
Using the Breakout Algorithm to Identify Hard
and Unsolvable Subproblems

Carlos Eisenberg and Boi Faltings

Artificial Intelligence Laboratory (LIA)
Swiss Federal Institute of Technology (EPFL)

IN-Ecublens, 1015 Lausanne, Switzerland
{eisenberg, faltings}@lia.di.epfl.ch

http://liawww.epfl.ch/

Abstract. Local search algorithms have been very successful for solv-
ing constraint satisfaction problems (CSP). However, a major weakness
has been that local search is unable to detect unsolvability and is thus
not suitable for highly constrained or overconstrained problems. In this
paper, we present a scheme where a local search algorithm, the breakout
algorithm, is used to identify hard or unsolvable subproblems. This is
used in two ways.
The first to generate a fail-first variable order for a systematic backtrack
search that proves unsolvability or solves the problem efficiently. The
combination of the two methods is a complete algorithm. On randomly
generated coloring problems, the method performs extremely well, in
particular, for tightly and overconstrained CSPs.
The second way of using the breakout algorithm is as a filter for identi-
fying possibly unsolvable subproblems. We present an efficient algorithm
that guarantees to find the smallest unsolvable subproblem by systematic
search.
The presented scheme is of great practical use as ideal failure analysis
tool, which also supports the repair of a problem.

1 Introduction

The breakout algorithm is an efficient, local search algorithm for solving Con-
straint Satisfaction Problems (CSPs). The roots of the algorithm go back to
Minton et al. ([6]) and Morris ([7]). Minton et.al., presents a local search algo-
rithm, called min-conflict heuristic, which iteratively repairs a given assignment
in order to minimize the number of conflicts (constraint violations). One ma-
jor drawback of the min-conflict heuristic however is the possibility of being
caught in a local, non solution minimum, which forces the algorithm to restart
from a new initial assignment. Morris eliminated this drawback by extending the
min-conflict heuristic with a breakout method that allows the search process to
escape from local, non solution-minima.

The strengths of the breakout algorithm are simplicity, robustness, low mem-
ory requirement and high efficiency for solving underconstrained problems. These

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902709?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

properties are extremely useful when dealing with large scale constraint satisfac-
tion problems. Minton et. al. demonstrated this by solving large-scale scheduling
problems, where the method performs orders of magnitude better than tradi-
tional backtracking techniques. The major weak point of the breakout algorithm
and this applies to local search in general, is its incompleteness; it cannot guaran-
tee termination, even if a solution exists, and it will not terminate if no solution
exists. In this paper we present a hybrid algorithm where we combine an in-
complete, local search algorithm, the breakout algorithm, with a systematic,
complete search algorithm, backtracking. By combing the breakout algorithm
with backtracking, we compensate its weaknesses: incompleteness and difficulty
to deal with tightly- and overconstrained problems. Moreover, we discover that
the combination of the two algorithms leads to synergies. By using the weight
information that is generated during the local search process, we can locate and
order particularly hard or unsolvable subproblems. These can guide the com-
plete search process such that variables of the hardest subproblems come first,
providing a powerful fail-first heuristic for systematic search. Moreover, we show
that by satisfying a weight sum constraint and using the graph structure, the
smallest unsolvable subproblem can be efficiently identified. This result is useful
for generating explanations and relaxing overconstrained problems.

The major contributions of this paper are the following results:

– an identification scheme for hard and unsolvable subproblems using the con-
straint weight information of the breakout algorithm

– a separation of hard and unsolvable subproblems of different sizes
– a fail-fast variable ordering heuristic, based on constraint weight
– a hybrid and complete solving algorithm for CSP’s combining local search

and complete search(BOBT)
– an algorithm for identifying a smallest unsolvable subproblem (BOBT-SUSP)

The rest of the paper is organized as follows. In Section 2 we give definitions,
discuss the properties of unsolvable subproblems and give a brief overview of the
execution of the breakout algorithm. In Section 3 we present a solving scheme
and propose two new hybrid algorithms:

– BOBT (Breakout with Backtracking) as a complete mixed algorithm for
solving CSPs or identifying an unsolvable subproblem if it exists, and

– BOBT-SUSP (BOBT for a smallest unsolvable sub problems) for identifying
unsolvable subproblems.

In Section 4, we show the results of the experiments where we applied the BOBT
algorithm to solve randomly generated graph 3-colouring problems. In Section
5, we survey related work.

2 Preliminaries

2.1 Definitions

Definition 1 (Constraint Satisfaction Problem P). A finite, binary con-
straint satisfaction problem is a tuple P =< X,D,C > where:

– X = {x1, .., xn} is a set of n variables,
– D = {d1(x1), .., dn(xn)} is a set of n domains, and
– C = {c1, .., cp} is a set of p constraints, where each constraint cl(xi, xj)

involves two variables xi and xj and is a function from the Cartesian product
di(xi) × dj(xj) to {0, 1} that returns 0 whenever the value combination for
xi and xj is allowed, and 1 otherwise (note that this is the formulation of
weighted CSP). We call the set {xi, xj} vars(c) and there is at most one
constraint with the same set of variables.

Definition 2 (Subproblem Pk). A subproblem Pk of a problem P with k
variables is defined as a tuple Pk =< XPk

⊆ X, DPk
⊆ D,CPk

⊆ C > with the
additional constraint that CPk

contains all and only constraints between variables
in XPk

. We define the size of a subproblem size(Pk) as the number of constraints
|CPk

|.

Definition 3 (Unsolvable Subproblems). A subproblem Pk is unsolvable if
there is no value assignment to variables in XPk

that satisfies all constraints in
CPk

.
An unsolvable subproblem Pk is minimal if it becomes solvable by removing

any one of its variables.
A minimal unsolvable subproblem Pk is a smallest unsolvable subproblem of

P , if there is not another minimal unsolvable subproblem P ′
l such that size(P ′

l) <
size(Pk).

Definition 4 (Graph Connectivity GC.). The connectivity of a variable is
the number of constraints which refer to that variable. The connectivity of a
graph GC is the average connectivity of the variables. See ([5]).

2.2 The Standard Breakout Algorithm

The breakout algorithm ([7]) is a further development of the min-conflicts algo-
rithm ([6]) and is the basis for our work.

1: function breakout(CSP, iteration− limit, breakout− limit)
2: S ← random initial state
3: W ← vector of all 1
4: while S is not a solution ∧(iteration− limit > 0) ∧ (breakout− limit > 0) do
5: if S is not a local minimum then
6: make local change to minimize conflicts
7: iteration-limit ← iteration-limit - 1
8: else
9: increase the weight of all currently violated constraints

10: breakout-limit ← breakout-limit - 1
11: return(S, W)

Algorithm 1: Breakout algorithm.

Algorithm 1 shows the basic breakout algorithm. The state S =< x1 =
v(x1, S), ..., xn = v(xn, S) > is an assignment of values to all variables of the
problem. It can be a solution when no constraint is violated, otherwise it has a
number of conflicts with constraints. The breakout algorithm contains two essen-
tial steps: determining the local change that minimizes conflicts, and increasing
the weights (called the breakout).

With every constraint, we associate a weight:

Definition 5 (Constraint Weight w). Each constraint is assigned a weight
w(c(xi, xj)) or in short wi,j. All weights are positive integer numbers and are set
to 1 initially. The breakout algorithm uses the weights in order to escape from
local non- solution minima.

In Algorithm 1, the weights are grouped together in the weight vector W .
Conflict minimization consists of choosing a variable and a new value that re-

duces as much as possible the conflicts in the current state. For this, we compute
for every variable its conflict value, defined as follows:

Definition 6 (Variable Conflict Value ω). The conflict value ω(xi, va, S)
of variable xi assigned the value va in state S, is the sum of weights of the
constraints involving xi that would be violated in a state S′ that differs from S
only in that xi = va:

ω(xi, va, S) =
∑

cl(xi,xj)

w(cl) · cl(xi = va, xj = v(xj , S))

where v(xj , S) is the value assigned to variable xj in state S.

The best improvement is to the variable/value combination xi, va such that
ω(xi, v(xi, S), S) − ω(xi, va, S) is largest. If there is such a combination with
an improvement greater than 0, the variable/value combination with the best
improvement is chosen as the local improvement.

If no improvement is possible, the algorithm is in a local minimum. In this
case, the algorithm increases the weight of each violated constraint by 1, and
again attempts to compute the possible improvements. Increasing the weights
of each violated constraint is what we term a breakout step. Since the current
violations will gain more weight, eventually an improvement in the conflict value
will be possible; this is called the breakout.

In general, one imposes a runtime limit on the algorithm: there can be a limit
on the number of iterations, i.e. the number of times variables are revised, or on
the number of breakout steps.

For the breakout algorithm, we can observe the following:

Lemma 1. After m breakout iterations, the sum of the constraint weights wsum =∑
c(xi,xj)∈CPk

wi,j of an unsolvable subproblem Pk with |CPk
| = q constraints

must be greater than or equal to m + q.

Proof. If a subproblem is unsolvable, then in every breakout step, one or more of
the subproblem constraints must be violated and the corresponding constraint

weight is increased. The lower bound for wsum can be derived by assuming that
in every iteration only one constraint is violated, in this case the weight sum
must be equal to m + q.

Based on Lemma 1, we define:

Definition 7 (Weight sum condition for subproblem Pk). We say that a
subproblem Pk satisfies the weight sum condition if and only if after m iterations
of the breakout algorithm, the condition of Lemma 1:

q∑
i=1

w(ci) ≥ m + q

is satisfied, where ci = c(xs, xt) are all the constraints of the constraint set CPk

of the subproblem Pk, and q = |CPk
|.

The weight sum condition is a powerful tool for searching unsolvable subproblems
since by Lemma 1, any unsolvable subproblem must satisfy it:

Lemma 2. After m iterations of the breakout algorithm, an unsolvable subprob-
lem with q constraints must satisfy the weight sum condition.

Proof. The condition is ensured by Lemma 1.

Thus, if after m iterations the breakout algorithm has not found a solution,
and we suspect that the problem contains an unsolvable subproblem with 3
constraints, then we only have to consider subproblems whose weight sum is at
least m + 3. If we apply this constraint in the problem of Figure 1, we find that
the constraints of w1, w9, w10, whose sum is 103, are the only three constraints
that satisfy the sum constraint and indeed describe an unsolvable subproblem
of size 3, colouring a graph of 3 nodes with only 2 colours. Thus, the weight
sum constraint is of great use for pruning the search for potential unsolvable
subproblems for the algorithm BOBT-SUSP described in section 3.

When applying the breakout algorithm to small problems that are entirely
unsolvable, the condition can be already applied after a small number of breakout
iterations. When unsolvable subproblems are embedded in a larger structure, as
shown in Figure 1, there will also be many subproblems that satisfy the weight
sum condition by accident. In this case, we may need to run the breakout algo-
rithm for a certain minimum number of cycles before the unsolvable subproblem
can be reliably identified.

Considering a randomly chosen individual constraint c, we can measure the
probability that after m breakout steps c is violated in a breakout step as:

p(c = violated) =

∑
cl∈C w(cl)− 1

m|C|
(1)

When solving the problem, this probability will decrease during the first BO
steps, since BO progressively eliminates conflicts. If the problem is solvable for
the BO, then the probability eventually becomes 0. Otherwise, it will stabilize

Fig. 1. The weight graph of an unsolvable graph colouring problem containing three
unsolvable subproblems of size 3 (x1, x2, x9), 4 (x3, x4, x5, x6) and 5 (x1, x2, x7, x8, x9),
after 0 and 100 breakout steps.

and converge towards a constant value. If this is the case and BO cannot solve
the problem due to a hard or unsolvable subproblem P of size q, the constraints
that belong to the unsolvable subproblem are identified by the fact that their
probability of being violated is at least equal to 1/q. Thus, the expected difference
in weight between a constraint that is in the unsolvable subproblem and one that
is not is1:

δ = (1/q − p(c = violated)) ·m (2)

As constraints belonging to the unsolvable subproblem can be identified only
when their weights differ from the others by at least 1, we propose as a rea-
sonable heuristic for choosing the number of breakout iterations for identifying
subproblems of size q as:

m(q) ≥ 1
1/q − p(c = violated)

(3)

which means that the expected difference in weight is at least 1. When higher
accuracy is desired, we can of course choose a higher expected weight difference
and thus a larger number of iterations.

For example, in Figure 1, the total weight of the 14 constraints after m = 100
breakout iterations is 245, so that the probability:

p(c = violated) = 231/1400 ' 0.165
1 This ignores the fact that the constraints in the unsolvable subproblem itself increase

the probability of constraint violations, so it is overly pessimistic.

Thus, in this problem we could identify a subproblem of size 3 after approxi-
mately 1/(1/3 − 0.165) = 1/0.16833 ≤ 6 iterations, while for a subproblem of
size 5 we would need about 30 iterations, and a subproblem of size 7 could not
be identified with this reliability at all since p(c = violated) is larger than 1/7.

Note that due to equation 3 this method will work very well when p(c=violated)
and q are small. In this case, the minimum number of required iterations m
becomes small. This means that it is always easier to identify an unsolvable
subproblem of size q than a larger one of size q′ > q. Also, it is always easier
to identify an unsolvable subproblem when the average constraint violations in
a breakout step is small. These conditions are not unrealistic. In practice, prob-
lems are formulated rationally and are usually not excessively overconstrained.
Often they contain only a few flaws of small size and are almost feasible. With
our method such flaws are easily identified and help to repair the problem. Thus,
this method is particularly well suited to deal with situations where there are
small unsolvable subproblems.

3 The Scheme

These observations and properties of the breakout algorithm inspired us to use
the constraint weight information which is generated by the breakout algorithm
for localizing the critical problem variables and thus hard or unsolvable sub-
problems. This idea is based on the observation that the constraint weights are
also violation counters, which are incremented whenever the search is in a local
minimum. Increasing the weights only in local minimum states is an advantage
since in this state the noise level, generated by constraints not belonging to a
hard or unsolvable subproblem is the lowest. We are now going to present a
hybrid scheme where we first apply the breakout algorithm, and then switch
to systematic backtrack search when no solution has been found after a given
iteration limit.

When the local search method does not find a solution, we terminate and
sort the variables according to the constraint weights and the graph structure.
Intuitively, variables which cause the greatest conflict and thus describe the
hardest part of the problem will therefore be located at the top of the ordered
variable list. The subsequent complete search method will then consider those
first. Beginning with the hardest part of the problem is a great advantage for
systematic search algorithms. Firstly, because systematic search methods are
efficient for solving highly- and over-constrained problems. Secondly, the chance
of finding an unsolvable subproblem in the most constrained part of the problem
is much greater than to find it in a less constrained part. For this reason, many
complete search algorithms use variable ordering heuristics that order variables
according to their constrainedness.

Another aspect that we are able to cover with this scheme is to give an
explanation why the search for a solution fails in the form of a smallest unsolvable
subproblem. This information is of great practical use because it can be exploited
to repair a problem or it can be the basis for an interactive failure analysis tool.

The weight-sum constraint can be used as a highly effective filter for searching
for a smallest unsolvable subproblem.

We now present algorithms for two different purposes. The first algorithm
BOBT is designed to solve a CSP by a hybrid scheme of breakout algorithm and
backtracking. The second algorithm BOBT-SUSP is based on the first algorithm
and is extended to identify a smallest unsolvable subproblem.

3.1 Algorithm 1: Hybrid Solver BOBT

The first version of the hybrid algorithm, Algorithm 2, begins by searching for
a solution using the standard breakout method. If after a bounded number of
breakout iterations, the local search process has not found a solution, the process
is aborted and the constraints are sorted according to their weights. Constraints
with a high weight are most likely to belong to an unsolvable subproblem. There-
fore, the constraint with the highest weight is selected and its variables make up
the first candidate subproblem P .

The algorithm then iterates the following steps. First, it attempts to solve the
subproblem P by a systematic backtrack search. If the search finds a solution,
then either it has found a solution to the original problem and returns it, or the
subproblem is extended by the variable xi such that the sum of the weights of all
constraints connecting xi to P is highest. If not, then the algorithm has found an
unsolvable subproblem, calls the function musp to determine its minimal version
(see below), and returns.

1: function BOBT(X, D, C, maxbreak)
2: (S, W)← breakout(< X, D, C >,∞, maxbreak)
3: if S is a solution then
4: return(solvable, S)
5: else
6: P ← vars(argmaxc∈C(w(c))
7: loop
8: S ← backtrack − search(P, D, C)
9: if S is a solution then

10: if S = X then
11: return(solvable, S)
12: else
13: P ← P ∪ {argmaxxi∈X\P

∑
c(xi,xj),xj∈P

w(c)}
14: else
15: musp← musp(P, D, C)
16: return (unsolvable, musp)

Algorithm 2: Hybrid solver BOBT: returns either a solution or a minimal un-
solvable subproblem.

We can show the following:

Theorem 1. Algorithm 2 is complete: if there is a solution to the CSP, it finds
it.

Proof. If there is a solution, either it will be found by the breakout algorithm, or
by backtrack search once the problem P has been extended to cover the entire
problem.

Function musp is given in Algorithm 3 and is derived from the fo-search al-
gorithm described in [3]. It is based on the following observation: assume that a
backtrack search method fails and the first variable for which no assignment was
found is xi. We call xi the failed variable. Then xi is part of every unsolvable sub-
problem involving those variables, and thus the minimal unsolvable subproblem.
The algorithm iteratively places the failed variable at the head of the variable
order, and re-initiates a backtrack search. Once it reaches again a variable that
had already been a failed variable before, the variables up to this variable must
make up the minimal unsolvable subproblem.

1: Function musp(X,D,C)
2: e1, ..ek ← unmarked
3: loop
4: i← 1, k ← 1
5: repeat {backtrack search}
6: if exhausted(di) then {backtrack}
7: reset− values(di), i← i− 1
8: else
9: k ← max(k, i), xi ← nextvalue(di)

10: if consistent({x1, ..., xi}, C) then {extend assignment}
11: i← i + 1
12: until i = 0
13: if ek = marked then
14: return (x1, .., xk) as the minimal usp
15: else
16: ek ← marked
17: reorder variables in X so that xk becomes x1

Algorithm 3: Function musp for extracting the minimal unsolvable subproblem.

3.2 Algorithm 2: Hybrid Solver BOBT-SUSP for identifying a
smallest unsolvable subproblem

The second version of the hybrid algorithm is designed to identify a smallest
unsolvable subproblem, which can be of great practical value for failure analysis
and problem repair. The algorithm takes as arguments the CSP < X,D,C >,
the weights W generated by the breakout algorithm, the number of breakout it-
erations m and the maximum number of constraints for the subproblem maxsize
to limit the search.

The algorithm systematically generates all subproblems of 2 and more vari-
ables (single constraints); it is optimized by observing that the subproblems
must contain at least one constraint with weight 1+m/maxsize. The algorithm
systematically generates all subproblems of increasing size. Applying the weight-
sum criterion as a filter, it then tests all potential unsolvable subproblems for
actual insolvability using backtrack search. If it finds an unsolvable problem,
then it is automatically guaranteed to be the smallest, since problems were gen-
erated in increasing size. Therefore, no call to Function musp is required here.

1: Function BOBT-SUSP(X,D,C,W,m,maxsize)
2: OPEN ← {{c}|c ∈ C ∧ w(c) ≥ 1 + m/maxsize}
3: CLOSED ← {}
4: while OPEN 6= {} do
5: cand← first(OPEN)
6: OPEN ← rest(OPEN) ; CLOSED ← CLOSED ∪ {cand}
7: if

∑
c∈cand

w(c) ≥ m + |c| then
8: S ← backtrack − search(cand, D, C)
9: if S is not a solution then

10: return (cand)
11: if |cand| < max− size then
12: for xi ∈ X\

⋃
c∈cand

vars(c) do
13: nc← setofconstraintsconnectingxitovariablesincand.
14: s← cand ∪ nc
15: if s 6∈ OPEN ∧ s 6∈ CLOSED ∧ s 6= cand then
16: insert s into the list OPEN so that OPEN is ordered by the size of the

subproblems.
17: return fail

Algorithm 4: BOBT-SUSP: an algorithm that searches for an unsolvable sub-
problem up to size k.

Lemma 3. Algorithm 4 is complete in that if there is an unsolvable subprob-
lem with less than maxsize constraints, it will find it, and sound in that the
subproblem it finds is also a smallest.

Proof. The algorithm systematically checks all subproblems in increasing order
of size, so if it finds an unsolvable one, it will be the smallest. At the same time,
it examines all potentially unsolvable subproblems, so it is also complete.

3.3 Determining the Right Breakout Iteration Bound

As discussed earlier, the capability of the method to detect unsolvable subprob-
lems depends crucially on the iteration bound given to the breakout algorithm.
Excessive breakout iterations are computationally expensive, but on the other
hand we do not want to miss the unsolvable subproblems.

A pragmatic solution is to search for an unsolvable subproblem of size q using
Algorithm 4 as soon as it becomes feasible according to the considerations in
section 2. If no unsolvable subproblem of a size up to qmax has been found,
Algorithm 2 should be used, as it is likely that the hardest subproblem is either
solvable or very large.

For the experiments described in the next section we used a fixed breakout
iteration bound value of 30 and then always switch to Algorithm 2. It is likely
that by first checking for small unsolvable subproblems, better results can be
obtained.

4 Experiments and Results

In order to test our presented scheme we generated a large set of 10,000 random
graph 3-colouring problems according to the method described in [Davenport
et.al. 1995]. The problem graphs that we generate consist of 30 variables with a
connectivity of 2-6. The ratio of the solvable to the unsolvable problems is 1:1.
Figures 2 and 3 show the results of the experiments as diagram. In Figure 2,
we draw the number of constraint checks for BO and BOBT as function of the
problem connectivity.

Random Graph 3-Colouring Problems

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

graph connectivity

co
n

st
ra

in
t

ch
ec

ks

BO
BOBT

BO

BOBT

Fig. 2. Solving 10,000 randomly generated, 30 node graph 3-colouring problems, with
the breakout algorithm BO and the hybrid algorithm BOBT, combining the breakout
algorithm with backtracking.

Random Graph 3-Colouring Problems

0

1

2

3

4

5

6

7

8

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 4.4 4.6 4.8 5.0 5.2 5.4 5.6 5.8

graph connectivity

lo
g

 c
o

n
st

ra
in

t
ch

ec
ks

BT
BO
BOBT

BT

BO

BOBT

Fig. 3. Number of constraint checks on a logarithmic scale for solving 10,000 randomly
generated, 30 node graph 3-colouring problems with BT, BO and BOBT.

In Figure 3, we also draw the number of constraint checks, but on a logarith-
mic scale. In Figure 2, we see that the breakout algorithm performs well for under
constrained problems with a connectivity of 2-4. However, it lacks performance
for tightly- and over-constrained problems with connectivity > 4. This result is
not surprising. BO is known to perform badly for tightly constrained problems
and does not terminate when the problems are unsolvable. We therefore use the
bound on the number of iterations to terminate the algorithm in that case. We
set this bound to 4.37 · 105. We chose this value since in our experiments, BO
found no more solutions on tightly-constrained and over-constrained problems,
so it is the fairest bound that can be set to limit useless iterations.

Looking at both figures, we observe that the hybrid algorithm BOBT clearly
outperforms BT and BO for all connectivity values. This result proves the cor-
rectness of our scheme and shows the synergies of combining local search with
complete search. The hybrid algorithm performs much better than the methods
in isolation. Analyzing the execution of the hybrid algorithm, we notice that
BO finds the most solutions for underconstrained problems, while for tightly
constrained problems BT finds more solutions. We also observe, that although
the backtrack search trace shows exceptionally hard problems (see [2]) in the
connectivity area of 2.5-3, that no exceptionally hard problems occur when BT
is used in combination with BO. The BOBT curve is much smoother than the
curve of BO and BT. This result is surprising and needs further investigation.
However, we already conclude that this phenomenon can be explained by the

constraint weight based variable order that BO delivers and that seems to be
optimal. This conclusion is also supported by another observation. When we
implement forward checking into BOBT, the average partial solution size (6.4)
when the algorithm determines failure, is smaller than the size (7.2) of the cur-
rently best heuristic for graph colouring problems, the Brelaz [1] heuristic.

5 Related Work

Limited discrepancy search ([10, 11]) shares with the backtracking part of our
method the idea of starting with a good initial assignment to variables and only
incrementally varying it.

Pesant and Gendreau ([12]) describe a method that uses systematic search
to determine the best local changes to be applied in a local search algorithm.
Our ideas could be applied in a similar way by isolating subproblems that the
breakout algorithm cannot solve, and feeding their solution (if any) back into
the breakout algorithm as a better local move.

Similar to this approach, Shaw ([13]) proposes a method called Large Neigh-
borhood Search that performs local search where each move consists of recomput-
ing part of the solution using a systematic search algorithm (limited discrepancy
search). The method has other features specific to vehicle routing problems that
does not allow direct comparison to our method.

[14] describes a method for solving CSP using a cooperation of systematic
and local search. Solvers exchange hints consisting of partial solutions to improve
each other’s performance, and small performance gains are shown.

Zhang and Zhang ([15]) propose to solve satisfiability problems using a
method where a partial consistent assignment is generated using local search,
and then extended to a solution using systematic search. The difference to this
method is that we use additional information obtained from the breakout algo-
rithm to isolate the hardest subproblems and order variables accordingly. This
direction brings us larger performance gains than the undirected methods they
proposed.

El Sakkout and Wallace ([16]) develop a hybrid solver called probe backtrack-
ing. This algorithm goes back to [17] and is an extended form of backtracking
where the backtrack search is supported by a local search algorithm called the
probe. The probe functions as lookahead procedure and directs the backtrack
search towards violated regions of the probe search space with the goal to solve
the harder parts of the problem first.

The difference to this method is that we essentially integrate constraint viola-
tions over a sequence of iterations and express these by the weights. The weight
information then enables us to identify potential unsolvable subproblems, which
we then feed into a backtracking algorithm in order to prove their unsolvabil-
ity. Probe backtracking in comparison, is a difference method. The backtrack
search is guided by instantaneous constraint violation snapshots, which is more
sensitive to noise.

Furthermore, both methods come from a different perspective. In our scheme
we are pessimistic about finding a solution and focus on identifying unsolvable
subproblems. In contrast probe backtracking is optimistic about finding a solu-
tion and attempts to solve the hardest part of the problem by backtrack search
and the easy part by local search.

6 Conclusion and Future Work

We have presented a scheme where the constraint weights assigned by the break-
out algorithm are used to identify hard or unsolvable subproblems of a CSP. We
have shown how this information can be used to identify a very efficient fail-first
variable ordering, and thus to combine the breakout algorithm with backtrack
search for a highly efficient overall CSP search algorithm. We have proven its
performance on random constraint satisfaction problems.

We have also shown how the same method can be used to find the smallest
unsolvable subproblem and thus provide distinct explanations for unsolvability
of a CSP.

Local search algorithms have been very attractive since they can often find
solutions to underconstrained problems very quickly. However, their applicability
to more tightly constrained problems has been limited by their incompleteness.
The first significant contribution of this paper is the presented general scheme
that combines the breakout algorithm with a systematic search method and re-
sults in a new, hybrid algorithm. In our results we prove that this new algorithm
is not only complete but it also performs extremely well and outperforms the two
algorithms in isolation by several magnitudes. We are convinced that this scheme
is also very well suited for solving distributed constraint satisfaction problems
(DisCSP). Existing complete DisCSP algorithms have great performance prob-
lems to solve large problem instances. The required message traffic is too great
and the majority of the search methods are too static and get caught in dead
end branches. For example problems of 30 and more variables are still a big
challenge. Distributed local search algorithms, such as the distributed breakout
algorithm (DisBO) (see [8]), deliver much better performance, but also lack a
termination guarantee. Projecting the results we obtained in this paper we pro-
pose that the efficiency of existing DisCSP algorithms can be greatly boosted
by combining DisBO with a systematic DisCSP algorithm. Our next step is to
apply the scheme for DisCSP and develop a distributed version of the presented
hybrid algorithm.

The other interesting issue we will tackle with our scheme in the future is
to identify the ordered set of all unsolvable subproblems for further character-
izing problem classes and for performing failure analysis. In particular we plan
to extend the scheme by a spectral analysis that gives us the distribution of
unsolvable subproblems for random graph colouring problems.

References

1. D.Brelaz. New Methods to color the vertices of a graph. Communications of the
ACM, 22(4):251-256, 1979.

2. A. Davenport and E. P. K.Tsang. An empirical investigation into the exception-
ally hard problems. Technical Report CSM-239, Department of Computer Science,
University of Essex, U.K., 1995.

3. B. Faltings and S. Macho-Gonzalez. Open Constraint Satisfaction. Proc. of the 8th
International Conference on Principles and Practice of Constraints Programming,
2002.

4. I.P. Gent, E. MacIntyre, P. Prosser, B.M. Smith, and T. Walsh. Random constraint
satisfaction: Flaws and structure. Technical Report APES-08-1998, APES Research
Group, 1998.

5. I.P. Gent, E. MacIntyre, P. Prosser, and T. Walsh. The constrainedness of search.
In Proc. AAAI-96, 1996.

6. S. Minton, M. Johnston, A. Philips and P. Laird. Minimizing Conflicts: A Heuris-
tic Repair Method for Constraint Satisfaction and Scheduling Problems. Artificial
Intelligence, Vol. 58, P. 161-205, 1992.

7. P. Morris. The breakout method for escaping from local minima. Proc. of the 11th
National Conf. on Artificial Intelligence (Washington, DC), 1993, pp. 40–45.

8. M. Yokoo and K. Hirayama. Distributed Breakout Algorithm for Solving Distributed
Constraint Satisfaction Problems. Proc. of the Second International Conference on
Multiagent Systems, 1996.

9. W.Zhang and L. Wittenburg. Distributed breakout revisited. In Proc. 18-th National
Conf. on Artificial Intelligence (AAAI-2002), Edmonton, Canada, 2002, pp.352-357.

10. W.D. Harvey and M.L. Ginsberg: Limited Discrepancy Search, Proceedings of
IJCAI-95, pp. 607-613, 1995

11. R.E. Korf: Improved Limited Discrepancy Search, Proceedings of the 13th AAAI,
pp. 286-291, 1996

12. G. Pesant and M. Gendreau: A View of Local Search in Constraint Programming,
Principles and Practice of Constraint Programming: Proceedings of the Second In-
ternational Conference (CP’96), Springer-Verlag Lecture Notes in Computer Science
1118, 353-366, 1996

13. P. Shaw: Using Constraint Programming and Local Search Methods to Solve Ve-
hicle Routing Problems, Principles and Practice of Constraint Programming: Pro-
ceedings of the Fourth International Conference (CP’98), Springer-Verlag Lecture
Notes in Computer Science 1520, pp. 417-431

14. Hogg, T. and Williams, C.P.: Solving the Really Hard Problems with Cooperative
Search, Proceedings of the 11th AAAI, pp. 231-236, 1993

15. J. Zhang and H. Zhang: Combining Local Search and Backtracking for Constraint
Satisfaction, Proceedings of the 13th AAAI, pp. 369-374, 1996

16. H. El Sakkout and M. Wallace, Probe Backtrack Search for Minimal Perturbation
in Dynamic Scheduling, Journal: Constraints, vol 5-4, pp. 359-388, 1999

17. J.R. Purdom and N.G. Haven, Backtracking and Probing, Indiana University, Com-
puter Science Technical Report No. 387, 1993

