
Generalized Snapshot Isolation and a
Prefix-Consistent Implementation

Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel
School of Computer and Communication Sciences

EPFL,
Lausanne, Switzerland

EPFL Techical Report IC/2004/21
1 March 2004

ABSTRACT
Generalized snapshot isolation extends snapshot isolation as used
in Oracle and other databases in a manner suitable for replicated
databases. While (conventional) snapshot isolation requires that
transactions observe the “latest” snapshot of the database, gener-
alized snapshot isolation allows the use of “older” snapshots, fa-
cilitating a replicated implementation. We show that many of the
desirable properties of snapshot isolation remain. In particular, un-
der certain assumptions on the transaction workload the execution
is serializable.

An implementation of generalized snapshot isolation can choose
which past snapshot it uses. An interesting choice for a replicated
database is prefix-consistent snapshot isolation, in which the snap-
shot contains at least all the writes of locally committed transac-
tions. As an instance of generalized snapshot isolation, it inherits
all of its properties. In addition, read-only transactions never block,
and consecutive transactions submitted in a single workflow on a
particular replica observe the updates of their predecessors in the
workflow.

We present two implementation strategies of prefix-consistent snap-
shot isolation. We conclude with an analytical performance model
of one of the implementations, bringing out the benefits, in particu-
lar reduced latency for read-only transactions, and showing that the
potential downsides, in particular the change in abort rate of update
transactions, are limited.

1. INTRODUCTION

1.1 Motivation
There is increasing interest in replicating the generation of dynamic
Web content [3, 11]. The user’s request is executed on a “nearby”
replica, thereby avoiding long roundtrip delays and distributing the
load over the replicas. In a centralized dynamic content Web site,
the dynamic data is most often stored in a database. Therefore, one
of the key problems in replicating dynamic content generation is
replicating the database and keeping the replicas consistent.

Ideally, we would like to provide the same database consistency
as in the centralized database case. We focus here on databases
providing snapshot isolation [6]. In such a database, a transaction
T obtains at the beginning of its execution the latest snapshot of

the database, reflecting the writes of all transactions that have com-
mitted before the transaction T starts. At commit, the database
checks that the writeset of the transaction T does not intersect with
the writesets of any other transactions that committed since T ’s
snapshot. If there is a non-zero intersection, transaction T aborts;
otherwise, it commits.

Snapshot isolation is popular for a number of reasons, not the least
of which is the pragmatic reason that Oracle and other database
vendors use it [1, 6, 10, 15]. More fundamentally, snapshot isola-
tion never requires read-only transactions to be blocked or aborted.
For workloads with a large fraction of read-only transactions (such
as those resulting from dynamic Web content generation) this ad-
vantage is significant. Snapshot isolation provides a weaker form
of consistency than serializability, but one that programmers un-
derstand and are capable of dealing with. Moreover, Fekete et al.
[9, 10] have recently demonstrated that under certain conditions on
the workload transactions executing on a database with snapshot
isolation produce serializable histories.

1.2 Generalized Snapshot Isolation
Extending snapshot isolation to replicated databases is not straight-
forward. Intuitively, the problem stems from the requirement that a
transaction must see the “latest” snapshot when it starts execution.
In contrast with the centralized case, the notion of “latest” is not
a priori well-defined in a distributed setting. Implementations of
an ordering that defines the notion of “latest” and makes the cor-
responding snapshot available may impose a delay at the start of a
transaction. Imposing such a delay at the beginning of read-only
transactions voids one of the main benefits of snapshot isolation.

Generalized snapshot isolation is based on the observation that a
transaction need not necessarily observe the “latest” snapshot. It
can observe an older snapshot, and many of the same properties
continue to hold. Conditions can be identified that guarantee se-
rializable execution. With a suitable choice of “older”, read-only
transactions execute without delay or aborts, although they may
observe somewhat older data. To commit an update transaction, its
writeset must be checked against the writesets of recently commit-
ted transactions, as before. The probability of an abort increases,
as it becomes more likely that at the time of its commit an update
transaction finds that another transaction has written to the same

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902755?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


data as it did since the time of its snapshot.

The ability to start from an older snapshot gives rise to an interest-
ing spectrum of possibilities with attendant performance tradeoffs.
At one end of the spectrum is the conventional notion of snapshot
isolation, further referred to in this paper as conventional snapshot
isolation, in which the transaction reads the latest snapshot. This is
clearly appropriate in a centralized setting where the latest snapshot
is trivially available, and where using the latest snapshot minimizes
the probability of aborts. At the other end of the spectrum is the
trivial solution in which all transactions observe the initial snap-
shot (i.e., the database state as in the beginning of the execution).

1.3 Prefix-Consistent Snapshot Isolation
In a replicated setting, an interesting positioning in this spectrum
is for a transaction to take as its initial snapshot the latest snapshot
available locally on its replica. We refer to this method as prefix--
consistent snapshot isolation. As an instance of generalized snap-
shot isolation, prefix-consistent snapshot replication maintains the
desirable properties of generalized snapshot isolation. Read-only
transactions never block or abort. Moreover, transactions observe
at least all the writes that committed before it on the local replica.
This property is important in a workflow of transactions, in which
a user submits a sequence of transactions to a replica. We present
two implementation strategies for prefix-consistent snapshot isola-
tion, and we analyze the performance of one implementation ana-
lytically.

1.4 Contributions and Paper Outline
The contributions of this paper are as follows:

• introducing generalized snapshot isolation,
• establishing two sufficient conditions (one statically check-

able and one dynamic) that guarantee serializable execution
for transactions running under generalized snapshot isola-
tion,

• introducing prefix-consistent snapshot isolation and two im-
plementation strategies, and

• analytically characterizing the relative performance of prefix-
consistent snapshot isolation to conventional snapshot isola-
tion.

The reminder of this paper is organized as follows: Section 2
presents the database model and necessary definitions. Section 3
presents generalized snapshot isolation, and Section 4 relates gen-
eralized snapshot isolation to serializability. Section 5 presents
prefix-consistent snapshot isolation. Section 6 presents two imple-
mentations of prefix-consistent snapshot isolation, one using cen-
tralized and one using distributed certification. Section 7 compares
analytically the performance of prefix-consistent snapshot isola-
tion to conventional snapshot isolation. Section 8 discusses related
work. Finally, section 9 presents our conclusions and future re-
search directions.

2. MODEL AND DEFINITIONS
2.1 Database Model
We assume that a database is a collection of uniquely identified
data items. Several versions of the same data item may co-exist
simultaneously in the database. There is a total order among the
versions of each data item. A snapshot of the database at time t is

the committed state of the database which includes only the latest
committed versions of all data items at time t. A transaction Ti is
a sequence of read and write operations on data items, followed by
either a commit or an abort operation, and executes on a single ma-
chine. We denote Ti’s write operation on data item X by Wi(Xi).
If Ti executes Wi(Xi) and commits, a new version of X, denoted
by Xi, is added to the database. Moreover, we denote Ti’s read op-
eration on data item Xj by Ri(Xj). Finally, Ti’s commit or abort
is denoted by Ci or Ai, respectively.

A transaction is read-only if it contains no write operations, and
is update otherwise. The readset of transaction Ti, denoted read-
set(Ti), is the set of data items that Ti reads. The writeset of trans-
action Ti, denoted writeset(Ti), is the set of data items that Ti

writes. We add additional information to the writesets to include
the new values of the written data items.

A history h over a set of transactions T = {T1, T2, ..., Tn} is a
partial order with ordering relation ≺ such that (a) h contains the
operations of each transaction in T , (b) for each Ti ∈ T , and all
operations Oi and O′

i in Ti, if Oi precedes O′
i in Ti then Oi ≺ O′

i

in h, and (c) if Ti reads X from Tj , then Wj(Xj) ≺ Ri(Xj) in h
[7].

2.2 Overlapping Transactions
To simplify the definitions presented in the paper, we assume that
every database operation in a transaction Ti (i.e., Ri(Xj), Wi(Xi),
Ci, and Ai) happens at a distinct time. We also assume the exis-
tence of a discrete global clock to define the ordering relation <
between events. This clock is a fictional device and access to it
is not necessary to implement generalized snapshot isolation. We
show in Section 6 that in a distributed system in which the database
is replicated over several sites, global time is not needed to imple-
ment prefix-consistent snapshot isolation.

In generalized snapshot isolation, each transaction observes a snap-
shot of the database that is taken at some time in the past. If transac-
tion Ti sees a snapshot of the database taken at time t, this snapshot
includes the updates of all transactions that have committed before
t. To argue about the timing relationships among transactions, we
use the following definitions with respect to transaction Ti:

• snapshot(Ti): the time when Ti’s snapshot is taken.

• start(Ti): the starting time of Ti.

• commit(Ti): the time when Ti is committed.

• abort(Ti): the time when Ti is aborted.

• end(Ti): the time when Ti is committed or aborted.

Notice that snapshot(Ti) ≤ start(Ti) < end(Ti). Next, we
define the relation overlap for update transactions as follows:

• Ti overlaps with Tj iff
writeset(Ti) �= ∅ and writeset(Tj) �= ∅, and
snapshot(Ti) < commit(Tj) < end(Ti)

2



From the above definition, an update transaction Ti overlaps with
committed update transactions only. Ti does not overlap with read-
only transactions and uncommitted transactions. Ti’s overlapping
transactions are the set {Tj : Ti overlaps with Tj}. As presented
next, Ti does not see the updates of its overlapping transactions.

3. GENERALIZED SNAPSHOT
ISOLATION (GSI)

Generalized snapshot isolation has two rules: the first regulates
read operations, and the second regulates commit operations. For
any history h created by the GSI algorithm, the following two prop-
erties hold. (The definitions below implicitly assume that indexes
i, j, and k are different values.)

• G1. (GSI Read Rule)
∀Ti, Xi such that Ri(Xi) ∈ h :

1- ∃Wi(Xi) ∈ h such that
Wi(Xi) ≺ Ri(Xi) in h.

AND
∀Ti, Xj such that Ri(Xj) ∈ h :

2- �Wi(Xi) : Wi(Xi) ≺ Ri(Xj) in h;
3- commit(Tj) < snapshot(Ti); and
4- ∀Tk such that Wk(Xk), Ck ∈ h :

(commit(Tk) < commit(Tj) or
snapshot(Ti) < commit(Tk)).

• G2. (GSI Commit Rule)
∀Ti, Tj such that Ci, Cj ∈ h and
snapshot(Ti) < commit(Tj) < commit(Ti) :

5- writeset(Tj) ∩ writeset(Ti) = ∅.

The read rule ensures that each transaction initially observes a com-
mitted snapshot of the database. This snapshot could be any snap-
shot that has been taken before the transaction starts. Rule G1 has
four parts. Part one and two force Ti to see its own updates; if Ti

issues Wi(Xi), then the next read operation for data item X must
return Xi, i.e., Ri(Xi). The third part allows Ti to read only the
data items written by transactions that committed before Ti’s snap-
shot. Updates of Ti’s overlapping transactions are invisible to Ti

because they commit after snapshot(Ti). The fourth part prevents
holes in the snapshot that Ti receives: If Ti sees a snapshot at time
t and reads data item X, then it reads X from the last committed
transaction that updated X before t.

The commit rule prevents an update transaction Ti from commit-
ting if any overlapping transaction have already written into Ti’s
writeset. This rule gives the “first-committer-wins behavior”: If
two active transactions update the same data item, the transaction
that commits first succeeds at updating that item; whereas the other
transaction has to abort.

Conventional snapshot isolation (CSI) is a special case of GSI
where each transaction sees the last snapshot, with regard to its
starting time, i.e., snapshot(Ti) = start(Ti). This is referred to
in literature as simply “snapshot isolation.” On a system composed
of a single site, it is easy to implement conventional snapshot isola-
tion, as the latest snapshot is available for use without delay. Using

the latest snapshot minimizes the number of overlapping transac-
tions. Therefore in a centralized database, CSI typically reduces
the abort rate of update transactions and provides read-only trans-
actions with the most recent snapshots.

4. SERIALIZABILITY UNDER GSI
Serializability is the basic correctness criteria in much work on
databases [18, 7]. GSI provides a weaker form of consistency than
serializability. Both GSI and CSI may produce non-serializable
histories. Here is an example the write-skew anomaly [6]. Assume
that X and Y are the balances of two bank accounts for the same
person and the bank enforces the constraint (X + Y ) ≥ 0. The
next two procedures deduct an input amount, A1 and A2, from X
and Y , respectively.
Proci = {input A1; read X and Y ;

if ((X + Y ) < A1) then {abort}
else {X = X − A1; write X; commit} }

Procj = {input A2; read X and Y ;
if ((X + Y ) < A2) then {abort}
else { Y = Y − A2; write Y ; commit} }

Running these procedures can produce the following history under
CSI. Assume that X0, Y0, A1, and A2 are 50, 50, 60, and 60, re-
spectively. h1 = Ri(X0 = 50), Ri(Y0 = 50), Rj(X0 = 50),
Rj(Y0 = 50), Wi(Xi = −10), Ci, Wj(Yj = −10), Cj . h1 is
non-serializable.

The next subsections present two conditions, C1 and C2, which
make generalized snapshot isolation produce only serializable his-
tories.

4.1 Static Serializability Condition (C1)
Transactions that satisfy condition C1 and run under GSI produce
serializable histories. Condition C1 is sufficient and is not neces-
sary. This condition can be checked statically by examining the
mix of transactions and query templates in application programs. It
can also be enforced by changing the transactions as described be-
low. C1 only leaves the writesets to be checked dynamically which
is already done in GSI.

GSI produces serializable histories if the following holds:

• C1. (Serializability)
∀Ti, Tj : Ti overlaps with Tj :

⎡
⎢⎢⎢⎣

writeset(Ti) ∩ writeset(Tj) �= ∅
∨⎛

⎝
readset(Ti) ∩ writeset(Tj) = ∅

∧
writeset(Ti) ∩ readset(Tj) = ∅.

⎞
⎠

⎤
⎥⎥⎥⎦

Proposition 1 states that if condition C1 is satisfied then GSI pro-
duces only serializable executions.

PROPOSITION 1. Generalized snapshot isolation is serializable
under C1.

PROOF: The proof shows that every history h that satisfies rules G1
and G2 and condition C1 has an acyclic multi-version serialization
graph (MVSG)[7]. And if MV SG(h) is acyclic, then h is view
equivalent to some serial execution of the same transactions [7].

3



MVSG is a directed graph, in which the nodes represent commit-
ted transactions. There are three types of directed edges in MVSG:
(a) read-from edges, (b) version-order edges type I, and (c) version-
order edges type II. These types are described below. We initially
consider update transactions only, i.e. edges that connect two up-
date transactions. Then we consider read-only transactions.

Update transactions. From the algorithm, the commit order of
transactions induces a version order on every data item, that is, if �
is an order relation on the versions, and both Ti and Tj update X,
we have commit(Ti) < commit(Tj) ⇔ Xi � Xj . To show that
MV SG(h) has no cycles, we prove that for every edge Ti → Tj

in MV SG(h), it follows that commit(Ti) < commit(Tj). The
proof continues by considering each kind of edge in MV SG(h).

1. (Read-from edge.) If Tj reads data item Xi from Ti (i.e.,
Rj(Xi)), then Ti → Tj ∈ MV SG(h). We have to show
that commit(Ti) < commit(Tj). From rule G1, Tj only
reads a committed state of the database, and therefore,
commit(Ti) < snapshot(Tj). Since snapshot(Tj) <
start(Tj) < commit(Tj), it follows that commit(Ti) <
commit(Tj).

2. (Version-order edge type I.) If both Ti and Tj write X such
that Xi � Xj , then Ti → Tj ∈ MV SG(h). Since the
commit order induces the version order, we have that Xi �
Xj ⇔ commit(Ti) < commit(Tj).

3. (Version-order edge type II.) If Ti reads X from Tk, and
both Tk and Tj write X such that Xk � Xj , then Ti →
Tj ∈ MV SG(h). From G2, since both Tk and Tj update
X, it must be that Tj’s snapshot was taken after Tk commit-
ted (otherwise Tj would abort). From G1, since Ti reads X
from Tk, Ti must have a snapshot that was taken after Tk

committed: commit(Tk) < snapshot(Ti).

There are only two possibilities: either (a) commit(Ti) <
commit(Tj) or (b) commit(Tj) < commit(Ti). We show
that (b) is impossible. For a contradiction, assume that (b)
holds. It must be that snapshot(Ti) < commit(Tj), oth-
erwise Ti would read X from Tj and not from Tk (from G1).
Thus, we have snapshot(Ti) < commit(Tj) < commit(Ti),
and so, Ti must overlap with Tj .

Moreover, from C1, readset(Ti) ∩ writeset(Tj) = ∅ and
writeset(Ti) ∩ readset(Tj) = ∅. But since Ti reads X
and Tj writes X, we reach a contradiction that concludes the
proof for update transactions.

Read-only transactions. Let Tq be a read-only transaction in h.
Since Tq does not update any data item, any edge involving Tq in
MV SG(h) is of the kind (a) Tj → Tq or (b) Tq → Ti, where
Ti and Tj are update transactions. We initially show that the for-
mer implies commit(Tj) < snapshot(Tq) and the latter implies
snapshot(Tq) < commit(Ti).

1. (a) Read-from edge: Tj → Tq. Since Tj → Tq ∈ MV SG(h),
Tq must read some data item updated by Tj . Since snapshots
only contain committed data, it follows that commit(Tj) <
snapshot(Tq).

2. (b) Version-order edge type II: Tq → Ti. For Tq → Ti to
be in MV SG(h), there must exist some transaction Tk such
that both Ti and Tk update the same data item X, Xk <<
Xi, and Tq reads X from Tk. It follows from rule G1 (part 2),
that either commit(Ti) < commit(Tk) or snapshot(Tq) <
commit(Ti). From the first part of the proof (for update
transactions) and the fact that Xk << Xi, it must be that
commit(Tk) < commit(Ti), and we conclude that snap-
shot(Tq) < commit(Ti).

The proof continues by contradiction: assume Tq is involved in
a cycle c in MV SG(h). Then, for each edge Ta → Tb ∈ c,
commit(Ta) < commit(Tb) if both Ta and Tb are update trans-
actions (from the first part of the proof), commit(Ta) < snap-
shot(Tb) if Tb is a read-only transaction (from case (a) above),
and snapshot(Ta) < commit(Tb) if Ta is a read-only transac-
tion (from case (b) above). Thus, we conclude that if c exists, it
follows that snapshot(Tq) < snapshot(Tq), a contradiction that
concludes the proof. �

Condition C1 is only sufficient; it is not necessary for GSI histories
to be serializable. For example, let history
h2 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Wk(Yk), Ck, Cj , that is,
Tj overlaps with Tk. History h2 is serializable even though write-
set(Tj) ∩ readset(Tk) �= ∅. Later, we present a weaker serializ-
ability condition which allows h2.

In practice, condition C1 requires all possible update transactions
to be known. That is usually the case in many database applica-
tions where the database transactions are hidden from users who
interact with the system through a standard interface (e.g., applica-
tion forms which contain SQL templates). In such a system, ad-hoc
update transactions must be prevented, unless they are checked to
satisfy the condition. Fortunately, in many situations ad-hoc update
transactions are forbidden because they need to follow the work-
flow of the business logic. Nonetheless, ad-hoc read-only transac-
tions are allowed as they do not affect any serializability result in
this subsection.

To check whether condition C1 holds for a set of update transac-
tions (or transaction templates), each pair that can potentially over-
lap must satisfy the condition. This test must be applied conserva-
tively for each and every pair, unless the two transactions in the pair
cannot overlap in the specific application or database implementa-
tion.

If a pair of update transactions does not satisfy C1, it must be that
they do not write any data item in common and one of them writes
a data item, X, and the other reads that data item. We can change
the second transaction to include an identity write on item X, i.e.,
change R(X) into R(X), W (X). This change makes their write-
sets intersect; therefore, they satisfy C1.

The process of checking the transactions and altering them if nec-
essary can be automated [9, 10]. Moreover, in some applications,
all transactions already satisfy C1. For example, both the TPC-C
and TPC-W benchmarks [24]; which are the industry–standard for
evaluating on–line transaction processing systems and e–commerce
systems, respectively; satisfy condition C1. TPC-C and TPC-W
produces serializable histories under GSI without any modification.

4



4.2 GSI into Perspective
By definition, any history that satisfies CSI also satisfies GSI; the
converse, however, is not true: Let history
h3 = Wi(Xi), Ci, Wj(Xj), Cj , Rk(Xi), Wk(Yk), Ck. Clearly, h3

is allowed by GSI (e.g., it suffices for snapshot(Tk) =
commit(Ti)) but it is not allowed by CSI.

We define an update history to be a history that includes only up-
date transactions and no read-only transactions. Proposition 2 shows
that any update history that satisfies GSI condition C1 must satisfy
CSI. To see why this holds intuitively, consider transactions Ti and
Tj such that Ti updates X and Tj reads X. Under GSI, if Tj starts
after Ti commits, Tj should get a snapshot with Ti’s update. This
is not the case under GSI, as long as Tj overlaps with Ti. However,
condition C1 states that since X ∈ writeset(Ti) ∩ readset(Tj),
Tj cannot overlap with Ti, and so, it will also see a snapshot that
includes Ti’s update.

PROPOSITION 2. Any update history h that satisfies GSI’s rules
G1 and G2 and condition C1 also satisfies CSI.

The proof of Proposition 2 is in Section A of the Appendix.

If GSI and condition C1 are enforced, the execution of an update
transaction that succeeds in committing is view-equivalent to the
execution of the same transaction starting from the latest snapshot.

There are CSI histories that do not satisfy GSI’s rules G1 and G2
and condition C1. Consider for example history
h4 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Cj , Wk(Yk), Ck. Although
h4 satisfies CSI, it violates C1.

By definition, if an update history satisfies CSI and condition C1, it
also satisfies GSI and condition C1. The converse also holds: Every
update history h that satisfies GSI and condition C1, also satisfies
CSI and condition C1.

4.3 Dynamic Serializability Condition (C2)
History h2 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Wk(Yk), Ck, Cj is
serializable because Tk could be ordered before Tj in some equiv-
alent serial order. Based on this observation, we define condition
C2 as follows:

• C2. (Serializability)
∀Ti, Tj : Ti overlaps with Tj :

⎡
⎢⎢⎢⎣

readset(Ti) ∩ writeset(Tj) = ∅
∧⎛

⎝
writeset(Ti) ∩ readset(Tj) = ∅

∨
commit(Tj) < commit(Ti)

⎞
⎠

⎤
⎥⎥⎥⎦

PROPOSITION 3. Generalized snapshot isolation is serializable
under C2.

The proof of Proposition 3 is in Section B of the Appendix.

C2 is a sufficient condition and is not necessary as described be-
low. Also, C2 is a dynamic condition: It has no static checks. When
committing an update transaction Ti, GSI requires that writeset(Ti)

does not intersect with the writesets of Ti’s overlapping transac-
tions. In addition, C2 requires that readset(Ti) does not intersect
with the writesets of Ti’s overlapping transactions. Therefore, to
commit Ti, both its readset and writeset must be available for the
dynamic checks. However, the readsets of already committed trans-
actions need not be available. Notice that C2 may abort a transac-
tion even though that transaction can be serialized.

Condition C2 takes the commit order of transactions into account.
To see why this is needed, assume that Tj is allowed to commit
before Tk commits in h2, and consider that Tk updates some data
item Y . Then we could have some transaction Tq that gets a snap-
shot including Tj’s updates but not Tk’s. Thus, Tq perceives Tj

before Tk in any equivalent serial history, but for Tk, Tj should
come next to it, and so, no equivalent serial history exists.

GSI with condition C2 allows more histories than GSI with C1
(e.g., h2) but it is still not necessary. Consider history
h5 = Wi(Xi), Ci, Wj(Xj), Rk(Xi), Wk(Yk), Cj , Ck, which is
h2 after switching the commit order of Tj and Tk. History h5 is
still serializable but does not satisfy C2.

5. PREFIX-CONSISTENT SNAPSHOT
ISOLATION (PCSI)

GSI’s rules G1 and G2 do not specify which snapshot of the database
a transaction should observe. The range of possible snapshots a
transaction can receive varies from the initial state of the database
until the latest snapshot, as in CSI. However in general, the older
the snapshot, the higher the probability that an update transaction
will have to abort because it will probably overlap with more up-
date transactions.

Prefix-consistent snapshot isolation (PCSI) is designed for repli-
cated databases. Transactions may see an older snapshot of the
database. They must, however, see the updates of all transactions
that have committed on the same replica. For example, if trans-
action Ti starts at some site S, then site S has to make sure that
the snapshot received by Ti includes the updates of all transactions
that have executed at site S and have already committed. We add
an extra part (part 5) to GSI’s read rule to have the following two
PCSI rules:

• P1. (PCSI Read Rule)
∀Ti, Xi such that Ri(Xi) ∈ h :

1- ∃Wi(Xi) ∈ h such that
Wi(Xi) ≺ Ri(Xi) in h.

AND
∀Ti, Xj such that Ri(Xj) ∈ h :

2- �Wi(Xi) : Wi(Xi) ≺ Ri(Xj) in h;
3- commit(Tj) < snapshot(Ti);
4- ∀Tk such that Wk(Xk), Ck ∈ h :

(commit(Tk) < commit(Tj) or
snapshot(Ti) < commit(Tk)); and

5- ∀Tk such that Wk(Xk), Ck ∈ h and
both Ti and Tk execute on the same database site :

(commit(Tk) < commit(Tj) or
start(Ti) < commit(Tk)).

• P2. (PCSI Commit Rule)

5



∀Ti, Tj such that Ci, Cj ∈ h and
snapshot(Ti) < commit(Tj) < commit(Ti) :

6- writeset(Tj) ∩ writeset(Ti) = ∅.

Since GSI does not allow holes in the snapshot, it follows that the
effects of all transactions that have both executed in any site and
committed before the time of Ti’s snapshot should also be included
in Ti’s snapshot. That is, the writesets of all update transactions
that have committed before snapshot(Ti) must be available at site
S. This does not imply that transactions executing under PCSI will
see only up-to-date snapshots of the database (and pay the corre-
sponding implementation cost). When transaction Ti starts, its site
S has all updates resulting from local committed transactions, but it
may not have the updates of remote transactions that committed af-
ter S’s last transaction committed. In that case Ti does not receive
the latest snapshot of the database.

6. IMPLEMENTATION OF PCSI
We present two implementations of prefix-consistent snapshot iso-
lation: the first uses centralized certification and the second uses
distributed certification. Both of them implement only PCSI. If se-
rializability is needed, then condition C1 or C2 can be applied. In
both implementations, we assume that each database site has a full
database replica, and may fail independently by crashing. How-
ever, each database eventually recovers after a crash, and there is a
time after which the database never crashes. We use version num-
bers to approximate global time. In other words, the database goes
through a number of versions, each identified by a monotonically
increasing version number. When a transaction starts, it obtains
one of these versions as its initial snapshot. We use the notation
snapshotV er(Ti) for the version number of the initial snapshot
of transaction Ti and commitV er(Ti) for the version number of
the version of the database produced after the commit of transac-
tion Ti. These two version numbers correspond to the global times
snapshot(Ti) and commit(Ti), respectively.

6.1 Centralized Certification
The system consists of a master database (central certifier) and a
number of database replicas. The master certifies the commits of
update transactions, and it contains the latest version of data. Repli-
cas execute transactions on behalf of users, and may not have the
most up-to-date version of data. Replicas communicate only with
the master and do not communicate among each other.

6.1.1 Data structures
The master maintains an ordered sequence, denoted SEQ, of
{version number, writeset} records. Each record contains the
writeset of the transaction that produced the database version with
that particular version number. In addition, the master maintains
the current version number Vmaster .

Each replica maintains its own version number Vreplica, which
indicates the version number of its current database version, and
which may be different from the current version at the central site or
at other replicas. For each transaction Ti that is active at a replica,
the replica maintains the version number of its starting snapshot
snapshotV er(Ti).

6.1.2 Transaction execution
At the start of a transaction Ti, the replica provides the transaction
with a snapshot equal to its current database version, and assigns
Vreplica to snapshotV er(Ti). Reads and writes execute locally
against this snapshot, without any communication. Ti’s snapshot
can be updated only by Ti’s writes such that Ti observes its own
updates. When a read-only transaction completes, nothing further
needs to be done. When an update transaction completes, it needs
to be certified before it can be allowed to commit.

6.1.3 Certification of update transactions
The replica sends a message to the master, containing the current
value of Vreplica, and both snapshotV er(Ti) and writeset(Ti)
for the transaction Ti to be certified. Using SEQ, the master deter-
mines if writeset(Ti) intersects with any of the writesets of trans-
actions with version numbers higher than snapshotV er(Ti). If so,
the transaction needs to be aborted. The master communicates this
outcome to the replica, and the replica aborts the transaction. If on
the contrary all intersections are empty, the transaction can be com-
mitted. The master increments Vmaster , applies the writeset(Ti)
to its database, and appends a new record for this transaction to
the tail of SEQ. It sends a message to the replica, including the
commit decision, the value of Vmaster, and an ordered sequence
of the writesets of any transactions with version numbers between
Vreplica (as received in the message from the replica) and Vmaster .

Upon receipt of this message, the replica applies (in order) the
writesets it receives in the message, commits the transaction (ap-
plying its writeset as well), and sets Vreplica to Vmaster .

6.1.4 Proof of correctness
See section C.1 in the Appendix.

6.1.5 Refinements
The data in the SEQ data structure may already be contained in
the replica’s redo log. Therefore, the replica may implement a local
certification step, checking if the transaction’s writesets intersects
with the writesets of previous transactions that it knows as a result
of responses to earlier certification requests. If so, the replicas need
to maintain a SEQ data structure similar to the master’s.

To prevent replicas from falling too far behind, especially replicas
that execute only or mostly read-only transactions, the writesets
of committed transactions may be communicated asynchronously
from the master to a replica. For instance, a replica can periodically
send its Vreplica and request all missing writesets.

The SEQ data structure can be garbage collected by deleting old
entries. When certifying a transaction, if its starting snapshot ver-
sion is smaller than version number of the head of SEQ, the trans-
action is aborted to preserve the safety properties ensured by certi-
fication. This is a trade-off between the abort rate and the size of
persistent storage.

Although the master is a central point of failure, it can use stan-
dard techniques such as primary-backup replication to improve its
availability and scalability. In addition, it can use distributed certi-
fication, as discussed next.

6



Symbol Meaning
CW length of the conflict window

CW (Ti) conflict window of transaction Ti, which is
[snapshot(Ti), end(Ti)]

D age of the snapshot that the transaction
receives when it begins execution

DBSize database size (total number of data items)
L number of seconds needed to execute

a transaction on a single database
N number of database sites

RR request-reply delay: delay for replica to send
message to master and receive response, it includes
round-trip, data transfer and message processing

TPS number of transactions per Second
W number of data items updated by each transaction

Table 1: Parameters of the analytical model.

6.2 Distributed Certification
The system consists of a fixed number of replicas. Each replica can
both execute transactions and certify update transactions. There is
no master database (central certifier). We assume the existence of
an atomic broadcast facility [14] to deliver the writesets for certifi-
cation to all replicas. We use the state machine approach [21, 19]
where certification contains only deterministic operations.

The key difference to the centralized implementation is that all
replicas execute certification. Therefore, all replicas now maintain
the data structures that were maintained by the master in the cen-
tralized implementation. Transaction start, reads and writes, and
read-only transactions proceed as before.

6.2.1 Certification of update transactions
After executing an update transaction, the replica the sends a cer-
tification request, which contains snapshotV er(Ti) and write-
set(Ti), by atomic broadcast to all replicas. When a replica re-
ceives the certification request, it applies the commit rule P2 and
checks writeset(Ti) against the writesets of Ti’s overlapping trans-
actions. That is, using SEQ, the replica determines if writeset(Ti)
intersects with any of the writesets of transactions with version
numbers higher than snapshotV er(Ti). If so, Ti is aborted; oth-
erwise, all intersections are empty and Ti is committed: Vreplica is
incremented, {Vreplica, writeset(Ti)} is appended to SEQ, and
writeset(Ti) is installed into the local data.

6.2.2 Proof of correctness
See section C.2 in the Appendix.

6.2.3 Refinements
Many of the same refinements can be used as in the centralized im-
plementation. It is, however, no longer necessary to asynchronously
send out writesets, because all replicas see all writesets as part of
the certification process. Care has to be taken that the garbage
collection of SEQ on different replicas does not make the algo-
rithm nondeterministic. This can be done, for instance, by making
sure that all replicas pick the same value of version number, below
which all records in SEQ are going to be deleted.

7. PERFORMANCE ANALYSIS OF PCSI
This section assesses analytically the relative performance of prefix-
consistent snapshot isolation to conventional snapshot isolation. More

specifically, we show that under certain assumptions transaction
abort rate is a linear function of both transaction length and the
age of the snapshot that the transaction observes.

We use a simple model to estimate the abort rate for update trans-
actions. This model is used to predict the probability of waits and
deadlocks in centralized [13, pp. 428] and replicated databases
[12]. We assume that the abort rate is small. This is a self--
regulating assumption: If the abort rate is too high, then snapshot
isolation algorithms are not suitable for the workload.

Initially, we consider a single-site database to contrast generalized
snapshot isolation to conventional snapshot isolation. Then, we
consider a replicated database over multiple sites to compare the
abort rate of PCSI to CSI using an implementation based on cen-
tralized certification. Finally, using that implementation we com-
pare the response times of read-only and update transactions in both
PCSI and CSI.

7.1 Model
We consider a single database site that uses generalized snapshot
isolation under the following assumptions. The database has a fixed
set of data items. The total number of these data items is DBSize.
We consider only update transactions, and read-only transactions
are ignored. The database originates TPSupdate update transac-
tions per second. Each transaction updates W data items, takes L
seconds to finish, and observes a snapshot of the database that is D
seconds old. Table 1 lists the model parameters.

We define the time interval CW (Ti), the conflict window of trans-
action Ti, such that CW (Ti) = [snapshot(Ti), end(Ti)]. The
length of the conflict window is denoted simply as CW = (L+D).
According to the commit rule G2, any transaction Tj will force Ti

to abort if commit(Tj) ∈ CW (Ti) and Tj writes a data item that
is also written by Ti.

In this model, access to the data items is uniform without any
hotspot. Furthermore, the model assumes the following:
DBSize >> (TPSupdate ∗ L ∗ W ), which means that at any
instant the number of data items accessed (for update operations) is
much smaller than the database size.

7.2 Centralized Database Abort Rate
In this subsection, we consider a centralized database using gener-
alized snapshot isolation to compute the abort rate of update trans-
actions.. The database artificially gives each update transaction a
snapshot that is D seconds old, even though the most recent snap-
shot is available. First we compute the probability that a single
transaction, Ti, has to abort. The number of transactions that com-
mits in the conflict window CW (Ti) is approximately
= (TPSupdate ∗ CW ). Hence, the number of writes in that win-
dow = W ∗ (TPSupdate ∗ CW ). The probability that a spe-
cific update (i.e., a write operation in Ti) conflicts with one of
the writes in CW (Ti) = (number of writes) / (database size) =
(W ∗ TPSupdate ∗ CW )/DBsize. If any such conflict occurs,
transaction Ti must abort according to the commit rule G2. Since
Ti has W of these updates, the probability that Ti has to abort
is W∗ (probability of a single conflict) = (W 2 ∗ TPSupdate ∗
CW )/DBSize.

7



Metric prefix-consistent snapshot isolation conventional snapshot isolation ratio of PCSI/CSI
System abort rate of ((N ∗ TPSupdate ∗ W )2/DBsize)∗ ((N ∗ TPSupdate ∗ W )2/DBsize)∗ (D + L + 0.5 ∗ RR)/
update transactions (D + L + 0.5 ∗ RR), (L + RR), (L + RR),

126.72 transactions per second 57.6 transactions per second 2.2
(i.e., %1.06 of all update transactions) (i.e., %0.48 of all update transactions)

Response time of (L + RR), (L + 2 ∗ RR), (L + RR)/
update transactions (L + 2 ∗ RR),

250 ms 450 ms 0.55
Response time of (L), (L + RR), (L)/(L + RR),

read-only transactions
50 ms 250 ms 0.2

Table 2: Summary of performance metrics. Numeric values: D = 400 ms, DBSize = 10,000,000, L = 50 ms, N = 8 nodes, RR = 200
ms, TPS = 10,000 transaction/sec (update transactions ratio %15, TPSupdate = 1500), and W =4.

Second we compute the transaction abort rate at the database site.
The rate of aborted transactions = (rate of transactions) * (probabil-
ity that one transaction must abort) = TPSupdate ∗ (W 2 ∗ CW ∗
TPSupdate)/DBSize. Therefore, the abort rate at the database
site = (TPS2

update ∗W 2/DBsize) ∗ (CW ). This rate is directly
proportional to the length of the conflict window (CW =D + L).

Under conventional snapshot isolation, each transaction observes
the latest snapshot of the database. Hence, D = 0 and CW = L.
The node abort rate = (TPS2

update ∗ W 2/DBsize) ∗ (L).

For a single-site database, the relative increase in node abort rate
due to using (artificial) generalized snapshot isolation instead of
conventional snapshot isolation = (1+ (D/L)). This is a function
of D, the snapshot age. The older the snapshot, the higher the
relative increase in abort rate.

7.3 Replicated Database Abort Rate
In this subsection we consider a replicated database over N sites,
and estimate the abort rate for update transaction under prefix--
consistent and conventional snapshot isolation. We assume that
there are N database sites where each has a full database replica
and originates TPSupdate update transactions per second. We use
a simple distributed implementation based on a master database
with centralized certification for both prefix-consistent and con-
ventional snapshot isolation. Hence, our performance evaluation
is valid only for this implementation. The request-reply delay is
RR. It is the time necessary for a replica to send a message to the
master and for the replica to receive the response. RR includes the
network round-trip delay, time necessary to transfer the data, and
message processing delay. In a wide-area network, the round-trip
delay constitutes the major part of RR.

From the previous subsection, the system abort rate is approxi-
mately = ((N ∗ TPSupdate)

2 ∗ W 2/DBsize) ∗ (CW ). For the
replicated case, the abort rate rises rapidly with the number of repli-
cas as it is a quadratic function of N . It remains to estimate the
length of the conflict window, CW .

Under prefix-consistent snapshot isolation, each update transaction
observes the most recent snapshot available locally at the replica
without any delay as depicted in Figure 1. At commit time, the
database replica sends the transaction writeset for certification to
the master database in order to check that there is no system-wide

conflict among the overlapping writesets. The length of the conflict
window CW = (D + L + 0.5 ∗ RR).

Under conventional snapshot isolation, each update transaction must
observe the latest snapshot in the system as it arrives at a database
node. We assume that this can be done by sending a message
to the master database and by receiving the reply as in Figure 2.
This reply either indicates that the site already has the latest snap-
shot, or the reply includes the missing updates, which the database
installs to obtain the latest snapshot. Next the replica sends the
writeset of the new transaction to the master database for certifica-
tion to ensure that there is no conflict among the concurrent tran-
sitions in the system. The length of the conflict window CW =
(0.5 ∗ RR + L + 0.5 ∗ RR).

The relative increase in node abort rate due to using prefix-consistent
snapshot isolation instead of conventional snapshot isolation = (D+
L + 0.5 ∗ RR)/(L + RR).

7.4 Replicated Database Response Time
In this subsection, we consider the time it takes to execute update
and read-only transactions. We define the response time of a trans-
action to be time taken from receiving the transaction at a database
site until knowing the commit or abort status at the same database
site. For prefix-consistent snapshot isolation in Figure 1, the re-
sponse times of update and read-only transactions are (L + RR)
and (L), respectively. Similarly for conventional snapshot isola-
tion in Figure 2, each transaction has to incur a round-trip delay
to check on the latest snapshot before it begins execution. The re-
sponse times of update and read-only transactions are (L+2∗RR)
and (L + RR), respectively.

The response times of prefix-consistent snapshot isolation are lower,
at the cost of (1) letting read-only transactions to observe less re-
cent data and (2) higher abort rate for update transactions.

7.5 Numerical Evaluation
To get numeric estimates, we used “typical” numbers from a recent
TPC-W disclosure report [23] and request-response delay of 200
ms over the Internet [5]. We used these numbers because we intend
to use PCSI in a database replicated over the internet. TPC-W is
the industry standard benchmark for e-commerce systems [8, 24].
However, we vary the ratio between some of these parameters in
Figures 3 and 4.

8



Master Database

Database Replica
T is executing

1- T arrives 

2- Request to commit 
3- commit 
or abort 

(a) Prefix-Consistent Snapshot Isolation, 
T is an update transaction

Master Database

Database Replica
T is executing

1- T arrives 

(b) Prefix-Consistent Snapshot Isolation, 
T is a read-only transaction

Always commits
No conflict window

Snapshot age
D

Conflict window
D + L + 0.5*RR

Transaction length
L

Transaction length
L

Response time

Response time

Snapshot age
D

Time

Figure 1: Transaction execution in a replicated database using
prefix-consistent snapshot isolation with master database and
centralized certification.

Master Database

Database Replica
T is executing

1- T arrives 

2- Request for 
latest snapshot 

3- Latest snapshot 

4- Request to commit 
5- Commit 

or abort 

(a) Conventional Snapshot Isolation, 
T is an update transaction

Conflict Window
0.5*RR + L + 0.5*RR

Master Database

Database Replica
T is executing

1- T arrives 

2- Request for 
latest snapshot 

3- Latest snapshot 

Time
(b) Conventional Snapshot Isolation, 
T is a read-only transaction

4- Always commits,
No conflict window

Transaction length
L

Transaction length
L RR

Response time

Response time

Figure 2: Transaction execution in a replicated database using
conventional snapshot isolation with master database and cen-
tralized certification.

Table 2 summarizes our findings. In that particular environment,
the abort rate of update transactions in both PCSI and CSI is small,
and PCSI’s abort rate is twice CSI’s abort rate. In addition, the re-
sponse time of update transactions in PCSI is half of CSI’s response
time of update transactions. Considering the above two metrics, up-
date transactions perform nearly equally under PCSI and CSI. The
response time of read-only transactions in PCSI is one fifth of CSI’s
response time of read-only transactions.

Figure 3 shows the ratio between the abort rate of update trans-
actions in PCSI to abort rate in CSI. The graph contains several
curves that correspond to different values of D/L. Initially, PCSI
aborts more transactions than CSI. However, as the ratio of RR/L
increases along the X-axis, the trend reverses and CSI starts to abort
more update transactions than PCSI. The ratio of abort rates reaches
0.5 as RR/L gets larger and larger for all curves. Although this is
contrary to intuition to have CSI aborting more update transactions
than PCSI, it can be explained by the fact that when the response--
request delay is so large, waiting to get the latest snapshot increases
the conflict window. This increase leads to the higher relative abort
ratio of CSI to PCSI.

Figure 4 shows the ratio of response times of different transaction
types in PCSI to those of CSI. (This ratio is not a function of D).
There are three curves corresponding to read-only transactions, up-
date transactions, and finally “all transactions” which corresponds
to the ratio of average response times of all transactions in PCSI
to those of CSI. Both PCSI and CSI give the same response times
when RR=0 (centralized environment); however, as RR/L increases
along the X-axis, PCSI gives substantially better response times for
all transaction types. The ratio for update transactions approaches
0.5 quickly as RR/L increases. Under PCSI, read-only transactions
may not observe the latest snapshot.

7.6 Summary
For centralized databases, the abort rate under GSI (when enforced
artificially) is higher than that of CSI and read-only transactions
observe the latest snapshot. This makes CSI a clear winner in cen-
tralized systems.

However, for replicated databases, there is a tradeoff. Under PCSI,
read-only transactions are not delayed, but they may not observe
the latest snapshot. The update transactions abort rate of PCSI may
be higher or lower than that of CSI, depending on the particular im-
plementation and system parameters. If the workload is dominated
by read-only transactions, PCSI is more suitable than CSI.

8. RELATED WORK
Despite the undebatable popularity and practical relevance of con-
ventional snapshot isolation, relatively few papers have discussed
its properties. Conventional snapshot isolation was first introduced
in 1995 [6, 15]. The authors show that CSI prevents many of the
well-known concurrency control anomalies in [6], and that CSI is
weaker than serializability. CSI allows some forms of constrain
violation anomalies such as write-skew [6] and predicate-write--
skew [10]. Schenkel et al. [20] have discussed using CSI in fed-
erated transaction where global transactions access data that are
distributed across multiple sites. Their protocols guarantee CSI at
the federation level.

More research is needed for guaranteeing serializability both when
using weaker isolation levels and when using application specific
knowledge. Adya et al. [2] provided a theoretical foundation to for-
mally specify practical isolation levels for commercial databases.
Atluri et al. [4] studied the serializability of weaker isolation levels
such as the ANSI SQL isolation levels for centralized databases.
Shasha et al. [22] presented the conditions that allow a transaction
to be chopped into smaller sub-transactions that release locks ear-
lier than the original transaction under traditional locking policies.

9



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RR/L

ab
or

t r
at

e 
ra

tio
D/L=0

D/L=2

D/L=4

D/L=6

D/L=8

D/L=10

D/L=12

D/L=14

D/L=16

Figure 3: Relative update transactions abort ratio of PCSI to
CSI on a replicated database with centralized certification, pa-
rameterized by D/L, (X-axis is RR/L).

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

RR/L

re
sp

on
se

 ti
m

e 
ra

tio

update transactions
readonly transactions
all transactions

Figure 4: Relative response time ratio of PCSI to CSI on
a replicated database with centralized certification, (X-axis is
RR/L).

Kemme et al. [17] discussed how to implement different isolation
levels (including serializability) in replicated databases using group
communication primitives, in addition they implemented Postgres-
R [16] and their experimental evaluation shows the feasibility of
using eager replication protocols.

Fekete et al. [9, 10] have studied the conditions under which trans-
actions executing on a centralized database with conventional snap-
shot isolation produce serializable histories. They developed a syn-
tactic condition similar to condition C1 and it is sufficient but not
necessary. They also show how database applications can be tested
against the syntactic condition by building an extended Sibling--
Conflict graph [22]. If certain cycles exist in this graph, the ex-
ecution of the corresponding transaction may be non-serializable.
They also showed how applications can be modified to satisfy the
condition if necessary. They used promotions that upgrade read
operations into identity write operations in order to break the cor-
responding cycles in the Sibling-Conflict graph. They also con-
ducted an experimental evaluation showing that the overhead of
promotions is small. Condition C1 is an extension to their syn-
tactic condition, and it applies to generalized snapshot isolation in
centralized and distributed environments. Also condition C2, al-
lows more transaction to commit in a serializable history than those
two conditions.

Dahlin et al. [11] discussed application specific data replication
techniques for edge services over the Web, with the objective of re-
ducing response time, scaling up system performance, and enhanc-
ing the availability of Web services. This method is not transpar-
ent; application programmers have to specify a replication policy
for each “data object”. Also, there is no guarantee of serializabil-
ity. Our methods have the same objectives. However, they are sys-
tematic and transparent to application programmers. Serializability
of arbitrary transactions can be guaranteed by either transparently
rewriting the transactions in the application to satisfy condition C1,
or by enforcing condition C2 at run-time.

9. CONCLUSIONS AND FUTURE WORK
This research presents of a new database concurrency control al-
gorithm, generalized snapshot isolation (GSI), which is an exten-

sion to conventional snapshot isolation (CSI). GSI does not delay
transactions, which may observe an old snapshot of the database.
We discussed the serializability properties of GSI, and showed two
conditions that make transactions running under GSI produce seri-
alizable histories.

We presented prefix-consistent snapshot isolation (PCSI), a spe-
cial case of GSI that is particularly suitable for multi-site replicated
databases. PCSI uses the most recent snapshot currently available
on a database site, such that each transaction sees the update of all
transactions that have executed and committed at the database site.
The most important benefit of using PCSI is that it does not delay
read-only transactions and executions can be made serializable if
needed.

We developed two implementations of PCSI: one uses centralized
certification and the other uses distributed certification. We used an
analytical model to compare the performance of PCSI to CSI, when
using the centralized certification approach. The model shows that
the abort rate of update transactions in PCSI and CSI depends on
system parameters, and that the response times of both update and
read-only transactions when using PCSI are smaller than those when
using CSI.

We plan to use PCSI to generate dynamic Web content using a ge-
ographically distributed network of proxies. This workload is es-
pecially suitable for PCSI: It has many more read-only transactions
than update transactions, and update transactions are short.

10. REFERENCES
[1] Data Concurrency and Consistency, Oracle8 Concepts, Release 8.0:

Chapter 23. Technical report, Oracle Corporation, 1997.

[2] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. Generalized
isolation level definitions. In Proceedings of the IEEE International
Conference on Data Engineering, pages 67–78, 2000.

[3] Akamai Technologies, Inc. EdgeSuite Architecture for Advanced
E-Business. http://www.akamai.com/en/html/
services/edgesuite.html.

[4] Vijayalakshmi Atluri, Elisa Bertino, and Sushil Jajodia. A theoretical
formulation for degrees of isolation in databases. Elsevier Science,
39 No.1, 1997.

10



[5] Gerco Ballintijn, Maarten van Steen, and Andrew S. Tanenbaum.
Characterizing internet performance to support wide-area application
development. Operating Systems Review, 34(4):41–47, 2000.

[6] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth
O’Neil, and Patrick O’Neil. A critique of ANSI SQL isolation levels.
In Proceedings of the SIGMOD International Conference on
Management of Data, pages 1–10, May 1995.

[7] Philip Bernstein, Vassos Hadzilacos, and Nat Goodman.
Concurrency Control and Recovery in Database Systems.
Addison–Wesley, Reading, MA, 1987.

[8] Emmanuel Cecchet, Anupam Chanda, Sameh Elnikety, Julie
Marguerite, and Willy Zwaenepoel. Performance comparison of
middleware architectures for generating dynamic Web content. In
Proceedings of the ACM/IFIP/USENIX International Middleware
Conference (Middleware 2003), Rio de Janeiro, Brazil, June 2003.

[9] Alan Fekete. Serialisability and snapshot isolation. In Proceedings of
the Australian Database Conference, pages 201–210, Auckland,
New Zealand, January 1999.

[10] Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil,
and Dennis Shasha. Making snapshot isolation serializable. In
Proceedings of the 1996 ACM SIGMOD International Conference on
Management of Data, pages 173–182, June 1996.

[11] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun
Iyengar. Application specific data replication for edge services. In
Proceedings of the twelfth international conference on World Wide
Web, pages 449–460. ACM Press, 2003.

[12] Jim Gray, Pat Helland, Patrick O’Neil, and Dennis Shasha. The
dangers of replication and a solution. In Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data,
pages 173–182, June 1996.

[13] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers, San Francisco, CA, 1993.

[14] Vassos Hadzilacos and Sam Toueg. Fault-Tolerant Broadcasts and
Related Problems. Distributed Systems (2nd Ed.), ACM Press /
Addison-Wesley Publishing Co., 1993.

[15] K. Jacobs. Concurrency control, transaction isolation and
serializability in SQL92 and Oracle7. Technical report, Oracle
Corporation, Redwoord City, CA, July 1995. White paper number
A33745.

[16] Bettina Kemme and Gustavo Alonso. Don’t be lazy, be consistent:
Postgres-r, a new way to implement database replication. In
Proceedings of 26th International Conference on Very Large Data
Bases (VLDB 2000), Cairo, Egypt, September 2000.

[17] Bettina Kemme and Gustavo Alonso. A suite of database replication
protocols based on group communication primitives. In Proceedings
18th International Conference on Distributed Computing Systems
(ICDCS), Amsterdam, The Netherlands, May 1998.

[18] Christos Papadimitriou. The Theory of Database Concurrency
Control. Computer Science Press, 1986.

[19] Fernando Pedone, Rachid Guerraoui, and Andre Schiper. The
database state machine approach. Distributed and Parallel
Databases, (14):71–98, 2003.

[20] Ralf Schenkel, Gerhard Weikum, Norbert Weißenberg, and Xuequn
Wu. Federated transaction management with snapshot isolation.
Lecture Notes in Computer Science, 1773:1–25, January 2000.

[21] Fred Schneider. Replication Management using the State-Machine
Approach. Distributed Systems (2nd Ed.), ACM Press /
Addison-Wesley Publishing Co., 1993.

[22] Dennis Shasha, François Llirbat, Eric Simon, and Patrick Valduriez.
Transaction chopping: Algorithms and performance studies. ACM
Transactions on Database Systems, 20(3):325–363, 1995.

[23] The Transaction Processing Council (TPC). Full disclosure report for
Dell PowerEdge 6650 1.6GHz w/PowerEdge 1650 1.4GHz.
http://www.tpc.org/results/FDR/tpcw/
PE6650 10K TPCW FDR 020822.pdf.

[24] The Transaction Processing Council (TPC). The TPC-C and TPC-W
Benchmarks. http://www.tpc.org/.

APPENDIX
A. PROOF OF PROPOSITION 2
PROPOSITION 2. Any update history h that satisfies GSI’s rules
G1 and G2 and condition C1 also satisfies CSI.

PROOF: For a contradiction, assume it does not. Then h violates
either (a) CSI’s read rule or (b) CSI’s commit rule.

(a) From CSI’s read rule, there must exist some transaction Ti

in h such that (a.1) Ti reads X from Tj and start(Ti) ≤
commit(Tj) or (a.2) there exists a transaction Tk that up-
dates X such that start(Ti) ≤ commit(Tk) ≤ commit(Tj).
Case (a.1) cannot happen since transactions do not read un-
committed data under GSI. Consider case (a.2). From GSI’s
commit rule, it has to be that commit(Tj) < snapshot(Tk),
otherwise Tk would abort. From GSI’s read rule, we have
snapshot(Ti) < commit(Tk), otherwise Ti would read from
Tk; moreover, since Ti reads X from Tj , commit(Tj) <
snapshot(Ti). Therefore, Ti and Tk overlap, and by GSI’s
serializability condition it cannot be that Tk ∈ h since write-
set(Tk) ∩ readset(Ti) �= ∅.

(b) From CSI’s commit rule, there are transactions Ti and Tj in
h, such that (b.1) start(Ti) < commit(Tj) < commit(Ti)
and (b.2) writeset(Tj)∩writeset(Ti) �= ∅. Condition (b.1)
implies that snapshot(Ti) < commit(Tj) < commit(Ti),
and so Ti and Tj overlap. Thus, since their writesets intersect,
from GSI’s commit rule, Ti should abort, a contradiction that
concludes the proof. �

B. PROOF OF PROPOSITION 3
PROPOSITION 3. Generalized snapshot isolation is serializable
under C2.

This proof is very similar to the proof of Proposition 1. Here we
show only the different cases.

Since Ti and Tj satisfy condition C2, two cases should be consid-
ered:

Case 1. readset(Ti) ∩ writeset(Tj) = ∅ and (readset(Tj) ∩
writeset(Ti) = ∅ or commit(Ti) < commit(Tj)). Since Ti

reads X and Tj writes X, it follows that the next case should hold.

Case 2. readset(Tj) ∩ writeset(Ti) = ∅ and (readset(Ti) ∩
writeset(Tj) = ∅ or commit(Tj) < commit(Ti)). Since read-
set(Ti) ∩ writeset(Tj) �= ∅, it follows that commit(Tj) <
commit(Ti), a contradiction that concludes the proof for update
transactions. �

C. PROOF OF CORRECTNESS FOR PCSI
IMPLEMENTATIONS

C.1 Centralized Certification
The rules of PCSI are followed in this algorithm. As each transac-
tion reads the most recent snapshot that is available at the database
replica and sees its own updates, the read rule P1 is satisfied. The
replicas and the master database enforce the commit rule P2, where
an update transaction commits only if no overlapping transaction
has written into its writeset through the certification process.

11



To prove that this algorithm implements prefix-consistent snap-
shot isolation, it remains to show that if Ti overlaps with Tj in
global time, then Ti overlaps with Tj when using versions. Assume
that Ti overlaps with Tj in global time and Tj commits before Ti

commits. Therefore, we have snapshot(Ti) < commit(Tj) <
commit(Ti). It is required to prove that snapshotV er(Ti) <
commitV er(Tj) < commitV er(Ti)

We have snapshotV er(Ti) < commitV er(Ti). Because Tj

commits first at the master, we have commitV er(Tj) < commit-
V er(Ti). Now regarding snapshotV er(Ti), there are only two
cases: First, snapshotV er(Ti) < commitV er(Tj) < commit-
V er(Ti). Second, commitV er(Tj) < snapshotV er(Ti) <
commitV er(Ti). The second case is impossible and we show
this by a contradiction: Assume commitV er(Tj) < snapshot-
V er(Ti). Then, there exists commit(Tk) such that commit(Tk) <
snapshot(Ti) and commitV er(Tk) = snapshotV er(Ti). It
must be true that commitV er(Tj) < commitV er(Tk). There-
fore, commit(Tj) < commit(Tk). This leads to commit(Tj) <
commit(Tk) < snapshot(Ti) which is a contradiction that shows
the second case is impossible. Therefore, since snapshotV er(Ti) <
commitV er(Tj) < commitV er(Ti), Ti must overlap with Tj

when using versions. �

C.2 Distributed Implementation
To prove that this implementation is deterministic and obeys PCSI’s
rules, we need to show two properties. The first property is that at
the certification of Ti, all replicas have the same SEQ and Vreplica.
Consequently, every replica reaches the same decision on the certi-
fication of Ti. Atomic broadcast is used to deliver the certification
request, which contains snapshotV er(Ti) and writeset(Ti), to
all replicas. It guarantees two properties: agreement (if a replica
delivers message m, then every replica delivers m) and order (no
two replicas deliver any two messages in different orders). We use
mathematical induction on the length of SEQ to prove that SEQ
is the same at all replicas. Induction base: all databases start from
identical initial states (.i.e, same SEQ and Vreplica. Induction hy-
pothesis: assume that SEQ and Vreplica are the same at all repli-
cas. Induction step: all replicas reach the same abort decisions on
all certification requests containing snapshotV er(Tk) and write-
set(Tk), until such Tk that is ready to commit. Hence, each replica
increments Vreplica and appends {Vreplica, writeset(Tk)) to SEQ,
such that all replicas get new identical SEQ and Vreplica.

The second property is that if Ti overlaps with Tj in global time,
then Ti must overlap with Tj when using versions. The proof of
this property is identical to the proof of the corresponding property
for centralized certification in the pervious subsection.

12


