
Revisiting Token-Based
Atomic Broadcast Algorithms

Richard Ekwall and Andŕe Schiper
École Polytechnique F́ed́erale de Lausanne (EPFL)

1015 Lausanne, Switzerland

{nilsrichard.ekwall,andre.schiper}@epfl.ch

Technical Report IC/2003/39

Abstract— Many atomic broadcast algorithms have
been published in the last twenty years. Token-based
algorithms represent a large class of these algorithms.
Interestingly all the token-based atomic broadcast al-
gorithms rely on a group membershipservice, i.e., none
of them uses failure detectors. The paper presents the
first token-based atomic broadcast algorithm that uses
an unreliable failure detector – the new failure detector
denoted byR – instead of a group membership service.
The failure detector R is compared with ♦P and ♦S.
In order to make it easier to understand the atomic
broadcast algorithm, the paper derives the atomic
broadcast algorithm from a token-based consensus
algorithm that also uses the failure detectorR.

I. I NTRODUCTION

A. Context

Atomic broadcast (or total order broadcast) is
an important abstraction in fault-tolerant distributed
computing. Atomic broadcast ensures that messages
broadcast by different processes are delivered by
all destination processes in the same order [1].
Many atomic broadcast algorithms have been pub-
lished in the last twenty years. These algorithms
can be classified according to the mechanism used
for message ordering [2].Token circulationis one
important ordering mechanism. In these algorithms,
a token circulates among the processes, and the
token-holder has the privilege to order messages that
have been broadcast. Additionally, sometimes only
the token-holder is allowed to broadcast messages.
However, the ordering mechanism is not the only

Research supported by OFES under contract number 01.0537-
1 as part of the IST REMUNE project (number 2001-65002).

key mechanism of an atomic broadcast algorithm.
The mechanism used to tolerate failures is another
important characteristic of these algorithms. If we
exclude synchronous systems and consider only crash
failures, the two main mechanisms to tolerate failures
in the context of atomic broadcast algorithms are
(i) unreliable failure detectors[3] and (ii) group
membership[4]. For example, the atomic broadcast
algorithm in [3] (together with a consensus algorithm
using the failure detector♦S [3]) falls into the first
category; the atomic broadcast algorithm in [5] falls
into the second category.

B. Group membership mechanismvs. failure detec-
tor mechanism.

A group membership service provides a consistent
membership information to all the members of a
group [4]. Its main feature is toremoveprocesses
that are suspected to have crashed.1 In contrast, an
unreliable failure detector, e.g.,♦S, does not provide
consistent information about the failure status of
processes. For example, it can tell to processp thatr
has crashed, while telling at the same time to process
q that r is alive.

Both mechanisms can make mistakes, e.g., by in-
correctly suspecting correct processes. However, the
cost of a false failure suspicion is higher when using
a group membership service than when using failure
detectors. This is because the group membership
service removes suspected processes from the group

1The comment applies to the so-calledprimary-partitionmem-
bership [4].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a costly operation); there is no removal of suspected
processes with a failure detector. Moreover, with a
group membership service, the removal of a process
is usually followed by the addition of another (or the
same) process, in order to keep the same replication
degree. So, with a group membership service, a false
suspicion leads to two costly membership operations:
removal of a process followed by theaddition of
another process.

In an environment where false failure suspicions
are frequent,2 algorithms based on failure detectors
thus have advantages over algorithms based on a
group membership service. The cost difference has
been experimentally evaluated in [6] in the context
of one specific (not token-based) atomic broadcast
algorithm.

C. Why token-based algorithms?

According to [7], [8], [9], token-based atomic
broadcast algorithms are extremely efficient in terms
of throughput, i.e., the number of messages that can
be delivered per time unit. The reason is that these
algorithms manage to reduce network contention
by using the token (1) to avoid theack explosion
problem, and/or (2) to perform flow control (e.g., a
process is allowed to broadcast a message only when
holding the token). However, none of the token-based
algorithms use failure detectors: they all rely on a
group membership service.3 It is therefore interest-
ing to try to design token-based atomic broadcast
algorithms that rely on failure detectors, in order to
combine the advantage of failure detectors and of
token-based algorithms.

Note that we do not claim that token-based atomic
broadcast algorithms are efficient in terms of latency.
As just said, token-based algorithms are interesting
from another point of view: they are efficient in
terms of throughput. For many applications, high
throughput may be more important than low latency.

2This typically happens if the timeouts used to suspect pro-
cesses have been set to small values (i.e., in the order of the
average message transmission delay), in order to reduce the time
needed to detect the crash of processes.

3The group membership mechanism does not necessarily ap-
pear explicitly in the algorithm, e.g., in [9]. It can be implemented
in an ad-hoc way.

D. Contribution of the paper

The paper gives the first token-based atomic broad-
cast algorithm that uses unreliable failure detectors
instead of group membership. This result is obtained
in several steps. The paper first gives a new and
more general definition for token-based algorithms
(Sect. II) and introduces a new failure detector,
denoted byR, adapted to token-based algorithms
(Sect. III). The failure detectorR is shown to be
strictly weaker than♦P, and strictly stronger than
♦S. AlthoughR is stronger than necessary to solve
consensus or atomic broadcast (since♦S is strong
enough),R is needed for token-based algorithm:♦S
is too weak to be used for token-based algorithms.
Moreover,R has an interesting feature: the failure
detector module of a processpi only needs to give
information about the (estimated) state ofpi−1. For
pi−1, this can be done by sendingI am alivemessages
to pi only, which is extremely cheap.

Section IV concentrates on the consensus prob-
lem. First we define two classes of token-based al-
gorithms: token-accumulationalgorithms andtoken-
coordinated algorithms. Then we give a token-
accumulation consensus algorithm based on the fail-
ure detectorR.

Atomic broadcast is solved in Section V: a token-
accumulation algorithm is presented. The algorithm
is inspired from the token-accumulation consensus
algorithm of Section IV. Note that a standard solution
consists in solving atomic broadcast by reduction to
consensus [3]. However, this solution is not adequate
here. The atomic broadcast algorithm that we pro-
pose is “derived” from the token-based consensus
algorithm, but the algorithm cannot be expressed in
terms of “reduction” of atomic broadcast to consen-
sus.4 Actually, we could have presented only the
token-based atomic broadcast algorithm. However,
the token-based consensus algorithm is simpler than
the token-based atomic broadcast algorithm. The de-
tour through the consensus algorithm makes it easier
to understand the atomic broadcast algorithm.

Related work is presented in Section VI and Sec-
tion VII concludes the paper.

4The solution obtained by reduction of atomic broadcast to
consensus would be very inefficient.

II. SYSTEM MODEL AND DEFINITIONS

We assume an asynchronous system composed of
n processes taken from the setΠ = {p0, . . . , pn−1},
with an implicit order on the processes. Thekth suc-
cessor of a processpi is p(i+k)modn, which is, from
now on, simply notedpi+k for the sake of clarity.
Similarly thekth predecessor ofpi is simply denoted
by pi−k. The processes communicate by message
passing over reliable channels. Processes can only
fail by crashing (no Byzantine failures). A process
that never crashes is said to becorrect, otherwise it
is faulty. At mostf processes arefaulty. The system
is augmented with unreliable failure detectors [3] (see
below).

A. The Consensus problem

As in [3], we specify the (uniform) consensus
problem by four properties: (1)Termination: Every
correct process eventually decides some value, (2)
Uniform integrity: Every process decides at most
once, (3)Uniform agreement:No two processes (cor-
rect or not) decide a different value, and (4)Uniform
validity: If a process decidesv, thenv was proposed
by some process inΠ.

B. The Atomic Broadcast problem

In the Atomic Broadcast problem, defined by the
primitivesabroadcastandadeliver, processes have to
agree on a common total order delivery of a set of
messages. Formally, we define Atomic Broadcast by
four properties [1]: (1)Validity: If a correct processp
abroadcastsa messagem, then it eventuallyadelivers
m, (2) Uniform Agreement:If a processadelivers
m, then all correct processes eventuallyadeliverm,
(3) Uniform Integrity: For any messagem, every
processp adeliversm at most once and only ifm was
previouslyabroadcast, and (4)Uniform Total Order:
If some process, correct or faulty,adeliversm before
m′, then every processadeliversm′ only after it has
adeliveredm.

C. Token-based algorithm

In a traditional token-based algorithm, processes
are organized in a logical ring and, for token trans-
mission, communicate only with their immediate pre-
decessor and successor (except during the reforma-
tion phase). This definition is too restrictive for failure
detector-based algorithms. We define an algorithm to

be token-basedif (1) processes are organized in a
logical ring, and (2) each processpi has a failure
detector moduleFDi that provides information only
about its immediate predecessorpi−1.

D. Failure detectors

We refer below to two failure detectors introduced
in [3]: ♦P and ♦S. The eventual perfect failure
detector♦P is defined by the following properties: (i)
Strong Completeness:Eventually every process that
crashes is permanently suspected by every correct
process, and (ii)Eventual Strong Accuracy:There is a
time after which correct processes are not suspected
by any correct process. The♦S failure detector is
defined by (i)Strong Completenessand (ii) Eventual
Weak Accuracy:There is a time after which some
correct process is never suspected by any correct
process.

III. FAILURE DETECTORR
For token-based algorithms we define a new

failure detector denoted byR (stands for Ring).
Given processpi, the failure detector attached to
pi only gives information about the immediate
predecessorpi−1.5 For every processpi, R ensures
the following properties:
(i) Completeness: If pi−1 crashes andpi is correct,
thenpi−1 is eventually permanently suspected bypi,
and
(ii) Accuracy: If pi−1 and pi are correct, there is a
time t after whichpi−1 is never suspected bypi.
The relation weaker/stronger between failure
detectors has been defined in [3]. We show
that (a) ♦P is strictly stronger thanR (denoted
♦P � R), and (b)R is strictly stronger than♦S if
n ≥ f(f + 1) + 1 (R � ♦S).

Lemma 1:♦P is strictly stronger thanR.
Proof: This result is easy to establish. From the

definition it follows directly that♦P is stronger or
equivalent toR, denoted by♦P � R. Moreover,
when pi is faulty, thenR provides no information
about pi−1:6 so ♦P � R (♦P not equivalent to

5Remember the meaning of the notationpi−k or pi+k intro-
duced at the beginning of Section II.

6In the special case off = 1, the information aboutpi−1 can
be obtained indirectly, i.e., iff = 1, the relation between♦P
andR is not strict:♦P � R.

R). Together with♦P � R we have that♦P � R.�

The relationship betweenR and♦S is more dif-
ficult to establish. We first introduce a new failure
detector♦S2 (Sect. III-A), then show that♦S2 � ♦S
(Sect. III-B) andR � ♦S2 if n ≥ f(f + 1) + 1
(Sect. III-C). By transitivity, we haveR � ♦S if
n ≥ f(f + 1) + 1.

A. Failure detector♦S2

For the purpose of establishing the relation be-
tweenR and ♦S we introduce the failure detector
♦S2 defined as follows:
(i) Strong Completeness: Eventually every process
that crashes is permanently suspected by every cor-
rect process and
(ii) Eventual “Double” Accuracy: There is a time
after which “two” correct processes are never sus-
pected by any correct process.

B. ♦S2 strictly stronger than♦S
♦S and♦S2 differ in the accuracy property: while

♦S requires eventuallyone correct process to be
no longer suspected by all correct processes,♦S2
requires the same to hold fortwo correct processes.
From the definition, it follows directly that♦S2 �
♦S.

C. R stronger than♦S2 if n ≥ f(f + 1) + 1

We show thatR is stronger than♦S2 if n ≥ f(f+
1)+1 by giving a transformation ofR into the failure
detector♦S2.

Transformation of R into ♦S2: Each processpj
maintains a setcorrectj of processes thatpj believes
are correct.
(i) This set is updated as follows. Each time some
processpi changes its mind aboutpi−1 (based onR),
pi broadcasts (using a FIFO reliable broadcast com-
munication primitive [1]) the message(pi−1, faulty),
respectively (pi−1, correct). Wheneverpj receives
(pi, faulty), thenpj removespi from correctj ; when-
ever pj receives(pi, correct), then pj adds pi to
correctj .
(iia) For processpi, if correcti is equal toΠ (no
suspected process), the output of the transformation
(the two non-suspected processes) isp0 and p1. All
other processes are suspected.
(iib) For processpi, if correcti is not equal to

Π (at least one suspected process), the output of
the transformation (the two non-suspected processes)
is pk and pk+1 such thatk is the smallest index
satisfying the following conditions: (a)pk−1 is not
in correcti, and (b) thef − 1 immediate successors
pk+1,. . . ,pk+f−1 are in correcti. Apart from pk and
pk+1, all other processes are suspected.

For example, forn = 7, f = 2, and correcti =
{p0, p2, p3, p5}, the non-suspected processes forpi
are p2 and p3. All other processes are suspected.
If correcti = {p0, p1, p2, p3, p5}, the non-suspected
processes forpi are p0 and p1 (the predecessor of
p0 is p6, not in correcti). All other processes are
suspected.

Lemma 2:Consider a system withn ≥ f(f +
1) + 1 processes and the failure detectorR. The
above transformation guarantees that eventually all
correct processes do not suspect the same two correct
processes.

Proof : (i) Considert such that aftert all faulty
processes have crashed and each correct processpi
has accurate information about its predecessorpi−1.
It is easy to see that there is a timet′ > t such that
after t′ all correct processes agree on the same set
correcti. Let us denote this set bycorrect(t′).
(ii) The condition n ≥ f(f + 1) + 1 guarantees
that the set correct(t′) contains a sequence of
f consecutive processes. Consider the following
sequence of processes: 1 faulty,f correct, 1 faulty,
f correct, etc. If we repeat the patternf times,
we havef faulty processes in a set off(f + 1)
processes. If we add one correct process to the set of
f(f + 1) processes, there is necessarily a sequence
of f + 1 correct processes. With a sequence of
f + 1 correct processes, there is a sequence off
consecutive processes incorrect(t′).
(iii) In the case correct(t′) = Π, p0 and p1 are
trivially correct.
(iv) In the case correct(t′) 6= Π, consider the
sequence off + 1 processespk, . . . , pk+f . Since
there are at mostf faulty processes, at least one
processpl in pk, . . . , pk+f is correct. If pl = pk,
we are done. Otherwise, ifpl is correct, pl−1 is
correct as well, since the failure detector ofpl is
accurate aftert′ and does not suspectpl−1. By the
same argument, ifpl−1 is correct,pi−2 is correct. By
repeating the same argument at mostf − 1 times,
we have thatpk is correct.

(v) In the casecorrect(t′) 6= Π, we prove now
that pk+1 is correct. Sincepk is correct andpk−1

is not in correct(t′) (by the selection rule of
pk and pk+1), pk−1 is faulty. Thus, there are at
most f − 1 faulty processes in the sequence of
f processespk+1,. . . ,pk+f . In the special case
f = 1 ({pk+1, . . . , pk+f−1} = ∅), all processes
in pk+1,. . . ,pk+f are correct. In the casef > 1,
there is a non-empty sequencepk+1,. . . ,pk+f−1

in correct(t′). Furthermore, there are at most
f − 1 faulty processes among thef processes
pk+1,. . . ,pk+f . By the same argument used to show
thatpk is correct, we can show thatpk+1 is correct.�

The transformation ofR into ♦S2 ensures the
Eventual Double Accuracyproperty ifn ≥ f(f+1)+
1. Since all processes except two correct processes
are suspected, theStrong Completenessproperty also
holds. Consequently, ifn ≥ f(f + 1) + 1 we have
R � ♦S2.

IV. TOKEN-BASED CONSENSUS

A. Two classes of algorithms

We identify two classes of token-based con-
sensus algorithms:token-accumulationalgorithms
and token-coordinatedalgorithms. In the token-
accumulationalgorithms, each token holder votes for
the proposal transported in the token. Votes are accu-
mulated as the token circulates and once enough votes
have been collected, the token holder can decide. In
this class of algorithms, the only communication is
related to the circulation of the token. This is not
the case oftoken-coordinatedalgorithms. In these
algorithms the token holds a proposal, but, in order
to decide, the token holder can communicate with all
other processes. Algorithms based on therotating-
coordinator paradigm(such as the Chandra-Toueg
♦S consensus algorithm [3]) can easily be adapted
to this class. Token-accumulation algorithms are more
genuine token-based algorithms, and the paper con-
centrates on this class of algorithms.

B. Token circulation

The token circulation, which can be handled in
the same way for token-accumulation and token-
coordinated algorithms, is as follows. To avoid the
loss of the token due to crashes, processpi sends

the token to itsf + 1 successors in the ring, i.e.,
to pi+1, . . . , pi+f+1.7 Furthermore, when awaiting
the token, processpi waits to get the token from
pi−1, unless it suspectspi−1. If pi suspectspi−1, it
accepts the token from any of its predecessors (see
Procedure 1).

Procedure 1Receive token (code of processpi)
1: wait until received token from pi−1 or

suspected(pi−1)
2: if token not receivedthen {accept from anyone}
3: wait until received token from p ∈

{pi−f−1, ..., pi−1}
4: end if

C. Token-accumulation consensus algorithm

1) Basic idea: Consensus is achieved by passing
a token between the different processes. The token
contains information regarding the current proposal
(or the decision once it has been taken). The token
is passed between the processes on a logical ringp0,
p1,. . . ,pn−1. Each token holder “votes” for the pro-
posal in the token and then sends it to its neighbors.
As soon as a sufficient number of token holders have
voted for some proposalv, then v is decided. The
decision is then propagated as the token circulates
along the ring.

2) Naive algorithm: We start by presenting
a naive algorithm that illustrates both the basic
idea behind our algorithm and its difficulty. Let
the token carry anestimate value (denoted by
token.estimate) and the number of votes for this
estimate (denotedtoken.votes). Let each processpi,
upon receiving the token, blindly add its vote to
the proposal (see Procedure 2). Obviously, this naive
algorithm does not work: it would solve consensus
in an asynchronous system, in contradiction with the
FLP impossibility result [10].

3) Overview of the token-accumulation consensus
algorithm: As just shown, a token-accumulation al-
gorithm cannot blindly increase the votes accumu-
lated. We slightly change the above behavior. The
token carries one additional information:token.gap

7The token should be seen as alogical token. Multiple backup
copies circulate in the ring, but they are discarded by the
algorithm if no suspicion occurs. Henceforth, thelogical token
will simply be referred to as ”the token”.

Procedure 2Token handling bypi (option 1)
pi.estimate← token.estimate
token.votes← token.votes+ 1
if token.votes ≥ voteThreshold then

decide(token.estimate)
end if
send token topi+1, . . . , pi+f+1

which is the accumulatedgap in the circulation of
the token, defined as follows: when a processpi
receives the token from processsender≡pj , thegap
is i−j−1, denoted bygap(sender→pi). We have
gap(sender→pi)=0 only if the token is received
from the immediate predecessor. Upon receiving the
token, a process does the following (see Procedure 3):

As long as the number of gaps in the token circu-
lation is less thangapThreshold, and the token has
not performed a full rotation of the ring (token.gap+
token.votes < n), token.votes is incremented by
the receiverpi. If at that pointtoken.votes is greater
than voteThreshold, pi decides on the estimate of
the token. The decision is then propagated with the
token.

Procedure 3Token handling bypi (option 2)
token.gap← token.gap+ gap(sender → pi)
if (token.gap > gapThreshold) or (token.gap+
token.votes ≥ n) then
token.gap← 0; token.votes← 0{reset token}

end if
pi.estimate← token.estimate
token.votes← token.votes+ 1
if token.votes ≥ voteThreshold then

decide(token.estimate)
end if
send token topi+1, . . . , pi+f+1

4) Conditions for agreement vs. termination:It
is interesting to distinguish the conditions required
for agreement and thoses required for termination.
Agreement holds if

voteThreshold ≥ (gapThreshold+ 1)f + 1.

Termination holds with the failure detectorR,
gapThreshold = 0, voteThreshold = f + 1 and
n ≥ (f + 1)f + 1.

5) Details of the algorithm: The token con-
tains the following fields:round (round number),
estimate, votes (accumulated votes for theestimate
value),gap (sum of all gaps in the token circulation)
anddecision (a boolean indicating ifestimate is the
decision).

Procedure 4Consensus: Initialisation
1: ∀pi, i ∈ [0, n− 1] :
2: estimatei ← vi; decidedi ← false; roundi ← 0

3: p0 : {send token}
4: send(0,v0,1,0,false) to{p1,. . . ,pf+1}

5: ∀pi, i ∈ [n− f, n− 1]: {send “dummy” token}
6: send(-1,⊥,0,0,false) to{p1, . . . , pi+f+1}

The initialization code is given by Procedure 4.
Lines 5-6 show thedummy token sent to prevent
blocking in the case processesp0, . . . , pf−1 are ini-
tially crashed. A dummy token hasround = −1,
estimate = ⊥ and votes = 0, and is sent only to
processesp1, . . . , pf .

The token handling code is given by Procedure 5.
At line 2, processpi starts by receiving the token (see
Procedure 1) for the expectedroundi.8 If no value
is transported by the token (dummy initialization to-
ken),pi replacestoken.estimate by its own estimate
(lines 3-5). If pi has not yet decided, thenpi starts
by updating its estimate (line 7). At line 8 the gap is
updated. Ifgapi ≤ gapThreshold and the token has
not performed a full circulation on the ring (line 9)9,
then the votes are incremented (line 10). Otherwise,
the votes are reset to 1 and the gap to 0 (line 12),
which starts a new sequence of vote accumulation. At
line 14, processpi checks whether there are enough
votes for a decision to be taken. If so,pi decides
(line 15). Finally, the token with the updated fields is
sent to thef + 1 successors (line 19), and processpi
incrementsroundi (line 20).

Lines 1-21 ensure that at least one correct process
eventually decides. However, iff > 1, this does not

8To avoid complicated notation, we implicitly assume that, for
processpi, waiting a token forroundi means either (1) waiting
a token frompj , j < i, with token.round = roundi, or (2)
waiting a token frompj , j > i, with token.round = roundi−1.

9The condition on line 9 can be reduced togapi ≤
gapThreshold. The algorithm would however need some minor
modifications, which would imply a slightly more complex proof
of Agreement.

Procedure 5 Token-accumulation consensus: token
handling bypi

1: loop
2: token← receive-token(roundi) {see Proc. 1}

3: if token.estimate =⊥ then {use initial value}
4: token.estimate← estimatei
5: end if

6: if not decidedi then
7: estimatei ← token.estimate
8: gapi ← token.gap+ gap(sender → pi)
9: if (gapi ≤ gapThreshold) and

(token.gap+ token.votes < n) then
10: votesi ← token.votes+ 1 {add vote}
11: else
12: votesi ← 1; gapi ← 0 {reset votes/gap}
13: end if
14: if (votesi ≥ voteThreshold)

or token.decision
then

15: decide(estimatei); decidedi ← true
16: end if
17: end if
18: token←

(roundi, estimatei, votesi, gapi, decidedi)

19: send token to{pi+1,. . . ,pi+f+1}
20: roundi ← roundi + 1
21: end loop

22: upon reception of token s.t.
token.round < roundi do

23: if token.decision and (notdecidedi) then
24: estimatei ← token.estimate
25: decide(estimatei); decidedi ← true
26: end if
27: end upon

ensure that all correct processes eventually decide.
Consider gapThreshold = 0 and the following
example:pi is the first process to decide,pi+1 is
faulty. In this case,pi+2 may always receive the token
from pi−1, a token that does not carry a decision;pi
might be the only process to ever decide. Lines 22-27
ensure that every correct process eventually decides.
The token received at line 2, forroundi, follows

Procedure 1. Other tokens are received at line 22:
if the token carries a decision, processpi decides.
Note that stopping of the algorithm is not discussed
here. It can easily be added.

6) Proof of the token-accumulation algorithm:
The proofs of the uniform validity and uniform
integrity properties are easy and omitted. The proof
of the uniform agreement and termination properties
are in the appendix.

V. TOKEN-BASED ATOMIC BROADCAST

ALGORITHMS

In this section we show how to transform the
token-accumulation consensus algorithm into an
atomic broadcast algorithm. Note that we could have
presented the atomic broadcast algorithm directly.
However, since the consensus algorithm is simpler
than the atomic broadcast algorithm, we believe that
a two-step presentation makes it easier to understand
the atomic broadcast algorithm.

Note also that it is well known how to solve
atomic broadcast by reduction to consensus [3]. The
reduction, which transforms atomic broadcast into a
sequence of consensus, is however not adequate here.
The reduction would lead to multiple instances of
consensus, with one token per consensus instance. We
want a single token to “glue” the various instances
of consensus.

For simplification, we express the atomic broadcast
algorithm for the casegapThreshold = 0 (the
votes for a proposal are reset as soon as a gap
is detected in the token circulation). To be correct,
the atomic broadcast algorithm requires the failure
detectorR, and the conditionsn ≥ f(f + 1) + 1,
voteThreshold = f + 1 (and gapThreshold = 0,
which is hard-wired in the algorithm).

A. Overview

In the token-accumulation atomic broadcast al-
gorithm, the token transports (i) sets of messages
and (ii) sequences of messages. More precisely, the
token carries the following information:(round, pro-
posalSeq, votes, adeliv, nextSet). Messages in the
sequenceproposalSeqare delivered as soon as a
sufficient number of consecutive “votes” have been
collected. The fieldadeliv is the sequence of all
messages adelivered that the token is aware of (in the
delivery order). When a process receives the token, it

can therefore, if needed, catch up with the message
deliveries performed by other processes.

Finally, while the token accumulates votes for
proposalSeq, it simultaneously collects innextSet
the messagesm such thatabroadcast(m) has been
executed. The setnextSetgrows as the token cir-
culates. Whenever messages inproposalSeqcan be
delivered,nextSetis used as the “proposals” for the
next decision.

Procedure 6Atomic Broadcast: Initialisation
1: ∀pi, i ∈ [0, n− 1] :
2: abroadcasti ← ∅; adelivi ← ε: roundi ← 0

3: p0 : {send token}
4: send(0,abroadcast0, 1, ε, abroadcast0) to

{p1,..,pf+1}
5:

6: ∀pi, i ∈ [n− f, n−1]: {send “dummy” token}
7: send(−1, ∅, 0, ε, ∅) to {p1,. . . ,pi+f+1}

Procedure 7 Atomic Broacast: abroadcast and
adeliver (code ofpi)

1: To executeabroadcast(m):
2: abroadcasti ← abroadcasti ∪ {m}

3: To executedelivery(seq):
4: adeliver messages inseq not in adelivi
5: adelivi ← adelivi ⊕ seq
6: abroadcasti ← abroadcasti \ adelivi

B. Details

Each processpi manages the following data struc-
tures (see Procedure 6):roundi (the current round
number),abroadcasti (the set of all messages that
have been abroadcast bypi or another process, and
not yet ordered), andadelivi (the sequence of mes-
sages adelivered bypi). The algorithm is decomposed
into several procedures.

Procedure 6 is the initialization procedure (ε de-
notes the empty sequence).

Procedure 7 describes theabroadcastand adeliv-
ery of messages:delivery(seq) is called by Proce-
dure 8. The operator⊕ at line 5 of Procedure 7 is the
sequence concatenation operator (seq1 ⊕ seq2 is the
sequence of elements inseq1 concatenated with the
sequence of elements inseq2 that are not inseq1).

Procedure 8Atomic broadcast: token handling bypi
1: loop
2: token ← receive-token(roundi) {see Proce-

dure 1}

3: abroadcasti ← abroadcasti ∪
token.proposalSeq ∪ token.nextSet

4: if |token.adeliv| < |adelivi| then {pi more up

to date than the token}
5: token.proposalSeq ← ∅
6: else {|adelivi| ≤ |token.adeliv|}
7: delivery(token.adeliv)
8: if (token received from pi−1) and

(token.proposalSeq 6= ∅) then
9: votesi ← token.votes+ 1

10: else
11: votesi ← 1
12: end if

13: if (votesi ≥ f + 1) then
14: delivery(token.proposalSeq)
15: token.proposalSeq ← ∅
16: end if
17: end if

18: if token.proposalSeq = ∅ then {new proposal

can be made...}
19: token.proposalSeq ← abroadcasti {add

new “proposals”}
20: votesi = 1
21: end if
22: token← (roundi, token.proposalSeq,

votesi, adelivi, abroadcasti)
23: send token to{pi+1..pi+f+1}
24: roundi ← roundi + 1
25: end loop

26: upon reception of token s.t.
token.round < roundi do

27: if |token.adeliv| > |adelivi| then{the token has

“new” information}
28: delivery(token.adeliv)
29: end if

30: abroadcasti ← abroadcasti ∪ token.nextSet
31: end upon

Procedure 8 describes the token-handling. Lines
4 to 17 of Procedure 8 correspond to lines 6-17
of the consensus algorithm (Procedure 5). Procedure
delivery() is called to deliver messages (line 14).
When this happens, a new sequence of messages can
be proposed for delivery. This is done at lines 18
to 21. Finally, lines 26-31 handle reception of other
tokens. This is needed for Uniform Agreement and
Validity when f > 1. Lines 27-29 are for Uniform
Agreement (they play the same role as lines 23-25
of Procedure 5). Line 30 is for Validity (consider
f = 2, pi correct andpi+1 faulty; without line 30,
processpi+2 might, in all rounds, receive the token
only from pi−1; if this happens, messagesabroadcast
by pi would never beadelivered).

The proof of the algorithm can be derived from the
proof of the token-accumulation consensus algorithm.

C. Optimization

In our algorithm, the token carries whole mes-
sages, rather than only message identifiers. This so-
lution is certainly inefficient. The algorithm can be
optimized so that only the message identifiers are
included in the token. However, this solution requires
messages to be reliably broadcast by each host. This
approach leads to a slightly more complex algorithm
not given here as this issue is orthogonal to the
contribution of the paper.

The circulation of the token can also be optimized.
If all processes are correct, each process actually only
needs to send the token to its immediate successor.
So, by default each processpi only sends the token
to pi+1. This approach requires that if processpi
suspects its predecessorpi−1, it must send a message
to its f + 1 predecessors,10 requesting the token.
A process, upon receiving such a message, sends
the token topi. If all processes are correct, this
optimization requires only a single copy of the token
to be sent by each token-holder instead off + 1
copies, thus reducing the network contention due to
the token circulation by a factorf + 1.

VI. RELATED WORK

As was mentioned in Section I, previous atomic
broadcast protocols based on tokens need group
membership or an equivalent mechanism. In the

10Actually, the message does not need to be sent bypi to pi−1.

Chang and Maxemchuk’s Reliable Broadcast Proto-
col [11], and its newer variant [9] an ad-hoc refor-
mation mechanism is called whenever a host fails.
Group membership is used explicitly in other atomic
broadcast protocols such as Totem [8], the Reliable
Multicast Protocol by Whetten et al. [7] (derived
from [11]), and in [12].

These atomic broadcast protocols also have differ-
ent approaches with respect to message broadcasting
and delivery. In [11], [7], any process can broadcast a
message at any time. The token holder then orders the
messages that have been broadcast. Other protocols,
such as Totem [8] or On-Demand [12] on the other
hand only enable the token-holder to broadcast (and
simultaneously order) messages.

Finally, the different token-based atomic broadcast
protocols deliver messages in different ways. In [12],
the token holder issues an “update dissemination
message” which effectively contains messages and
their global order. A host can deliver a message as
soon as it knows that previously ordered messages
have been delivered. “Agreed delivery” in the Totem
protocol (which corresponds toadeliver in the proto-
col presented in this paper) is also done in a similar
way. On the other hand, in the Chang-Maxemchuk
atomic broadcast protocol [11], a message is only
delivered oncef+1 sites have received the message.

Larrea et al. [13] also consider a logical ring of
processes, however with a different goal. They use
a ring for an efficient implementation of the failure
detectors♦W, ♦S and♦P in a partially synchronous
system.

VII. C ONCLUSION

According to various authors, token-based atomic
broadcast algorithms are more efficient in terms of
throughput than other atomic broadcast algorithms.
The reason is that the token can be used to reduce net-
work contention. However, all published token-based
algorithms rely on a group membership service, i.e.,
none of them can use a failure detection mechanism.
The paper has given the first token-based atomic
broadcast algorithms that solely relies on a failure
detector, namely the new failure detector calledR.
Such an algorithm has the advantage to tolerate fail-
ures (i.e., it also tolerates false failure suspicions). Al-
gorithms that do not tolerate failures, need to rely on

a membership service to exclude crashed processes.
As a side-effect, these algorithms also exclude correct
processes that have been incorrectly suspected. Thus,
failure detector based algorithms have advantages
over group membership based algorithms, in case of
false failure suspicions, and possibly also in case of
real crashes.

In the future we plan to compare the performance
of these two classes of token-based atomic broadcast
algorithms (failure-detector based andmembership
based) in a similar way as done in [6], for a different
class of atomic broadcast algorithms. Note that these
experiments may require to address practical issues
not addressed here, such as reducing the size of
the information carried by the token, carrying in the
token message identifiers rather then whole messages,
and also adapting the algorithm to fair-lossy channels,
as in [11], [9].

Acknowledgements. We would like to thank
Bernadette Charron-Bost for discussions related to
failure detectors and Ṕeter Urb́an for useful comments
on an earlier version of the paper.

REFERENCES

[1] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” TR 94-1425,
Dept. of Computer Science, Cornell University, Ithaca, NY,
USA, May 1994.

[2] Xavier Défago, Andŕe Schiper, and Ṕeter Urb́an, “Totally
ordered broadcast and multicast algorithms: A comprehen-
sive survey,” Tech. Rep. DSC/2000/036,École Polytech-
nique F́ed́erale de Lausanne, Switzerland, Sept. 2000.

[3] T. D. Chandra and S. Toueg, “Unreliable failure detectors
for reliable distributed systems,”Journal of ACM, vol. 43,
no. 2, pp. 225–267, 1996.

[4] G.V. Chockler, I. Keidar, and R. Vitenberg, “Group Com-
munication Specifications: A Comprehensive Study,”ACM
Computing Surveys, vol. 4, no. 33, pp. 1–43, December
2001.

[5] K. Birman, A. Schiper, and P. Stephenson, “Lightweight
causal and atomic group multicast,”ACM Trans. on
Computer Systems, vol. 9, no. 3, pp. 272–314, Aug. 1991.

[6] Péter Urb́an, Ilya Shnayderman, and André Schiper, “Com-
parison of failure detectors and group membership: Perfor-
mance study of two atomic broadcast algorithms,” inProc.
of the Int’l Conf. on Dependable Systems and Networks
(DSN), June 2003, pp. 645–654.

[7] B. Whetten, T. Montgomery, and S. Kaplan, “A high
performance totally ordered multicast protocol,” inTheory
and Practice in Distributed Systems, Springer-Verlag, Ed.,
Dagstuhl Castle, Germany, Sept. 1994, number 938 in
Lecture Notes in Computer Science, pp. 33–57.

[8] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal,
and P.Ciarfella, “The Totem single-ring ordering and
membership protocol,”ACM Trans. on Computer Systems,
vol. 13, no. 4, pp. 311–342, November 1995.

[9] N. F. Maxemchuk and D. H. Shur, “An Internet multicast
system for the stock market,”ACM Trans. on Computer
Systems, vol. 19, no. 3, pp. 384–412, August 2001.

[10] Michael J. Fischer, Nancy A. Lynch, and Michael S. Pater-
son, “Impossibility of distributed consensus with one faulty
process,”Journal of ACM, vol. 32, no. 2, pp. 374–382, Apr.
1985.

[11] J. Chang and N. F. Maxemchuk, “Reliable broadcast
protocols,” ACM Trans. on Computer Systems, vol. 2, no.
3, pp. 251–273, Aug. 1984.

[12] F. Cristian, S. Mishra, and G. Alvarez, “High-performance
asynchronous atomic broadcast,”Distributed System Engi-
neering Journal, vol. 4, no. 2, pp. 109–128, June 1997.

[13] Mikel Larrea, Sergio Arevalo, and Antonio Fernandez,
“Efficient algorithms to implement unreliable failure de-
tectors in partially synchronous systems,” inInternational
Symposium on Distributed Computing, 1999, pp. 34–48.

APPENDIX

A. Correctness of the token-accumulation consensus
algorithm

a) (Uniform) Agreement (sketch).:We prove
thatvoteThreshold ≥ (gapThreshold+1)f+1 en-
suresuniformagreement.11 The proof is by induction
on gapThreshold.

i) Base case:gapThreshold = 0. Let pi be the
first process to decide (say at timet), and letv be
the decision value. By line 14 of Procedure 5, we
havevotesi ≥ voteThreshold ≥ (gapThreshold +
1)f+1 ≥ f+1. SincegapThreshold = 0, the votes
are reset for each gap. So,votesi ≥ f + 1 ensures
that at timet, all processespj ∈ {pi−1, . . . , pi−f},
have pj .estimate = v. Any processpk, successor
of pi in the ring, receives the token from one of the
processespi, . . . , pi−f . Since all these processes have
their estimate equal tov, the token received bypk
necessarily carries the estimatev. So aftert, the only
value carried by the token isv, i.e., any process that
decides will decidev.

ii) Induction step. We proove that if uniform
agreeement holds forgapThreshold = l, it holds for
gapThreshold = l + 1. We introduce the following
notation:votesx,y is the number of votes collected by
the token between (and including) processespx and
py, andgapx,y is the number of gaps experienced by
the token when moving frompx to py. Let pi be the
first process to decide (say at timet), and letv be the
decision value. Letvotesi and gapi be the number
of votes accumulated and the gap experienced by the
token whenpi decides. The most recent reset of the
votes/gap occurred at processpk ≡ pi−gapi−(votesi−1)

(by line 9, all processes{pk . . . pi} are different). So,
gapi = gapk,i and votesi = votesk,i. We consider
two cases (see Figure 1): (1) the token has circulated
without gap from pk to pk+f , (2) the token has
circulated with a gap of at least 1 frompk to pk+f .

In case (1), whenpk receives the token, allf + 1
processespk to pk+f have set their estimate tov.
Therefore, the token received by any process after
pk+f , including the processes afterpi, only carriesv.
Thus, aftert, the only value carried by the token is
v, i.e., any process that decides will decidev.

11Two processes, correct or faulty, cannot decide differently.

���� �������� ����
pk+f pk+f+1

pk ≡ pi−gapsp−(votesp−1) pi

Fig. 1. Proof by induction for Agreement

In case (2) we havegapk,k+f ≥ 1, and so
necessarilyvotesk,k+f ≤ f . When pi decides, we
have gapi = gapk,i ≤ l + 1 (*) and votesi =
votesk,i ≥ voteThreshold ≥ (gapThreshold +
1)f + 1 = (l + 2)f + 1 (**). Since gapk,k+f ≥ 1,
we have by (*):gapk+f+1,i = gapk,i − gapk,k+f ≤
gapk,i− 1 ≤ l (***). Since votesk,k+f ≤ f , we have
by (**): votesk+f+1,i = votesk,i − votesk,k+f ≥
votesk,i − f ≥ (l + 2)f + 1 − f = (l + 1)f + 1
(****). By (***) and (****), when pi decides, the
token circulation betweenpk+f+1 and pi satisfies
the induction hypothesis. Whenpi decides, uniform
agreement is therefore ensured. �

b) Termination (sketch).:Assume at mostf
faulty processes and the failure detectorR. We show
that, if n ≥ f(f + 1) + 1, gapThreshold = 0,12 and
voteThreshold = (gapThreshold+1)f+1 = f+1,
then every correct process eventually decides.

First it is easy to see that the token circulation
never stops: ifpi is a correct process that does not
have the token at timet, then there exists some time
t′ > t such thatpi receives the token at timet′. This
follows from (1) the fact that the token is sent by a
process to itsf + 1 successors, (2) thereceive token
procedure (Procedure 1), and (3) the completeness
property ofR (which ensures that ifpi waits for
the token frompi−1 and pi−1 has crashed, thenpi
eventually suspectspi−1 and accepts the token from
any of itsf + 1 predecessors).

The second step is to show that at least one
correct processes eventually decides. Assume the
failure detectorR, gapThreshold = 0, and lett be
such that aftert no correct processpi is suspected
by its immediate correct successorpi+1. Since we
have n ≥ f(f + 1) + 1 there is a sequence of
f + 1 correct processes in the ring (see section III-
C). Letpi . . . pi+f be this sequence. Aftert, processes

12Agreement does not requiregapThreshold = 0. However,
with the failure detectorR, gapThreshold > 0 does not ensure
termination.

pi+1 . . . pi+f only accept the token from their imme-
diate predecessor. Thus, aftert, the token sent by
pi is received bypi+1, the token sent bypi+1 is
received bypi+2, and so forth until the token sent by
pi+f−1 is received bypi+f . Oncepi+f has executed
line 10 of Procedure 5, we havevotesi ≥ f + 1 =
voteThreshold. Consequently,pi+f decides.

Finally, if one correct processpk decides, and
sends the token with the decision to itsf + 1 suc-
cessors, the first correct successor ofpk, by line 22,
eventually receives the token with the decision and
decides (if it has not yet done so). By a simple induc-
tion, every correct process eventually also decides.�

