
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Generic Concern-Oriented Model 
Transformations Meet AOP

Raul Silaghi and Alfred Strohmeier

Software Engineering Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland

E-mail: {Raul.Silaghi, Alfred.Strohmeier}@epfl.ch

Abstract. Separation of concerns allows developers to manage large distrib-
uted systems by tackling one problem at a time. Model transformations refine
models along one concern-dimension. Aspects encapsulate implementation
details that cut across the boundaries of several components. In this position
paper, after a short introduction to these emerging technologies, we explain
how generic concern-oriented model transformations can meet aspect-orient-
ed programming in order to complete the life-cycle of software application
development in a pure MDA-compliant way based on separation of concerns.
At the end, we present some requirements that tool vendors should provide if
they decide to support such an approach.

1 Introduction

Integration and interoperability have always been at the heart of software engineering
for anything else than non-trivial software products and systems. Philosophically
speaking, thinking is modeling [1], and thus, agreed upon or compatible models are the
key to “inter-think”, i.e., to facilitate communication among humans, among comput-
ers, and among humans and computers. Approaching this line of thought from the other
side, we can say that making things interoperable requires thinking. Since thinking is
modeling, we infer that we cannot make things interoperable without models. The Mod-
el Driven Architecture is the next evolutionary step in that direction, trying to raise the
level of interoperability from a mainly syntactic interface level to a more expressive be-
havioral level (realized through models).

Model Driven Architecture (MDA) is a new approach to software architecture that
provides a standardized way to IT-based information system specification by clearly
separating the “what” and the “how”, or as said in [2] “... that separates the specification
of system functionality from the specification of the implementation of that functional-
ity on a specific technology platform”. Both specifications are expressed as models:
Platform Independent Models (PIMs), which specify the structure and functions of a
system while abstracting away technical details, and Platform Specific Models (PSMs),
which are derived from PIMs and specify how the functionality is to be realized on a
selected platform. Moving from one model to another is achieved by applying model
transformations, and finally, code generators are used to map the most specialized PSM
to a specific technology platform, such as CORBA, J2EE, .NET, or Web Services. More
details and documents on MDA can be found in [3].
- 1 / 7 -

https://core.ac.uk/display/147902735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Separation of concerns is an approach to decomposing software into smaller, more
manageable and comprehensible parts, each of which deals with, and encapsulates, a
particular area of interest, called a concern. Basically, a concern can be viewed as any-
thing that is of importance to the application, be it infrastructure, code, requirements,
design artifacts, etc. Separation of concerns provides support for overcoming the “tyr-
anny of the dominant decomposition” [4], from which many modern artifact notations
suffer. For example, object-oriented approaches provide mechanisms to encapsulate
certain kinds of concerns, such as data and functions. However, they do not provide
mechanisms that would allow one to encapsulate cross-cutting concerns, such as distri-
bution or security, in an effective way.

Aspect-Oriented Programming (AOP) [5] has been proposed as a technique for im-
proving separation of concerns in software. This approach makes it possible to separate-
ly specify various kinds of concerns and localize them into separate units of encapsula-
tion, called aspects. One can deal with both the concerns and the modules that encap-
sulate them at different levels of abstraction, not only at the code level. AspectJ [6] is a
general-purpose aspect-oriented extension to Java that introduces concepts like join
points and pointcuts to describe the structure of the cross-cutting concerns, and advices
to specify the desired behavior to be performed throughout the identified structure.

Middleware is an essential element in large distributed systems like those that sup-
port enterprise applications that require the interoperation of multiple components.
Since middleware itself is software, it is subject to concerns like software in general. In
[7], several dimensions along which concerns about middleware can be separated were
identified and grouped into four main categories. One of those categories was Middle-
ware Services, as middleware addresses specific concerns of a system, for example,
communication, distribution, concurrency, security, or transactions. Multiple attempts
have been tried out to somehow aspectize away these concerns from the rest of the dis-
tributed application. Some of them have failed, some others have succeeded up to a cer-
tain degree. However, as clearly described in [8], the big difficulty stems from the fact
that, although the mechanisms used to implement these middleware-specific concerns
are physically separated from the “functional” part of an application, they still remain
semantically coupled. Thus, without having any idea about the application (semantics),
it becomes impossible to apply, for example, a general transactional aspect to a previ-
ously non-transactional code and to obtain the desired functionality, i.e., transactional
behavior.

In the rest of this position paper we will argue that generic model transformations
could be the way to introduce application specific information at the PIM and PSM lev-
els, and that the same information could be used to specialize aspects that will be ap-
plied at the implementation level. A specialized model transformation would refine a
model (PIM or PSM) along a single concern-dimension and would have associated a
specialized aspect that would implement the concern at the code level.

2 Putting the Pieces Together

MDA identifies four types of model-to-model transformations (mappings) within the
software development life-cycle [2]: PIM-to-PIM transformations relate to platform-
- 2 / 7 -



independent model refinement and are applied when PIMs are enhanced, filtered, or
specialized; PIM-to-PSM transformations are used to project a PIM to the selected ex-
ecution infrastructure; PSM-to-PSM transformations relate to platform-dependent
model refinement; PSM-to-PIM transformations abstract models of existing implemen-
tations into platform-independent models.

Taking variability into account, developers should be given the possibility to spec-
ify a PIM and a PSM that are specific to a selected IT application, or IT “domain” if we
refer to the new Domain-Driven Development track at OOPSLA 2003 [9]. Models spe-
cific to an application cannot be specified by applying a series of predefined transfor-
mations. For this reason, we suggest that model-to-model transformations should be ge-
neric, and a set of parameters should be used to specialize the transformation and ex-
press the properties that are specific to a given application.

We imagine that at each refinement step in the MDA approach a different concern
should be handled by regarding the current model from the viewpoint corresponding to
that concern. Fig. 1 presents what should be seen from a certain viewpoint i, at a certain
level of abstraction, along one concern-dimension. As shown on the left-hand side, we
would like to apply the generic model transformation GMTCi in order to refine the cur-
rent model along the dimension associated with concern i, which can be seen from
viewpoint i. However, beforehand, the generic model transformation needs to be spe-
cialized according to the particularities of the current application, particularities that we
describe here by a set of parameters Pik, where i indicates the concern under consid-
eration, and k is used as an index to show that there might be several parameters that
need to be set along a certain concern-dimension. Once the specialized/concrete model
transformation for concern i (CMTCi) is obtained, it can be applied and the result would
be a refinement of the model elements building up the concern space i, i.e., the model
elements seen from viewpoint i as being involved in addressing the concern i.

Generic Model
Generic Aspect

Transformation
for Concern i

GMTCi

Concrete Model
Transformation
for Concern i

CMTCi

for Concern i
GACi

Concrete Aspect
for Concern i

CACi

<<specialization>>
Si = Set (Pik)

Model elements
building up the

Concern Space i

Implementation elements
building up the

Concern Space i

<<acts upon / creates>> <<acts upon / creates>>

<<specialization>>
Si = Set (Pik)

1

1

1

1

implements

Application

Viewpoint i

Dependent

Fig. 1. Generic Concern-Oriented Model Transformation Meets AOP
- 3 / 7 -



On the right-hand side of Fig. 1, one can notice that each model transformation (ge-
neric or concrete) has associated an aspect (generic or concrete, respectively) that would
implement the concern under consideration at code level. Moreover, we tend to believe
that the set of parameters Si, used to specialize the generic model transformation, could
be used to specialize the corresponding generic aspect as well, thus overcoming the
problem of semantic coupling described in [8]. The order in which specialized/concrete
aspects will be applied at code level (their precedence) is dictated by the order in which
the specialized/concrete model transformations were applied at model level.

During the previously described process, models for a specific application evolve
in a series of refinement steps, each step consisting of selecting the appropriate generic
transformation (corresponding to a specific concern-dimension), configuring it to de-
rive a specialized transformation, and finally applying the specialized transformation.
At the implementation level, rather than having one code generator which takes the
most specialized PSM and generates platform specific code, we propose to have a code
generator for the pure “functional” model of the application instead, and then have as-
pect generators, which generate concrete aspects from concrete model transformations,
for the cross-cutting nature of several concerns that the application needs to incorporate.

For a better understanding of our position, let’s consider an example. Suppose we
need to implement a system, and that besides the functional requirements of that system,
certain middleware specific concerns need to be addressed as well, such as distribution,
transactions, and security. Let’s name these concerns C1, C2, and C3. At a certain point
in the MDA life-cycle, we will need to address these concerns in the context of our spe-
cific application. As previously presented, we will have three generic model transfor-
mation T1, T2, and T3 (see Fig. 2), which will all be specialized with specific parameters
according to the concern being handled and to the particularities of the application. For
each specialized/concrete model transformation, e.g., T1<p11,p12,...>, a specialized/
concrete aspect, e.g., A1<p11,p12,...>, will be automatically generated and will im-
plement the concern under consideration at code level.

Each generic transformation may define a set of pre- and postconditions. A configura-
tion of a generic transformation not only specializes the transformation, but also spe-
cializes these conditions. Specialized preconditions are used to check whether the initial
state of the model allows the application of the specialized/concrete transformation;
specialized postconditions are used to check the consistency and integrity of the ob-
tained model. Both pre- and postconditions can be expressed in a dedicated constraint
language appropriate for the models (in the case of the Unified Modeling Language
[10], the Object Constraint Language [11] is the obvious choice).

T1 <p11, p12, ...>
T2 <p21, p22, ...>
T3 <p31, p32, ...>
...

 

Ti - Transformations pik - parameters Ai - Aspects

A1 <p11, p12, ...>
A2 <p21, p22, ...>
A3 <p31, p32, ...>
...

Fig. 2. Concrete Example of the Association Between Model Transformations and Aspects
- 4 / 7 -



We do not address in this position paper how the cross-cutting concerns are mod-
eled using UML, or how several concerns can be composed. Interesting papers on these
subjects can be found at [12] and [13], the first two workshops on “Aspect-Oriented
Modeling with UML”. We do not discuss either how the components that will finally
be implemented should be “shipped”. Should we ship only the last, most specialized
model, together with the implementation, or should we ship all the intermediate models,
together with the transformations and the set of parameters that specialize each trans-
formation? How should a developer make reuse of the models, transformations, and as-
pects that were used to implement a component?

3 Required Infrastructure

The refinement process based on generic concern-oriented model transformations
should be supported by a dedicated tool infrastructure with the following facilities:

• Concern-oriented wizards for configuring the generic model transformations
along a concern-dimension.

• Support for generic model transformations as described in [14], together with
support for testing pre- and postconditions associated with model transforma-
tions.

• Aspect generator plug-ins for specific technology platforms and programming
languages (in addition to code generator plug-ins) in order to generate concrete
aspects from concrete model transformations.

• Version management capabilities for the model repository. An Undo/Redo facil-
ity for model transformations would also be appreciated.

• Visual tools capable of demarcating model parts that have been added to the mod-
el through different specialized/concrete transformations by using different col-
ors. An association list between these colors and the concerns that have already
been covered would be helpful in order to see what concerns have introduced
what elements. And, why not, a list of the remaining concerns would give the de-
veloper an idea of what further refinements s/he needs to perform.

• Support for importing/exporting models in XMI [15] format.

• Guidance in the refinement process. A workflow model could track the refine-
ment of a PIM or PSM through transformations. The workflow model could de-
fine which generic transformations can be applied at a certain refinement step,
and therefore could determine the allowed sequence of transformations.

4 Conclusions

In this position paper we explained how generic concern-oriented model transforma-
tions can meet aspect-oriented programming in order to complete the life-cycle of soft-
ware application development in a pure MDA-compliant way based on separation of
concerns. We also discussed some challenging issues related to a possible tool infra-
structure that would support such an approach.
- 5 / 7 -



References

[1] Valéry, P.: Cahiers. Vol. Tome 1. Gallimard (collection “La Pléiade”), Paris, 1975.

[2] Miller, J.; Mukerji, J.: Model Driven Architecture (MDA). Object Management Group, 
Draft Specification ormsc/2001-07-01, July 9, 2001.

[3] Object Management Group, Inc.: Model Driven Architecture. http://www.omg.org/mda.

[4] Tarr, P.; Ossher, H.; Harrison, W.; Sutton, S. M. Jr.: N Degrees of Separation: Multi-Di-
mensional Separation of Concerns. Proceedings of the International Conference of Soft-
ware Engineering, Los Angeles, CA, USA, May 16-22, 1999. ACM 1999, pp. 107 – 119.

[5] Kiczales, G.; Lamping, J.; Mendhekar, A.; Maeda, C.; Lopes, C. V.; Loingtier, J.-M.; Ir-
win, J.: Aspect-Oriented Programming. Proceedings of the 11th European Conference on 
Object-Oriented Programming, ECOOP, Jyväskylä, Finland, June 9-13, 1997. LNCS Vol. 
1241, Springer-Verlag, 1997, pp. 220 – 242.

[6] Kiczales, G.; Hilsdale, E.; Hugunin, J.; Kersten, M.; Palm, J.; Griswold, W. G.: An Over-
view of AspectJ. Proceedings of the European Conference on Object-Oriented Program-
ming, ECOOP, Budapest, Hungary, June 18-22, 2001. LNCS Vol. 2072, Springer-Verlag, 
2001, pp. 327 – 353.

[7] Rouvellou, I.; Sutton, S. M. Jr.; Tai, S.: Multidimensional Separation of Concerns in Mid-
dleware. Workshop on Multidimensional Separation of Concerns in Software Engineer-
ing, at the International Conference on Software Engineering, Limerick, Ireland, June 4-
11, 2000.
http://www.research.ibm.com/hyperspace/workshops/icse2000/.

[8] Kienzle, J.; Guerraoui, R.: AOP: Does it Make Sense? The Case of Concurrency and Fail-
ures. Proceedings of the 16th European Conference on Object-Oriented Programming, 
ECOOP, University of Málaga, Spain, June 10-14, 2002. LNCS Vol. 2374, Springer-Ver-
lag, 2002, pp. 37 – 61.

[9] OOPSLA 2003: Domain-Driven Development track.
http://www.oopsla.org/oopsla2003/call_3d.shtml.

[10] Object Management Group, Inc.: Unified Modeling Language Specification, v1.4, Sep-
tember 2001.

[11] Warmer, J.; Kleppe, A.: The Object Constraint Language: Precise Modeling with UML. 
Addison-Wesley, 1998.

[12] First International Workshop on Aspect-Oriented Modeling with UML, in conjunction with 
the 1st International Conference on Aspect-Oriented Software Development, Enschede, 
The Netherlands, April 22-26, 2002.
http://lgl.epfl.ch/workshops/aosd-uml/index.html.

[13] Second International Workshop on Aspect-Oriented Modeling with UML, in conjunction 
with the 5th International Conference on the Unified Modeling Language - the Language 
and its Applications, Dresden, Germany, September 30 - October 4, 2002.
http://lgl.epfl.ch/workshops/uml2002/index.html.

[14] Kovse, J.: Generic Model-to-Model Transformations in MDA: Why and How?. Workshop 
on Generative Techniques in the context of Model-Driven Architecture, at the 17th Con-
ference on Object-Oriented Programming, Systems, Languages, and Applications, OOPS-
LA, Seattle, WA, USA, November 4-8, 2002.
http://www.softmetaware.com/oopsla2002/mda-workshop.html.

[15] Object Management Group, Inc.: XML Metadata Interchange (XMI) Specification, v1.2, 
January 2002.
- 6 / 7 -



[16] Elrad, T.; Aksits, M.; Kiczales, G.; Lieberherr, K.; Ossher, H.: Discussing Aspects of AOP. 
Communications of the ACM 44(10), October 2001, pp. 33 – 38.

[17] Mili, H.; Mcheick, H.; Sadou, S.: CorbaViews – Distributing Objects that Support Several 
Functional Aspects. Journal of Object Technology, 1(3), Special Issue: TOOLS USA 2002 
Proceedings, pp. 207 – 229.

[18] Kovse, J.; Härder, T.: Generic XMI-based UML Model Transformations. Proceedings of 
the 8th International Conference on Object-Oriented Information Systems, OOIS, Mont-
pellier, France, September 2-5, 2002. LNCS Vol. 2425, Springer-Verlag, 2002, pp. 192 –
198.

[19] Czarnecki, K.; Eisenecker, U. W.: Generative Programming: Methods, Tools, and Appli-
cations. Addison-Wesley, 2000.

[20] Mellor, S.; Balcer, M. J.: Executable UML: A Foundation for Model Driven Architecture. 
Addison-Wesley, 2002.
- 7 / 7 -


	Generic Concern-Oriented Model Transformations Meet AOP
	1 Introduction
	2 Putting the Pieces Together
	3 Required Infrastructure
	4 Conclusions


