
A Software Architecture for Industrial Automation
Technical Report IC/2003/28

Rodrigo Garcı́a Garcı́a
Software Engineering Laboratory

Swiss Federal Institute of
Technology Lausanne (EPFL)

Ecublens
CH-1015 Lausanne, Switzerland
E-mail: rodrigo.garcia@epfl.ch

Esther Gelle
Information Technologies Dept.

ABB Switzerland Ltd
Corporate Research

Segelhof 1
CH-5405 Baden-Dättwil

E-mail: esther.gelle@ch.abb.com

Alfred Strohmeier
Software Engineering Laboratory

Swiss Federal Institute of
Technology Lausanne (EPFL)

Ecublens
CH-1015 Lausanne, Switzerland

E-mail: alfred.strohmeier@epfl.ch

Abstract

The Aspect Integrator Platform (AIP) from ABB was designed to build the next generation of industrial automation applications.
This platform is part of a set of products that provide the means to model, control and supervise continuous or discrete processes
in various market domains, ranging from chemical and metal to paper and consumer industries. Each product works at a different
level in the manufacture process, having distinct safety and real time requirements, but all of them rely on a common architecture
for interoperability. The architecture proposes a set of components that can be reused in the different products. The current
implementation of the architecture provides considerable flexibility in terms of modelling domain information and dynamically
modifying it at run-time. On the one hand, this is a feature required by applications that must run 24 hours a day. On the other
hand, this flexibility adds complexity to the maintenance of the installed application because dependencies among its components
change dynamically. In this paper, we study the different kind of dependencies that can arise between components and show
them in the context of an example from automotive industry. We then show how dependency tracking and consistency among
components can be improved by representing them in XML, thanks to the structuring and validation properties of XML Schemas.
Finally, we also outline the advantages that the use of XML would provide to future developments of the platform in the areas
of data manipulation, transmission and storage.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902696?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1

A Software Architecture for Industrial Automation
Technical Report IC/2003/28

I. INTRODUCTION

The ABB automation platform, named Aspect Integrator
Platform (AIP), is designed to be the future platform for
industrial automation applications. This platform is part of a
set of products that provide a process control system which
is used to control continuous or discrete processes in various
market domains, ranging from industrial systems for power
plants, utilities, pulp and paper, metals and minerals, chemicals
and consumer industries. The main characteristics of these
products and applications are reliability, compatibility and
stability, in some cases safety and time critical functionality.
The latter is extremely important since industrial processes are
running 24 hours a day and it is often not possible to interrupt
a process just to upgrade a software [1], [2]. Any changes on
the software must be achieved without impact on the existing
technical process. In general a technical process consists of
several layers (Fig. 1), which are process, field, group control,
process control, production, and enterprise management level
[3]. The lowest level is the process level. It contains the
devices that need to be controlled, e.g. a high voltage switch
in a transmission network or a robot in a production cell. On
the next level, the field level, sensors, actuators, and drives
provide the interface between the physical process and the
control system. On the group control level, controller devices
and applications control a group of devices. These process
controllers obey hard real-time constraints. On the process
control level, operator stations and applications supervise and
control the entire process. They gather and analyze process
information. The production level comprises applications for
production planning, for example manufacturing execution
systems (MES), which analyze and optimize entire processes
with respect to production. The enterprise management level
finally comprises applications with transactional character to
deal with enterprise resource planning (ERP), e.g. human
resource planning, supply chain, order processing, and finance.

Process level

Field level

 Group control level

Production level

Enterprise
management

level

Process control level

Devices to be controlled, e.g.
robots, motors, switchgears

Sensors,actuators, drives

Controller devices and applications

Operator stations, monitoring and
supervision applications

Production planning, e.g. MES

ERP applications

Fig. 1. A technical process with its layers process, field, group control,
process control, production, and enterprise management.

The Aspect Integrator Platform, which we present in this
paper, is concentrating on the process control level, imple-
menting the functions of process control and supervision. The
basic functionality of such an automation platform consists of
process supervision, i.e. acquisition and presentation of infor-
mation on the process status, local and remote control of the
process, alarm and event handling, and history management,
i.e. acquisition and presentation of information on the process
history. It provides a graphical user interface to present the
process status and history as well as control interface to con-
nect to the devices. Since this basic functionality does not vary
much across different market domains, the main motivation to
build a software platform for a distributed automation system
is to foster the idea of reuse by avoiding parallel developments
in different businesses, harmonizing interfaces to third party
applications, and focusing on product lines for different market
segments [3].

The agreement on such a product structure that serves a
family of products together with a basic set of components and
the interaction that holds between them is commonly called
a software architecture [4]. Such an architecture proposes a
set of components that are reused in the different products.
In addition, the current architecture provides considerable
flexibility in terms of modelling domain information and
dynamically modifying it during run-time. On the one hand
this is a feature required by applications that run 24 hours
a day. On the other hand, this flexibility requires the user to
be careful in order to mantain the consistency of the installed
application base. Since these changes occur dynamically and
they are not explicitly tracked inside the platform, the user is
responsible for taking into account the dependencies among
the components. This becomes an issue when reusing existing
components. The user might want to use a component in a
completely different context and not be aware upon which
other components it depends. In our paper we show how
dependency tracking and consistency among components can
be improved by representing the actual platform concepts in
XML and using this definition to verify dependencies in an
application specific context.

II. CONCEPTS OF THE ASPECT INTEGRATOR PLATFORM

To satisfy the main requirements of a process control
system, i.e. acquisition and presentation of information on the
process status and its history and real time control of the pro-
cess, the Aspect Integrator Platform (AIP) provides means for
information representation and navigation as well as interfaces
to connect to the actual process. The main AIP concepts that
allow the realization of automation applications based on this
platform are Aspect Objects and Object Types, Aspects and



2

Aspect Types implemented based on COM components, and
hierarchical Structures.

Each Aspect Object can be identified within AIP through
its global unique identifier (GUID).

Aspect Objects represent concrete or abstract individual
concepts relevant for the system to be modeled, for example,
plants, machines, devices, or algorithms. An Aspect Object
serves as container for Aspects, which describe various char-
acteristics, i.e. behavior and data, of the domain object. An
Aspect Object may be instantiated from a template called
Object Type. It defines the type and number of Aspects the
Aspect Object instantiated from the type contains. It also
provides a mechanism for defining an Aspect that is shared by
all Aspect Objects of the Object Type. This notion is similar to
the notion of class variable in Object Orientation. In the current
platform, notion of Object Type is weak; an Aspect Object
instantiated from an Object Type can be modified afterwards.

The architecture further provides a means for structuring
the set of Aspect Objects pertaining to a controlled process
into possibly several hierarchical Structures. The Structures
represent dependencies between domain concepts and facilitate
information navigation [3], [5]. An Aspect Object may appear
as node at any level of a Structure in an arbitrary number of
Structures and it stores all references to these Structures. Pre-
defined engineering structures are for example the functional,
the location-based, and the control structure. They describe the
functional, the location-based or product-oriented viewpoint of
a technical system and the networks and nodes to control the
process. This concept of multiple hierarchical Structures is
based on the standard IEC1346 [6]. It does however not fully
comply to the standard for several reasons. First, Aspects in-
stead of Aspect Objects should be the leaf nodes in Structures
defining the specific characteristics (functional, location-based
etc.). Secondly, there might be an n-to-n mapping between
different structures [7]. A function might for example be
implemented by a one or several production-oriented Aspects
and vice-versa. The representation of such an n-to-n mapping
however would make it extremely difficult to navigate between
different Structures as stated in the standard.

Objects and their organization in hierarchical Structures
can be manually defined in the Plant Explorer, an interactive
interface for AIP. The Plant Explorer shows on the left hand
side the current Structure selected and on the right hand side in
the upper window all Aspects of the currently selected Aspect
Object and below the graphical representation of the current
Aspect (Fig. 3).

As an example consider a factory producing equipment for
the automotive industry. It consists of a shop floor with a
series of cells in which one or several robots are producing
the equipment. The robots are controlled via specific control
software. For each cell exists a daily plan of how much
this cell should produce and how the individual robots are
to be controlled. The goal is to monitor the entire floor to
detect failures as early as possible and report on performance
indicators. This scenario is modelled in the AIP environment
as follows: the factory, the cells and the robots are represented
by Aspect Objects that are organized hierarchically in a
functional structure (Fig. 3). The cells and robot characteristics

are defined once in the corresponding Object Types RobotType
and CellType (Fig. 2). It is then easy to make use of the control
structure in order to add information on the control nodes for
each robot.

Fig. 2. The shop floor example with the cell and robot object types.
Each Aspect Object instantiated from RobotType will contain the Aspect
RobotState.

Fig. 3. The shop floor example with cells and robots. Each cell has a
graphicalCell Aspect and each robot has a RobotState Aspect, which indicate
their status.

The Aspect of an Aspect Object contains the data asso-
ciated and the corresponding behavior and views (graphical
user interface) which entirely describe the characteristics of
the Aspect Object. The data and behavior are implemented
through software components based on COM technology. In
a way, Aspects can be compared to methods in the Object
Oriented sense but in addition they also contain the data of
an application (a function which is provided by the attributes
class and its instances in Object Orientation). An Aspect can
be located via the Aspect Object that holds a reference to
it. An Aspect itself is purely conceptual and it comes only
into existence through the fact that a set of components is
registered with the AIP infrastructure. The basic set of compo-
nents distributed with AIP contains functionality for alarming
and event handling, historical data management and trending,
viewing web/HTML pages, viewing PDFs, wrapping Win32
applications, and wrapping MS ActiveX components. The



3

latter is easily configured to encapsulate applications like MS
Word and MS Excel. Aspect Types are beside Object Types
the main concept for software reuse in AIP. They allow reuse
of software components through the AIP infrastructure since in
the registering process the components are linked to an Aspect
Type to which the Aspect belongs. In addition, the Object
Type can define specific Aspects that have to be present in an
Aspect Object by defining the corresponding Aspect Types.
In addition, Object Types can define the number of children
Aspect Objects present in an Aspect Object (instantiation of
composite objects).

Services provided by the platform include also an OPC
service. It implements the acquisition and control of real time
information. OPC is a series of standards specifications defined
by the standardization group OPC Foundation [8] dealing with
the acquisition of process data, alarm & events, historical data,
and batch data.

Returning to the robot example, we require a cell to indicate
when one of the robots has a failure. This can be achieved
by graphically representing the cell as a rectangle that is
green as long as all robots in it are active and that turns red
otherwise. Aspects are the concepts for realizing this behavior
of the cells and robots. An Aspect called graphicalCell with
its grapicalCellType is implemented for a cell with a property
called state to represent the rectangle that changes its color
according to its state. A second Aspect RobotState with its
robotStateType is implemented for a robot that also has a
property indicating the state of the robot. Its value is retrieved
via an OPC interface from the control network that actually
controls the robot. Once this variable is set for each robot
of a cell the graphicalCell Aspect can determine its color
depending on the state of all its robots. In our robot example,
the COM components implementing the graphicalCell and
the RobotState are registered with the AIP infrastructure. The
grahpicalCell is linked to an Aspect Type GraphicalCellType.
The Object Type RobotType comprises the Aspect Type robot-
StateType and the Object Type CellType holds the Aspect
Type graphicalCellType. In this example, each RobotState is
representing the status of an individual robot, therefore each
robot requires an instance of this Aspect.

More than one software component can cooperate to imple-
ment an Aspect Type. The separation of functionality into user
interface, business logic, and persistency enforces decoupling
as a prerequisite for reuse and it leads to a more robust design
since different parts can be reimplemented separately. The
implementation code of a component can make use of AIP
infrastructure functionality to navigate to and access software
components of other Aspects. This navigation is made possible
by the ABB Automation Model, which provides a way to
navigate through the Structures to reach the leaves in which
Aspect Objects and their Aspects are located. This allows an
AIP developer create dependencies between AIP concepts in
the source code of the program and also to create or delete
instances on the fly. In the robot example the graphicCell
Aspect uses the ABB Automation model to gather the state of
all of its robots through calling the RobotState Aspects.

AIP supports flexible modelling of user-specific Structures
since everything can be modelled manually in the Plant

Explorer while the system is running. There is a tradeoff
beween the aforementioned flexibility and the maintenance of
consistency between the different AIP concepts in a project
expecially if the domain model contains hundreds of objects
(not uncommon in typical ABB applications). In the next
section we show how this issue can be tackled without
changing the architecture fundamentally.

III. XML REPRESENTATION FOR AIP

In this chapter, we present the original motivation that led us
to design an XML representation for AIP. Later on, we show
how XML could be used to improve the platform integration
at different levels: data, communication and even graphical
level.

A. Dependencies between AIP concepts

The different components that build up an AIP project
usually have interdependencies among them. We can classify
these dependencies according to the following criteria:

� Object instantiation: An Aspect Object is an instance of
an Object Type.

� Aspect instantiation: An Aspect depends on its Aspect
Type.

� An Aspect Object depends on the Aspects it contains.
� An Object Type depends on the Aspect Types it desig-

nates.
� Inheritance: An Object Type can be a subtype of another.
� An Aspect can call a function or use the properties of

another Aspect during execution.
The first four types of dependencies are summarized in

Fig. 4. These four dependencies, together with the fifth one
(inheritance) are structural dependencies. By structural, we
mean that a component cannot lie in a project if the com-
ponents on which it depends are not present. For instance,
an Aspect Object cannot be correctly instantiated without its
Object Type. This is important when installing the components
of an existent AIP project into a new system, i.e. exporting the
components from one project to another. Structural dependen-
cies affect the way components must be loaded in the platform,
since AIP does not support forward references. This means,
for example, that an Object Type must be actually present in a
system before any of the Aspect Objects of this type is loaded.

Object Types have advanced features that allow a finer
grained control of instantiations than that of the classes we
can find in usual object oriented languages. Apart from the
Aspects it will contain, we can control, if we want to create
a composite type, the type and the number of children that
an Aspect Object will have. In this way, an Aspect Object
has a stronger dependency on its Object Type than just simple
instantiation.

The last kind of dependency affects only run-time behavior,
we call it therefore a run-time dependency. Contrary to what
it happens with structural dependencies, the loading order
in a system is not important for components with run-time
dependencies. The Aspect that has a run-time dependency on
other Aspects can be loaded in any order with respect to these
latter. Nevertheless, if they are not present when the Aspect is



4

Object Type Aspect Type

AspectAspect Object

*

*

Fig. 4. Direct dependencies of an Aspect Object.

activated, a run-time error will be raised. An Aspect can access
the exposed properties and operations of any other Aspect in
the system once it has localized it in the system Structures. The
path from one Aspect to another is usually stated in the source
code of the caller Aspect. That is why this kind of dependency
could only be detected by code inspection and, consequently,
it is harder to detect than structural dependencies.

As it is the user who must keep track of component
dependencies currently with AIP, we decided to implement a
tool that could automatically extract the set of structural depen-
dencies for a given component and represent them graphically
and that extracts the AIP concepts in a strict order. This can
then be used to correctly import and export an application for
example. XML was chosen as the intermediate language for
stating these dependencies for several reasons:

� XML is a publicly available standard [9].
� XML is platform independent.
� XML allows structured content.
� XML Schemas allow the validation of XML documents.
� A great number of programs and APIs allow the easy

creation and manipulation of XML data.
Moreover, XML has mechanisms that allow the identifi-

cation of single entities within a document. Since each AIP
component (as any COM component) has a unique identifier,
these mechanisms were the ones used to reference already
defined components in the document and detect dependencies.
Besides, XML documents present a tree structure suitable for
representing the aspect structures defined in the IEC 61346 [6]
standard, which are also organized in the form of a tree.

Once the XML document is completed, the dependency
information is passed to a visualization tool that displays a
dependency graph.

B. Technology evolution

The advent of the Microsoft .NET initiative [10] in June
2000 implied a major impact for all AIP related development.
As we have seen in previous chapters, AIP heavily relies
on Microsoft COM for its component infrastructure. On the
other hand, the .NET platform proposes a new technology for
component based development, where the basic unit of reuse
is the Assembly [11]. Assemblies are no longer compiled to
native binary code, but to an intermediate language called
MSIL (Microsoft Intermediate Language) that is platform
independent (much like Java byte code or Pascal p-code). But
what is really important in .NET for us, is that it uses XML
extensively for different kind of applications, introducing the

concept of XML web services. The XML representation of
the platform could be used for more than just stating the
dependencies among AIP components.

Moreover, now that COM is a legacy technology, it is
probable that the platform will eventually evolve towards a
.NET implementation.

C. OPC evolution

The other technology that is closely related to AIP and
COM is OPC (which originally stood for OLE for Process
Control [8]). OPC was designed as the standard way to
communicate plant devices with Windows based applications
(or any other system supporting COM). The main advantage of
this standard is that it provides a consistent way for accessing
the data produced by any device in the plant floor. There is
no need to deal with the specifics of different proprietary
device drivers as long as the hardware provides an OPC
interface. Although OPC allows to specify time parameters for
reading data (such as the updating period) and it also provides
methods to modify the variables exported by the hardware,
it was not conceived for critical real-time control. The time
constraints specified should be regarded as guidelines and not
as absolute values, since OPC is run under a best effort basis.
Nevertheless, it provides a simple and efficient way to retrieve
plant information in a timely manner, quick enough for human
interaction.

OPC was built upon OLE/COM and it is still closely
related to these Microsoft technologies. Some vendors of OPC
products and the OPC Foundation have realized that there is a
natural evolution of OPC towards .NET. Vendors have started
developing .NET assemblies that wrap the functions provided
by legacy OPC products and the OPC Foundation has been
working on the specification of a new standard: OPC XML-
DA. This standard is the evolution of the traditional OPC Data
Access standard, which describe how to access to the variables
exposed by the plant controllers. The future standard will use
XML/SOAP for communication purposes and thus, it will not
require any COM knowledge, which is good news for those
platforms that do not have native COM support.

IV. ADVANTAGES

XML standard nature has many benefits regarding data
manipulation, transmission and storage. The W3C (World
Wide Web Consortium) has developed several XML related
standards that fulfill the needs of very different application
fields.

A. Storage and Manipulation

Currently, all information about an AIP system is stored in
AFW files (a binary proprietary format). Once loaded into
AIP, the information that these files contain is accessible
via a programmatic interface and a user interface (the Plant
Explorer). The use of third party products for modifying these
files directly is highly limited, due to their propietary nature,
although it is true that AFW files can always be modified by
a program that uses AIP programming interfaces. However, if



5

this information was stored in XML format, the representation
would be human and machine readable and it could be used
and easily modified with virtually any programming language
or XML tool, without the need of the AIP frameword to
be running. Nowadays, a plethora of modern programming
languages include libraries (typically based on the SAX or
DOM standards) that allow the programmer to parse and
process XML documents.

If we focus exclusively on storage, a great advantage derives
from the fact that XML can be an excellent intermediate
representation for relational data. We can map the XML
representation of the system to our favorite relational database,
providing a more robust mean of storage than a simple
file. There are now several products in the relational and
object-oriented database market that provide an XML binding,
making this mapping process easier.

If a project has a large number of COM components,
scalability can become an issue in AIP. Each time a new
component is added to an AIP project, it is registered in
Windows. If a project has to model a great number of similar
small objects, this solution quickly overloads the registry
unnecessarily. The alternative proposed is to exclusively use
XML and a database for modelling purposes and treat the
functional requirements separately.

B. Communication

Once in XML format, Aspect Objects could be sent through
standard Internet communication channels and be addressed
to any connected device. By means of XML transformations
(XSLT), the XML stream could be converted into an XHTML
file. The presentation of the information would depend on the
display capabilities of the device. And this would not just be
limited to Aspect Objects. Any subset of the system could be
sent through the Internet by using this method. Thus, if we
continue with the example of the robot plant, we can imagine
an operator receiving an alarm in his palmtop from one of the
robots in the factory. A more practical example could be, for
instance, that a manager had instant up to date information
about the production of his plant while he is on a business
trip.

As a step further, XML web services could be used for real-
time interaction with the objects in the factory. A remote call
might be addressed to any object in the factory exposing its
services. In this way, SOAP could be used as the communi-
cation layer for building HMI (Human to Machine Interface)
applications. This is known in AIP terminology as the operator
workplace. Security issues should be addressed at this point.

C. Graphics

XML can achieve integration even at the graphical level
thanks to the SVG [12] standard. The platform currently uses
graphical ActiveX controls to build the operator workplace
which are highly integrated with the rest of the COM envi-
ronment.

If in future development COM is left apart as the driving
technology behind AIP, the possibility of using SVG graphics

for designing the operator workplace should be seriously con-
sidered due to its graphical power, its interaction capabilities
and the growing number of supporting products.

V. REALIZATION

In order to represent an AIP project using XML, we
consider that at least three documents are necessary:

� A generic XML Schema for AIP.
� An XML Schema specific for the predefined and user

defined types.
� An XML file containing all the objects in the system.

for AIP
XML Schema XML Schema

for the project

XML reprentation
of the project

Fig. 5. Representation

We have selected the XML Schema format among other
possible solutions for structuring our XML documents. This
choice has been made for several reasons. Apart from the
fact that XML Schema is a W3C recommendation, its type
support and its ability for expressing relationships among
elements have made it an essential tool for our project. Other
schema languages were rejected because they were in an
experimental state or not so widely accepted as XML Schema.
The use of DTDs, which is another W3C recommendation,
was discarded because of its lack of advanced built-in data
types. Besides, XML Schemas are written in XML itself, while
DTDs (although SGML compliant) are expressed in a different
language (a kind of BNF grammar). That makes the use of
XML Schemas for XML formatting purposes more consistent.

The first XML Schema is used to model all AIP concepts
and their relationships: Structures, Aspects, Aspect Objects,
etc... All of them are defined as complex types in the XML
Schema for AIP.

The second XML Schema serves for declaring the pre-
defined and user defined types. This schema is likely to be
divided into, at least, two schemas: one that holds predefined
types of the platform and one that is specific to the project.
It would be possible as well to have several repositories of
schemas, each one grouping a set of types specific to different
kind of industrial projects.

Finally, the XML file will contain all the Aspect Objects that
compose the system, along with their respective Aspects. This
XML file will conform to the previous two schemas. Validation
tools are available to check the conformity of XML files with
XML Schemas, and most XML libraries can also validate
XML documents. This will allow the detection of inconsis-
tencies every time a modification takes place. For example,
we have seen above (section III-A) that an Object Type can
determine the number of children objects that an Aspect Object
can hold. Let us imagine that we declare the minimum number



6

of children to be two and we instantiate the Object Type,
resulting in an Aspect Object with two children. Afterwards,
we change our Object Type definition, so the minimum number
of children is now three. The Aspect Object previously created
has been left in an inconsistent state regarding its Object
Type definition, since it only has two children. With the XML
approach, these types of inconsistencies will be automatically
detected as soon as we validate the XML document against
its XML Schema.

Let us see the example of the robot cells using a simplified
XML model of the platform. The XML Schema that describes
the concepts of AIP is shown in Table I. This schema can also
be viewed in a graphical form in Fig. 6 and Fig. 7 thanks to the
abilities of the XML editor we are using (XMLSpy 5.0 [13]).
The first figure shows how a System is divided in Structures
and Structures are composed of Aspect Objects. The second
figure shows the definition of Object Type. An instance of
any Object Type (an Aspect Object) will hold Aspects and
children Aspect Objects. In this simplified model, Aspects
are represented by a simple string of characters. In practice,
different Aspect Types can have a very different nature.

Fig. 6. Decomposition of a System

Fig. 7. Type definition of an Aspect Object

Next, we develop the XML Schema for the Robot Cells
project. We have divided this schema into two. The first one
(Table II) describes the actual System element and Structures
that the project is going to handle, deriving them from the
generic definitions of the previous XML Schema. The second
one (Table III) defines the concrete Object Types that model
the Aspect Objects in the project: Factory, Cell and Robot.
This latter schema is joined to the first by using an include
statement.

In order to clarify all these concrete definitions, we show
them in two schematic diagrams. In the diagram showed in
Fig. 8 we see that the Robot Cells project is composed of two
Structures: a Functional Structure (empty at this stage) and
a Location Structure where we can find several Factories. In
Fig. 9 we can see that a Factory is composed of two Aspects
(Name and Description) and several Cells. Cells can have up
to four Robots as children.

Last, we elaborate an XML document (see Table IV)
holding the instances of our previously declared types. In our
example, we can see one Factory containing two Cells: one
with a Painter robot and the other with an Assembler and a
Screwdriver robots. Validation against XML Schemas assures

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://lgl.epfl.ch/AIP"

xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:aip="http://lgl.epfl.ch/AIP"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:complexType name="SystemType">
<xs:annotation>

<xs:documentation>
Simplified model for AIP

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="Structure"
type="aip:StructureType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="StructureType">
<xs:annotation>

<xs:documentation>
Specific view of the system

</xs:documentation>
</xs:annotation>
<xs:sequence>

<xs:element name="AspectObject"
type="aip:ObjectType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:complexType name="ObjectType">
<xs:sequence>

<xs:element name="Aspect"
type="aip:AspectType"
minOccurs="0"
maxOccurs="unbounded"/>

<xs:element name="ChildAspectObject"
type="aip:ObjectType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

<xs:simpleType name="AspectType">
<xs:restriction base="xs:string"/>

</xs:simpleType>
</xs:schema>

TABLE I

AIP SIMPLIFIED CONCEPT MODEL

the consistency of the instances with their type definition. The
AIP system that would correspond to this document should be
similar to the one shown in Fig. 3.

VI. CONCLUSION

In this paper we have seen how an XML infrastructure could
help the AIP platform to achieve its objectives of integration at
different levels. We have shown as well that XML documents
can be used to represent the structures of an AIP system and
their content. We found XML Schemas to be an excellent
tool for modelling the concepts and the types of AIP. This
model allows us to perform consistency checks in the XML
documents that contain the instances of these types. We also
envisage the use of other XML related technologies in AIP,
like SOAP and SVG, so the platform could get advantage of
their standard nature, Internet adaptation and uniformity of
processing.



7

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://lgl.epfl.ch/RobotCells"

xmlns="http://lgl.epfl.ch/RobotCells"
xmlns:aip="http://lgl.epfl.ch/AIP"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace="http://lgl.epfl.ch/AIP"
schemaLocation="AIP_Concepts.xsd"/>

<xs:include schemaLocation="RobotObjectTypes.xsd"/>

<xs:element name="RobotCellsSystem"
type="RobotCellsSystemType"/>

<xs:complexType name="RobotCellsSystemType">
<xs:complexContent>

<xs:restriction base="aip:SystemType">
<xs:sequence>

<xs:element name="LocationStructure"
type="LocationStructureType"/>

<xs:element name="FunctionalStructure"
type="FunctionalStructureType"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="LocationStructureType">
<xs:complexContent>

<xs:restriction base="aip:StructureType">
<xs:sequence>

<xs:element name="Factory"
type="FactoryType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="FunctionalStructureType">
<xs:complexContent>

<xs:restriction base="aip:StructureType">
<xs:sequence>
<xs:element name="AspectObject"

type="aip:ObjectType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

TABLE II

CONCRETE INFRASTRUCTURE OF ROBOT CELLS PROJECT

Fig. 8. Robot Cells System

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema targetNamespace="http://lgl.epfl.ch/RobotCells"

xmlns="http://lgl.epfl.ch/RobotCells"
xmlns:aip="http://lgl.epfl.ch/AIP"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified"
attributeFormDefault="unqualified">

<xs:import namespace="http://lgl.epfl.ch/AIP"
schemaLocation="AIP_Concepts.xsd"/>

<xs:complexType name="FactoryType">
<xs:complexContent>

<xs:restriction base="aip:ObjectType">
<xs:sequence>

<xs:element name="Name"
type="aip:AspectType"/>

<xs:element name="Description"
type="aip:AspectType"/>

<xs:element name="Cell"
type="CellType"
minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="CellType">
<xs:complexContent>

<xs:restriction base="aip:ObjectType">
<xs:sequence>

<xs:element name="Name"
type="aip:AspectType"/>

<xs:element name="Robot"
type="RobotType"
maxOccurs="4"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

<xs:complexType name="RobotType">
<xs:complexContent>

<xs:restriction base="aip:ObjectType">
<xs:sequence>

<xs:element name="Name"
type="aip:AspectType"/>

<xs:element name="ChildAspectObject"
type="aip:ObjectType"
minOccurs="0"
maxOccurs="0"/>

</xs:sequence>
</xs:restriction>

</xs:complexContent>
</xs:complexType>

</xs:schema>

TABLE III

OBJECT TYPE DEFINITIONS OF ROBOT CELLS PROJECT

Fig. 9. Factory Type definition



8

<?xml version="1.0" encoding="UTF-8"?>
<RobotCellsSystem

xmlns="http://lgl.epfl.ch/RobotCells"
xmlns:aip="http://lgl.epfl.ch/AIP"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://lgl.epfl.ch/RobotCells

G:\AIPXML\Robot_Cells.xsd">

<LocationStructure>
<Factory>

<Name>RobotCells Factory</Name>
<Description>Example Factory</Description>

<Cell>
<Name>Cell 1</Name>
<Robot>

<Name>Painter</Name>
</Robot>

</Cell>

<Cell>
<Name>Cell 2</Name>

<Robot>
<Name>Assembler</Name>

</Robot>

<Robot>
<Name>Screwdriver</Name>

</Robot>
</Cell>

</Factory>
</LocationStructure>

<FunctionalStructure/>
</RobotCellsSystem>

TABLE IV

A ROBOT CELLS PROJECT



9

REFERENCES

[1] I. Crnkovic and M. Larsson, “A case study: Demands on component-
based development,” in Proceedings of the 22nd International Confer-
ence on Software Engineering. ACM Press, June 2000, pp. 23–31.

[2] ——, “Challenges of component-based development,” Journal of Soft-
ware Systems, Dec. 2001.

[3] O. Preiss and M. Naedele, “Architectural support for reuse: A case
study in industrial automation,” in Building Reliable Component-Based
Software Systems, M. L. I. Crnkovic, Ed. Artech House Publishers,
2002, ch. 17.

[4] P. Clements and L. M. Northrop, Eds., Software Product Lines: Practices
and Patterns. Addison-Wesley, Aug. 2001.

[5] P. Froehlich, Z. Hu, and M. Schoelzke, “Using uml for information
modeling in industrial systems with multiple hierarchies,” in UML2002,
2002, pp. 63–72.

[6] IEC (6)1346-1 Industrial systems, installations and equipment, and
industrial products - Structuring principle and reference designations,
International Electrical Commission (IEC) Std., 1996.

[7] J. Göpfert and M. Steinbrecher, “Modulare produktentwicklung leistet
mehr,” Harvard Business Manager, Heft 3/2000, pp. 20–30, 2000.

[8] Ole for process control. OPC foundation. [Online]. Available:
http://www.opcfoundation.org/

[9] Extensible markup language. World Wide Web Consortium. [Online].
Available: http://www.w3.org/XML

[10] Microsoft .net home. Microsoft Corporation. Redmond, WA. [Online].
Available: http://www.microsoft.com/net

[11] P. Tapadiya, .NET Programming. A practical guide using C#. Prentice
Hall, 2002, pp. 63–110.

[12] Scalable vector graphics. World Wide Web Consortium. [Online].
Available: http://www.w3.org/Graphics/SVG/Overview.htm8

[13] Xmlspy 5.0. Altova GmbH. Wien, Austria. [Online]. Available:
http://www.xmlspy.com/products ide.html


