), (left, turn
off), (left, light, turn off)

2

A2 (search), (TV), (today, TV), (today,
search)

1.5

A3 (record), (VCR), (today, record), (to-
day, VCR)

1.5

A4 (lower), (shades), (left, shades), (left,
lower)

1.5

This gives a total sum of 8.5, and an average of 1.7 request units to enter.
If we apply formula (1) to compute the number of request units to enter in our
example, we obtain the following values:

A0 A1 A2 A3 A4

A0 3 3 3 3 0
A1 3 3 0 3 3
A2 2.5 2.5 2.5 0 2.5
A3 0 2.5 2.5 2.5 2.5
A4 0 2.5 2.5 2.5 2.5

Moreover, computing theEi for our actions gives us the following results:

Ai Ei

A0 0.25 · 3 + 0.75 · 0 = 0.75
A1 0.33 · 3 + 0.67 · 0 = 1
A2 0.63 · 2.5 + 0.37 · 0 = 1.575
A3 0.6 · 2.5 + 0.4 · 0 = 1.5
A4 0.535 · 2.5 + 0.465 · 0 = 1.3375

The total sum is 6.1625 and the average is of 1.2325, which compared to the case
where reset patterns are not used (the average number of request units was 1.7)
yields a gain of 0.4675. We can thus state the eligibility of reset patterns even
when constraints are considered.

3.7 Corollary

Let us now present a more general criterion to determine when the gain is positive
and therefore when it is profitable to employ reset patterns. We will start from a
trivial remark, which is that each probability valueπ∗i associated to a chosen reset

17

field must be greater or equal to the remaining (not selected) values. This means
that in the worst case, when a random choice is performed,π∗i = 1/N , where
N is the total number of units to be entered. Therefore the probability that the
reset value does not correspond to the user’s intentions is1− 1/N . If we consider
the "worst case scenario", i.e. the one where all reset values have been chosen
arbitrarily between equiprobable values, we must solve the following equation in
order to detect what is the average value ofni that justifies reset patterns:

ni = (1− 1/N) ∗ (ni + 1) ⇒ ni = N − 1.

The value forni must therefore be greater than or equal toN − 1 in order to make
reset patterns useful. For instance, if the user needs to enter two values on average
to identify an action,N is 3, which means that the average probability of reset
patterns must be greater or equal to1/N = 0.33.

4 Experimental Results

We have applied the techniques exposed in this paper to the SmartHome dialogue
system developed in the INSPIRE project. The complete solution table (containing
310 different actions, each defined by up to 10 attributes) was used to for compute
the optimal reset patterns. For the estimation of the probabilitiesP (i2|i1), three
cases were considered:

• equiprobability (i.e.P (i2|i1) = K);

• no sequential dependencies (i.e.P (i2|i1) = P (i1));

• random probabilities.

The third case was considered to simulate a less artificial situation than cases 1 and
2. It was unfortunately impossible to use real values for the probability estimates
because the INSPIRE interaction logfiles were not yet available.
For tractability reasons, we reduced the computation to a maximal number of at-
tributes ranging from 3 to 7 and did not consider the effects of propagation.

4.1 TheP (i2|i1) = K and P (i2|i1) = P (i1) cases

In both cases, as predicted by the theory, there was a single optimal reset pattern,
identical for all the actions. This pattern reflected the most frequent combina-
tion of attribute values, television ("Fernseher") for thedeviceattribute and "action
on shows" ("Sendung") for theoperationattribute. The following table shows an
excerpt from the INSPIRE solution table and indicates the unique optimal reset
patternS valid for all the actions.

18

Action Device Location Operation Day Time TVOperation

i0 Ventilator NREL Zustand NREL NREL NREL
i24 Lampe alle herunter NREL NREL NREL
i26 Fernseher NREL Sendung heute abend Details

S Fernseher - Sendung - - -

4.2 Random probabilities (P (i2|i1) = random)

Although we used random probabilities for action transitions, we tried to verify the
correct behavior of the reset pattern computation algortithm by artificially strongly
increasing the value of two transition probabilities:

1. the transition probability that the action "provide details on the evening film"
(corresponding to the solution entryi45:[Fernseher NREL Sendung heute
abend Details]) occurs after action "record the evening film" (represented by
i39:[Fernseher NREL Sendung heute abend aufnehmen]);

2. the transition probability that the action "answering machine status" (corre-
sponding to the solution entryi65:[Anrufbeantworter NREL aktuelle_nachricht
NREL NREL NREL]) occurs after the action "play the next message" (rep-
resented byi67:[Anrufbeantworter NREL naechste NREL NREL NREL]).

We then computed the optimal reset patterns and obtained the following results:

Action Device Location Operation Day Time TVOperation

i45 Fernseher NREL Sendung heute abend Details
S(i45) Fernseher - Sendung heute abend aufnehmen

i65 Anrufbeantworter NREL aktuelle_nachricht NREL NREL NREL
S(i65) Anrufbeantworter - naechste - - -

which are precisely what we hoped to obtain. The results are therefore very en-
couraging and we plan to confirm them by testing the algorithm with the transition
probabilities estimated from the real log files.

4.3 Further experimentation

Our further experiments should evolve along the following lines:

• computing reset patterns in the case of propagation;

• optimizing the code implementing the reset algorithm in order to allow the
processing of more complex solution tables, involving a higher number of
attributes;

• processing transition probabilities deriving from real interactions and evalu-
ate if the reset patterns evaluated on that basis are pertinent to the user during
the future WoZ experiments planned in the INSPIRE project.

19

5 Conclusions and Further Work

This paper presents an extension to the current version of our rapid dialogue pro-
totyping methodology which enables the dialogue manager to appropriately reset
part of the values of the next user request. Thus, the user is prevented from entering
a new request from scratch.
First, an average gain functionG(i1) is introduced to define a general criterion to
maximize in order to produce the optimal reset pattern for any given action. The
gain function depends on two factors:g, the difference between the number of at-
tribute values to enter to perform an action when reset patterns are not or are active,
and the action transition probabilitiesP .
Two approaches have been considered to perform the maximization; the first one
simplifies the estimation ofP ; the second one proposes a more sophisticated es-
timation of P .The first approach proved to only produce a single optimal reset
pattern identical for all of the actions. The second approach, assuming the extrac-
tion of probability estimates from interaction logfiles, was found to be much more
promising.
The experiments which we conducted using the actual INSPIRE SmartHome di-
alogue system have shown very encouraging results; in particular, they provided
interesting experimental evidence for the fact that reset patterns can indeed help
the user by preventing him to provide a significant number of information units
during his interaction with the dialogue system.
We are currently gathering real interaction logfiles in the framework of the IN-
SPIRE project and plan to exploit them to validate appropriateness of the presented
reset pattern strategy, especially to compute the correlation between the use of reset
patterns and user satisfaction.

References

[1] M. Rajman, A. Rajman, F. Seydoux, and A. Trutnev, “Assessing the usability
of a dialogue management system designed in the framework of a rapid dia-
logue prototyping methodology,” inFirst ISCA Tutorial & Research Workshop
on Auditory Quality of Systems, Akademie Mont-Cenis, 23-25 April 2003.

[2] M. Rajman, T.H. Bui, A. Rajman, F. Seydoux, and S. Quarteroni, “Assessing
the usability of a dialogue management system designed in the framework of a
rapid dialogue prototyping methodology,”Acta Acustica united with Acustica,
to appear, 2004.

[3] Trung H. Bui and Martin Rajman, “Rapid Dialogue Prototyping Methodol-
ogy,” Technical Report No. 200401 IC/2004/01, Swiss Federal Institute of
Technology (EPFL), Lausanne (Switzerland), January 2004.

[4] R. van Kommer, M. Rajman, and H. Bourlard, “Heading towards virtual-
commerce portals,”Comtec, 9:10-13, 2000.

20

