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Abstract 
The model-driven architecture approach (MDA) promotes software development as driven by a 
thorough modeling phase where application code is automatically generated from a platform specific 
UML model (PSM). The idea is that the PSM is itself derived from a platform independent UML 
model (PIM). Such code generation and model derivation are examples of model-to-model 
transformations.  
This paper presents the Visual Model Transformation (VMT) approach, which includes a 
transformation language and a tool to support UML model transformations. The transformation 
language is a visual declarative language that supports the specification, composition and reuse of 
model transformation rules. These rules make use of the OCL language and a visual notation to 
indicate the selection, creation, modification and removal of model elements. An abstract denotational 
semantics based on graph transformation is sketched for the VMT language. We also present the 
MEDAL tool, which is a prototype build on top of IBM/Rational XDE development environment, and 
is a first step towards tool support for the VMT approach.  
 
1 Introduction 
More so than ever, software is hard to construct and maintain. One of the main factors that make it 
difficult is the size and complexity of the problem to be addressed. Abstraction and Separation of 
Concerns offer some of the best tools to combat problem size and complexity in software design. In 
particular, the use of software models has become a popular way to harness the principles of 
abstraction and separation of concerns. 
In this context, the Unified Modeling Language (UML) [Omg03a], which became an Object 
Management Group (OMG) standard in 1997, is used by the majority of software modeling 
techniques and approaches. UML can support many different kinds of abstractions and separation of 
concerns. UML is a rich language that can be used to develop a set of inter-related models. The 
number and complexity of such models can vary depending on the abstraction level and kind of view 
taken, where the overall model is defined as the composition of these models.  
There are a number of model engineering techniques that can be applied during software 
development, which include: refinement and derivation of models toward a software realization, 
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reverse engineering models to a higher level of abstraction, generation of models that act as views of 
existing models, and the synchronization of models.  
These techniques are examples of Model Transformations. A model transformation involves taking 
one or more models as input and producing one or more models as output according to a set of rules 
specific to the purpose in hand. Performing these model transformations by hand can be quite a 
cumbersome and error-prone task. Ideally, such tasks should be automated in order to improve 
developer productivity and reduce human error.  
Our work on model transformation is performed in the context of the FIDJI project [FIDJI] of the 
Luxembourg University of Applied Sciences in collaboration with the Swiss Federal Institute of 
Technology in Lausanne and the University of Applied Sciences in Biel, Switzerland. 
The FIDJI team has experimented with concrete model transformations while developing architectural 
frameworks [GS02, GR03]. Theoretical issues addressed by the FIDJI project [BG00, DiM99, Gue01] 
and more practical needs of our architectural frameworks led the team to define a systematic approach 
to perform generic model transformations. Tool support for this approach was prototyped in a tool 
called MEDAL (uMl gEneric moDel trAnsformer tooL), which is an add-in to IBM/Rational’s XDE 
UML modeling tool [XDE].  
Owing to our experiences with MEDAL and our wider vision for model-based software development, 
we are working on an approach that is capable of transforming any set of UML models to any set of 
UML models. Our goal is to provide an approach that offers a means to specify and execute any 
UML-to-UML model transformation that could be useful during the model engineering activities of 
software development. 
Our proposal for achieving this objective is called the Visual Model Transformation (VMT) approach. 
It offers a visual and declarative language for specifying UML model transformations.  
This paper is organized the following way: Section 2 describes the first prototype developed and 
highlights the lessons learned; it sets the stage for the description of the VMT approach, which is 
given in Section 3. A formalization of the VMT approach using Graph Transformation Theory is 
proposed in Section 4. Section 5 presents related work in the field of model transformations. Finally, 
Section 6 concludes and presents future work.  
 
2 MEDAL – A First Cut at Tool Support for Model Transformation 

2.1 Context 
Our interest in model transformation began with our work developing architectural frameworks using 
IBM/Rational’s XDE UML modeling tool. The framework, which we call JAFAR [GR03], makes use 
of transformations to refine high-level models into J2EE artifacts. These transformations are defined 
in XDE and executed by its pattern engine. In XDE, a transformation is treated as a UML 
collaboration (also called “Model Template”), which has a set of template parameters. Using a 
scriptlet language, it is possible to perform actions on these parameters. It is also possible to define 
pre and post conditions to model template applications. For more sophisticated transformations, one 
can attach a Java program that realizes the actual transformation (referred to as a “callout”).  
XDE 1.5, which will be released officially in July 2003, will add support for OCL and UML profiles. 
These two features are particularly relevant to model transformations. OCL is tailored to operate with 
UML and one of its purposes (together with the specification of model constraints) is the navigation 
through UML models and selection of subsets of them. UML profiles [Omg03b] are extension 
mechanisms that allow the specialization of the UML metamodel to fit particular business domains or 
platforms. Using an UML profile, one can provide to the modeler a set of predefined model elements 
via stereotypes and tagged-values. Together with a set of rules, UML profiles can be employed to 
define mappings into particular platforms (J2EE, CORBA…). So far, many profiles have been 
defined [Omg03b], which each target a specific platform or domain. 
Kozaczynski and Thario showed in [KT02] how to make use of OCL and UML profiles in XDE to 
automatically transform RUP user-experience models into artifacts for the Struts framework 
[Struts03]. Starting from that experiment, we investigated how XDE 1.5 could help one to specify and 



perform more generic model transformations. The result of this initial work was a first prototype, 
which we named MEDAL [GS03] (uMl gEneric moDel trAnsformer tooL). 

The objectives of this prototyping phase were to define a Domain Specific Visual Language (DSVL) 
dedicated to UML Model Transformations, which provides a means to define and compose model 
transformations in UML. 

2.2 MEDAL Features 
We designed the first release of the tool to act as a visual “wrapper” to the existing XDE’s 
transformation mechanism. One can distinguish two kinds of tasks for specifying a transformation 
process: the definition of individual transformations and the definition of the sequencing between 
transformations.  
To define a single transformation, we use a class diagram in which a model template is seen as a 
package and parameters are shown as stereotyped OCL notes. To enhance the expressiveness of notes 
we have defined a small extension to OCL called MxOCL (MEDAL’s extended OCL) allowing user 
aliases to be entered inside OCL expressions. The same UML notes mechanism is employed to 
specify the source context of the transformation and the target location. 
To compose transformations, we use UML activity diagrams. For this purpose, an activity in an 
activity diagram corresponds to a transformation and a transition between activities corresponds to a 
sequential control flow between transformations. In particular, we used a subset of the control flow 
constructs offered by UML activity diagrams (i.e., decisions, transitions, guard conditions) as a means 
to compose transformations. The combination of these diagrams forms the MEDAL transformation 
language. A sample overview of the different views of this language can be found in Figure 1. This 
figure shows a simple transformation that adds accessor and mutator methods to all classes that are 
contained in a given package. These methods are added for all the attributes on the classes, and the 
attributes are made private, if they are not already. 
The meta-model of the MEDAL language as well as its well-formedness rules (expressed as OCL 
constraints) are described in an UML profile. This profile is evaluated by the tool to check diagrams 
and any errors are reported by the tool to the user. This language is out of the scope of this paper. 
Interested readers are referred to [GS03, SRP03]. 

2.3 Lessons Learned — Moving Towards VMT 
Activity diagrams (“Transformation Sequencing Rules” see Figure 1) have revealed to be a good 
representation for composing transformations. However, notations for loops and other more complex 
control structures have to be studied further. Concerning the use of “Model Template Application 
Definition” diagrams (see Figure 1), the main issue is to cope with a huge number of parameters or 
accesses to elements. As the number of MxOCL notes and parameters can be high, using notes to 
specify a great number of parameters can become cumbersome. We must also consider the point that 
in case of obfuscated access to some model elements, the MxOCL expression included in a note can 
be very hard to read. 
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Figure 1- MEDAL Language Overview 
 

3 The VMT Approach 
In this section, we present the VMT approach, which includes our proposal for a UML model 
transformation language. We give an overview of VMT and describe the various components of the 
transformation language.  

3.1 Approach Overview and Background 
The VMT approach proposes a principally visual language for describing transformations between 
models specified with UML. In the language, a transformation is defined in terms of a set of 
transformation rules. Each transformation rule defines the way that one or more target UML diagram 
elements are created, changed, and/or deleted as a function of zero or more source diagram elements. 
Intuitively, this process can be seen as a mapping from source to target diagram elements, where 
target elements may be created in the process. A transformation rule is described by a rule 
specification. A rule specification consists of two parts: a matching schema and a result schema. The 
matching and result schemas are inspired from the work on graph transformation approaches (see 
Section  4). 
The matching schema of a rule specification defines the condition under which the rule has 
permission to fire, the input arguments for the transformation, and those input arguments that will be 
deleted with the execution of the rule. A matching schema is represented as a graph, which has two 
roles: 1) it is used to define the condition that must be fulfilled for the rule to be permitted to fire, and 
2) it is used to define the binding relation between source model elements and input arguments of the 
transformation rule. Intuitively, nodes in the matching graph can be seen as placeholders for elements 
in the source model. It is also possible to have a node that is a placeholder for a set of elements. 
Equally, it is possible to define a prohibited element, which is represented also as a node. This 



concept is used to strengthen the firing condition for the rule. In particular, if a match is found for a 
prohibited node, then the rule no longer has permission to fire.  
A result schema defines the target diagram(s) as a function of the elements bound by the matching 
schema. A result schema is also represented as a graph. Intuitively, a node in the result graph 
represents an element of a target diagram. In particular, a node can represent a newly created element, 
a modified element from the source model, or an unmodified element from the source model. Like for 
the matching schema, it is also possible to have a node that represents a set of target model elements. 
To illustrate the role of the matching and result schemas in a rule specification, suppose that we would 
like to transform an association class with certain multiplicities, and between two classes, into a class 
with binary associations (with the corresponding multiplicities). Figure 2 illustrates the 
transformation. It represents the transformation in terms of the before (left) and after (right) state, in 
the same vein that we would describe the matching schema and result schema, respectively, of the 
rule specification for this transformation. 
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Figure 2 – Graphical Depiction of an Example Transformation 

A model transformation can modify existing models or it can create new models (or a combination of 
both); we refer to these two categories of transformation as modification and creation transformations, 
respectively. A modification transformation involves changing an already existing model, or set of 
models, through the addition, modification and removal of elements. For example, a modification 
transformation could define the application of a design idiom to a UML class diagram. In this case, 
the target diagram, i.e., the output class diagram, is a slightly modified version of the source diagram. 
The example cited in Figure 2 is also an example of a modification transformation. A creation 
transformation involves creating only new elements as a result of the transformation. For example, a 
creation transformation could define the creation of a (randomly generated) end-to-end scenario, 
represented by a UML sequence diagram, from a UML state diagram. In this case, the target diagram, 
i.e., the resulting sequence diagram, only includes the new elements, which can be traced back to 
elements in the state diagram. 
When defining a transformation, it can sometimes be easier to formulate the description in terms of a 
set of simpler transformations instead of a single more complex transformation. In our approach, this 
technique is made possible by defining each of the simpler transformations as a distinct rule and 
defining the required ordering of rule application using a separate description, which we call a rule 
ordering schema. We find it useful to have these two levels of description as we have observed that it 
promotes scalability and reuse, and it promotes a simpler rule specification language, due to the 
separation of concerns. In addition to rule sequencing, a rule ordering schema allows one to express 
rule iteration and conditional branching of rules. Furthermore, it allows one to map outputs of a rule to 
inputs of another rule. A rule ordering schema may also refer to other transformation definitions. Thus 
it is possible to have a composition hierarchy. This feature promotes transformation reuse and 
scalability. 
Summarizing the execution process of a transformation description: upon the firing of a 
transformation, one or more transformation rules are applied to the one or more source models, 
according to the control flow defined by the rule ordering schema. 
 
Even though the graphical language that our approach proposes offers a widely applicable and useful 
set of abstractions for specifying transformations, we believe that some of the complex algorithms 
required for model transformations in general are easier defined in a procedural language, such as, 



Java, C#, etc. As such, we propose a means to integrate our language with general-purpose 
programming languages. In particular, we chose the Java object-oriented programming language 
[SGB00] as the target language. The idea is that our graphical language would be used to describe the 
transformation rules— matching and result schemas—and the orderings of the transformation rules—
rule ordering schema, and the Java programming language would be used to define those parts of the 
transformation that are easier expressed with it, e.g., complex transformation algorithms. We propose 
integration at the programming language level by generating code for the chosen programming 
language from the language of rule specifications and rule ordering schemas. In this way, we would 
allow users the full expressive power of a general-purpose programming language, yet a set of 
abstractions that are fine-tuned to transformations. We believe that this compromise offers quite some 
potential because it leaves the door open for the user to work in a way that is most comfortable to 
him/her. Due to space considerations, we do not go into any further details of this aspect of the 
approach. 

3.2 Example 
To illustrate a transformation described using the VMT approach, we revisit the example introduced 
in Section 3.1. This transformation involves taking an association class and replacing it by a class 
with two associations to the previously connected classes. Since this is a simple example, we will 
define the transformation using only a single rule specification, and we will omit the rule ordering 
schema (since there is only a single rule).  
 

id: C1
type: Class
name: any
association: Set{AC1_E2}
constraint: any
feature: any
generalization: any
isActive: false (default)
ownedElement: any
specialization: any

additional selection constraints:
-

id: AC1 -> REMOVED
type: AssociationClass
name: any
association: any
connection: Set{AC1_E1, AC1_E2}
constraint: any
feature: any
generalization: any
isActive: false (default)
ownedElement: any
specialization: any

additional selection constraints:
-

id: AC1_E2
type: AssociationEnd
name: any
aggregation: none (default)
association: AC1
changeability: any
isNavigable: any
multiplicity: 0..1
ordering: unordered (default)
participant: C1
qualifier: empty (default)
targetScope: instance (default)
visibility: public (default)

additional selection constraints:
-
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AC1

AC1_E1

AC1_E2
C1

0..1
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C2

AC1

AC1_E1

AC1_E2

id: C2
type: Class
name: any
association: Set{AC1_E1}
constraint: any
feature: any
generalization: any
isActive: false (default)
ownedElement: any
specialization: any

additional selection constraints:
-

id: AC1_E1
type: AssociationEnd
name: any
aggregation: none (default)
association: AC1
changeability: any
isNavigable: any
multiplicity: 0..*
ordering: unordered (default)
participant: C2
qualifier: empty (default)
targetScope: instance (default)
visibility: public (default)

additional selection constraints:
-  

Figure 3 – Graphical Depiction of the Matching Schema for the Association Class 
Transformation 



Figure 3 shows the matching schema for the transformation. The UML-like class diagram in Figure 3 
depicts the matching graph in model-level view mode. We also offer another visual form for the graph 
(not shown here): metamodel-level view mode, in which case the graph is shown in a notation neutral 
manner—all the different kinds of UML model elements are shown as objects in a UML-like object 
diagram. Each of the 5 boxes shown in Figure 3, which we refer to as a properties-constraint box, 
provides a set of conditions that must be observed in the selection of a source model element. The 
correspondence between the boxes and the diagram is made by the id property value of the box and 
the label of the element in the diagram. Note that we envisage that the tool would not show all boxes 
at the same time. Instead, the tool would provide a window pane for the diagram and one for a single 
properties-constraint box. The user could then select the appropriate properties-constraint box by 
selecting the corresponding element in the diagram. 
Figure 3 shows two classes, labeled C1 and C2, and an association class, labeled AC1, which 
connects these two classes. Two association ends, labeled AC1_E1 and AC1_E2 are labeled using 
“callout” boxes. This notation is used because association ends do not have a corresponding graphical 
representation in UML. Also, the association class is graphically crossed out, which means that the 
element will be removed with the execution of the transformation. 
Looking closer at each properties-constraint box, the id property provides a name that can be used to 
refer to the bound element. The other properties shown below id are properties of the metaclass of the 
element; as such, this list is specific for each different kind of metaclass of the element. The any 
condition simply indicates that the corresponding property is unrestricted, i.e., a possible candidate 
element may have any value for this property. There is also a space for additional selection 
constraints. This clause provides an additional constraint, written in OCL, that must be observed for a 
valid match. 
The meaning of the matching schema depicted in Figure 3 is the following: The transformation will 
try to bind all elements of the matching graph to elements in the source model. This will only occur if 
the source model has two classes with an association class connecting them, which has the 
multiplicities 0..1 and 0..* at either end. Each properties-constraint box makes some additional 
restrictions on binding, e.g., elements that bind to either C1 or C2 must have the isActive property 
equal to false, elements that bind to either AC1_E1 or AC1_E2 must be unordered and not an 
aggregation, etc. If all constraints of the diagram and properties-constraint boxes are satisfied then a 
binding is made and the transformation rule will fire. 
Figure 4 shows the result schema for the transformation. The three boxes that surround the UML-like 
class diagram depict the properties-definition boxes for three of the nine element definitions implied 
by the diagram. Note that the other boxes have been omitted for space considerations. Figure 4 shows 
three classes, labeled C1, C2 and C3, two associations, labeled A1 and A2, and four association ends, 
labeled AC1_E1, AC1_E2, A1_E1 and A2_E2. In addition, five “new” labels are shown. These 
labels signify that the corresponding element definition will result in a new element (as opposed to a 
modified or unmodified existing one). 
Looking closer at each properties-definition box, the element definition with id C1 states that the 
element bound to C1 (a class) by the matching schema will be left unchanged. The element definition 
with id AC1_E1 states that the bound association end will be modified in two ways: its multiplicity 
will be set to 1 and its related association property will be set to the association denoted by A2. 
Finally, the element definition with id C3 states that a new class will be created that has mostly the 
same properties of the association class that was bound to id AC1, with one exception: it will have the 
association ends of A1_E1 and A2_E2. 
The meaning of the result schema depicted in Figure 4 is the following: if the rule has permission to 
fire (according to matching schema), it will create one class (C3), two associations (A1 and A2) and 
two association ends (A1_E1 and A2_E2), and modify two association ends (AC1_E1 and 
AC1_E2), according to the statements given in their corresponding properties-definition boxes. And, 
the transformation will leave untouched two classes (C1 and C2). 
 



  

id: C1
type: Class
result: unmodified
name: -
isActive: -
feature: -
association: -
constraint: -
generalization: -
specialization: -
ownedElement: -

additional statements:
-

id: C3
type: Class
result: new
name: AC1.name
isActive: AC1.isActive
feature: AC1.feature
association: -
constraint: AC1.constraint
generalization: AC1.generalization
specialization: AC1.specialization
ownedElement: AC1.ownedElement

additional statements:
// start association
Set assocEndSet = new Set ();
assocEndSet.add(A1_E1);
assocEndSet.add(A2_E2);
this.association = assocEndSet;
// end association

id: AC1_E1
type: AssociationEnd
result: modified
name: -
aggregation: -
association: A2
changeability: -
isNavigable: -
multiplicity: 1
ordering: -
participant: -
qualifier: -
targetScope: -
visibility: -

additional statements:
-
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Figure 4– Graphical Depiction of the Result Schema for the Association Class Transformation 

 
4 Formal Aspects of Model Transformation  
As mentioned in the above section, our approach considers a model, roughly speaking, as a graph. 
Thus, the theoretical foundation of model transformation in VMT can be easily expressed in terms of 
graph transformations that have been studied in [Roz97]. This section presents briefly such aspects 
adapted to the VMT approach. First of all, we give some basic definitions related to the notion of 
graph transformation as the application of elementary transformation rules and then we discuss how 
such transformation rules are used in VMT. Finally, we present the correspondence between the 
notion of model considered in VMT and the notion of graph presented below. 

4.1 Graph Transformation 
A labeled graph G=(N,E,l) consists of a finite set of nodes N, a finite set of edges E such that  the 
elements of E are 2-elements subsets of V denoted by E⊆[V]2, and a mapping l assigning a  labeling 
symbol to each edge. A graph K is a subgraph of G, denoted by K ⊆ G, if the node and edge sets of K 
are subset of the respective sets of G, and the label mappings of K coincide with the one of G 
restricted to K. We say that K has an occurrence in G, if there is a mapping o, which maps the nodes 
and edges of K to the nodes and edges of G, respectively, and preserves labelings. 
A graph transformation consists of applying transformation rules to a graph iteratively. Each rule 
application transforms a graph into another graph by specifying a graph pattern and the elements that 
are removed and added (a modified element can be removed and added with new values). A 
transformation rule r=(M,R,A,c) consists of a graph M=(N,E,l) called the matching schema, 
R=(NR,ER,lR) corresponds to the nodes, the edges, and the labelings that are removed (NR ⊆N, ER ⊆E), 
A=(NA,EA,lA) groups the components that are added, and c is a condition for the application of the rule.  
An application of a rule r=(M,R,A,c) to a given graph G yields a resulting graph H, provided that H 
can be obtained from G in the following four steps: 

1. CHOOSE an occurrence of the matching schema M in G. 
2. CHECK the condition c. 
3. REMOVE the components of R from G, in addition all the edges incident to a removed node 

are removed. 



4. ADD the components of A in G, in addition all the nodes related to an added edge are also 
added. 

The condition c is in general the fact that the matching schema is isomorphic to the chosen 
occurrence, but other conditions can be added such that some global conditions on the graph to be 
transformed. The application of a rule r to a graph G yielding a graph H is called a direct derivation 
from G to H through r, denoted by G ⇒r H or simply by G ⇒ H. Given a set of rules P, the successive 
direct derivations G0 ⇒ G1 ⇒ G2 ⇒ … ⇒ Gn is a derivation from G0 to Gn by rules of P. Since there 
are possibly several occurrences of a given matching schema (that can even overlap) and because 
there are many transformation rules and the direct derivation order is relevant, all the derivations form 
a set of graphs, which can be infinite. A set of terminals symbols T together with a set of rules P and 
an initial graph S form a graph grammar. The set of all graphs labeled with terminal symbols of a set 
T that can be derived from an initial graph S and a set of rules P, is the language generated by the 
graph grammar made of S, T, and P. This language is denoted by L(S,T,P). 

4.2 Graph Transformation and the VMT Approach 
We observe that at the meta-model level the notion of attributes is essential. Thus, we introduce the 
notion of attributed labeled graph [Roz97] that consists of a graph with attributed nodes and edges, 
i.e. an underlying graph structure equipped with (named) attributes for the edges and the nodes. 
Formally speaking, attributes are represented as two mappings that map, respectively, the edges and 
the nodes into the global domains of possible values for attributed edges and nodes. This notion of 
attributed labeled graph is a central notion of the abstract syntax of VMT. The notions of occurrence, 
transformation rule, and derivation remain very close to the definitions given in the previous section, 
the greatest change concerns the definition of the occurrence that, now, has to preserve not only the 
labelings, but also the mappings that associate attributes to the nodes and the edges. 
The VMT approach provides a rule ordering schema that allows the user to formulate a graph 
transformation as a chain of simpler transformations. A rule ordering schema is nothing else than an 
attributed labeled graph in which the edges are directed. Naturally, we introduce directed graph by 
means of two additional mappings that associate a start and an end node to each edge in order to 
obtain an attributed directed labeled graph. Thus, a rule ordering schema is formally represented as 
an attributed directed labeled graph in which each node corresponds to a single transformation rule. 
Since no choice is allowed for the application of a single transformation rule, the application of such a 
rule must terminate and the successive direct derivations of a single rule must be confluent, i.e. give a 
unique result. The chain of derivations generated by the rule ordering schema produces a unique 
graph that is the result of the graph transformation that belongs to the language generated by the set of 
transformation rules. 
 
5 Related Work 
In this section, we survey some of the approaches and technologies that are related to our approach 
and/or influenced its development in one way or another. 
One approach to UML model transformation is to encode them directly in a procedural language 
using an API to the model repository offered by a UML tool. An advantage of this approach is that 
developers do not need any extra training to become operational. However, a disadvantage is that 
encoding transformations in a procedural language can be time-consuming and difficult to understand 
and maintain due to a lack of high-level abstractions for transformation specification. Also, tool 
model repositories usually restrict the kind of transformations that can be performed, simply because 
the API may not let one access or manipulate the required model information.  
One proposal that promises to raise the level of abstraction of operations on UML models is UML’s 
action language [Omg03a]. The language has been proposed as a way to procedurally define UML 
transformations [MB02, SPH+01] and is a special-purpose language for manipulating UML models. 
However, due to its “general-purpose” context, the UML action language still suffers, albeit less 
chronically, from a lack of high-level abstractions for dealing with model transformations. 
Another technique is to treat UML models as graphs. Much work has been performed on graph 
grammars and graph transformation systems. Graph transformations are realized by the application of 



transformation rules, which are rewriting rules for graphs. A transformation rule consists of a graph to 
match, commonly referred to as LHS, and a replacement graph, commonly referred to as RHS. If a 
match is found for the LHS graph, then the rule is fired, which results in the matched sub-graph of the 
graph under transformation being replaced by the RHS graph. The PROgrammed GRaph 
REplacement System (PROGRES) approach [SWZ97] offers a mean to not only specify 
transformation rules but to also define the sequencing of these rules, described using imperative 
constructs. There are several other tools that are based on graph transformation theory; such as  AGG, 
GenGed [BEW02], and one dedicated to UML and Java, Fujaba [FUJABA]. 
The use of logic programming languages have also used in the context of model transformations. In 
[Whi02], a framework dedicated to UML model transformations implemented in MAUDE 
programming language [CDE+01] is presented.   
 
Milicev proposes a graphical language for specifying model transformations [Mil02]. The approach 
proposes an extended UML object diagram as notation for developing the mapping specification. The 
diagrams are extended with the concepts of conditional, repetitive, parameterized, and polymorphic 
model creation, using UML’s stereotype extensibility mechanism. Execution support for the proposed 
language is offered by a mapping to C++ code. Also, the approach offers the ability to reuse 
fragments of mapping specification through the use of parameterized model creation. An important 
limitation of the approach is its underlying assumption that the selection of source model elements for 
the transformation can be easily expressed in a general-purpose programming language, i.e., C++. If 
one were faced with complex selection criteria, it would be very likely that these selection conditions 
would become complex and hard to maintain. In fact, it would be at least useful to offer a language 
that is tailored for such a purpose, such as, UML’s Object Constraint Language (OCL) [Omg03a]. 
UML’s Object Constraint Language [WK98] has also been proposed as a way to declaratively 
describe UML model transformations, e.g., [PVJ02, SPL+01]. Kleppe et al. [KWB03] define a 
transformation language that uses OCL to specify the conditions for the firing of a transformation and 
the elements that are input to and output of the transformation. One nice feature of their approach is 
the way that it facilitates the definition of bi-directional transformations, so that one can perform a 
transformation in either direction. The approach has many similarities to our approach. However, we 
chose a principally graphical notation, compared to their fully textual notation, which we believe has 
advantages in terms of usability and conciseness of description. 
 
6 Conclusion  
For model-driven software development approaches to become a reality in mainstream software 
development practice, software development tools need to be able to better automate the creation, 
evolution and maintenance of the models used throughout the software lifecycle. In this direction, one 
of the keys areas is the easy description and execution of UML model transformations.  
In this paper, we presented the Visual Model Transformation (VMT) approach. The VMT approach 
offers a visual and declarative language to specify UML model transformations. Transformations can 
be defined in the proposed language by specifying transformations rules and defining the order in 
which these ones are to be executed.  
Further work on the VMT approach will consist in continuing work on the design and implementation 
of the second version of MEDAL tool to support the proposed VMT approach, and developing the 
formal foundations of the language in order to be able to prove transformation properties based on the 
source and target model semantics. 
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