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École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Technical Report IC/2003/29

Abstract

In this paper we propose a novel location management scheme tailored for multicasting
in Mobile Ad-hoc Networks (MANETs). We furthermore propose AMDLM, a location-based
multicast algorithm relying on the location management service. Such an approach avoids fragile
data structures such as trees or DAGs to manage multicast groups, without reverting to more
reliable, yet overhead-prone mesh-based algorithms. AMDLM additionally enables us to derive
analytical bounds due to its location-based nature.

1 Introduction

Mobile ad hoc networks (MANETs) are self-organizing mobile wireless networks that do not rely
on a preexisting infrastructure to communicate. Nodes of such networks have limited transmission
range, and packets may need to traverse multiple other nodes before reaching their destination.
Research in MANETs was initiated 30 years ago by DARPA for packet radio projects [JT87], but
has regained popularity nowadays due to the widespread availability of portable wireless devices
such as cell phones, PDAs and WiFi / Bluetooth enabled laptops.

Multicasting provides a means for multipoint communication by enabling applications to seem-
ingly communicate with groups of nodes. Traditionally a well suited tool for collaborative applica-
tions, multicasting is especially useful in ad hoc networks where tasks may be carried out by groups
of nodes. Due to scarce bandwidth, varying network connectivity and frequent topology changes
caused by node mobility and transient availability, routing algorithms tailored for wired networks
will not operate well if directly transposed to MANETs. All the more so with multicasting, which
adds to the difficulties of unicast routing the complexity of maintaining and handling dynamic
multicast group membership changes.

Since no fixed infrastructure of servers is assumed in MANETs, it is useful to devise a scheme
through which various services offered within the network may be located. With the availability

∗The work presented in this paper was supported by the National Competence Center in Research on Mobile In-
formation and Communication Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation
under grant 5005-67322.
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of such location management services, it is tempting to adapt and exploit them for storing routing
information. By storing the geographic location of nodes in designated location servers in the
network, it is possible to introduce a new family of routing algorithms that may potentially perform
better [CBW+02] than the traditional approach of discovering and maintaining end-to-end routes.

In this paper we present a novel MANET location service for multicasting based on an exten-
sion of the DLM scheme [XLN01]. Dedicated servers are distributed throughout the network in
order to store the geographic location of multicast group members. Coupled with an underlying
geographic forwarding layer (e.g. [KK00, Sto02]), the solution offers an alternative approach for
multicast routing. Among the benefits of location-based multicasting are: reduced overhead, in-
creased robustness to mobility, fault-tolerance and the ability to derive analytical results. There
exists several location-based algorithms for unicast routing ([BCSW98, LJC+00, XLN01, WS01,
CLP+02, HB03]). [MFWL03] extend unicast position-based routing for multicasting. The authors
offer a generalization for the routing aspect and assume that the position of the destination(s) is
known in advance through a location service. Due to node mobility and dispersion of multicast
node members, we claim that location services designed for unicast routing are not exploitable as
such for multicasting. The contribution of this paper is to devise a novel location management
scheme adapted for multicasting in MANETs. We furthermore present AMDLM (Adaptive Mul-
ticast Distributed Location Management), a location-based multicast algorithm built on top of the
location service1.

The remainder of the paper is organized as follows. The next section provides an overview of
other works that address multicasting in MANETs. In Section 3 we present the DLM [XLN01] lo-
cation management scheme, which serves as a basis for our multicast algorithm. Section 4 describes
the necessary modifications in order to extend DLM for multicasting, followed by a discussion about
the limitations of mere straightforward extensions. Section 5 presents AMDLM, a novel location
based multicast algorithm. In Section 6 we undertake an analytical study of the algorithm, followed
in Section 7 by a qualitative comparison between AMDLM and the other popular approaches for
MANET multicasting. We finally conclude and describe future work in Section 8.

2 Related Work

Over the past years there have been numerous multicast algorithm proposals for MANETs. In this
section we present the most representative for each approach, classified in Table 1.

As with unicast routing [HXG02], multicast routing comes in proactive, reactive, or a combi-
nation of the two flavors (hybrid). Reactive algorithms present reduced maintenance overhead by
maintaining state information only when a multicast session is active. The drawback is decreased
responsiveness. Proactive algorithms react faster since multicast routing information is readily
available, but at the price of introducing high overhead for maintaining multicast group structure
even when no multicast session is active. The hybrid approach aims at obtaining a satisfactory bal-
ance among the characteristics of both methods by limiting the scope of the proactive procedures
to the local neighborhood of nodes and implementing reactive procedures for longer distances.

Various algorithms rely on different data structures to manage multicast group membership.
Due to the highly dynamic and everchanging topology of MANETs, solutions that offer multiple
routes through more robust data structures perform better. Therefore, mesh-based solutions gener-
ally outperform tree-based solutions due to the availability of alternative paths, which in turn tend

1Location-based multicasting may be confused in the MANET community with geocasting [YKV99]. Whereas for
geocasting nodes join and leave groups by entering and leaving geographic regions, multicasting enables nodes to join
and leave groups at any time, regardless of their location. AMDLM provides the latter service.
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to perform better than directed acyclic graph (DAG) solutions. In extreme cases of high mobility
and frequent multicast group membership changes, basic flooding still remains the best performing
multicast algorithm [HOTV99]. Performance comparison studies of MANET multicast protocols
may be found in [LSH+00, OTV01, KC02].

Our location-based approach for multicasting, AMDLM, differs from previous MANET multi-
cast algorithms by relying on a location service composed of dedicated nodes distributed across the
network2. Communication between these nodes is provided by an underlying geographic forwarding
routing mechanism. Therefore, to the contrary of the tree, DAG or mesh approach, no multihop
data-structure needs to be maintained, hence the distinction between the physically connected and
logically connected data-structures in Table 1. Physically-connected data-structures are generally
more vulnerable to frequent link-breakages that occur in MANETs.

Physically connected Logically connected
Tree Mesh Hybrid DAG Location

Tree-Mesh Based

Proactive CAMP [MGLA01]
FGMP [CGZ98]

AMRoute [LTM99] AMRIS [WT99]

Reactive MAODV [RP99]
ADMR [JJ01]

ABAM [TGB00]
LAM [JC98]

OLAM [BCST00]

Flooding
ODMRP [LCG99]

MCEDAR [SSB99] AMDLM

Hybrid MZR [DS01]

Table 1: MANET Multicast Algorithms

3 The Distributed Location Management Scheme (DLM)

DLM [XLN01] is a location management service for MANETs tailored for unicast routing, which
addresses the shortcomings of GRID [LJC+00]. As with GRID, DLM partitions the mobile node
deployment region into a hierarchical grid with squares of increasing size, as shown in Figure 1(a).
The location service is offered by location servers assigned across the grid, storing node location
information. DLM assumes a uniform distribution of the location servers. The server density is a
parameter that may be adapted to better suit the characteristics of the network. To the contrary of
GRID, location servers in DLM are not directly nodes, but regions in the grid. Nodes that happen
to be located in these region offer the location service. This solution increases DLM’s robustness
to mobility. The selection mechanism for the predetermined regions is carried out through a hash
function, which maps node identifiers to region addresses.

DLM distinguishes between a full length address policy and a partial length address policy.
Under the full length address policy, location servers store the precise position of nodes. When
nodes change regions due to mobility, it is necessary to update all location servers. Under the
partial length address policy, the accuracy of node location information stored at the location
servers increases along with the proximity of the location servers to the nodes. To the contrary
of the full length address policy, several queries are necessary to locate a node. Nevertheless,

2[MFWL03] offers a multicast generalization of position-based routing. The paper however assumes a functioning
location service from which the position of the destination(s) may be retrieved. The main contribution of our paper
is specifically a solution for such a location service.

3



the partial addressing scheme offers overall increased performance, since it reduces the scope and
frequency of location server updates due to node mobility. Indeed, only the location servers affected
by the distance travelled by the nodes need to be updated. We therefore consider the partial length
address policy whenever we refer to DLM in this paper.

Figure 1 illustrates an example of how a node location query is carried out in DLM. Figure 1(a)
depicts the location server hierarchical partitioning, which is an abstract overlay above the full grid
in which the nodes evolve (Figure 1(b)). A location server is responsible for its entire region, which
may not be within single-hop communication reach. Node B desires to find the location of node
A. B will first query location server L10, which is A’s location server in the same region as B. L10
will reply to B with information about the quadrant A belongs to. B will now contact a location
server for A in that quadrant, e.g. L4. L4 will similarly reply to B with the smaller subregion
containing A. The process continues until B eventually contacts a location server that knows A’s
exact position, L3 in our example.

(a) Location Server Partitioning Representation (b) Full Grid Representation

Figure 1: Node Location Query under DLM’s Partial Address Policy

4 DLM and Multicast

In this section we examine the straightforward modifications required for DLM to offer a multicast
service.

4.1 MDLM: Extending DLM for Multicast

DLM scheme relies on a hash function for assigning and locating servers responsible for storing
node location information. The assignment is essentially based on the identifier of the node we wish
to locate. DLM may be extended to offer a multicast service by replacing the node ID parameter
by a multicast group ID. Furthermore, location servers will now store a set of links to regions that
contain multicast group members. The rest of the algorithm remains similar. In the remainder of
the paper, we denote by MDLM the straightforward extention of DLM for the multicast operation.
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Figure 2 illustrates an example of a node B multicasting to a group G composed of members
G = {A,A′, A′′}, with the multicast extensions brought to DLM. B must first obtain the location
of the group members. B will first query location server L10, which is group G’s location server
in the same region as B. L10 will reply to B with a set of quadrants that contain group members.
B will then contact a location server for G in each one of the quadrants returned, i.e. L4, L12
and L13. These location servers will similarly reply to B with the smaller subregions containing
members of G. The process continues until B eventually contacts the location servers that know
the exact position of each group member, L3, L13 and L16 in our example. B may now send a
message to A, A′ and A′′.

Figure 2: DLM Multicast Extension

There are also trivial modifications that may be brought to DLM’s approach in order to greatly
enhance performance. In particular, instead of location queries being sent back and forth between
a requesting node and the location servers until location information is gathered, a multicast may
be sent and routed through the location servers themselves. Multicast messages will be forwarded
along the location servers until they reach their destination. Among the benefits are reduced
latency, increased reliability and robustness to mobility, since messages may still reach a moving
target.

4.2 Discussion

The solution presented in Section 4.1 to transform DLM into a multicast service (MDLM) is rather
straightforward but has nevertheless drawbacks in terms of performance, overhead and scalability.

In the case of a uniform distribution of multicast group members, MDLM may be satisfactory.
This is however not the case with a non-uniform geographic distribution of the group members,
a situation that may be very frequent. If group members are not uniformly distributed, having a
uniformly distributed set of location servers is not optimal in terms of cost to maintain the location
information (in regions void of group members) when nodes move, join, or leave the group.

Ideally, the presence or absence of location servers in a region should dynamically adapt to the
presence or absence of group members in that region. In the rest of the paper we present a solution
that has this property. We also discuss how nodes join and leave a group and the handling of node
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mobility.

5 The Adaptive Multicast Distributed Location Management Al-
gorithm (AMDLM)

5.1 Design Choices for Efficient Location Management Multicasting

The property we most desire for a location-based MANET multicast algorithm is to minimize the
number of required location servers without harming overall performance. This may be achieved
through maintaining a higher concentration of location servers around multicast group members,
requiring a dynamic assignment and adaptation of the location servers. Although multicast group
members and nodes in their proximity will have privileged access to multicast group membership
information, nodes far from group members can still multicast, but with a higher average cost.

An additional desirable property is the independence of the core multicast algorithm from a
particular location server placement scheme. This is achievable by isolating key hash function prop-
erties from a specific implementation. The benefit will be a more flexible location-based multicast
algorithm, since the hash function responsible for placing the location servers may be chosen to
better suit a particular MANET topology.

5.2 Model

The model for AMDLM is similar to GRID [LJC+00] and DLM [XLN01]. Wireless nodes evolve in
a geographic area partitioned into a hierarchical grid with squares of increasing size. The smallest
region contains one square and is referred to as the level0 region. Four level0 regions form a level1
region and so on, as shown in Figure 3. Regions do not overlap, so a levelk region belongs to
exactly one levelk+1 region (and thus nodes belong to exactly one region of each size). We further
assume as with position-based routing algorithms that nodes are aware of their location through a
positioning system such as GPS. Since the grid is static and predetermined, nodes know of their
current region within the grid, as well as its boundaries. Nodes sharing the same level0 region are
called neighbors. All neighbors have knowledge of each other, even though they may not be within
a 1-hop communication range (i.e. through flooding or token passing)3. Finally, similarly to DLM,
we assume node density and distribution such that statistically over time, at least one node will be
present per level0 region (the grid dimensions may be chosen accordingly).4

Given two regions reg1 and reg2, we denote by reg1∪reg2 the geographic region that corresponds
to the union of reg1 and reg2, by reg1− reg2 the geographic region such that reg2 is removed from
reg1; moreover reg1 ⊂ reg2 is true if reg1 is included in reg2.

5.3 Logical Servers and their Placement

Given k ≥ 0, we define Rk as any levelk region. For a node ni, Rni
k is the region Rk such that

ni ∈ Rk. Logical servers correspond to level0 regions: nodes happening to be in a given level0
region that correspond to a logical server, participate in the service. Note that, as already explained,
not every level0 region is necessarily a logical server.

3The size of level0 regions may also be chosen as to be fully covered by the transmission range of the nodes. In
this case, the term neighbors still refers to two nodes sharing the same level0 region and not to any two nodes within
communication range.

4This assumption does not mean uniform distribution of group members!
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Figure 3: Grid Partitioning Scheme

The logical servers are denoted by S. More precisely, we denote by Sni
k (G) the logical server(s)

in a region Rk for node ni and group G. Sni
k (G) will simply be denoted Sni

k in the rest of the
presentation. We now present the placement rules of our logical servers for a given group G.

Property 1 (Partitioning Rule)
k = 0: For each node ni member of G, there exists exactly one logical server of level 0 (denoted by
Sni

0 ), which is region Rni
0 .

k > 0: For each level k > 0 and for each node ni, there exists exactly four logical servers of level
k (denoted by Sni

k ). Moreover, there is exactly one of these four servers Sk in each of the four
sub-regions region Rni

k−1 of region Rni
k .

Figure 4(a) illustrates the partitioning rule.

Property 2 (Sharing Rule)
∀k > 0 and for two nodes ni and nj member of the same group, if Rni

k = R
nj

k , then ni and nj share
the same level k server(s), i.e. Sni

k = S
nj

k .

Figure 4(b) illustrates the sharing rule.

5.4 Locating Logical Servers

Nodes determine the geographic position of the logical servers by means of a hash function. For a
given multicast group G and level k > 0 (i.e., for group G and region Rk), the hash function returns
the four level0 regions corresponding to the four logical servers in Rk for group G. Note that these
level0 regions are not necessarily logical servers, since the presence of logical servers depends on
the presence or not of members of G in region Rk. So a node ni — located in the level 0 region of
address a 5 — wanting to multicast a message to group G first needs to find the smallest k ≥ 0 such
that there is a logical server of level k in the Rk region of ni. This is done using the hash function
η(kmax, k,G, a) (see Appendix B), which returns the potential logical server for G in region Rk of
ni.

5Each R0 region can be uniquely identified with an address (see Appendix B.1).
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(a) Property 1: Partitioning
Rule

(b) Property 2: Sharing Rule

Figure 4: Hash Function Properties

5.5 Joining and Leaving Groups

We now describe how nodes join and leave a group. The corresponding pseudo-code may be found
in Appendix C.2.

Let node n1 want to join a new group G (Figure 5(a)). n1 first issues a join(G) request to
its Sn1

0 (located in the same R0 region than n1), which will add an entry for n1 as belonging to
G. Then Sn1

0 will in turn forward the join to the three neighboring Sn1
1 servers, activating them

level1 logical servers for group G. Activating means that each Sn1
1 stores a reference to n1’s level0

region. Through the hash function η, the Sn1
1 servers in turn forward the join(G) request to three

Sn1
2 servers. As formally described in Algorithm 5 of Appendix C.2, we may note that requests to

Sn1
k+1 servers are forwarded by the geographically closest Sn1

k servers. As before, each Sn1
2 stores a

reference to the corresponding Sn1
1 from which it received the join(G) request. This procedure is

repeated on each level until the maximum level is reached. Note that Algorithm 1 (Appendix C.2)
specifies that join queries are forwarded to upward logical servers only upon receiving a join query
within the region for the first time, so that only one reference is needed by logical servers Sk

although many G group members are in a Rk region.
The leave operation is the reverse of the join operation (see Appendix C.2).

5.6 Multicasting

We illustrate the principle of AMDLM on two examples, see Figures 6(a) and 6(b). The complete
pseudo-code of the algorithm may be found in Appendix C.2. In Figure 6(a), the source is member
of the group to which it desires to multicast. Figure 6(b) illustrates a case where the source does
not belong to the group. We now further define S

ni

k as being the levelk location server located
in ni’s levelk−1 region. For sake of clarity, only the logical servers participating in the multicast
examples are represented in the figures.

In Figure 6(a), node n2 desires to multicast a message to group G, containing two members n1

and n2. To do so, it first delivers the multicast message to itself (since n2 is its own Sn2
0 server), as

well as to S
n2

2 server. Through Property 2 of Section 5.3, S
n2

2 knows of any group member within
region Rn2

2 . Since in our case there are no members within Rn2
2 , the multicast request is forwarded

to S
n2

3 . Since S
n2

3 has an entry for a group member somewhere in a neighboring R2 region (because
S

n2

3 is also Sn1
3 ), it will forward the request to the S2 server it references, i.e. Sn1

2 . Upon receiving
the request, Sn1

2 will do the same. The procedure is repeated until the multicast message arrives
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(a) Node n1 joining group G (b) Node n2 joining group G

Figure 5: Join Operation

at destination (n1).
To the contrary of other MANET multicast algorithms mentioned in Section 2, multicasting

by nodes not belonging to the intended destination group is not more complex. In Figure 6(b),
node m desires to multicast a message to a group G, composed of nodes {n1, n2}. Since it does not
belong to the group, m directly forwards the request to S

m
2 , which happens to be one of n2’s S2

servers. While n2 will now be forwarded the multicast message, S2 has still to forward the request
to S

m
3

6. The reason being that if there are nodes to be reached in the neighboring R3 regions, S
m
3

will surely reference one of their S2 servers. Indeed, in our case S
m
3 is also Sn1

3 . The message will
be forwarded to n1 as described in the previous example.

5.7 Mobility

We consider mobility of multicast group members. Mobility is handled as a join operation followed
by a leave operation, with a level parameter (see Appendix C.2). The level represents the highest
region level the node has crossed during its journey. Straightforward for the node to compute, it
allows to bound the propagation of the leave request. Consider a node ni changing level2 regions.
No action is taken when a ni starts moving 7. Upon reaching its destination (i.e., node speed passes
back below a given threshold), ni rejoins G through a join request, with level = 2 passed as a
parameter. In a second stage, ni must notify its original level0 region that it has left by sending
to it a bounded leave request. Finally, the original level0 region propagates the leave message to
remove ni’s stale entry from the appropriate logical servers. Bounded join and leave are required
since no assumption may be made on their order of reception at the logical servers. Indeed, if the
leave is received before the join, logical servers will confuse mobility with the normal case of a
node desiring to leave a group. The level parameter solves this problem from preventing the leave
(and afterward the join) from being wrongly propagated higher up in the logical server hierarchy.

6since k < kmax in Algorithm 3.
7While ni is moving and before any logical server has been updated, messages may be forwarded to it by following

its trail — nodes ni encounters during its move store a forwarding pointer to it, à la [LJC+00].
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(a) Node n2 multicasting message to group G =
{n1, n2}

(b) Node m multicasting message to group G =
{n1, n2}

Figure 6: Multicast Operation

In our example, the requests are bounded to two levels. All higher-level logical servers need not be
updated.

6 Quantitative Analysis: AMDLM vs. MDLM

In this section we study the performance of AMDLM compared to MDLM, the straightforward
multicast extension of DLM presented in Section 4.1. The nature of AMDLM enables us to
conduct an analysis not possible with other multicast algorithms such as MAODV [RP99] and
ODMRP [LCG99].

6.1 Location Servers

6.1.1 Total Number of Location Servers

The number of required location servers has a direct impact on overhead. Given at least one group
member, MDLM assigns 4m uniformly distributed location servers, where m is the desired density.

The total number of location servers for AMDLM dynamically grows and shrinks with respect
to the number and distribution of multicast group members. The upper bound at any given time
for the total number of location servers is calculated as follows. It is equal to the sum across levels,
of the number of levelk regions containing at least one group member and not belonging to the
same levelk+1 region, multiplied by four: 4Σkmax

k=1 | {Rk | ∃n ∈ Rk, n ∈ G}, where kmax is the highest
level. This result is an upper bound since we do not subtract from the result overlapping location
servers across different levels, implied by Property 2 of Section 5.3.
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6.1.2 Join and Leave Operations

Let ni be the node desiring to join or leave a group G and nj any member of G. When ni joins
or leaves G, MDLM requires all 4m location servers to be updated. AMDLM requires 4k location
servers to be updated, where k is the smallest region containing ni and another member of the
group: k = smallest l such that Rni

l = R
nj

l . Upon the first join (and last leave) all 4kmax servers
are updated.

6.1.3 Mobility

Let ni be the mobile node and k be the largest levelk region traversed by ni upon moving. Both
MDLM and AMDLM limit the number of location servers to be notified of ni’s new position.
AMDLM requires at most 2∗4k location servers to be updated. Indeed, AMDLM handles mobility
as combined join and leave operations (ni rejoins the group upon arriving to destination and sends
a query to its previous level0 region to issue a leave query on its behalf).

MDLM requires 4k location servers to be updated with ni’s new position. Note that for MDLM
k is determined by the density m of location servers, whereas for AMDLM k is determined by the
total number of level0 regions in the grid. MDLM does not specify how information is removed
from the location servers responsible for maintaining ni’s position before having moved.

6.2 Total Distance Cost

We assume that there is sufficient connectivity in the network in order for any two adjacent level0
regions to communicate. An upper bound on the total distance traveled by the join and leave
operations may now be derived for AMDLM based on the number of levels8. For sake of simplicity,
we consider the Manhattan distance.

Since a levelk region contains 4k level0 regions, the upper bound δ on the distance traveled
within a levelk region is δ(k) = 2

√
4k − 2 = 2k+1 − 2 level0 regions (from one corner to the diag-

onally opposite one). To obtain the upper bound on the distance, we multiply δ by the number
of queries required for each relevant operation, per level, for both algorithms (similarly to Sec-
tion 6.1.1).

join/leave : 4Σk
l=1δ(l), mobility : 2(4Σk

l=1δ(l)) + δ(l)

6.3 Discussion

The recurring dilemma for a location management service in MANETs is the dissemination and
maintenance cost of location information versus the accessibility and quality of the information
upon retrieval. AMDLM addresses this dilemma in the context of multicast by concentrating
the effort of maintaining location servers nearby multicast group members, while offering minimal
location service in regions with little or no group members.

MDLM’s uniform location server distribution, while a reasonable assumption for unicast routing,
does not offer the flexibility needed for an efficient access to multicast group information without
the overwhelming overhead of maintaining the same quality of service across the entire area of the
grid.

8Without the assumption about density, we would have been bound by theoretic results obtained for the underlying
geographic forwarding layer [KWZ02].
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7 Qualitative Comparison Between the Different Approaches for
MANET Multicasting

In this section we conduct a qualitative analysis of the performance of AMDLM, MAODV and
ODMRP under different factors based on the core design of each algorithm.

The main design choices for the underlying group maintenance structures in MANET multicast
algorithms are tree and mesh (See Table 1). We compare AMDLM against the main representant
of each approach, MAODV [RP99] and ODMRP [LCG99]. All these protocols are on-demand. For
the reader unfamiliar with MAODV and ODMRP, a presentation may be found in Appendix A.

7.1 No Mobility

We first examine the behavior of the various protocols for static networks — nodes are not mobile.

7.1.1 Managing concentrated group members

ODMRP does not maintain multicast group membership when no node is interested in multicasting,
generating no network activity whatsoever. Both MAODV and AMDLM are expected to exhibit
similar behavior in terms of multicast group management. Nevertheless, AMDLM generates ad-
ditional overhead, since it forwards group member location information to a bounded number of
designated location servers.

7.1.2 Managing scattered group members

In absence of multicast senders, network activity for ODMRP is non-existent. MAODV actively
maintains a multihop tree connecting multicast group member nodes. For few nodes scattered over
a large geographic area, the number of non-member nodes in required to maintain the multicast
tree greatly outnumbers the number of member nodes. In case of numerous group members,
MAODV generates important overhead, since it constantly maintains a multicast tree connecting
all members and periodically generates group hello packets. AMDLM assigns a bounded number of
location servers responsible for managing multicast group membership (See Section 6). A judicious
grid decomposition adapted to the number of nodes is required to achieve optimal overhead.

7.1.3 Multicasting

Since ODMRP does not actively manage group membership, mesh construction is required when-
ever nodes wish to multicast. Sender nodes create a mesh reaching multicast group members
through periodic flooding. ODMRP does not scale well with respect to numerous senders or re-
ceivers (multicast group members) [KC02]. The reason for its robustness (mesh structure offering
alternative paths) is that of its poor overhead performance. Indeed, ODMRP generates nearly as
much overhead as pure flooding by disseminating data across the forwarding group (scoped flood-
ing). With group members scattered over large regions, ODMRP will ultimately lead to network
performance degradation similar to the broadcast storm problem discussed in [NTCS99].

In MAODV and AMDLM, multicast group members wishing to multicast have immediate access
to routing information. For non-member nodes, MAODV requires flooding in order to reach a node
on the multicast tree to obtain routing information. AMDLM induces the least overhead among
the protocols, since flooding is not required at any stage. Routing information may at any time be
retrieved from the logical servers referenced by the hash function.
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7.2 Mobile Nodes

We now introduce the factor of mobility to the analysis. The main factor on performance is the
frequent link breakages caused by mobility (node crashes may therefore be considered as a particular
form of mobility).

7.2.1 MAODV

Group members are reachable through a bidirectional multicast tree, providing a single path com-
posed of critical links to reach multicast group members. Node mobility increases the occurrence
of link breakages, damaging MAODV’s tree structure and leading to reduced multicast efficiency.
Furthermore, the tree-based approach may even generate great overhead by incessantly reacting to
broken links and initiating repairs. The more scattered the group members, the greater the chance
for link breakages to occur. Even a single link breakage may obstruct the path to group members
and force MAODV to repair the tree. The physical tree structure therefore proves highly fragile.

7.2.2 ODMRP

It has been shown in [LSH+00, KC02] that an increase in mobility has little impact on the efficiency
of the algorithm. These results may be explained by two key characteristics of ODMRP. Firstly,
ODMRP periodically recreates routes to destination nodes while sender nodes have packets to
multicast, maintaining route freshness (although at the expense of increased overhead). Secondly,
the underlying mesh structure is more robust than the tree approach by offering alternative paths
to reach the multicast group members.

7.2.3 AMDLM

A location-based scheme offers relative independence from node mobility. Indeed, the logical tree
is formed by nodes in geographic regions (logical servers) designated by the hash function. These
geographic regions are fixed. Nevertheless, the time required for the relevant logical servers to be
updated through geographic forwarding increases the latency of the multicast algorithm, i.e. the
overall time required to locate and reach multicast group members. Furthermore, packet loss may
occur if the location information in the logical servers is stale.

7.3 Additional Factors

AMDLM uses the logical servers not only for storing group membership but also for forwarding
packets to group members. The decision to use logical servers for routing is to avoid round-trip
delays to obtain the position of the group members, reducing overall latency. The greater number
of packets transiting through the geographic regions responsible for managing group membership
may however cause possible bottlenecks under high network traffic.

MAODV and ODMRP are independent from geographic concerns and may seamlessly function
under reasonable arbitrary node distribution. AMDLM on the other hand expects to find one or
more nodes in the regions designated by the hash function to manage multicast group membership.
AMDLM therefore requires a node distribution tailored to the hash function (e.g. the hash function
presented in Appendix B assumes a uniform node distribution).
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7.4 Summary

By adopting a significantly different approach for multicast group management, AMDLM offers
greater robustness and reliability than the tree-based approach of MAODV without the associated
overhead induced by the mesh-based approach of ODMRP.

8 Summary and Future Work

To the best of our knowledge, we have presented the first location service specifically tailored for
multicasting in MANETs. We have additionally specified AMDLM, a multicast algorithm built on
top of the location service. The advantages of such an approach over multicast algorithms relying
on a tree, DAG or mesh approach is the absence of a multihop data-structure connecting the source
and members of the multicast groups. Such data-structures are indeed less robust to frequent link
breakages that occur in the highly dynamic environment of mobile ad hoc networks.

Designing an efficient location service in the context of multicast within MANETs is a difficult
task. To the contrary of unicast routing, the location service must efficiently maintain information
regarding a set of scattered nodes associated with each group. Maintaining accessible multicast
group membership across the network may quickly lead to high communication overhead, reducing
performance and wasting limited resources. AMDLM addresses the dilemma of the location service
overhead versus multicast group information accessibility by dynamically adjusting the number and
density of the location servers.

For future work, we intend to compare AMDLM through simulation to MAODV [RP99] and
ODMRP [LCG99] in order to fully comprehend the performance of each approach in various situ-
ations and validate the qualitative analysis presented in Section 7.
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Appendices

A Brief Presentation of the MAODV and ODMRP Multicast Al-
gorithms

This appendix presents the MAODV [RP99] and ODMRP [LCG99] MANET multicast algorithms.

A.1 MAODV

MAODV is an on-demand tree-based multicast protocol based on the AODV [PRD01] unicast
routing algorithm. MAODV uses a bidirectional tree for multicast group membership management
(one tree per group). The tree is composed of group members and connecting nodes. Each tree
contains a leader — usually the first node to join the group — responsible for maintaining group
freshness through group hello messages.

Multicast group joins and leaves are handled explicitly in MAODV. When a node desires to
join a group, it floods a route request packet across the network using an expanding ring search
technique9. Intermediate nodes on the path cache a reverse route to the joining node according to
previous hop information. Nodes on the multicast tree having received the flooded packet unicast
back a route reply packet along the route to the joining node. After a discovery waiting period
intended to collect route reply packets, the joining node attaches itself to the tree by unicasting a
multicast activation packet to the closest (in terms of number of hops) node of the multicast tree.

While any member may leave its group(s), only leaf nodes are physically removed from the
multicast tree. Other nodes are still necessary to maintain the tree structure. A multicast group
member node leaves the tree by unicasting a prune request to its 1-hop neighbor on the tree. Upon
receiving the request, the node on the tree removes the leaving node from its next hop table.

Multicasting is possible for both member and non-member nodes. For non-member nodes, a
route-discovery phase similar to the multicast group join operation is conducted. Upon receiving
a route request packet, any node with routing knowledge to the group responds to the sender with
the routing information.

MAODV also addresses route maintenance through a tree repair procedure required to handle
link breakages. Links on the multicast tree are considered broken if no packet (regular or hello) has
been received from a neighbor for a timeout interval. If a broken link is detected, the disconnected
node on the leaderless subtree attempts to reconnect by initiating a local repair through a route
request with limited TTL. If reconnection is not possible (e.g. network partition), the disconnected
node becomes the new group leader and a new independent tree is formed.

A.2 ODMRP

ODMRP [LCG99] is an on-demand mesh-based multicast algorithm independent of an underlying
unicast routing protocol. The mesh is composed of overlapping per sender trees. Nodes in the mesh
constitute a forwarding group over which multicast packets are flooded (i.e. scoped flooding). The
mesh structure helps ODMRP achieve increased robustness to mobility and node failure through
the multiple alternative paths, yet at the cost of increased overhead.

In ODMRP, multicast group members are called receiver nodes. Receivers locally track their
own group membership and do not directly broadcast packets. Senders on the other hand are
nodes desiring to multicast messages and are required to actively join the multicast group. To do

9If the node happens to know a route leading to the group leader, it may directly unicast the request to the leader.
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so, a sender floods a join request packet throughout the entire network. Intermediate nodes on the
path cache a reverse route to the sender according to previous hop information. When the packet
reaches receiver nodes, each one of the receivers selects a single 1-hop neighbor 10 from which it
desires to receive the sender’s multicast data stream and sends it a join reply packet. Nodes
receiving the join reply packet repeat the procedure until the initial sender is reached, ultimately
creating a multicast tree rooted at the sender. The mesh is composed of union of all per-sender
trees. Nodes continuously rejoin the group as long as they have data to multicast. In this sense,
ODMRP is more proactive than MAODV, which only triggers activity upon a topology change on
the multicast tree.

No control message is sent when a node desires to leave a group (soft-state approach). When
senders stop emitting periodical join requests for the group, the multicast tree rooted at the sender
will naturally dissolve after a fixed timeout11.

A node desiring to multicast a message to a group must beforehand create a mesh containing the
receivers, by means of the procedure described above. The source node then floods the multicast
message across the mesh.

No dedicated route maintenance or repair procedure is required by ODMRP, since the periodical
broadcast of join requests by nodes desiring to multicast contributes to the continual reconstruction
of the mesh.

B An MDLM Hash Function Specification

B.1 Addressing Scheme and Notations

Figure 7 presents the addressing scheme by which level0 squares are identified. Two bits are required
to identify one of the four squares composing a region of any level. Beginning at the highest-level
region, an address is assigned counter-clockwise to each one of its four regions, starting from the
bottom-left corner of the grid. The same scheme is repeated in a recursive manner by appending
at each level two extra bits to the address until all of the k level regions have been assigned an
address. Figure 7 shows the level0 region fully identified by 101001.

We recall the definitions of Sni
k (G) and S

ni

k . In Section 5.3 we have defined Sni
k (G) the logical

server(s) in a region Rk for node ni member of group G. S
ni

k is by definition the levelk location
server located in ni’s levelk−1 region.

B.2 Specification

We present in this section a specification for the hash function η verifying Properties 1 and 2
mentioned in Section 5.3. The addressing scheme and notations described in Appendix B.1 are
assumed.

The address of the logical servers returned by η are the result of the concatenation of a prefix,
position and suffix. Functions 1 and 2 make use of a substring(text, s, c) function, which
returns the substring of c letters of string text, beginning at position s. We define An the set of
binary strings of length n and Bn = {{b1, b2, b3, b4} | b1, b2, b3, b4 ∈ An}. We keep in mind that
for a grid with kmax levels, the address size of the 22(kmax−1) level0 regions is of 2(kmax − 1) bits
(kmax − 1 bits for each of the x and y coordinates). Let a ∈ A2(kmax−1), l ∈ [0, kmax − 1] a level0
region address and G ∈ N a group ID.

10The 1-hop neighbor is selected from the neighbors from which it has received a join packet.
11ODMRP makes use of misleading terminology concerning the join operation, required by nodes desiring to

multicast (senders) rather and not by multicast group members (receivers), which are generally passive.
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Figure 7: Grid Partitioning and Addressing Scheme

Function 1 (prefix) Address of the enclosing levell+1 region, obtained by taking the first 2(kmax−
l − 1) bits of the requesting node’s address.

prefix : A2(kmax−1) → A2(kmax−l−1)

prefix(kmax, l, a) = substring(a, 1, 2(kmax − l − 1))

Function 2 (position) 2 bits indicating the four levell regions of a.
position : A2(kmax−1) → B2

position(kmax, l, a) = (substring(a, 2(kmax − l − 1) + 1, 2) + i)mod4, i = {00, 01, 10, 11}

When i = 00, Sni
l (G) is returned.

In order to distribute fairly the responsibility of logical servers for each group G across the 22l

level0 regions, we define suffix as being:

Function 3 (suffix) suffix(G, l) 2(l − 1) bits designating a level0 region to serve as a logical
server within the levell region.

suffix : A2(kmax−1) → A2(l−1)

suffix(G, l) =
{

G mod 22l if l > 1
empty string otherwise

We are now able to define the hash function η, through which the level0 regions for the logical
servers may be obtained.

Function 4 (η) Returns the addresses of all logical servers for l ≥ 1
η : A2(kmax−1) → B2(kmax−1)

η(kmax, l, G, a) = prefix(kmax, l, a) • position(kmax, l, a) • suffix(l, G) (where • is the concatenation of strings)

By convention, η(kmax, l, G, a) invoked with l = 0 returns a.

In other words, η will be of the form Prefix︸ ︷︷ ︸
2(kmax−l−1)bits

2bits︷ ︸︸ ︷
Position Suffix︸ ︷︷ ︸

2(l−1)bits

.
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Example 1 A grid with k = 4 levels will have 22(4−1) = 64 level0 regions, each identified by a
2(4 − 1) = 6 bit address. Let ni be a node of address 100101 (cf. Figure 7) and G the multicast
group of ID = 5. Table 2 illustrates how η is used to obtain ni’s logical servers for the different
levels.

Level 1 2 3

Prefix 1001 10 -
Position 01, 10, 11, 00 01, 10, 11, 00 10, 11, 00, 01
Suffix - 01 0101

Address S 100101 100101 100101
Address 1 100110 101001 110101
Address 2 100111 101101 000101
Address 3 100100 100001 010101

Table 2: Example for η for node ni of address 100101 with k = 4 levels.

We now present proofs for how the specification of the hash function η verified the required
properties cited in Section 5.3.

Property 1 (Partitioning Rule)
k = 0: For each node ni member of G, there exists exactly one logical server of level 0 (denoted by
Sni

0 ), which corresponds to region Rni
0 .

k > 0: For each level k > 0 and for each node ni, there exists exactly four logical servers of level
k (denoted by Sni

k ). Moreover, there is exactly one of these four servers Sni
k in each of the four

sub-regions region Rni
k−1 of region Rni

k .

Proof. The positions of the logical servers Sni
k computed for a node ni by the hash function are

always located in region Rni
k because, according to the definition of the prefix function (Function 1

of Section 5.4), ni has the same 2(kmax − k − 1) first bits as all its Sni
k servers. Moreover, the

position function (Function 2 of Section 5.4) ensures that exactly one Sni
k server is placed in each

Rk−1 regions since it enumerates all possible Rk−1 regions by iterating over i (i = 00, 01, 10, 11). In
the particular case when k = 0 the hash function η returns a (cf. Function 4), the address of the
level0 region containing ni.

Property 2 (Sharing Rule)
∀k > 0 and for two nodes ni and nj member of the same group, if Rni

k = R
nj

k , then ni and nj share
the same level k server(s).

Proof. Let assume Rni
k = R

nj

k . According to the definition of the prefix function (Function 1 of
Section 5.4), the addresses of ni and nj have the 2(kmax − l − 1) first bits in common. Thus we
have prefix(kmax, k, Rni

0 ) = prefix(kmax, k, R
nj

0 ). For the same level k, the 2 bits returned by the
position function differ for ni and nj . But the 2-bits generated by ni and nj will refer anyway to
the same positions but maybe in a different order. The suffix computed by ni and nj are obviously
equal because the suffix definition (Function 3 of Section 5.4) only depends on the group G and
the level k. This implies that the unions {Sni

k (G)} ∪ Sni
k (G) and {Snj

k (G)} ∪ S
nj

k (G) contain the
same regions if Rni

k = R
nj

k
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C AMDLM Algorithm

C.1 AMDLM Architecture

In this section we present the architecture and relationships between the various layers that are
required by AMDLM. The AMDLM algorithm can be logically split into three different building
blocks as depicted in Figure 8. At the lowest level, the algorithm relies on a Geographic For-
warding ([KWZ02, MWH01, Sto02]) layer, providing a geographic-based point-to-point unicast by
means of a geo-send and corresponding geo-receive procedures. The Geographic Forwarding
implementation is not described in this paper.

Geographic forwarding

Logical servers

Core multicast
s-send s-receive

multicast deliver

geo-send geo-receive

join

leave

A
M

D
LM



Figure 8: AMDLM Architecture

Above this unicast layer we provide the logical servers abstraction. This layer considers only
communication links between logical servers and assumes that the physical terrain is divided into
hierarchical regions as defined in Section 5.2. Its interface provides a communication primitive:
s-send(msg), that sends a message msg to a logical server Sk. Logical servers are fixed, distributed
and hierarchical R0 regions. They form a geographically static infrastructure that avoid costly
routes maintenance operations and prevents nodes from tracking mobile recipients. All nodes in a
R0 region that acts as a logical server have the ability of offering the service. Practically, a node
is arbitrarily singled out to take action (e.g. the node with the highest ID). This mechanism offers
some kind of fault tolerance as long as at least one node is present in R0.

The hierarchical distribution of the logical servers simplifies, in most cases, the group member-
ship maintenance due to the mobility of group members. More precisely, whenever a mobile group
member moves locally only the closest logical servers need to be updated. This is also true each
time a new node joins a group G in the neighborhood of an other member. This feature reduces
significantly the dissemination of membership informations throughout the whole network.

The third building block above the logical servers layer contains the AMDLM implementation.
It relies on the communication environment provided by the logical servers abstraction. It allows a
mobile node to multicast a message msg to a group G. Besides the multicast(msg,G) procedure
a node can join a group G by calling the join(G) function. This operation will create or update
membership informations in all necessary Sni

k logical servers. Similarly, the AMDLM block exports
a leave(G operation that allows node to leave a group G. As for mobility issues, if a join(G) or
a leave(G) is invoked in the neighborhood of an other member of the same group G, then only a
local update is required.
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C.2 AMDLM Algorithmic Specification

The model, notations and addressing scheme used by the algorithms are described in Section 5.2,
Appendix B and Appendix C.1. Algorithms 1, 2 and 3 describe the operations join, leave and
multicast invoked on the AMDLM layer. Then, Algorithm 4 shows how the mobility is handled
when a node moves from one R0 region to another. Finally, Algorithm 5 gives the pseudo-code
for the Logical server layer, namely the interaction with the Geographic forwarding layer upon the
invocation of s-send procedure.

Algorithm 1 : AMDLM - Join
1: {Upon join(G) by a node ni ∈ S0 :}
2:

3: s-send(join,kmax,G,S
ni
0 ) to Sni

0 ;
4:

5: {Upon s-receive(join,level,G,S
nj

l ) by a node ni ∈ Sk}
6:

7: if k == 0 then
8: membersi = membersi ∪ {(G, nj)};
9: end if

10: linksi = linksi ∪ {(G, Snj
l )};

11: if k ≤ level ≤ kmax and (| membersi | = 1 or | membersi | = 1) then
12: s-send(join,level,G,Sni

k ) to Sni

k+1;
13: end if

Algorithm 2 : AMDLM - Leave
1: {Upon leave(G) by a node ni ∈ S0 :}
2:

3: s-send(leave,kmax,G,S
ni
0 ) to Sni

0 ; {ni acts as the S0 server}
4:

5: {Upon s-receive(leave,level,G,S
nj

l ) by a node ni ∈ Sk}
6:

7: if k == 0 then
8: membersi = membersi \ {(G, nj)};
9: if membersi = ∅ and k ≤ level ≤ kmax then

10: s-send(leave,level,G,Sni

k ) to Sni

k+1;
11: end if
12: else
13: linksi = linksi \ {(G, S

nj

l )};
14: if linksi = ∅ and k ≤ level ≤ kmax then
15: s-send(leave,level,G,Sni

k ) to Sni

k+1;
16: end if
17: end if
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Algorithm 3 : AMDLM - Multicast
1: {Upon multicast(m,G) by a node ni ∈ S0 :}
2:

3: for all (G, nj) ∈ membersi do
4: deliver m to nj ;
5: end for
6: for all (G, S

nj

k ) ∈ linksi do
7: s-send(m,G,Sni

0 ) to S
nj

k ;
8: end for
9: if ∃ k ≤ kmax | k > maxl{(G, Sl) ∈ linksi} then

10: s-send(m,G,Sni
0 ) to server S

ni

kmax−1;
11: end if
12:

13: {Upon s-receive(m,G,S
nj

l ) by a node ni ∈ Sk}
14:

15: if k = 0 then
16: for all (G, nh) ∈ membersi do
17: deliver m to nh;
18: end for
19: else if linksi ∩ {(G, Snh

k−1)} 6= ∅ then
20: s-send(m,G,Sni

k ) to server Snh

k−1;
21: end if
22: if l ≤ k < kmax then
23: s-send(m,G,Sni

k ) to S
ni

k+1;
24: end if

Algorithm 4 : Mobility management
1: {Upon node ni has moved from Sold

0 to Sni
0 :}

2:

3: {ni must update membersi and linksi sets according to its new position}
4: if membersi ∩ {(G, ni)} 6= ∅ then

5: level = minimum k such that RR0
k = R

R
′
0

k ;
6: s-send(join,level,G,Sni

0 ) to Sni
0 ;

7: s-send(leave,level,G,Sni
0 ) to Sold

0 ;
8: end if

Algorithm 5 : Logical server algorithm
1:

2: {Upon s-send(content,G,Sni

k ) to a server S
nj

l by a node ni ∈ Sk :}
3:

4: Sl = η(kmax, l, G, R
nj

0 );
5: Sk = η(kmax, k, G, Rni

0 );
6: for all R0 ∈ Sl do
7: if dist(Rni

0 , R0) < dist(R
′

0, R0), ∀ R
′

0 6= Rni
0 ∈ Sk then

8: geo-send(content) to R0;
9: end if

10: end for
11:

12: {Upon geo-receive(content) by a node ni ∈ Sk from a server Sj :}
13:

14: s-receive(content,Sj);
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