Towards JMS Compliant Group Communication

Arnas Kupys Stefan Pleisch AndrSchiper Matthias Wiesmann
Ecole Polytechnique &Erale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
Phone: +41-21-693-4240 Fax: +41-21-693-6770
Email: {firsthame.lastname t@epfl.ch

Abstract— Group communication provides communica- has not led to significant increase in the use of group
tion primitives with various semantics and their use greatly communication.
simplifies the development of highly available services. In contrast, there is a communication technology that
However, despite tremendous advances in research andhas recently attracted a lot of interest: the so called
numerous prototypes, group communication stays confined message oriented middlewares (MOMs), e.g., MQSeries
to small niches and academic prototypes. In contrast, [14], Tuxedo [15] or JMS (Java Messaging Service)
message-oriented middleware such as the Java Messaging16]. This technology, which provides abstractions for
Service (JMS) is widely used, and has become a de-gsynchronous message sending, is increasingly used in
facto standard. We believe that the lack of standard industry and is now considered to be an integral part of
interfaces is the reason that hinders the deployment of enterprise computing infrastructure. Some MOMs (e.g.,
group communication systems. JMS) have become de-facto standards.

Since JMS is We”-estab“shed, an interesting solution The success Of MOMS, but aISO the success Of the
Is to map group communication primitives onto the JMS \wep, show that standardized interfaces are a key element
API. This requires to. adgpt the tradltlonc_al specifications for a successful technologye believe that the lack
of group communication m_order to take into accc_)unt the of standards is the major reason for the limited use
features of.JMS. The resqltmg group cqmmumcgﬂon AP o group communicationThis means that, to become
together with corresponding specifications, defines group \\iqely ysed, group communication needs to adapt to
;?]r;r:gnr;'gﬁtti'gg primitives compatible with the JMS syntax o saneral network environment, and adopt standard

' interfaces.

What standards do we want for group communication?
There is probably no need to invent new standards. As

Group communication has been an active area @fcussed in [17], existing standards can very well be
research for more than a decade. The notion of procesgisidered for group communication. In this paper we
groups, with the possibility to multicast messages ibvestigate the use of the widely accepted JMS standard
the members of a group, was proposed initially in tHer group communication. This study addresses two
context of the V System [1], and later extended bgeparate but related issues: (1) the mapping of the group
the Isis system to the context of failures [2]. Grougommunication API to the JMS interfaces, and (2) the
communication systems provigme-to-manycommuni- discussion of the semantics of this API in relation with
cation primitives with various semantics (e.g., reliablhe quality of service that JMS provides. Note that the
delivery of messages and/or delivery of messages in tgg@iper is only about interfaces and specification issues.
order) and their use greatly simplifies the developmetaplementation of group communication primitives is
of highly available services (through replication). Yetather well understood, and is not discussed here.
despite tremendous advances in research and numerous
prototypes [3], [4], [5], [6], [7], [8], [9], [10], group Related Work.Integrating group communication with
communication stays confined to small niches and é&xisting middlewares is not a new idea. For example,
academic prototypes. Why is this so? Initial grougroup communication has been used for the replication
communication systems were monolithic and so wecd CORBA objects. Recent examples are the Object
difficult to adapt to specific application needs. HoweveGroup Service (OGS) [18], Eternal System [19], In-
this argument does not explain the limited use of theroperable Replication Logic (IRL) [20], Electra [21].
technology. Indeed, although recent projects have pio- [22] group communication is used to implement
posed modular systems, which are more flexible and daigh-available replicated Enterprise Java Beans (EJB)
be tailored to the application needs [11], [12], [13], thiservices, and [23] provides causal ordering for JMS

. INTRODUCTION

https://core.ac.uk/display/147902716?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

messages. The JMS specification does not define how the server

In contrast, the goal of the paper is different. The papisr implemented. It only defines the interfaces and ser-
is about using standard interfaces (namely JMS) to simiees that the JMS infrastructure must provide.
plify and standardize the usage of group communicationTwo communication paradigms are defined in the
(an issue not addressed in the above references). JMS specificationpoint-to-pointand publish-subscribe

In point-to-point messaging, a message is sent by a

RoadmapThe rest of the paper is structured as followgMS client to a specifiesnessage queydrom which
Section |l gives a brief overview of the JMS notiond is extracted by another JMS client (whiclonsumes
needed to understand the paper. In Section I1l, we presehtieceivesthe message). Hence, the message sent to
the basic idea for the mapping of group communicatich message queue is received by only one client. In
to the JMS interfaces and discuss how the properties dtrast, publish-subscribe messaging provides one-to-
notions of JMS can be translated to the context of grofi@2ny communication and is based on the concept of
communication. The core contribution of the paper opic: @ message published by a JMS client to a topic is
in Sections IV and V. In Section IV we first introducgeceived by all IMS clients that have subscribed to that
the system model and the definitions, and then g|{@plC Note that the publisher does not know the set of
the specification of group communication with respegtibscribers.
to JMS. Section V presents the JMS compliant AP Our proposal is to map the group communication API
for group communication. Section VI discusses sonie the JMS publish-subscribe paradigm. Thus in the next
additional issues and Section VII concludes the papeparagraph we focus on this paradigm.

Il. JAVA MESSAGINGSERVICE A. JMS Publish-subscribe

The Java Messaging Service (JMS) [16] is a part of JMS specifies two types of subscriptions to the topic:
Sun Microsystem’s Java 2 Enterprise Edition [24]; it ifon-durableand durable Consider a topic to which a
a set of interfaces and associated semantics that govdi@nt has subscribed. With a non-durable subscription
the access to messaging systems. The basic architectdeclient receives messages published to the topic as
is shown in Figure 1. JMS assumes a central JMS senJéng as its connection to the server is active. The
which generally acts as the hub for all communicationgpnnection can break (i.e., become inactive) for example
and has access to stable storage. The server is transpdregguse of a link failure, or because of the crash of
to the application, composed of the JMS clients (senddhe client. Messages published after the connection is

of messages and receivers of messages), and a sebreken are not guaranteed to be received by the client.
application-defined messages. In contrast, durable subscriptions mask these failures.

Indeed, the client is ensured to receive all messages
that have been published to the topic it has subscribed
to, even if the connection is not permanently active.
Assume, for instance, that the client fails at time
(the failure breaks the connection) and recovers at time
t2. The JMS server keeps all the messages published

JMS Client JMS Client
Application

Application

5

Messages Messages when the client connection was “inactive” (time interval
\/ \/ [t1,%2]), and delivers them to the client as soon as its
JMS Server connection is “active” again.

Another JMS feature is thenessage delivery mode
which can bepersistentor non-persistent Persistent
messages are stored by the JMS server on stable storage,
and provide guarantees to publishers in case of the
crash of the JMS server. If the JMS server receives a
persistent messages, it acknowledges the reception to
the publisher only after having stored the message on
persistent storage. Non-persistent messages, in contrast,

Topic

Application Application
LIf the connection is broken, the client can try to subscribe again
JMS Client JMS Client to the topic. Let us assume that the connection was broken at time
t1, and that a new subscription is received by the JMS server at time
Fig. 1. Basic JMS architecture. to. With non durable subscriptions, the messages published in the

interval [t1, t2] are not received by the client.

are not saved on persistent storage, and can thus be lo3there are two possible approaches here: (1) rely
if the JMS server crashes. strictly on the interfaces and standard mechanisms of-

To summarize, as shown in Figure 2, subscriptidered by JMS, or (2) add new interfaces to JMS when
durability specifies a property between (i) the JIMS serveeeded (e.g., for functionality specific to group commu-
and (ii) topic subscribers, while persistence is related mication). Both approaches have advantages and draw-
the communication between (i) the topic publisher arlthcks. Approach (1) has the important advantage not
(i) the JMS server. Note that durable subscriptions ontg modify the existing JMS API, whereas approach (2)
make sense with persistent messages [16]. In the reisates JMS compatibility and thus might confuse de-
of the paper, we refer to persistence/non-persistence aetbpers familiar with JIMS. On the other hand, approach
durability/non-durability as quality of service (QoS). (1) might, for some features, not be very natural from

the perspective of group communication. Approach (2)

Persistent Durable does not have this problem.

Non-Persistent Non-Durable Consider the following example: in group communi-
cation systems, a group member can issue a request to

Jus JMS Jus get the current group membership. JMS does not provide

L e L an interface for this. So, approach (2) would lead to the

Publisher Subscriber addition of a new JMS method to obtain a list of current

group members. Approach (1) requires to find another

solution.

We have chosen approach (1). By not extending the
JMS API for group communication, we believe that we
increase the acceptance of our proposal. In Section V,
I1l. GROUP COMMUNICATION AND JMS: we discuss the work-around that we propose, which are

PRELIMINARY CONSIDERATIONS a consequence of our choice to adopt approach (1).

We now relate group communication and JMS semap-
tics to each other. We start with the mapping of groups

Fig. 2. Persistence vs. durability.

Openvs. closed groups

onto JMS topics. In the context of group communication, it is some-
times required that the process that broadcasts a message
A. Groups as JMS topics to a group is part of that group. This is called the

S closedgroup model. In thepengroup model, no such
restriction exists.

In JMS a publisher does not have to be a subscriber to
?Jublish to the topic. This corresponds to the open group
model. Since the open group model is more general
i than the closed group model, it seems natural to adopt

sponds to publishing the message to the COrrespolitiy mo el for group communication based on the JMS
Ing topic. interfaces.

The idea of representing a group as a topic is quite
natural, since JMS uses the notion of a topic to indirectly. Mapping of persistents. non-persistent messages
address a set of JMS clients. Note that representing therhe mapping of group communication primitives to
group as a JMS queue is less natural, and raises the JMS API is not the only problem that we need to
following semantic issue: while multiple clients can reagddress. We also have to find a mapping for the JIMS QoS
from the same queue, onlyne client gets a particular defined by the persistence/non-persistence of messages
message (i.e., if client reads message:, then client and by the durability/non-durability of subscriptions. We
¢’ cannot readn). Queues are therefore not suited tgtart with the persistence issue, and discuss the durability
express the multicast semantics of group communicatigésye in the next section.

. Consider a JMS publisher that publishes message
B. APl Mapping topic g. If m is persistent, and the publisher received an

The next question to address is the mapping atknowledgment from the JMS server, then the publisher
group communication primitives onto JMS method#$ias the guarantee that messagevill not be lost, even
more specifically onto the methods related to the publisim- case of the crash of the JMS server. In contrast, if
subscribe paradigm. Clearly, the mapping is not alwaysessagen is non-persistent, then it can be lost if the
possible, as some group communication concepts do dMS server crashes. Note that the lossrotan happen
exist in JMS. although the publisher does not crash.

Our basic idea is to represeptocess groupsis JM
topics
« Members of a groupg correspond to the subscriber
of the corresponding topic.
« Broadcasting a message to the memberg ofrre-

If we transpose the second scenario in terms ®his means that the group communication system has
group communication, we have the following. Considehe obligation to deliver tp all messages broadcast to
a processp that broadcasts message to groupg. If g, after p has became a member gf This model is
the message is not persistent it can be lost, evem ifsometimes called therash-recoverymodel.
is correct (i.e., does not crash). The message loss doeso summarize, durable subscriptions can be mapped
not happen if the message is persistent. In other wortis,a system model in which crashed processes are not
non-persistent messages provide what is usually calleinoved from the group. Non-durable subscriptions can
best-effortguarantees, while persistent messages cant#®Emapped to a system model in which crashed processes
seen as providing thstrong guarantees of a reliableare eventually removed from the group.
(logical) channel between the sender and the group. ﬁs .
group communication traditionally provide more than’ Clientsvs. servers
best-effort guarantees, we assume persistent messages Iiie JMS architecture distinguishes between the JMS

the rest of the paper. server and JMS clients (see Fig. 1). In the context of
_ o group communication, this distinction is rather unusual:
E. Mapping durablevs. non-durable subscription for example, the specification of group communication

How does the notion of durabks. non-durable sub- talks only of what JMS callslients However, the topic
scriptions map to guarantees in the context of gro@wb the paper forces us to talk also of ti#MS server
communication? This question is more difficult to adEven if this is unusual, it has a positive consequence:
dress than the question of persistence/non-persistencs. It decouples explicitly theerver(s)that provide the
The reason is that the issue cannot be discussed without group communication service from tlofients that
referring to what happens to the processes that are use the service. Note that this decoupling does not
members of a group and crash. prevent a process, in some implementation, to be at

In one commonly adopted group communication the same time a client and a server. This special
model, processes that crash are eventually removed from case is often considered to be the standard case
the group. Upon recovery, these processes take a new in group communication algorithms. However, an
identity before joining again the group. This model is implementation is not forced to adopt this solution.
sometimes called therash-no recoverynodel: processes For example, an implementation of group commu-
that crash seem not to recover, since they recover under nication could be based on one single (JMS) server.
a new identity. This model is for example the one of Of course, such an implementation is not fault-
the Isis system [3]. Note that, if a message is broadcast tolerant. Another implementation could be based on
to some groupy, the group communication system has multiple (JMS) servers, and so be fault-tolerant. Yet,
the obligation to deliver messages to membersgof in another implementation, the same process could
but only to members of;. So if a proces® crashes, be both a (JMS) server and a (JMS) client.
and is eventually removed from the group, the group The reader should have the decoupling between clients
communication system stops to have the obligation #d servers clear in his mind, in order to avoid mis-
deliver messages tp. understanding some issues discussed in the paper. For

If we transpose this in terms of type of subscriptiongxample, the distinction made above between crash-
we see that the crash-no recovery model can very niceftovery and crash-no recovery can apply both to (JMS)
be mapped to non-durable subscriptions, in which tlients, and to (JMS) servers. However, if one model is
JMS server stops to have any obligation toward a suéhosen for (JMS) clients, this does not impose the same
scriber with respect to message delivery if the connectigfbdel on (JMS) servers. Moreover, this paper is only
is broken. about specifications, which means that model issues,

If the crash-no recovery model can be mapped to nagiiscussed in the next section, refer only to (JMS) clients.
durable subscriptions, what is the group communication

model that corresponds to durable subscriptions? With!V- SPECIFICATION OF GROUP COMMUNICATION
durable subscriptions, even if the connection to a sub-The properties ensured by group communication are
scriber is broken, the JMS server has the obligation to ddways defined very rigorously, e.g. [25]. As discussed in
liver messages to that subscriber. This can be interprethd previous section, JMS introduces some new features
in the following way in terms of group communicationfrom the point of view of group communication (for ex-
Let p be a process member of grogpand letp crash ample message persistence, durability of subscriptions),
at timety, and later recover at timg. Despite of being which need to be mapped to the properties of group
down during the intervalt|, t2], processp delivers all communication. This has been discussed informally. We
the messages broadcast to the grgupn other words, explain now how these features can formally be inte-
althoughp crashes, it is not removed from the groupgrated into the specification of group communication.

We first recall some definitions, and then use them the successive views @f are provided to the processes
the specification of group communication. The specificthat are in these views (we say that the views are
tion of group communication is split into two parts: (1pelivered to the processes). We do not discuss here the
the specification of theeliability guaranteesprovided precise specification, we only assume that, for every
by the the broadcast primitive, and (2) the additiongroup g, its successive views are totally ordered: the
ordering guaranteeshat can be superimposed on top' view of groupg is denoted byw;(g), or simply v;.
of the reliability guarantees provided by the broadcaktoreover, we assume that, every processelivers the
primitive. Since these two issues are orthogonal, wiews (to which it belongs) in the index order (e.qg.,
discuss them separately. if i < j, processp deliversv; beforev;). For every
. process, the delivery of each new view is calladw
A. Definitions installation, or view changeNote that this specification

1) Correct and good processesn this section, we is calledprimary partition membershif27].
use the termprocessas synonym forJMS client The 3y Broadcast vs. partial broadcas®he specifications
guarantees provided by group communication primitiveg group communication usually consider that the event
are related to the crash of processes. So, we need S@P8vhich a process broadcasts a messagatdsnic
definitions. A process can b or down A process is gijther fully executed, or not executed at all. This is be-
up if it is operational, and down if it has crashed. Agyse it usually does not matter whether the process that
crashed process, after recovery, is again up. Howeviggecutes the broadcast has crashed during the execution
the specification of group communication is not givegf the broadcast primitive, or after. In both cases, because

in terms of the status up/down of processes at a givgfithe crash, there is no obligation for the message to be
time. Instead, the specification refers to the status @jivered to the destination processes.

processove_;_ their wh;)le executionin this context, |, the context of JMS, the situation is different. This is
many specifications of group communication considgL|aieq to the acknowledgment mechanism provided by
that processes do not recover after_ a C.'QaSh'th'S JMS (see Sect. lII-D). With persistent messatjegen
model, a process that never crashes is said tcobect ¢ publisher procegs (or JMS client) has received

anlt_ji a procesbs that crasfhgs isblsaid tgmy'. h dan acknowledgment from the JMS server, we have the
_ However, because of durable subscriptions, the digjarantee that the message is going to be delivered by
tinction between correct and faulty processes is

h h include | ification th destination processesyen ifp later crashes This
enough. We have to include in our specification the Cage, s s to distinguishroadcastrom partial broadcast
of processes that crash and later recover. As in [26],

! Ay ¥onsider some procegsthat broadcasts (i.e., publishes)
say that a process goodif it is eventually always up, nessagen. If p receives the acknowledgment from the

.e., if there is a timet such that aftert the process jyg server, we say thathasbroadcastmessagen. If p
is always up® So, a process that crashes only a finitg,

. . shes before having received the acknowledgment, we
number of times, and recovers after each crash, is a 9O tha, haspartially broadcast message. Indeed, if
process. Trivially, a process that never crashes (i.e., |

. acknowledgment is received bybefore the crash,
correct) is also a good process. Processes that are

; #igte is no guarantee that the message is received by the
good are said to bbad IMS server.

2) Membership viewsA process group corresponds The relation between these two notions and the spec-

to a JMS topic. Processes can join a group by Subs’cr'b'ﬁ“lgations will become clear in the next paragraph.

to the corresponding JMS topic; they can leave the group

by unsubscribing from the corresponding JMS topic.

So, the membership of a group changes over time.) Reliability guarantees of the broadcast primitive

group communication, the current group membership is

provided to the current group members. The information We now formally define the guarantees provided by

about the current membership of the group is called tHee broadcast primitive. The properties are expressed in

group’sview (of the membership). So, as processes jolarms of broadcastor partial broadcast and deliver. °

or leave some group, the membership of changes and Delivery of some message: is the event by which a
message is provided to a process (JMS client). We first

“This does not prevent a process from recovering after a cragliscuss the case of non-durable subscriptions, and then
However, the consequence is that a process that crashes must recover
under a new identity.

3t is usual in specification to have properties that are eventually*Recall that we have excluded non-persistent messages from our
true forever. Actually, from a pragmatic point of view, it is sufficiendiscussion (Sect. I1I-D).
that the property holds “long enough”, where “long enough” depends®We could defingartial deliver as well, but it does not influence
on the application. the specification.

the case of durable subscriptichIhese specifications However, sending view delivery does not make sense in
are adapted from those in [28], which extends thte open group model.

specification in [25] to the case of dynamic groups. 2) Durable subscriptions:In Section IlI-E we have

1) Non-durable subscriptionstWe have explained in discussed the link between durable subscriptions and the
Section IlI-E the link between non-durable subscriptiorsgash/recovery model. In the case of durable subscrip-
and the crash/no-recovery model. So, in the case tafns, a proces® that crashes at timg and recovers
non-durable subscriptions, the specification distinguishais time ¢,, after recovery is expected to deliver all
between correct and faulty processes: messages it has missed in the interval, {;]. This

« (P1)Uniform Validity. If a process broadcasts mesrequirement can only be expressed if the specification
sagem to the groupg, then somecorrect process distinguishes between good and bad processes (and not
in ¢ eventually deliversm, or no process iry is only between correct and faulty processes, as for non-
correct durable subscriptions).

« (P2) Uniform AgreementlIf a processp delivers So, for durable subscriptions, we simply replaoe-
messagen in view v, then all processes that argectby goodin the properties P1-P4 above (actually only
correctin v eventuallydeliver m.” in P1 and P2, since P3 and P4 do not refer to correct

« (P3) Uniform Integrity. For any message:, every Processes).
process ing deliversm at most once, and only if A comment is needed here for the reader familiar with
m was previously partially broadcast to the group communication literature. In most existing

« (P4)Uniform Same View Deliveryf two processes group communication systems, if procgssrashes while
p andq deliverm, in view v; for p, and in viewv; in some viewy;, thenp is removed from the group. This
for ¢, theni = ;.8 means that a new view;; is defined, from whiclp is

The Uniform Validity property (P1) is similar to the€xcluded. Ifp later recovers, and requests to join again,
one in [25]. It is the property that we need in the opeiff€n & new view; . is defined, which includes again.
group model (Sect. 11-C), i.e., the model in which thén this case, all messages delivered in vigw, will not
process broadcasting a message to gepdpes not need be delivered by. We assume here a different beha_/lor:
to be a member of. Note that the property is uniform,@ Processp that crashes and !ater recovers, remains a
which means that the delivery is also ensured if tHeember of the group, even while being down. A process
sender crashes after the broadcast has been executedi$s&gnoved from the group only as a result of an explicit
discussion in Sect. IV-A.3). request to I_eave th_e group (|_.e., unsubscr!onn from the

The Uniform Agreement property (P2) requires agre€orresponding topic). This is the behavior that users
ment on message delivery. While P1 requires that sofdniliar with JMS expect from a durable subscription,
correct process delivers the message, P2 requires thal would be surprised not to have similar guarantees in
some process (correct or not) delivers messagehen the context of group communication.
all correct processes also deliver. . N

The Uniform Integrity property (P3) prevents th&- Ordering guarantees of the broadcast primitive
delivery of duplicate messages. It also requires that theAfter the specification of the reliability guarantees,
delivery of messagen is justified by a correspondingwe specify now additional ordering guarantees for the
partial broadcast ofn. Note that a partial broadcast ofdelivery of messages. Traditionally, the choice is be-
m is enough to justify the delivery ofn. If a process tween no ordering requirement (which is calletiable
broadcastsn, and crashes during the broadcast, messageadcas}), and total order (calleatomic broadcagt®
m is allowed to be delivered. There is however a more general and elegant solution;

The Uniform Same View Delivery property (P4) rethe solution consists in using the group communication
quires that all processes deliver messagén the same primitive calledgeneric broadcasf29]. Generic broad-
view. This is a standard property in the context of grougast orders messages according teamflict relation
communication. The property is sometimes replaced ®eneric broadcast ensures that two messages that con-
a stronger property, callefiending View Delivery27]. flict are delivered in the same order everywhere. Two

] _ messages that do not conflict, do not need to be ordered.

To simplify the specifications, we assume here that all members Reliable broadcast (no order) and atomic broadcast
of some groupy have the same QoS for the subscription: either a4 order) are special cases of generic broadcast.
have durable subscriptions, or all have non-durable subscriptions. ™~ .

Reliable broadcast corresponds to the case where no

"The notion ofcorrect in a viewis explained in [28]. It is out of . ;
the scope of this paper to discuss this here. messages conflict. Atomic broadcast corresponds to the

8We say that procegsdelivers message: in view v;, if the current
view of p is v; whenm is delivered. ®We do not discuss causal order here.

case where all messages conflict. Moreover, we callS allows messages to have arbitrary “properties”
define that all messages tagged ‘“reliable broadcasttached to them. Using this feature, we can for example
conflict with all messages tagged “atomic broadcast” (saach membership information to messages (see below).
Table I). This ordering guarantee, which is very useful asUsing the same technique, we can map all the group
illustrated in [30], [29], is not provided by the traditionakcommunication primitives to the existing JMS API, and

approach. remain fully compliant with the JMS API.
TABLE | TABLE Il
MESSAGE CONFLICT RELATION BETWEEN RELIABLY AND JOIN AND LEAVE RESTRICTIONS RELATED TOJMS
ATOMICALLY BROADCAST MESSAGES Non-durable Durable
Message m Subsription Subsription
Reliable Atomic P can request 70! no no
\E T Broadcast | Broadcast P can request leave ¢ o ves
% Broadcast | 20 conflict | conflict
§ Atomic
= |Broadcast | conflict | conflict Nevertheless, there is one problem that cannot be

solved using message properties. The problem is related
to the requests to join and to leave a group. Join is
. . mapped to the method to subscribe to a topic, and leave
The ordering guarantee of generic broadcast can f3€he method to unsubscribe to a topic. The JMS API
adapted from [28] as follows: does not allow a clienp to request a subscription for
« (P5)Uniform Generic Orderif some process deliv- another clientg. In group communication systems, a
ers messager in view v before it delivers messageprocessp can usually issue a request to add another
m’, and the two messages, mm’ conflict, then every process; to the group. The same problem arises for the
process that is in viewv deliversm’ only after it |eave primitive, in the case of non-durable subscriptions.

has deliveredn. A JMS clientp cannot close the non-durable subscription
Note that, the specification (P5) is the same for nonf another clieny (this is possible for durable subscrip-
durable and durable subscriptions. tions). In group communication systems, a procgss

For a procesp that broadcasts a message to the grogpn usually issue a request to remove another process
g, the “generic broadcast” approach has the following from the group. So, we have to restrict our join and
consequence. Instead of choosing a broadcast primitigave group communication primitives to match the JMS
(reliable broadcast or atomic broadcast), progessn- interface. The restrictions are summarized in Table II.
ply tags its message with one of the tags defined for
group ¢ (there can be more than just two tags). Th&. JMS Classes
corresponding conflict relation is attached to the group, we represent groups as JMS topics and group mem-
and defined at group creation time. bers as the subscribers to these topics. So, in terms of the

JMS API, on the client side a group has an associated
V. MAPPING GROUP COMMUNICATION AP TopicSession instance, and each member of the group
TO JMS API has an instance of the clagspicSubscriber (Fig. 3).

This section describes the JMS compliant API thdthe classTopicPublisher is used to broadcast messages.
we propose as an interface for group communicatiofémember that the JMS model implies apen group
We map group communication primitives onto JM®1odel (see Sect. IlI-C): senders do not have to be
methods. As already said in Section I1I-B, the mappirart of the group to broadcast messages to it. Message
is not always possible, since some group communicatitgeeption can be done either (1) by calling a method of
concepts do not exist in JMS. In these cases, we havdhg classTopicSubscriber (the call can be blocking if no
find the best work-around. message is available, or can return immediately), or (2)

As mentioned in Section IIl, there are two possible afpy registering a callback. The callback is provided by
proaches: (1) rely strictly on the interfaces and standdff interfacemessagelListener (Fig. 3).
mechanisms offered by JMS, or (2) add new interfaces to
JMS when needed. Since we decided to follow the first JMS Methods
approach, we have to find the solutions for problemsWe divide the JMS methods into two basic categories:
such as providing views in JMS to group memberadministrative methodsand communication methods
Fortunately, JMS provides one extension mechanisidministrative methods are used to set up groups, and

Sender Receiver header. A “view” message has the head®isType” set to
Application | Message th_e valuenew-view”, and has a property calleavs view”
] | Listener | with a value equal to the new view.
publish() onMessage () Like for normal messages, a view change message can

Topic Topic H R

Publisher Subscriber be Irlﬁcelll/ed either by a down call, or through an up call
Topic || Messages Topic (callback).

Session Session

2) Administrative methods:

a) createGroup(g): Creating a new group corre-
sponds to creating a new JMS topic. Topic creation
is outside of the scope of the JMS specification. Each
implementation will provide its own mechanism for
are in general used during the setup phase of the peseating topics (groups).
gram. Communication methods represent the interface, b) setMessageConflictRelation(g,conflictis for
used for actual communication, i.e., broadcasting aflie creation of groups, the specification of the message
delivering messages. Administrative methods and cowennflict relation for some groug must be handled
munication methods can further be characterizedosan outside of the JMS API. This is done at group creation
calls orup calls. Down calls correspond to usual methotime.

Fig. 3. JMS Classes.

calls, and up calls correspond to callbacks. Table Il c) joinGroup(g) — non-durable subscriptionAs
summarizes the API mapping, which is now discussestplained before, we have to restrict our group com-
in more details. munication primitive for joining a group: a process
can only add himself to the group. For non-durable

1) Communication methods: subscriptions, the client calls the methaddpicSes-

a) broadcast(g,m)Thebroadcastprimitive sends a sion.createSubscriber(g), whereg is the topic.
message to all members of a group. In order to broadcast d) joinGroup(g,processName) — durable subscrip-
a messagen to some groupy, a client simply calls the tion: Joining a group with durable subscription re-
method publish(m) on the instance of thaopicPublisher quires an additional parameter, namely pinecessName
class that corresponds ta The client uses the samegn JMS, this parameter is used to uniquely iden-
interface to send messages, regardless of the typetiyf a durable subscription, and must be unique per
ordering properties he expects (order or no order). TAMS server. So, to join a group with a durable
ordering constraints are defined by the message confiigbscription, the client calls the methotbpicSes-
relation (see Sect. IV-C), and the client just needs $®n.createDurableSubscriber(g,processName), where g is
attach the appropriate tag to each message. the topic.

b) deliver(g,m) — down callin order to deliver a e) leaveGroup(g) — non-durable subscriptioe
message broadcast to grogpa client simply calls the also have to restrict the group communication primitive
methodreceive() on the the instance of thepicSubscriver for leaving a group: a process can only remove himself
class that corresponds o The call is blocking if no from the group. For non-durable subscriptions, the client
message is available. Note that another non blockinglls the methodlose() on the instance of th&picSub-
method, calledeceiveNowait(), is also available. scriber class that corresponds to

c¢) deliver(g,m) — up call:In order to deliver a f) leaveGroup(g,processName) — durable sub-
message broadcast to grogpa client can also registerscription: For the durable subscriptions, JMS allows
a callback. A callback is provided by the interfages- a client to unsubscribe another client (see Table III).
sageListener. When a message is available for delivery, To remove a client from the group, the client calls the
the methodbnMessage(m) is automatically called. method TopicSession.unsubscribe(processName). Note that

d) viewChange(g,m)Traditionally group commu- TopicSession iS not necessary associated with some topic,
nication systems have a special call to notify of a viewhich implies thajprocessName must be unique not only
change. However, JMS has no such interface. On tifiethe group, but in the whole system.
other hand, JMS specifies messalgeadersand, as g) getGroupView(m)Traditionally, group commu-
mentioned earlier, allows the attachment mbperties nication systems have a call to get the current mem-
to messages. So, a simple solution is to consider thrship (i.e., view) of the group. JMS does not have
delivering a new viewv for group g is like delivering such an interface. As already said in the context
a messagen for group g. A “view’” message is dis- of the viewChange method, messages in JMS can
tinguished from a “normal” message by itsMSType” have various “properties”. Like for “view” messages,

TABLE 1l
GROUP COMMUNICATION INTERFACE ANDJMSMETHODS

[Primitive | JMS method | Direction | Note |
Communication methods

broadcasy, m) TopicPublisher.publish(m) down broadcasts a message
deliver(g, m) m = TopicSubscriber.receive() down delivers a message

deliver(g, m) MessagelListener.onMessage(m) up delivers a message
viewChangeq,m) m = TopicSubscriber.receive() with message| down notification of view change

headerJMSType="new-view"
viewChangeq,m) Messagelistener.onMessage(m) with mes- up notification of view change

sage heade}MSType="new-view"
Administrative methods

createGroupy) outside of the scope of JMS API creation of a new group
setMessageConflictRelatian(conflict) | outside of the scope of IMS API definition of the message conr-
flict relation for groupg
joinGroup(g) TopicSession.createSubscriber(g) down add myself to the group (non
durable subscription)
joinGroup(g, processName) TopicSession.createDurableSubscriber(g, down add myself to the groug
processName) (durable subscription)
leaveGroupq) TopicSubscriber.close() down remove myself from the group
(non-durable subscription)
leaveGroupq, processName) TopicSession.unsubscribe(processName) down remove a process from thg
group (durable subscription)
getGroupViewfn) m.getStringProperty("JMS _view”) down Returns the view in which mesj

sagem was delivered.

we propose to attach to ordinary messages the prdh- Subscription Notifications
erty “JMS_view’, whose value is the view in which
the message was delivered. So, calling the meth
m.getStringProperty(“{JMS_View”) returns the view in which
messagem was delivered. To get the current view?
the client must call this method on the last messagfsl
delivered, where the last message is either an “norm

message, or a “view” message.

OdThe JMS specification defines another mechanism
called subscription notificationThis mechanism allows
publisher (once it has registered to this notification
rvice) to be notified when there are no subscribers,
d when there are subscribers again.

The mechanism cannot be used for group communica-
tion, to provide the group membership information (e.g.,
the views). This is because, the mechanism provides
information to publishers, whereas, in group communi-

In this section, we discuss some additional issuestion, the view change information must be provided to
related to JMS. the group members (subscribers).

VI. RELATED ISSUES

A. Message Priorities VII. CONCLUSION

In Section IV, we have defined the ordering property
P5. The JMS specification defines an additional mecha-n this paper we have discussed the mapping of the
nism that may affect message ordering, namely mességatures provided by group communication onto the
priorities. JMS allows the client to associate prioritiestandard JMS interface. We propose a JMS compliant
to the messages it sends. The JMS specification d@d3l for group communication, as well as a specification
not require strict enforcement of guarantees with respdat group communication that takes into account the
to priorities (it says that an implementation should dguality of service defined by JMS (message persistence
its best to respect message priorities). So, priorities cand durability of subscriptions).
be completely ignored. However, for some applications, As the interface looks familiar to JMS developers,
priorities can be useful. we hope that our proposal will contribute to a wider

Note that the priority mechanism is orthogonal tase of the group communication abstractions, and that
the order property P5. Message delivery can be ordemgmbup communication will become an integral part of
according to priorities, as long as this does not lead fisture applications. In order to validate our APl and
the violation of property P5. specifications, we have started to build a prototype.

AcknowledgmentsNe would like to thank Sam Toueg[16] M. Hapner, R. Sharma, J. Fiall, and K. Stout, JMS
for discussions related to the specification of group
communication.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[17]
REFERENCES

D. R. Cheriton and W. Zwaenepoel, “Distributed process groups
in the V kernel,” ACM Transactions on Computer Systems
(TOCS) vol. 3, no. 2, pp. 77-107, May 1985. [18]
K. P. Birman and T. Joseph, “Exploiting virtual synchrony

in distributed systems,” ifProc. of 11th ACM Symposium on
Operating Systems Principle$987, pp. 123-138. [19]
K. P. Birman, “The process group approach to reliable dis-
tributed computing,"Communications of the ACMol. 36, no.

12, pp. 37-53, 1993. [20]
G. D. Parrington, S. K. Shrivastava, S. M. Wheater, and M. C.
Little, “The design and implementation of Arjuna,” Tech. Rep.
TR94-65, ESPRIT Basic Research Project BROADCAST, 1994.
C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm, “Phoenixf21]
A toolkit for building fault-tolerant distributed applications in
large scale,” inWorkshop on Parallel and Distributed Platforms

in Industrial Products San Antonio, Texas, USA, 1995, IEEE,[22]
Workshop held during th&r*® Symposium on Parallel and
Distributed Processing, (SPDP-7).

R. van Renesse, K. P. Birman, and S. Maffeis, “Horus: A
flexible group communication systemZommunications of the [23]
ACM, vol. 39, no. 4, pp. 76-83, 1996.

L. E. Moser, P. M. Melliar-Smith, D. A. Agarwal, R. K. Budhia,
and C. A. Lingley-Papadopoulos, “Totem: a fault-tolerant
multicast group communication systemCommunications of

the ACM vol. 39, no. 4, pp. 5463, 1996.

D. Dolev and D. Malki, “The Transis approach to highl24]
availability cluster communication,” Communications of the
ACM, vol. 39, no. 4, pp. 64-70, 1996.

[9] A. Baratloo, P. E. Chung, Y. H. Huang, S. Rangarajan, arlg>]

[10]

[11]

[12]

[13]

[14]

[15]

S. Yajnik, “Filterfresh: Hot replication of java RMI server
objects,” in Proceedings of thet*® Conference on Object
Oriented Technologies and Systems (COQBanta Fe, New
Mexico, USA, 1998, USENIX, pp. 59-63. [26]
K. P. Birman, R. Constable, M. Hayden, C. Kreitz, O. Rodeh,
R. van Renesse, and W. Vogels, “The Horus and Ensemble
projects: Accomplishments and limitations,” Rroceedings of [2
the DARPA Information Survivability Conference & Exposition
(DISCEX '00) Hilton Head, South Carolina USA, 2000.

Mark Hayden, “The Ensemble system,” Technical Repohzs]
TR98-1662, Department of Computer Science, Cornell Univer-
sity, Jan. 8, 1998.

H. Miranda, A. Pinto, and L. Rodrigues, “Appia: A flexible [29]
protocol kernel supporting multiple coordinated channels,” in
Proceedings of the21®’ International Conference on Dis-
tributed Computing Systems (ICDCS-0Bhoenix, Arizona, [30]
USA, 2001, pp. 707-710, IEEE Computer Society.

M. A. Hiltunen and R. D. Schlichting, “The Cactus approach
to building configurable middleware services,” Rioceedings

of the Workshop on Dependable System Middleware and Group
Communication (DSMGC 2000Nurnberg, Germany, 2000.

IBM Corp., MQSeries Application Programming Guid&lew
Orchard Road, Armonk, NY 10504 USA, 11 edition, 2000,
SC33-0807-10.

“BEA Tuxedo: The programming model,” white paper, BEA
Systems, 315 North First Street, San Jose, CA 95131 USA,
Nov. 1996.

specification Sun Microsystems Inc., 4150 Network Cir-
cle, Santa Clara, CA 95054 USA, 1.1 edition, April 2002,
http://java.sun.com/products/jms/docs.html.

M. Wiesmann, X. &fago, and A. Schiper, “Group communi-
cation based on standard interfaces,” Rroceedings of the
IEEE International Symposium on Network Computing and
Applications (NCA-03)Cambridge, MA, USA, 2003, pp. 140—-
147.

P. Felber, The CORBA Object Group Service: A Service
Approach to Object Groups in CORBAPh.D. thesisEcole
Polytechnique Ederale de Lausanne, Switzerland, 1998.

P. NarasimhanJransparent Fault Tolerance for CORBRh.D.
thesis, University of California, Santa Barbara, USA, September
1999.

R. Baldoni, C.Marchetti, and A.Termini, “Active Software
Replication through a Three-tier Approach,”mooceedings of

the 21st Symposium on Reliable Distributed Systems (SRDS’02)
Osaka, Japan, October 13-16 2002, pp. 109-118, IEEE.

S. Maffeis, “Adding group communication and fault-tolerance
to corba,” in USENIX Conference on Object-Oriented Tech-
nologies 1995.

M. Pasin, M. Riveill, and T. S. Weber, “High-available en-
treprise JavaBeans using group communication system support,”
in Proceedings of the European Research Seminar on Advances
in Distributed Systems (ERSADS200plogna, Italy, 2001.

P. Laumay, E. Bruneton, N. de Palma, and S. Krakowiak,
“Preserving causality in a scalable message-oriented middle-
ware,” in Proceedings of the Middleware 2001 : IFIP/ACM
International Conference on Distributed Systems Platforms
Heidelberg, Germany, November 2001, vol. 2218, pp. 311-329,
Lecture Notes in Computer Science, Springer Verlag.

B. Shannon, Java 2 Enterprise Edition specificatipnSun
Microsystems Inc., 4150 Network Circle, Santa Clara, CA
95054 USA, 1.4 edition, April 2003.

V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” Tech. Rep. TR94-
1425, CS, University of Toronto; CS, Cornell University, May
1994.

M. Aguilera, W. Chen, and S. Toueg, “Failure detection and
consensus in the crash-recovery modédjstributed Comput-
ing, vol. 13, pp. 99-125, 2000.

7] G. V. Chockler, I. Keidar, and R. Vitenberg, “Group communi-

cation specifications: A comprehensive studyCM Computing
Surveysvol. 4, no. 33, pp. 1-43, December 2001.

A. Schiper, “Dynamic Group Communication,” Tech. Rep.
ID:200327,Ecole Polytechniqueétkrale de Lausanne (EPFL),
2003.

F. Pedone and A. Schiper, “Handling message semantics with
generic broadcast protocolsPistributed Computingvol. 15,

no. 2, pp. 97-107, 2002.

S. Mena, A. Schiper, and P. Wojciechowski, “A Step Towards
a New Generation of Group Communication Systems,” in
Proceedings of the Int. ACM/IFIP/USENIX Middleware Confer-
ence Rio de Janeiro, Brazil, June 2003, LNCS 2672, Springer-
Verlag.

