Revisiting Token-Based
Atomic Broadcast Algorithms

) Richard Ekwall and Andr Schiper
Ecole Polytechnique &erale de Lausanne (EPFL)
1015 Lausanne, Switzerland

{nilsrichard.ekwall,andre.schige@epfl.ch

Technical Report 1C/2003/39

Abstract—Many atomic broadcast algorithms have
been published in the last twenty years. Token-based
algorithms represent a large class of these algorithms.
Interestingly all the token-based atomic broadcast al-
gorithms rely on a group membershigservice, i.e., none
of them uses failure detectors. The paper presents the
first token-based atomic broadcast algorithm that uses
an unreliable failure detector — the new failure detector
denoted byR — instead of a group membership service.
The failure detector R is compared with $P and $S.
In order to make it easier to understand the atomic
broadcast algorithm, the paper derives the atomic
broadcast algorithm from a token-based consensus
algorithm that also uses the failure detectorR.

I. INTRODUCTION
A. Context

key mechanism of an atomic broadcast algorithm.
The mechanism used to tolerate failures is another
important characteristic of these algorithms. If we
exclude synchronous systems and consider only crash
failures, the two main mechanisms to tolerate failures
in the context of atomic broadcast algorithms are
() unreliable failure detectord3] and (ii) group
membershig4]. For example, the atomic broadcast
algorithm in [3] (together with a consensus algorithm
using the failure detectopS [3]) falls into the first
category; the atomic broadcast algorithm in [5] falls
into the second category.

B. Group membership mechanism. failure detec-
tor mechanism.

Atomic broadcast (or total order broadcast) is ‘4 9roup membership service provides a consistent

an important abstraction in fault-tolerant distributed MeMPership information to all the members of a

computing. Atomic broadcast ensures that messageQrOUp [4]. Its main feature is toemove processes

broadcast by different processes are delivered bythat I?r(te)l SL;S_TeCt%d to have crasl"(;dd.contrast, %n
all destination processes in the same order [1].unre lable failure detector, e.gb,S, does not provide

Many atomic broadcast algorithms have been Ioub_consistent information about the failure status of
lished in the last twenty years. These algorithms processes. For example, it can tell to progesisatr

can be classified according to the mechanism usecpas crashed, while telling at the same time to process

for message ordering [2]Token circulationis one ¢ thatr is alive.. _ _
important ordering mechanism. In these algorithms, BOth mechanisms can make mistakes, e.g., by in-
a token circulates among the processes, and th&OrTectly suspecting correct processes. However, the

token-holder has the privilege to order messages thaf©St of @ false failure suspicion is higher when using
have been broadcast. Additionally, sometimes only & 9roup membership service than when using failure

the token-holder is allowed to broadcast messagesd€tectors. This is because the group membership

However, the ordering mechanism is not the only SETvice removes suspected processes from the group

Research supported by OFES under contract number 01.0537- 'The comment applies to the so-calledmary-partitionmem-
1 as part of the IST REMUNE project (number 2001-65002). bership [4].

https://core.ac.uk/display/147902704?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(a costly operation); there is no removal of suspectedD. Contribution of the paper

processes with a failure detector. Moreover, with a

group membership service, the removal of a process The paper gives the first token-based atomic broad-
is usually followed by the addition of another (or the cast algorithm that uses unreliable failure detectors
same) process, in order to keep the same replicatiorinstead of group membership. This result is obtained
degree. So, with a group membership service, a falsén several steps. The paper first gives a new and
suspicion leads to two costly membership operations:more general definition for token-based algorithms
removal of a process followed by thaddition of (Sect. II) and introduces a new failure detector,
another process. denoted byR, adapted to token-based algorithms

In an environment where false failure suspicions (Sect. lll). The failure detectoR is shown to be
are frequent, algorithms based on failure detectors Strictly weaker than(P, and strictly stronger than
thus have advantages over algorithms based on &&- Although'R is stronger than necessary to solve
group membership service. The cost difference hasconsensus or atomic broadcast (sireg is strong
been experimentally evaluated in [6] in the context €nough)R is needed for token-based algorithtnS

of one specific (not token-based) atomic broadcastiS t00 weak to be used for token-based algorithms.
algorithm. Moreover, R has an interesting feature: the failure

detector module of a procegs only needs to give
information about the (estimated) statef ;. For

C. Why token-based algorithms? pi_1, this can be done by sendihgm alivemessages
to p; only, which is extremely cheap.

According to_ [71, 8], [9], token-ba'\s.ed z_;ltomlc Section IV concentrates on the consensus prob-
broadcast algorithms are extremely efficient in terms . .
lem. First we define two classes of token-based al-

of throughput, i.e., the number of messages that car orithms: token-accumulatioralgorithms andoken-
be delivered per time unit. The reason is that theseg X g

) .~ ~coordinated algorithms. Then we give a token-
algorithms manage to reduce network contention : , ,

) ;) accumulation consensus algorithm based on the fail-
by using the token (1) to avoid theck explosion

ure detectorR.

problem, and/or (2) to perform flow control (e.g., a _ _ _ _ .
process is allowed to broadcast a message only when Atomic broadcast is solved in Section V: a token-
holding the token). However, none of the token-based_accummat'on algorithm is presented. The algorithm

algorithms use failure detectors: they all rely on a IS inspired from the token-accumulation consensus
group membership servidelt is therefore interest- algorithm of Section IV. Note that a standard solution

ing to try to design token-based atomic broadcastONsists in solving atomic broadcast by reduction to
algorithms that rely on failure detectors, in order to CONSensus [3]. However, this solution is not adequate

combine the advantage of failure detectors and oferé. The atomic broadcast algorithm that we pro-
token-based algorithms. pose is “derived” from the token-based consensus

Note that we do not claim that token-based atomic algorithm, but the algorithm cannot be expressed in

. L terms of “reduction” of atomic broadcast to consen-
broadcast algorithms are efficient in terms of latency.

4
As just said, token-based algorithms are interestingsus' Actually, we .COUId have prese_nted only the
. . o . “token-based atomic broadcast algorithm. However,
from another point of view: they are efficient in

terms of throughput. For many applications, high the token-based consensus algorithm is simpler than

. the token-based atomic broadcast algorithm. The de-
throughput may be more important than low latency. . . .
tour through the consensus algorithm makes it easier

to understand the atomic broadcast algorithm.
2This typically happens if the timeouts used to suspect pro- . . .
cesses have been set to small values (i.e., in the order of the Related work is presented in Section VI and Sec-

average message transmission delay), in order to reduce the tim&ion VII concludes the paper.
needed to detect the crash of processes.
3The group membership mechanism does not necessarily ap-
pear explicitly in the algorithm, e.g., in [9]. It can be implemented ~ “The solution obtained by reduction of atomic broadcast to
in an ad-hoc way. consensus would be very inefficient.

[l. SYSTEM MODEL AND DEFINITIONS

be token-basedf (1) processes are organized in a

We assume an asynchronous system composed dPdical ring, and (2) each procegg has a failure

n processes taken from the dét= {po,...,pn—1},

with an implicit order on the processes. Th& suc-
cessor of a process is p(itiymodn, Which is, from
now on, simply notedp;,, for the sake of clarity.
Similarly the k" predecessor gf; is simply denoted

detector moduleg”’ D; that provides information only
about its immediate predecessor ;.

D. Failure detectors
We refer below to two failure detectors introduced

by p;_x. The processes communicate by messagen [3l: OP and OS. The eventual perfect failure
passing over reliable channels. Processes can onl{l€tector0P is defined by the following properties: (i)
fail by crashing (no Byzantine failures). A process Strong Completenes&ventually every process that

that never crashes is said to berrect otherwise it
is faulty. At most f processes arfaulty. The system

crashes is permanently suspected by every correct
process, and (iiEventual Strong Accuracyrhere is a

is augmented with unreliable failure detectors [3] (see M€ after which correct processes are not suspected

below).

A. The Consensus problem

As in [3], we specify the (uniform) consensus
problem by four properties: (IJermination: Every

correct process eventually decides some value, (2)

Uniform integrity: Every process decides at most
once, (3)Uniform agreementiNo two processes (cor-
rect or not) decide a different value, and {4jiform
validity: If a process decides, thenv was proposed
by some process iil.

B. The Atomic Broadcast problem

by any correct process. ThgS failure detector is
defined by (i)Strong Completenesmd (ii) Eventual
Weak AccuracyThere is a time after which some
correct process is never suspected by any correct
process.

For token-based algorithms we define a new
failure detector denoted byR (stands forRing).
Given processp;, the failure detector attached to
p; only gives information about the immediate
predecessop;_1.° For every procesg;, R ensures
the following properties:

FAILURE DETECTORR

In the Atomic Broadcast problem, defined by the (i) Completenesslf p; 1 crashes ang; is correct,

primitives abroadcastandadeliver, processes have to

thenp;_1 is eventually permanently suspectediy

agree on a common total order delivery of a set of and
messages. Formally, we define Atomic Broadcast by(ii) Accuracy If p;,_; andp; are correct, there is a

four properties [1]: (1)Validity: If a correct process

abroadcast® message:, then it eventuallyadelivers
m, (2) Uniform Agreementlf a processadelivers
m, then all correct processes eventualyeliver m,

(3) Uniform Integrity: For any messagen, every
proces® adeliversm at most once and only i, was
previouslyabroadcastand (4)Uniform Total Order:
If some process, correct or faulydeliversm before
m/, then every procesadeliversm’ only after it has
adeliveredm.

C. Token-based algorithm

time ¢ after whichp; ;1 is never suspected hy;.

The relation weaker/stronger between failure
detectors has been defined in [3]. We show
that (a) OP is strictly stronger thanR (denoted
QP = R), and (b)R is strictly stronger thar)S if
n>f(f+1)+1 (R = OS).

Lemma 1: P is strictly stronger tharik.

Proof: This result is easy to establish. From the
definition it follows directly thatQ?P is stronger or
equivalent toR, denoted byQP = R. Moreover,
when p; is faulty, then’R provides no information

In a traditional token-based algorithm, processesapout p;_1:® so ¢P % R (OP not equivalent to

are organized in a logical ring and, for token trans-
mission, communicate only with their immediate pre-

decessor and successor (except during the reform
tion phase). This definition is too restrictive for failure

a-

SRemember the meaning of the notatipn ; or p;,) intro-
duced at the beginning of Section II.
®In the special case of = 1, the information aboup;_; can
be obtained indirectly, i.e., iff = 1, the relation betweerpP

detector-based algorithms. We define an algorithm toand R is not strict: 0P = R.

R). Together withOP = R we have that)P = R. IT (at least one suspected process), the output of
the transformation (the two non-suspected processes)
The relationship betweeR and OS is more dif- is pr and pgy1 such thatk is the smallest index
ficult to establish. We first introduce a new failure satisfying the following conditions: (a)x_1 is not
detector)S2 (Sect. IlI-A), then show thapS2 = ¢S in correct;, and (b) thef — 1 immediate successors
(Sect. llI-B) andR = OS2 if n > f(f+1)+1 D41, - - Pkt f—1 @r€ incorrect;. Apart from p;, and
(Sect. 1lI-C). By transitivity, we haveR > OS if pr+1, all other processes are suspected.
n>f(f+1)+1. For example, forn = 7, f = 2, and correct; =
_ {po,p2,p3,ps5}, the non-suspected processes for
A. Failure detector)S2 are p, and ps. All other processes are suspected.
For the purpose of establishing the relation be- If correct; = {po,p1,p2,p3,ps}, the non-suspected
tweenR and ¢S we introduce the failure detector processes fop; are py and p; (the predecessor of
¢S2 defined as follows: po IS pg, NoOt in correct;). All other processes are
(i) Strong Completenes&ventually every process suspected.
that crashes is permanently suspected by every cor- Lemma 2:Consider a system witlh > f(f +
rect process and 1) + 1 processes and the failure detect®. The
(i) Eventual “Double” Accuracy There is a time above transformation guarantees that eventually all
after which“two” correct processes are never sus- correct processes do not suspect the same two correct

pected by any correct process. processes.
. Proof : (i) Considert such that after all faulty
B. 052 strictly stronger thanGS processes have crashed and each correct prggess

0S and{S?2 differ in the accuracy property: while has accurate information about its predecegsof.
OS requires eventuallyone correct process to be It is easy to see that there is a tinfe> ¢ such that
no longer suspected by all correct processgS? after ¢’ all correct processes agree on the same set
requires the same to hold féwo correct processes. correct;. Let us denote this set yorrect(t').
From the definition, it follows directly thapS2 >~ (i) The conditonn > f(f + 1) + 1 guarantees
0S. that the setcorrect(t’) contains a sequence of

, f consecutive processes. Consider the following

C. R stronger thanGS2 if n > f(f + 1) +1 sequence of processes: 1 faulfycorrect, 1 faulty,

We show thafR is stronger thapS2 if n > f(f+ f correct, etc. If we repeat the patterh times,
1)+1 by giving a transformation oR into the failure we have f faulty processes in a set of(f + 1)
detector(S2. processes. If we add one correct process to the set of

Transformation of R into (¢S2: Each procesg; f(f + 1) processes, there is necessarily a sequence
maintains a setorrect; of processes that; believes of f + 1 correct processes. With a sequence of
are correct. f + 1 correct processes, there is a sequencef of
(i) This set is updated as follows. Each time some consecutive processes énrrect(t').
procesg; changes its mind abowt ; (based ormR), (i) In the casecorrect(t’) = II, py and p; are
p; broadcasts (using a FIFO reliable broadcast com-trivially correct.
munication primitive [1]) the messade;_1, faulty), (iv) In the casecorrect(t’) # 11, consider the
respectively (p;—1, correct). Wheneverp; receives sequence off + 1 processespy,...,pi4+¢. Since
(pi, faulty), thenp; removesp; from correct;; when- there are at mosy faulty processes, at least one
ever p; receives (p;, correct), then p; addsp; to processp; in pg,...,pp4yp IS correct. Ifp, = py,
correct;. we are done. Otherwise, if; is correct, p;_1 is
(iila) For processp;, if correct; is equal toll (no correct as well, since the failure detector gf is
suspected process), the output of the transformatioraccurate aftet’ and does not suspepi_;. By the
(the two non-suspected processespgsand p;. All same argument, if;_, is correct,p; o is correct. By
other processes are suspected. repeating the same argument at mgst- 1 times,

(iib) For processp;, if correct; is not equal to we have thap, is correct.

(v) In the casecorrect(t’) # II, we prove now the token to itsf + 1 successors in the ring, i.e.,
that py.1 IS correct. Sincepy, is correct andpy_; to pi+1,...,pi+f+1.7 Furthermore, when awaiting

is not in correct(t’) (by the selection rule of the token, process; waits to get the token from
pr and pri1), pr—1 IS faulty. Thus, there are at p;_;, unless it suspects;_;. If p; suspect;_1, it
most f — 1 faulty processes in the sequence of accepts the token from any of its predecessors (see
f processespyy1,...pr+f. In the special case Procedure 1).

f =1 ({Pkt+1,---sPk+f—1} = 0), all processes
iN Prt1,... Puty are correct. In the cas¢g > 1,
there is a non-empty sequeng®.i,...Pi+/—1

in correct(t'). Furthermore, there are at most

Procedure 1Receive token (code of procesy
1. wait until received token fromp;_; or
suspecteq(_1)

f — 1 faulty processes among th¢ processes 2: if tokgn not.receive.dihen {accept from anyorje
Ditin.. ris By the same argument used to show 3. wait until received token fromp €
thatpy, is correct, we can show that . ; is correct] N engp;'f—f—l’ s Di-1}

The transformation ofR into $S2 ensures the
Eventual Double Accuragyroperty ifn > f(f+1)+ C. Token-accumulation consensus algorithm

1. Since all processes except two correct processes 1) Basic idea: Consensus is achieved by passing
are suspected, tgtrong Completeneggoperty also a token between the different processes. The token
holds. Consequently, it > f(f + 1) +1 we have contains information regarding the current proposal
R = 052 (or the decision once it has been taken). The token
is passed between the processes on a logicalpgng
p1,... Pn_1. Each token holder “votes” for the pro-
posal in the token and then sends it to its neighbors.
As soon as a sufficient number of token holders have
We identify two classes of token-based con- voted for some proposal, thenv is decided. The
sensus algorithmstoken-accumulationalgorithms decision is then propagated as the token circulates
and token-coordinatedalgorithms. In the token- along the ring.
accumulationalgorithms, each token holder votes for . . .
g : 2) Naive algorithm: We start by presenting
the proposal transported in the token. Votes are accu- . .) :
. a haive algorithm that illustrates both the basic
mulated as the token circulates and once enough votes . . . -
: idea behind our algorithm and its difficulty. Let
have been collected, the token holder can decide. In

: : 7. "the token carry anestimate value (denoted by
this class of algorithms, the only communication is , .
. . o token.estimate) and the number of votes for this

related to the circulation of the token. This is not

the case oftoken-coordinatedalgorithms. In these estimate (denotetbken.votes). Let each process;,

. . upon receiving the token, blindly add its vote to
algorithms the token holds a proposal, but, in order . .)
: : . the proposal (see Procedure 2). Obviously, this naive
to decide, the token holder can communicate with all

other processes. Algorithms based on theating- algorithm does not work: it would solve consensus

coordinator paradigm(such as the Chandra-Toueg n an'asynchrpnous system, in contradiction with the
¢S consensus algorithm [3]) can easily be adaptedFLP impossibility result [10].

to this class. Token-accumulation algorithms are more 3) Overview of the token-accumulation consensus
genuine token-based algorithms, and the paper conalgorithm: As just shown, a token-accumulation al-
centrates on this class of algorithms. gorithm cannot blindly increase the votes accumu-
lated. We slightly change the above behavior. The
token carries one additional informatiotuken.gap

IV. TOKEN-BASED CONSENSUS
A. Two classes of algorithms

B. Token circulation

The token circulation, which can be handled in _ _
the same way for token-accumulation and token- "€ token should be seen afogical token. Multiple backup
. . . . copies circulate in the ring, but they are discarded by the
coordinated algorithms, is as follows. To avoid the ygorithm if no suspicion occurs. Henceforth, tiugical token
loss of the token due to crashes, procgssends will simply be referred to as "the token”.

Procedure 2Token handling by, (option 1) 5) Details of the algorithm: The token con-

pi-estimate — token.estimate tains the following fields:round (round number),

token.votes < token.votes + 1 estimate, votes (accumulated votes for thatimate

if token.votes > voteThreshold then value),gap (sum of all gaps in the token circulation)
decidefoken.estimate) anddecision (a boolean indicating iéstimate is the

end if decision).

send token tQ;1, ..., Pitr+1

Procedure 4 Consensus: Initialisation

1 Vp;, i €[0,n—1]:

which is the accumulatedap in the circulation of 2. estimate; «— v;; decided; — false; round; — 0

the token, defined as follows: when a process

receives the token from processnder=p;, the gap 3 po: {send tokeh

is i—j—1, denoted bygap(sender—p;). We have send(Oyo,1,0,false) to{ps,... psi1}

gap(sender—p;)=0 only if the token is received

from the immediate predecessor. Upon receiving the 7

token, a process does the following (see Procedure 3):__
As long as the number of gaps in the token circu-

lation is less thamapT hreshold, and the token has

not performed a full rotation of the ringdken.gap+

token.votes < n), token.votes is incremented by

tEe receiverp;. If at that %om_téoken.vo;f]es is greater f estimate — 1 and votes — 0, and is sent only to
thanvoteT hreshold, p; decides on the estimate o processes, ..., p;.

the token. The decision is then propagated with the The token handling code is given by Procedure 5.
token. At line 2, proces®; starts by receiving the token (see
Procedure 3 Token handling by, (option 2) Procedure 1) for the expectedund;.® If no value
is transported by the toked«mmy initialization to-
ken), p; replacegoken.estimate by its own estimate
(lines 3-5). If p; has not yet decided, then starts
by updating its estimate (line 7). At line 8 the gap is
updated. Ifgap; < gapThreshold and the token has
not performed a full circulation on the ring (line®)
then the votes are incremented (line 10). Otherwise,
if token.votes > voteThreshold then the votes are reset to 1 and the gap to 0 (line 12),
deCide(Oken._estimate) which starts a new sequence of vote accumulation. At
end if line 14, proces®; checks whether there are enough
votes for a decision to be taken. If sp, decides
(line 15). Finally, the token with the updated fields is
sent to thef + 1 successors (line 19), and process

4) Conditions for agreement vs. terminatiot ~ Incrementsround; (line 20).
is interesting to distinguish the conditions required ~ Lines 1-21 ensure that at least one correct process

for agreement and thoses required for termination.€ventually decides. However, jf > 1, this does not

&

5 Vpi, i €[n—fin—1]: {send “dummy” tokeh
send(-1L,0,0,false) to{p1, ..., pitf+1}

The initialization code is given by Procedure 4.
Lines 5-6 show thedummytoken sent to prevent
blocking in the case processgg,...,ps—1 are ini-
tially crashed. A dummy token hasund = —1,

token.gap «— token.gap + gap(sender — p;)
if (token.gap > gapThreshold) or (token.gap +
token.votes > n) then

token.gap <+ 0; token.votes < 0{reset tokeh
end if
p;.estimate — token.estimate
token.votes <« token.votes + 1

send token tQ;41, ..., Pitf+1

Agreement holds if 8To avoid complicated notation, we implicitly assume that, for
processp;, waiting a token forround; means either (1) waiting
voteT hreshold > (gapThreshold + 1)f + 1. a token fromp;, j < 4, with token.round = round;, or (2)
Termination holds with the failure detectoR, Wﬂﬂg actg:zi:igr? nz]n JHieZ' gltzatgkebtr(;zgjcedmg; ' 1§
gapThreshold = 0, voteThreshold = f + 1 and gapThreshold. The algorithm would however need some minor
n> (f + 1)f + 1. modifications, which would imply a slightly more complex proof

of Agreement.

Procedure 5 Token-accumulation consensus: token procedure 1. Other tokens are received at line 22:
handling byp;

1: loop
2: token < receive-tokenfound;) {see Proc. }
3. if token.estimate =1 then {use initial valug
4: token.estimate < estimate;
5 end if
6: if notdecided; then
7: estimate; < token.estimate
8: gap; «— token.gap + gap(sender — p;)
9: if (gap; < gapThreshold) and
(token.gap + token.votes < n) then
10: votes; «— token.votes + 1 {add voté
11 else
12: votes; < 1; gap; < 0 {reset votes/gap
13: end if
14: if (votes; > voteThreshold)
or token.decision
then
15: decideéstimate;); decided; < true
16: end if
17: end if
18: token«
(round;, estimate;, votes;, gap;, decided;)
19: send token ta(piii,... Pitfri1}
20: round; «— round; +1
21: end loop
22: upon reception of token s.t.

token.round < round; do

23: if token.decision and (notdecided;) then
24: estimate; < token.estimate

25: decide(estimate;); decided; < true
26: end if

27: end upon

if the token carries a decision, procegs decides.
Note that stopping of the algorithm is not discussed
here. It can easily be added.

6) Proof of the token-accumulation algorithm:
The proofs of the uniform validity and uniform
integrity properties are easy and omitted. The proof
of the uniform agreement and termination properties
are in the appendix.

V. TOKEN-BASED ATOMIC BROADCAST
ALGORITHMS

In this section we show how to transform the
token-accumulation consensus algorithm into an
atomic broadcast algorithm. Note that we could have
presented the atomic broadcast algorithm directly.
However, since the consensus algorithm is simpler
than the atomic broadcast algorithm, we believe that
a two-step presentation makes it easier to understand
the atomic broadcast algorithm.

Note also that it is well known how to solve
atomic broadcast by reduction to consensus [3]. The
reduction, which transforms atomic broadcast into a
sequence of consensus, is however not adequate here.
The reduction would lead to multiple instances of
consensus, with one token per consensus instance. We
want a single token to “glue” the various instances
of consensus.

For simplification, we express the atomic broadcast
algorithm for the casegyapThreshold = 0 (the
votes for a proposal are reset as soon as a gap
is detected in the token circulation). To be correct,
the atomic broadcast algorithm requires the failure
detectorR, and the conditions: > f(f + 1) + 1,
voteThreshold = f + 1 (and gapThreshold = 0,
which is hard-wired in the algorithm).

A. Overview

In the token-accumulation atomic broadcast al-
gorithm, the token transports (i) sets of messages

ensure that all correct processes eventually decideand (ii) sequences of messages. More precisely, the

Consider gapT hreshold =

0 and the following

example:p; is the first process to decide,,; is

faulty. In this casep;. o may always receive the token

from p;_1, a token that does not carry a decisipp;
might be the only process to ever decide. Lines 22-27collected. The fieldadeliv is the sequence of all

ensure that every correct process eventually decidesmessages adelivered that the token is aware of (in the
The token received at line 2, faround;, follows

token carries the following informatiorfround, pro-
posalSeq, votes, adeliv, nextSetjessages in the
sequenceproposalSeqare delivered as soon as a
sufficient number of consecutive “votes” have been

delivery order). When a process receives the token, it

can therefore, if needed, catch up with the messageProcedure 8 Atomic broadcast: token handling py
1: loop

deliveries performed by other processes.

Finally, while the token accumulates votes for
proposalSeq it simultaneously collects imextSet
the messages: such thatabroadcast(m) has been
executed. The semextSetgrows as the token cir-
culates. Whenever messagespimposalSeccan be
delivered,nextSetis used as the “proposals” for the
next decision.

Procedure 6 Atomic Broadcast: Initialisation
1: Vp;, i €[0,n—1] :
2: abroadcast; — 0; adeliv; — €: round; — 0

3: po : {send tokeh

4: send(0, abroadcasty, 1, €, abroadcasty) to
{p1,.pp41}

5:

6: Vp;, i € [n— f,n—1]: {send “dummy” tokeh

7. send(—1, 0,0, € 0) to {p1,... pitr+1}

Procedure 7 Atomic Broacast: abroadcast and
adeliver (code ofp;)

1: To executeabroadcast(m):

2. abroadcast; <« abroadcast; U {m}

. To executedelivery(seq):

adeliver messages iseq not in adeliv;
adeliv; «— adeliv; ® seq

abroadcast; «— abroadcast; \ adeliv;

A

B. Details

Each procesg; manages the following data struc-
tures (see Procedure 6)ound; (the current round
number),abroadcast; (the set of all messages that
have been abroadcast Ipy or another process, and
not yet ordered), anddeliv; (the sequence of mes-
sages adelivered kyy). The algorithm is decomposed
into several procedures.

Procedure 6 is the initialization procedure de-
notes the empty sequence).

Procedure 7 describes tladroadcastand adeliv-
ery of messagesdelivery(seq) is called by Proce-
dure 8. The operatap at line 5 of Procedure 7 is the
sequence concatenation operaterg(@ seqq is the
sequence of elements keq; concatenated with the
sequence of elements g that are not inseq).

2:

token < receive-tokenfound;) {see Proce-
dure 1}

3: abroadcast; — abroadcast; U
token.proposalSeq U token.nextSet

4: if |token.adeliv| < |adeliv;| then {p; more up
to date than the token

5: token.proposalSeq «— ()

6: else {|adeliv;| < |token.adeliv|}

7: delivery(token.adeliv)

8: if (token received from p;, ;) and

(token.proposalSeq # () then

o: votes; « token.votes + 1

10: else

11: votes; «— 1

12: end if

13: if (votes; > f + 1) then

14: delivery(token.proposalSeq)

15: token.proposalSeq «— ()

16: end if

17: end if

18: if token.proposalSeq = () then {new proposal
can be made}.

19: token.proposalSeq < abroadcast; {add

new “proposals’}

20: votes; = 1

21: end if

22: token<— (round;,token.proposalSeq,

votes;, adeliv;, abroadcast;)

23: send token tQ(p;11..pitfi1}

24: round; «+ round; + 1

25: end loop

26: upon reception of token s.t.

token.round < round; do

27 if |[token.adeliv| > |adeliv;| then{the token has
“new” information}

28: delivery(token.adeliv)

29: end if

30: abroadcast; «— abroadcast; Utoken.nextSet

31: end upon

Procedure 8 describes the token-handling. LinesChang and Maxemchuk’s Reliable Broadcast Proto-
4 to 17 of Procedure 8 correspond to lines 6-17 col [11], and its newer variant [9] an ad-hoc refor-
of the consensus algorithm (Procedure 5). Proceduranation mechanism is called whenever a host fails.
delivery() is called to deliver messages (line 14). Group membership is used explicitly in other atomic
When this happens, a new sequence of messages cadwoadcast protocols such as Totem [8], the Reliable
be proposed for delivery. This is done at lines 18 Multicast Protocol by Whetten et al. [7] (derived
to 21. Finally, lines 26-31 handle reception of other from [11]), and in [12].
tokens. This is needed for Uniform Agreement and These atomic broadcast protocols also have differ-
Validity when f > 1. Lines 27-29 are for Uniform ent approaches with respect to message broadcasting
Agreement (they play the same role as lines 23-25and delivery. In [11], [7], any process can broadcast a
of Procedure 5). Line 30 is for Validity (consider message at any time. The token holder then orders the
f = 2, p; correct andp;,; faulty; without line 30, messages that have been broadcast. Other protocols,
processp; 2 Might, in all rounds, receive the token such as Totem [8] or On-Demand [12] on the other
only from p;_1; if this happens, messagabroadcast hand only enable the token-holder to broadcast (and
by p; would never beadelivered. simultaneously order) messages.

The proof of the algorithm can be derived from the Finally, the different token-based atomic broadcast
proof of the token-accumulation consensus algorithm. protocols deliver messages in different ways. In [12],

o the token holder issues an “update dissemination

C. Optimization message” which effectively contains messages and

In our algorithm, the token carries whole mes- their global order. A host can deliver a message as
sages, rather than only message identifiers. This sosoon as it knows that previously ordered messages
lution is certainly inefficient. The algorithm can be have been delivered. “Agreed delivery” in the Totem
optimized so that only the message identifiers areprotocol (which corresponds tdeliverin the proto-
included in the token. However, this solution requires col presented in this paper) is also done in a similar
messages to be reliably broadcast by each host. Thigvay. On the other hand, in the Chang-Maxemchuk
approach leads to a slightly more complex algorithm atomic broadcast protocol [11], a message is only
not given here as this issue is orthogonal to thedelivered oncef +1 sites have received the message.
contribution of the paper. Larreaet al. [13] also consider a logical ring of

The circulation of the token can also be optimized. processes, however with a different goal. They use
If all processes are correct, each process actually onlya ring for an efficient implementation of the failure
needs to send the token to its immediate successordetectorp)V, OS and(P in a partially synchronous
So, by default each procegs only sends the token system.
to p;+1. This approach requires that if process
suspects its predecesggr 1, it must send a message
to its f + 1 predecessor¥, requesting the token.
A proceSS, upon receiving SUCh a message, Sends According to various authOI’S, token-based atomic
the token top;. If all processes are correct, this broadcast algorithms are more efficient in terms of

optimization requires only a single copy of the token throughput than other atomic broadcast algorithms.
to be sent by each token-holder instead fof- 1 The reason is that the token can be used to reduce net-

Copies’ thus reducing the network contention due toWOfk contention. Howevel’, all publIShed token-based

VIlI. CONCLUSION

the token circulation by a factof + 1. algorithms rely on a group membership service, i.e.,
none of them can use a failure detection mechanism.
VI. RELATED WORK The paper has given the first token-based atomic

As was mentioned in Section I, previous atomic broadcast algorithms that solely relies on a failure

broadcast protocols based on tokens need grOUICgietector, nam(_ely the new failure detector called _
membership or an equivalent mechanism. In the Such an glgorlthm has the advantage to tplgrate fail-
ures (i.e., it also tolerates false failure suspicions). Al-

Actually, the message does not need to be semt; by p; 1. gorithms that do not tolerate failures, need to rely on

a membership service to exclude crashed processes|8] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal,

As a side-effect, these algorithms also exclude correct
processes that have been incorrectly suspected. Thus,
failure detector based algorithms have advantages g
over group membership based algorithms, in case of
false failure suspicions, and possibly also in case of

real crashes.

In the future we plan to compare the performance
of these two classes of token-based atomic broadcast

algorithms failure-detector based andmembership

based) in a similar way as done in [6], for a different
class of atomic broadcast algorithms. Note that thesg12]
experiments may require to address practical issues
not addressed here, such as reducing the size o{
the information carried by the token, carrying in the
token message identifiers rather then whole messages,
and also adapting the algorithm to fair-lossy channels,

as in [11], [9].

Acknowledgements. We would like to thank

Bernadette Charron-Bost for discussions related to
failure detectors andd®er Urkan for useful comments

on an earlier version of the paper.

REFERENCES

[1] V. Hadzilacos and S. Toueg, “A modular approach to fault-
tolerant broadcasts and related problems,” TR 94-1425,
Dept. of Computer Science, Cornell University, Ithaca, NY,

USA, May 1994.
[2] Xavier Defago, Andé Schiper, and &er Urkan, “Totally

ordered broadcast and multicast algorithms: A comprehen-

sive survey,” Tech. Rep. DSC/2000/036c¢ole Polytech-
nique Fecerale de Lausanne, Switzerland, Sept. 2000.

[3] T. D. Chandra and S. Toueg, “Unreliable failure detectors

for reliable distributed systemsJournal of ACM vol. 43,
no. 2, pp. 225-267, 1996.

[4] G.V. Chockler, I. Keidar, and R. Vitenberg, “Group Com-

munication Specifications: A Comprehensive StuddCM

Computing Surveysvol. 4, no. 33, pp. 1-43, December

2001.

[5] K. Birman, A. Schiper, and P. Stephenson, “Lightweight

causal and atomic group multicast,”ACM Trans. on

Computer Systemsol. 9, no. 3, pp. 272-314, Aug. 1991.

[6] Péter Urkan, llya Shnayderman, and Ar&dSchiper, “Com-

parison of failure detectors and group membership: Perfor-

mance study of two atomic broadcast algorithms,Pioc.

of the Int'l Conf. on Dependable Systems and Networks

(DSN) June 2003, pp. 645-654.

[7] B. Whetten, T. Montgomery, and S. Kaplan, “A high

performance totally ordered multicast protocol,” Theory
and Practice in Distributed SystemSpringer-Verlag, Ed.,

Dagstuhl Castle, Germany, Sept. 1994, number 938 in

Lecture Notes in Computer Science, pp. 33-57.

and P.Ciarfella, “The Totem single-ring ordering and
membership protocol/ACM Trans. on Computer Systems
vol. 13, no. 4, pp. 311-342, November 1995.

N. F. Maxemchuk and D. H. Shur, “An Internet multicast
system for the stock market,ACM Trans. on Computer
Systemgsvol. 19, no. 3, pp. 384-412, August 2001.
Michael J. Fischer, Nancy A. Lynch, and Michael S. Pater-
son, “Impossibility of distributed consensus with one faulty
process,”Journal of ACM vol. 32, no. 2, pp. 374-382, Apr.
1985.

J. Chang and N. F. Maxemchuk, “Reliable broadcast
protocols,” ACM Trans. on Computer Systenvsl. 2, no.

3, pp.- 251-273, Aug. 1984.

F. Cristian, S. Mishra, and G. Alvarez, “High-performance
asynchronous atomic broadcasBistributed System Engi-
neering Journalvol. 4, no. 2, pp. 109-128, June 1997.
Mikel Larrea, Sergio Arevalo, and Antonio Fernandez,
“Efficient algorithms to implement unreliable failure de-
tectors in partially synchronous systems,” lirternational
Symposium on Distributed Computjrt099, pp. 34-48.

APPENDIX

Pk = Pi—gapsp—(votesp—1 Di

O~ -0-0-- -0

A. Correctness of the token-accumulation consensus Dk+f Pr+f+1

algorithm

a) (Uniform) Agreement (sketch).We prove
thatvoteT hreshold > (gapThreshold+1)f+1 en-
suresuniformagreement® The proof is by induction
on gapThreshold.

i) Base casegapThreshold = 0. Let p; be the
first process to decide (say at timg and letv be

the decision value. By line 14 of Procedure 5, we

havevotes; > voteThreshold > (gapThreshold +
1)f+1> f+1. SincegapT hreshold = 0, the votes
are reset for each gap. Sogtes; > f + 1 ensures
that at timet, all processe®; € {pi—1,...,pi—r}
have p;.estimate = v. Any processp, successor

of p; in the ring, receives the token from one of the
processes;, . .., p;,—s. Since all these processes have

their estimate equal te, the token received by
necessarily carries the estimateSo aftert, the only
value carried by the token ig i.e., any process that
decides will decidey.

ii) Induction step. We proove that if uniform
agreeement holds feupT hreshold = 1, it holds for
gapThreshold = | + 1. We introduce the following

notation:votes, , is the number of votes collected by

the token between (and including) procesggsand

py, andgap, ,, is the number of gaps experienced by

the token when moving from, to p,. Let p; be the
first process to decide (say at tirtle and letv be the
decision value. Lebotes; and gap; be the number

Fig. 1. Proof by induction for Agreement

In case (2) we haveyapyi+y > 1, and so
necessarilyvotesy ¢ < f. Whenp; decides, we
have gap; = gapr; < 1+ 1 (*) and votes; =
votesy; > wvoteThreshold > (gapThreshold +
Df+1=(I+2)f+1 (™). Since gappris > 1,
we have by (*):gapri i1, = 9apk; — 9apkkrs <
gapy; —1 < 1 (***). Since votesy, 1 < f, we have
by (**): wvotespyfi1; = votesy; — votesy pyf >
votesp; — f > (I+2)f+1—-f=(1+1)f+1
(****). By (***) and (****), when p; decides, the
token circulation betweem; ;.1 and p; satisfies
the induction hypothesis. Whem decides, uniform
agreement is therefore ensured. O

b) Termination (sketch).:Assume at mostf
faulty processes and the failure deteckirWe show
that, if n > f(f + 1) + 1, gapThreshold = 0,*? and
voteThreshold = (gapThreshold+1)f+1 = f+1,
then every correct process eventually decides.

First it is easy to see that the token circulation
never stops: ifp; is a correct process that does not
have the token at timg then there exists some time
t' > t such thatp; receives the token at timé. This
follows from (1) the fact that the token is sent by a
process to itsf + 1 successors, (2) theceive token
procedure (Procedure 1), and (3) the completeness

of votes accumulated and the gap experienced by theproperty of R (which ensures that ifp; waits for
token whenp; decides. The most recent reset of the the token fromp;_; and p;,_; has crashed, thep;

votes/gap occurred at proCcess= p;_gap, — (votes, 1)
(by line 9, all processe§py, . .. p;} are different). So,
gap; = gapy,; and votes; = votesy, ;. We consider

eventually suspects; 1 and accepts the token from
any of its f + 1 predecessors).
The second step is to show that at least one

two cases (see Figure 1): (1) the token has circulatedcorrect processes eventually decides. Assume the

without gap fromp, to pys, (2) the token has

circulated with a gap of at least 1 from, to py. .
In case (1), whemy receives the token, alf + 1

processeyy, to pi s have set their estimate to.

failure detectorR, gapThreshold = 0, and lett be
such that aftett no correct procesg; is suspected
by its immediate correct successpf,;. Since we
haven > f(f + 1) + 1 there is a sequence of

Therefore, the token received by any process afterf + 1 correct processes in the ring (see section Il

pr+f, including the processes aftgy, only carriesv.

Thus, aftert, the only value carried by the token is

v, i.e., any process that decides will decide

1Two processes, correct or faulty, cannot decide differently.

C). Letp; ... p;, ¢ be this sequence. Aftey processes

2pgreement does not requikgipT hreshold = 0. However,
with the failure detectoR, gapT hreshold > 0 does not ensure
termination.

Di+1 - - - Di+f Only accept the token from their imme-
diate predecessor. Thus, afterthe token sent by
p; IS received byp;.q, the token sent by, is
received byp; 2, and so forth until the token sent by
pi+f—1 Is received byp;, ;. Oncep;; s has executed
line 10 of Procedure 5, we hauwates; > f+1 =
voteThreshold. Consequentlyp;, decides.

Finally, if one correct procesg, decides, and
sends the token with the decision to ifs+ 1 suc-
cessors, the first correct successoppf by line 22,
eventually receives the token with the decision and
decides (if it has not yet done so0). By a simple induc-
tion, every correct process eventually also decifeés.

