
GREP: Protocol and Proof of Loop-Free Operation

Henri Dubois-Ferrière Matthias Grossglauser Martin Vetterli
School of Computer and Communication Sciences

EPFL
1015 Lausanne, Switzerland�

henri.dubois-ferriere,matthias.grossglauser,martin.vetterli � @epfl.ch

Abstract—GREP (Generalized Route Establishment Proto-
col) is a routing protocol for ad hoc networks that is partic-
ularly well suited to very mobile environments. In GREP,
packets are routed through space and time, meaning that
at each hop they advance either along their current route
(thus advancing in space), or onto a fresher route (advanc-
ing in time) to their destination. We give a full definition of
the protocol and prove that it is loop-free.

I. INTRODUCTION

A mobile ad hoc network is a collection of mobile
nodes which dynamically form a network without us-
ing any fixed or pre-established infrastructure. These
nodes collaboratively relay other nodes’ communications
over multi-hop routes; establishing and maintaining these
routes is the task of a routing protocol which must react to
changes in topology that occur as a result of node mo-
bility. Rapid rate of topology change is a first charac-
teristic of these networks; a second is that nodes indif-
ferently act as end-hosts or routers, unlike in traditional
wired networks where the separation between infrastruc-
ture (routers) and end-points (hosts) is more clearly delin-
eated.

A large number of routing protocols for mobile ad hoc
networks have been proposed. One important character-
istic of any ad hoc routing protocol is whether it oper-
ates in euclidean space or over a logical graph. A geo-
graphic routing protocol assumes that nodes know their
physical location (using for example a GPS receiver); in
this case a node can make forwarding decisions based on
the geographical positions of its neighbors. To compute a
route in a geography-enabled network requires first deter-
mining the location of the destination through a location
service, then computing a route towards that location. A

The work presented in this paper was supported (in part) by the
National Competence Center in Research on Mobile Information and
Communication Systems (NCCR-MICS), a center supported by the
Swiss National Science Foundation under grant number 5005-67322

EPFL Technical Report IC/2003/40

blind routing protocol on the other hand does not require
knowledge of nodes’ physical positions and operates only
over the connectivity graph.

Topology change resulting from mobility is usually
viewed as a challenge. In previous work we have shown
that mobility can also be helpful. Specifically, in [1],
we showed that while node mobility creates uncertainty
about the network topology, this mobility can also be ex-
ploited to disseminate topological information. We call
this implicit dissemination of topological information the
mobility diffusion effect. One approach taking advantage
of mobility diffusion is through last encounter routing
(LER) in geographic routing protocols: every node main-
tains a table recording the time and location of the last
encounter with every other node. We showed that the last
encounter (LE) information alone can provide good routes
in geography-enabled networks and for certain classes of
mobility models.

In practice, it is often impossible to obtain coordinates
for every node in the network, either (i) because of cost
or power considerations for positioning systems such as
GPS, (ii) because a beaconing system is simply not avail-
able (e.g., indoor operation), or (iii) more fundamentally,
because the network topology cannot be well embedded
in a euclidean space (e.g., because there are many obsta-
cles). Therefore, in this paper we consider the case of
blind routing protocols that do not make reference to geo-
graphic positions.

The last encounter routing algorithms in [1] make explicit
reference to both the time and the location of encounters,
and therefore cannot be used in a blind network. In [2],
we introduced a route discovery algorithm called FRESH
for blind nodes, which makes use only of last encounter
times. Intuitively, FRESH exploits the noisy age gradi-
ent around the destination formed by mobility diffusion
to discover the destination through a sequence of local-
ized floods. Our simulations have shown that with stan-
dard mobility processes, this can reduce the flooding over-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902705?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

head by an order of magnitude compared to protocols like
AODV or DSR, which make a direct search.

The main point in the above studies is to demonstrate the
value of last encounter information both in geographic and
in blind protocols. Therefore, a common point of EASE
and FRESH is that they make exclusive use of last en-
counter information disseminated through mobility dif-
fusion, and do not exploit other sources of information
on the current network topology, such as information dif-
fused implicitly through traffic. In other words, the only
topological information used by FRESH to discover nodes
and establish routes is temporal, i.e., the age of the last
encounter with the destination at every node. Traditional
routing protocols use spatial information, acquired either
implicitly through traffic (a packet sent from a node � to
a node � establishes a reverse route in the network from

� to �) or explicitly through route request floods, etc.

In this paper, our goal was to design a complete and prac-
tical routing protocol that exploits both temporal and spa-
tial information, i.e., combining the advantages of last en-
counter (temporal) routing with a distance-vector (spatial)
routing. The result is a routing algorithm that is particu-
larly well suited to very dynamic environments with rapid
topological change due to node mobility. In such an envi-
ronment, spatial algorithms alone incur significant over-
head, because routes fall apart very quickly, forcing fre-
quent, costly rediscoveries. GREP, on the other hand, by
combining temporal and spatial metrics, does much better.
This is because routing state associated with a route that
has been invalidated is still useful, and the age of the state
is a measure of how useful. GREP is therefore able to es-
tablish a new route for a packet by combining “pieces” of
outdated routes to the same destination, possibly repairing
gaps through local route requests.

GREP does not make explicit reference to absolute time
as a measure of age of a routing table entry, contrary to
EASE and FRESH. All GREP really needs is to be able to
compare the ages of entries for the same destination. This
can be achieved by associating a sequence number with
every routing table entry, which we can view as a virtual
clock associated with the corresponding destination. Each
node maintains its own clock and increments this clock
with every interaction with the rest of the network (e.g.,
sending out a packet)1 .

We summarize the key advantages of GREP:

�
Note that AODV also uses a per-node sequence number; however,

it is used there only to ensure loop freedom.

� GREP improves routing performance over existing
ad hoc routing protocols and is particulary well
suited for highly mobile scenarios.

� GREP integrates last encounter routing (LER) with
traditional on demand distance vector routing.

� At each hop GREP advances along either the spa-
tial or the temporal axis, meaning that it advances
along its current route (moving in space) or onto a
route which was more recently established (moving
in time).

� Route repair and route establishment are carried out
using the same procedure; in fact there is no distinc-
tion between the two.

� Routing happens on a hop-by-hop basis, meaning
that all interactions (packet forwarding, route re-
pair/establishment) are done locally, without involv-
ing the end-point nodes of the route. In fact, there is
no notion of end-to-end route which must be estab-
lished and converged before nodes can send packets.

� GREP allows a flexible and dynamic tradeoff be-
tween pure on-demand and pure proactive operation.

II. GREP: GENERALIZED ROUTE ESTABLISHMENT

PROTOCOL

In the previous section we have informally described the
protocol. We now give a detailed and unambiguous for-
mulation, which will be necessary for the proof of loop-
freedom in Section III.

We describe GREP as a set of routing table rules, which
collectively describe all interactions by which routing
state is created or modified, and a set of packet processing
rules, which collectively describe all packet control and
forwarding actions. We should emphasize that these rules
comprehensively specify all packet processing and rout-
ing actions, showing that local processing and data struc-
tures are extremely simple, in particular when considering
the flexibility and generality offered by the protocol.

A. Assumptions

Our protocol specification given below makes some as-
sumptions on the properties of the link layer employed.
We outline these assumptions below, noting that they are
not absolute requirements, but allow us to give a concise
definition of GREP (for example avoiding the minutiae of
network-layer acknowledgements).

We assume a link layer which supports both broadcasting
or unicasting of packets. A broadcast packet is received

2

and processed by all nodes within range. A unicast packet
carries the address of the next hop it is intended for. In ei-
ther case collisions or interference may prevent reception
of a packet.

This presentation of GREP also assumes that link-layer
acknowledgements are provided, meaning that the link
layer informs the network layer when a unicast packet
transmission has failed. As other protocols, GREP can use
network-layer acknowledgements if link-layer acknowl-
edgements are not available. The use of network-layer ac-
knowledgements is not described here; it does not change
the basic operation of GREP.

B. Routing Table Entries

Each node maintains a distance-vector routing table which
contains one entry for each destination node. Each entry is
a tuple of three fields: next hop, hopcount, and destination
sequence number.

TABLE I
ROUTING TABLE ENTRIES

������ Next hop along the path to node � as known
at node � .�	� �� Hopcount to node � as known at node � .
����� Sequence number of node � as known at node
� .

Table I summarizes the notation used to describe routing
state at each node. We use the convention that if node
� has no entry for � , ��� ��� ������� , ��� ����� , and
����� ��� .

Sequence numbers are ��� bits long. The sequence number
space is circular: the next sequence number after ����� is� . Sequence number comparisons are also made in the
circular space: given two sequence numbers � and � , we
say that �! "� if �$#� � and % �'&(��%*),+.-/���10 �2� .

C. Packet types

GREP employs four logical packet types: Data (DATA),
Route request (RREQ), route reply (RREP), and route
advertisement (RADV) packets. In all cases the GREP-
specific information is carried in a thin header (8-12 bytes)
and so all packet types (not only DATA packets) can be
piggybacked with application data.

A node sends a route request packet when it does not have
a route to the destination, or if the next hop along the route
is broken. It sends a route reply packet in reply to a route
request when it has a route which satisfies that request.
Note that often the node answering the route request is an
intermediate node which is nearer than the destination; in
this case we say that this node answered on behalf of the
destination. A route advertisement packet is sent in order
to advertise reachability and to update remote nodes’ rout-
ing tables with an up-to-date entry to the advertising node.
Route advertisements are optional; a node can change fre-
quency and scope of its route advertisements can change
at any time. Finally a data packet is a regular packet car-
rying application data.

Data and route reply packets are unicast. Route request
and route advertisement packets are flooded (using MAC-
layer broadcasts); the scope of flooded packets is con-
strained by a time-to-live (TTL) hopcount. Route requests
proceed as an expanding ring search: when a request times
out with no answer, the source increases the TTL (until a
maximum value is attained) and initiates a new request. If
the maximum TTL is attained, subsequent requests use a
binary exponential backoff since the destination might be
unreachable.

Note that GREP does not employ any route error packets:
since link breaks are always repaired locally, there is no
need to inform the source and upstream nodes when this
occurs.

Table II lists the different packet header fields as well as
the notation employed to refer to them; for each field it
specifies for which of the four packet types these fields
are valid.

xxx/does the following paragraph help at all or should i rm it...
what do you think??
We say that a packet 3 advertises node 4 when reception
of this packet at a node 5 may cause 5 to update its routing
entry for 4 . Under this notation, a packet 3 always adver-
tises its source (376
98��). Note that RADV packets are there-
fore not the only ones to advertise their source; however
their only purpose is to advertise reachability. Also, every
packet 3 advertises the node 376 � �
�8�� which has just trans-
mitted it. Since 3�6 � �
98�� changes at each hop, this advertis-
ing has only a one-hop scope. xxx/phrase better A route
request packet advertises the node 3�6;:
9< which it is look-
ing for. Finally a RREP packet advertises two nodes, the
source of the packet and the on-behalf-of (376;=
�8��) source
of the packet.

3

TABLE II
PACKET FIELDS

Label Description Packet
Types

p.src Source node: The node which origi-
nated this packet.

All

p.dst Destination node: The intended last-
hop recipient for a DATA or RREP
packet. The node to which a route is
requested for a RREQ packet.

DATA,
RREP,
RREQ

p.l2src Relay node: The node which last
transmitted this packet. Therefore re-
lay node and source node are equal
only at the first hop of a packet.

All

p.ssn Source sequence number: The se-
quence number of the source when it
originated the packet.

All

p.shc Source hopcount: The number of
hops this packet has traversed since
leaving the source.

All

p.ttl Time-to-live: The number of hops
this packet can traverse before being
dropped.

RADV,
RREQ

p.dsn Destination sequence number: Last
known sequence number for the des-
tination to which a route is requested.

RREQ

p.dhc Destination hopcount: The number
of hops for requested destination as
known to the source when it origi-
nated the route request.

RREQ

p.osrc On-behalf-of source: The node on be-
half of which a route reply is sent.

RREP

p.ohc On-behalf-of hopcount: The hop-
count in the answering node’s table
for the on-behalf-of source

RREP

p.osn On-behalf-of sequence number: The
sequence number in the answering
node’s table for the on-behalf-of
source

RREP

D. Routing Table Rules

We now define the rules for updating routing tables. In
GREP, routing state can only be modified as a conse-
quence of sending or receiving a packet. Rule 1 (RTR1)
is applied every time a node originates or forwards a
packet, and simply increments that node’s sequence num-
ber. Rules 2, 3, and 4 are applied when a node receives a
packet and update the receiving node’s routing table, if it

is possible to do so without violating protocol invariants.

RTR 1: Incrementing own sequence number.
A node � increments its sequence number before send-

ing any packet (whether originated or forwarded by �):

�� ����
�� �� ���

RTR 2: Updating an entry to the source node.
A node � receiving any packet 3 from relay node �

verifies if either of the following conditions holds:

3�6

��
9� ���� 	�
�� 3�6

9� �
�� ���� 	�
��� 376
 �	��� ��� ���� 	�
����
If either of the two conditions holds, � updates (or cre-
ates) its routing entry for the source of the packet:

9� ���� 	�
� � 376

����� ���� 	�
�� � 3�6
 �	� �������� 	�
�� � � 6
RTR 3: Updating an entry to the on-behalf-of node.
A node � receiving a RREP packet 3 from relay node �

verifies if either of the following conditions holds:

3�6;=
��
�� ���� �	�
�� 3�6;=
9� �
9� ���� �	�
� � 376;= �	���"��� ���� �	�
� �
If either of the two conditions holds, � updates (or cre-
ates) an entry for the on-behalf-of source of the packet:

9������ �	�
� � 376;=
����� ���� �	�
� � 3�6;= �	� � 3�6
 ��� ���	���� �	�
�� � � 6
RTR 4: Updating an entry to the destination node.
A node � receiving a RREQ packet 3 from relay node �

verifies if either of the following conditions holds:

3�6;:
��
�� ���� ��	��� 3�6;:
9� �
�� ���� ��	�� � 3�6;: �	� � 3�6
 �����"�	� ���� ��	�� �
If either of the two conditions holds, � updates (or cre-
ates) an entry for the destination of the route request
packet:

9������ ��	�� � 3�6;:
9���� ���� ��	�� � 3�6
 ��� � 3�6;: ��� ��� ���� ��	�� � � 6
RTR 5: Updating an entry to the relay node.

A node � receiving a packet 3 updates (or creates) a
one-hop entry to the relay � node of the packet, and in-
crements its sequence number for that node:

9� � �
9� � ���
��� � � � ���	� � � 6

4

E. Packet Processing Rules

We now describe the rules for creating and forwarding
packets.

Rule 1 (PPR 1) ensures that duplicate and out-of-order
flood packets (RADV, RREQ) are discarded. Rule 2 con-
cerns unicast forwarding of DATA packets. All unicast
forwarding happens identically whether the packet is gen-
erated locally or has arrived from a neighbor node. Rules
3 and 4 concerns originating and forwarding of RREQ
packets, as well as originating of RREP packets in an-
swer to an incoming RREQ. RREP forwarding, defined
in Rule 5, is identical to DATA forwarding except that
the packet is discarded if forwarding fails. Finally Rule
6 concerns the forwarding of DATA packets which were
buffered pending a route request.

PPR 1: Discarding duplicate and out-of-order flood
packets.
A node � receiving a RADV or RREQ packet 3 verifies

if either of the following conditions holds:

3�6

9� �"
�� ���� 	�
��
� 3�6

�� �
�� ���� 	�
� � 3�6
 ��� �	� ���� 	�
���

If either condition holds, � discards the packet without
any further processing actions.

PPR 2: Originating DATA packets.
A node � originating a DATA packet 3 for destination �

initializes header fields as:

3�6
�8�� � � 3�6;:
�< � �
3�6
 ��� � � 3�6

9� �
�� ��

and then forwards the packet according to PPR 5.

PPR 3: Originating RREQ packets.
A node � originating a route request to node � initializes

the RREQ packet � as follows:

� 6
�8 � � � � 6;:
�< � �
3�6

9� �
����� � 6
 ��� � �

� 6;:
�� �
�� �� � 6;: ��� � ��� ��
If this is the initial route request (meaning that it was trig-
gered by a failure in forwarding a DATA packet to node
�) the time-to-live is set to TTL START. If this is a sub-
sequent route request (meaning that it was triggered by a
timer expiry for a previous route request to �) then the
time-to-live is set to xxx (see if expo or additive like in
AODV).

PPR 4: Forwarding RREQ packets and Originating
RREP packets.

A Node � receiving a RREQ packet 3 verifies if either
of the following two conditions holds:.

9� ���� ��	�� $3�6;:
9��
�� ���� ��	�� � 376;:
�� � ��� ���� ��	�� � 3�6
 ����� 376;: ��� �
If either condition holds, � initiates a route reply by uni-
casting a RREP packet � which is initialized as:

� 6
�8 � � � � 6;:
�< � 3�6
�8 �
� 6

�� �
����� � 6
 �	� � �

� 6;=
98�� � 3�6;:
9<
� 6;=
�� �
9������ ��	�� � 6;= �	� � ��� ���� ��	��

Otherwise, � decrements 3�6 < < � , increments 3�6
 ��� , and re-
broadcasts the RREQ packet if the TTL is still positive.

PPR 5: Forwarding DATA and RREP packets.
A node � receiving a unicast (DATA, RREP) packet

3 not destined for itself increments the source hopcount
(376
 �	� � 3�6
 ��� ���

) and forwards the packet to ��� ���� ��	�� .
If forwarding fails (or if ��� ���� ��	�� � �������) and 3 is a RREP
packet then � discards the packet with no further actions.
If forwarding fails (or if ��� ���� ��	�� � �������) and 3 is a DATA
packet then � buffers packet 3 for later retransmission
and initiates a route request procedure for 3�6;:
�< accord-
ing to PPR 3. If � ’s packet buffer was full, � drops the
packet without initiating a route request.

PPR 6: Forwarding buffered DATA packets.
Each time a node � updates an routing table entry to

a node � , � checks to see if it has any buffered pack-
ets for � . If so, � cancels any timer for pending route
requests for � , and forwards the buffered packets accord-
ing to PPR 5.

III. ANALYSIS

In this section we prove that GREP is free of routing
loops.

We distinguish between packet loops and route loops. A
packet loop happens when a unicast packet traverses the
same node twice. A route loop happens when a unicast
packet traverses the same node twice, and the routing state
pertaining to the packet’s destination at that node does
not change between both traversals. A route loop is po-
tentially infinite (unless some mechanism is used to kill
packets which have traversed more than some number of
hops). In other words a packet gets “stuck” in a route loop
but not in a packet loop; since the routing state changes
when it traverses the same node for the second time.

5

We say that a protocol is route loop-free when it guaran-
tees that route loops cannot happen. A stronger condi-
tion is for a protocol to be packet loop-free, meaning that
packet loops cannot happen.

We first state some trivial invariants on routing tables
maintained under GREP.

Invariant 1: No routing entry for a node can have se-
quence number greater than the actual sequence number
of that node: �������

�
9��� 	 �"
��
		

Proof. The result is trivial when
� � �

. The key obser-
vation is that the sequence number for a node

�
can only

be initialized by other nodes (directly in RTR 2, indirectly
in RTR 3, 4) as a result of

�
setting the 3�6

9� field of a

packet to its own sequence number. Once a node
�

has
a sequence number for

�
, this sequence number may be

modified again by (RTR 2, 3, 4), which again comes di-
rectly or indirectly from

�
. Or it may be modified by RTR

5. Since RTR 5 is only applied after overhearing a packet
transmitted by

�
, and since node

�
has incremented its

own sequence number (RTR 1), we will continue to have
that
9�
� 	 �"
��

		 .
Invariant 2: Routing table entries have strictly positive
hopcounts. �������

� #�
�
� ���

	
� �

Proof. This follows from the observation that hopcount
fields in packets can only be incremented by nodes for-
warding these packets, and that the source hopcount is al-
ways set to

�
by the source node of a packet.

We can now state the invariant property underlying
GREP’s loop-free operation; informally that at each hop,
a packet moves closer to its destination either in the se-
quence number space or in the hopcount space.

Invariant 3: Unicast (DATA, RREP) packets are for-
warded at each hop to a node with a higher sequence num-
ber for the destination or with the same sequence number
and a lower hopcount.

Proof. Consider a packet 3 with destination � which node
forwards to node

�
at time < .

Under this notation we must show that either of the
following two conditions is satisfied:

9��� �
���� � (1)

���� � �
9��� � � ����� � �"�	��� � (2)

If
� � � the result is trivial from invariants 1 and 2 which

state that
��
����"
9� � � and ��� � � � � � � �	�

�� .

Now consider the case
�
#� D. Since

forwarded packet 3

to
�
, we have that ��� � � � �

, which can only have hap-
pened as a result of

having previously received from

�
a

packet � such that either � 6
�8�� � � (RTR 2), � 6;=
�8 � � �
(RTR 3), or � 6;:
�< � � (when � is a RREQ packet, RTR
2).

In either case, the key observation is that, since this packet
was forwarded to

by

�
,
�

has ’seen’ the routing infor-
mation pertaining to destination � before

has seen this

information.

If the packet � was a flood (RREQ or RADV) packet, then
the conditions in PPR 1 did not hold at

�
, since

�
did not

discard the packet. If the conditions in PPR 1 did not hold,
then the conditions in RTR 2 did hold at

�
, meaning that

�

has applied RTR 2 and has an entry for � . Let us now as-
sume that
��

�
� �
9� �� . This is immediately contradicted

by the fact that
�

has forwarded the packet � ; therefore,�
has updated its sequence number for � from the same

packet � as

has. therefore we have that
��
�
� �"
�� �� .

We now have two cases to consider. If
�� � ���
9��� � , then��� � � � ����� � � � �"�	��� � since
�

incremented � 6
 ��� before
sending the packet, in which case condition (2) is satis-
fied. The other case is when
�� � �
�� � � , which satisifies
condition (1), and may happen if

�
received, after packet

� , some other packet with a higher sequence number for
� which it did not forward to

(for example if this was a

DATA packet for
�
, or if it was a RADV packet which

�

did not forward because it had a TTL of
�
).

We can now show that GREP is route loop-free:

Property 1: A packet routed by GREP can never enter a
route loop.

Proof. Let us assume that a packet 3 is in a route loop,
that is that it traverses node � twice with
�� ���� ��	�� , �������� ��	�� ,
and ��� ���� ��	�� having identical values at both times. This
is immediately contradicted by invariant 3 since at each
hop the packet advances monotonically in the sequence
number and hopcount space.

IV. DISCUSSION

We have shown above that GREP routes are loop-free.
Our analysis has made the distinction between packet
loops and route loops, the latter being what are commonly
referred to as “routing loops”, the absence of which must

6

be guaranteed for a protocol to be viable in practice. In-
deed, routing loops can potentially be infinite and may
cause packets to remain in the network for an indefinite
amount of time (until, for example a TTL-based mecha-
nism indicates that the loopy packet should be dropped).

We have shown in Section III that GREP is free of route
loops. However, GREP does not guarantee the absence of
packet loops. Therefore GREP offers a relaxed guaran-
tee compared to those protocols which establish routes on
an end-to-end basis and require a route to be converged
before sending packets. This relaxed guarantee on worst-
case behavior of the protocol can be seen as a consequence
of GREP’s hop-by-hop approach which is allows GREP
in the average case to outperform end-to-end routing pro-
tocols. As reported in [3], despite the possibility for oc-
casional packet loops, GREP outperforms an end-to-end
routing approach, and therefore relaxing protocol guaran-
tees to allow packet loops allows an increase in efficiency
which make this worthwhile.

We discuss a small example of a packet loop showing that
even when a packet loop does occur, subsequent packets
will shortcut the loop and therefore packet loops cannot
happen on back-to-back packets. In Fig. 1, there is a
route from � to � , which might have been established
by a packet sent earlier from � to � with sequence num-
ber

�
. � has since moved and therefore the last hop of this

route is broken. � also currently has a one-hop route to
� , which might have been established by a packet trans-
mitted earlier by � to � with sequence number � .
We now consider a packet originated at � for destination
� . This packet will arrive at node � , where forwarding to
� will fail.

A C
S

(1,4)

B

(1,3) (1,2) (1,1)

D

D

E (2,1)

Fig. 1. A network with a route from � to � . � has moved, breaking
the last hop. Routing table entries are shown for destination � as
(sequence number, hopcount) associated with the corresponding link.

Since forwarding the DATA packet to � has failed, node
� buffers this packet and initiates a route request for � .
The route request is answered by � , since it has a route
to � with a higher sequence number than

�
. When �

receives the route reply from � , it updates its routing entry
sends the buffered packet.

This is an instance of a packet loop since the packet has
traversed node � twice. Note that this is not a route loop
since � ’s routing entry for destination � has changed be-
tween the first and second traversals, and therefore the
packet does not get “stuck” in a loop between � and � .
Note also that subsequent packets for � will now be for-
warded by � to � ; each instance of a packet loop can
only occur once.

A C
S

(1,4)

B

(1,3) (2,3)

D

E (2,1)

(2,2)

Fig. 2. � has made a route request for � , which was answered by�
(the set of nodes reached by the route request with TTL=2 is shown

in cyan). The packet for � buffered at � can now be transmitted to�
, resulting in a packet loop. This packet loop will only occur for one

packet; subsequent packets will be routed by
�

directly to
�

.

V. CONCLUSIONS

In this paper we have introduced GREP, a protocol that
routes packets hop-by-hop in a distance-vector frame-
work using a spatio-temporal distance metric. Packets are
routed through space and time, meaning that at each hop
they advance either along their current route (thus advanc-
ing in space), or onto a fresher route (advancing in time).

We have given a precise and unambiguous definition of
the protocol which specifies all packet processing and
routing actions. Using this defintion, we have shown that
routing loops cannot occur under GREP. Our analysis has
distinguished between route loops, where a packet gets
”stuck” in a circular route, and the milder notion of packet
loops, where a packet traverses a same node twice. Un-
like many end-to-end routing protocols which guarantee
that both route and packet loops are impossible, GREP has
relaxed this constraint and does not impose packet loop-
freedom, allowing for a more efficient hop-by-hop routing
approach.

7

REFERENCES

[1] Matthias Grossglauser and Martin Vetterli, “Locating nodes with
ease: Last encounter routing for ad hoc networks through mobility
diffusion,” in Proceedings of the IEEE Conference on Computer
Communications (INFOCOM), San Francisco, CA, April 2003.

[2] Henri Dubois-Ferriere, Matthias Grossglauser, and Martin Vet-
terli, “Age matters: Efficient route discovery in mobile ad hoc
networks using last encounter ages,” in Proceedings of The Fourth
ACM International Symposium on Mobile Ad Hoc Networking and
Computing, Annapolis, MD, June 2003.

[3] Henri Dubois-Ferriere, Matthias Grossglauser, and Martin Vet-
terli, “Grep: Space-time routing for highly mobile ad hoc net-
works,” in Submitted for Publication, June 2003.

8

