
Dynamic Group Communication

André Schiper
Ecole Polytechnique Fédérale de Lausanne (EPFL)

1015 Lausanne, Switzerland
e-mail: andre.schiper@epfl.ch

Abstract

Group communication is the basic infrastructure for implementing fault-tolerant replicated servers.
While group communication is well understood in the context of static systems (in which all pro-
cesses are created at the start of the computation), current specifications of dynamic group com-
munication (in which processes can be added and removed during the computation) are not satis-
factory.

The paper proposes new specifications for dynamic reliable broadcast (which we call reliable
multicast), dynamic atomic broadcast (which we call atomic multicast) and group membership in
the primary partition model. In the special case of a static system, our specifications are identical
to the well known static specifications. The specification of group membership is derived from the
specification of atomic multicast.

The paper also shows how to solve atomic multicast, group membership and reliable broad-
cast. The solution of atomic multicast is close to the (static) atomic broadcast solution based on
reduction to consensus. Group membership is solved using atomic multicast. In the context of
reliable multicast, we introduce the notion of thrifty solution, and show that such a solution can
be obtained by relying on a thrifty generic multicast algorithm.

Keywords: Distributed systems, fault-tolerance, group communication, primary partition, spec-
ification, implementation, reliable broadcast, atomic broadcast, group membership.

1 Introduction

Fault-tolerance in distributed systems is ensured by replication, which is traditionally imple-
mented on top of a group communication infrastructure. Reliable broadcast – which ensures that
all correct processes or none of them deliver a given message – and atomic broadcast – which in
addition to the properties of reliable broadcast orders messages – are examples of group commu-
nication primitives.

Group communication is well understood in the context of a static system, in which all pro-
cesses are created at the start of the computation. Specification of static group communication

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902695?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


can be found in [7], and implementation of reliable broadcast and atomic broadcast is discussed
for example in [4]. However, a static system has practical limitations. Consider for example a
replicated server with three replicas s1, s2, s3. If s3 crashes, the probability for the service to be
permanently available decreases. To increase this probability a new replica s4 must be created to
replace s3. This requires dynamic group communication. However, despite the recent good review
by Chockler et al. [5], dynamic group communication has not yet reached the level of maturity of
static group communication. The goal of the paper is to contribute to a better understanding of
dynamic group communication.

The key component of a dynamic system is the group membership service, which is responsible
for adding and removing processes during the computation [6, 10].1 Group membership is strongly
related to view synchrony, a property ensuring that processes deliver the same set of messages be-
tween two membership changes [3, 11]. However, the specifications of group membership and
of view synchrony are unsatisfactory for three reasons. First, the current specifications are com-
plex [5]. Second, these specifications do not exclude trivial solutions [2]. Finally, the specification
of reliable broadcast and atomic broadcast – which result from the specifications of group member-
ship and view synchrony – are very different from the well understood and simple specifications
of reliable broadcast and atomic broadcast in a static system. For example, reliable broadcast (in
a static system) and view synchrony (in a dynamic system) provide somewhat similar guarantees.
However, their specification are very different.

The paper proposes new specifications for dynamic group communication in the primary parti-
tion model – specifically dynamic reliable broadcast and dynamic atomic broadcast – and shows
how they can be implemented. To avoid the lengthy expression “dynamic reliable broadcast”, re-
spectively “dynamic atomic broadcast”, we denote the former by reliable multicast and the latter
by atomic multicast. We adopt the same approach as in [7]: we start with the specification of
reliable multicast, and then extend it to atomic multicast. In the special case of a static system
our specifications are identical to the well known static specifications. The specification of group
membership is derived from the specification of atomic multicast.

We also discuss the solutions of atomic multicast, group membership and reliable multicast.
Atomic multicast can be solved by reduction to consensus, similarly to (static) atomic broad-
cast [4]. Group membership can be solved using atomic multicast. The solution of atomic multicast
can trivially be extended to solve reliable multicast. We discuss another “thrifty” solution, which
uses generic broadcast [8, 1, 9].

The paper is structured as follows. Section 2 is devoted to the specifications of reliable multicast,
atomic multicast and group membership. Section 3 compares our new specifications with those in
the recent survey by Chockler et al. [5]. Section 4 solves atomic multicast and group membership,
and proves the correctness of the solution. Section 5 extends the solution to reliable multicast.
Section 6 concludes the paper.

2 Specification of Dynamic Group Communication

In this section we define reliable multicast (or dynamic reliable broadcast), atomic multicast (or
dynamic atomic broadcast) and group membership.

1In this paper we consider only the so called primary partition membership problem.

2



2.1 System model

We consider an asynchronous distributed system composed of processes taken from a finite set
Π, which communicate by message passing. The system is dynamic: processes may be created
after the beginning of the computation (and processes may terminate before the end of the compu-
tation).

Group communication assumes “groups”: a group is a subset of processes. In order to avoid
unnecessary complexity, we assume in the paper that there exists only one group, and that all
processes belong to this single group. This assumption means that (i) creation of process p, and
(ii) p joining the group, are the same operation. Similarly, (i) termination of process p, and (ii)
p leaving the group, are the same operation. As a consequence, there is no difference between
“processes in the system” and “group”. In the rest of the paper we consistently use only the term
“group”.

A process may be created only once. So, if process p has terminated or has crashed, it cannot be
resurrected (p cannot be created a second time). From a practical point of view, this stills allows
a crashed process to recover, but it has to take a different name. A view is a subset of Π that
represents the membership of the group at that moment.2 Given process p, we denote by vp the
current membership of the group as perceived by p. Since a given membership may occur more
than once at a given process, e.g., for p we could have the following sequence of membership
{p, q}, {p, q, r} (r added to the membership), {p, q} (r removed from the membership), we add
the notion of view instance, denoted by inst(vp). The first instance of a given view at some process
has instance number 1, and each subsequent instance has an instance number incremented by 1.
While the membership of p is (vp, inst(vp)) we say that process p is in view (vp, inst(vp)) or
simply that process p is in view vp.3 The initial view of the group is denoted by v0, and the first
view of each process in v0 is v0. If process p is in view v and later in some other view v ′, we say
that v′ is after v for p. We say that v is the last view of p if there is no view for p after v. Note that
a static system is a special case of our dynamic system model, in which the view never changes
and is always equal to v0 = Π (view v0 = Π is also the last view of all processes).

Processes fail by crashing (we do not consider Byzantine failures). In a static system, a process
is said to be correct if it never crashes. We extend this definition by first introducing the notion of
correctness of a process in a view. Process p is correct in view v if (1) p ∈ v and eventually p is in
view v, and

(2a) if v is the last view of all processes in v, then p never crashes, or

(2b) if v′ is the view that is immediately after v for some process in v, then p ∈ v ′.

Based on this definition, we can define the notion of a correct process in a dynamic system. Let
vinit

p be the initial view of process p. We say that process p is correct if and only if p is correct in
vinit

p and in all its subsequent views. Otherwise, p is faulty. Note that if the system is static, Π is
the initial and the last view of all processes. By item (2a), we have the same definition as in a static
system.

2In this paper we do not attach an identifier to a view (e.g., a view number).
3The glossary at the end of the paper summarizes our definitions.

3



2.2 Reliable Multicast: first tentative

The usual definition of (static) reliable broadcast assumes that all processes in Π are created
at the beginning of the computation. Our definition of reliable multicast considers the dynamic
system model introduced above.

Reliable multicast is defined by the two primitives rmulticast and rdeliver, and – as a first tentative
– the following three properties:4

R1 Validity: If a correct process executes rmulticast(m), then it eventually rdelivers m.

R2 Uniform Agreement: If a process p rdelivers m in view vp, then all processes that are correct
in vp eventually rdeliver m.

R3 Uniform Integrity: For any message m, (i) every process rdelivers m only once, and (ii) only
if m was previously rmulticast by sender(m).

This definition has a problem. It allows runs in which the specification is satisfied with respect to
some process p, and violated with respect to some other process q. Consider the following example
in which no process crashes. View v0 = {p, q} is the initial view of the group and

• process p executes rmulticast(m) and later rdelivers m in view vp = v0,
• process q rdelivers m in view vq = {p, q, r},
• process r never rdelivers m, and {p, q, r} is the last view of r (so, since r does not crash, r

is correct in view {p, q, r}).

In this example, the above specification is satisfied for p (q has rdelivered m), but not for q (r is
correct in view {p, q, r}, q has rdelivered m in view {p, q, r}, but r never rdelivers m).

2.3 Reliable Multicast: second tentative

To avoid the above problem, we add a property that requires message m to be delivered by all
processes in the same view:

R4 Uniform Same View Delivery: If two processes p and q rdeliver m in view vp (for p) and in
vq (for q), then vp = vq and inst(vp) = inst(vq).

Altogether, we define reliable multicast by the following properties: Validity, Uniform Agree-
ment, Uniform Integrity and Same View Delivery.

It is easy to see that our definition of reliable multicast is a generalization of (static) reliable
broadcast. If the system is static, i.e., if the view is always equal to Π, then the Same View
Delivery property is trivially satisfied, and the other properties are identical to those that define
reliable broadcast [7]. So, if the systems is static, reliable multicast is equivalent to (static) reliable
broadcast.

4All the broadcast primitive that we define in this paper are uniform [7]. To simplify the notation, we drop the word
“uniform” from the various broadcast types.

4



2.4 Atomic Multicast

We define atomic multicast by the two primitives amulticast and adeliver, and – similarly to [7]
for static systems – by the properties R1 - R4 that define reliable multicast,5 plus an additional
ordering property. For this last property, we take the definition in [1] – which contrary to the order
property in [7] forbids “holes” in the delivery sequence of messages. However, we must adapt the
definition in [1] since dynamic creation of processes poses a specific problem: we do not want
process p to have to deliver messages delivered before its creation. We express this using views:

A5 Uniform Total Order: If some process (whether correct or faulty) adelivers message m in
view v before it adelivers message m′, then every process p ∈ v, adelivers m′ only after it
has adelivered m.

To illustrate this property consider some process q that has adelivered m in view v, and later m′

in view v′ (possibly v = v′). If p has adelivered m′, and p is in v, then p was created before the
delivery of m, and consequently p must adeliver m. If p is not in v and has adelivered m′, then p
was created after the delivery of m, and does not have to adeliver m.

2.5 Group Membership

To complete the definition of dynamic group communication, we need to specify the events that
change views. In other words we need to specify the group membership problem. We consider the
most simple specification, with only two operations: one to add a process to the group, and one to
remove a process from the group. We call these operations join, respectively leave.

The join and the leave operations are the only means to modify the membership. So, events such
as process crashes, failure suspicions or similar events do not appear in our specification. This
allows a clear separation of concerns between the question of why a process is excluded and the
question of how it is excluded. We only address the second issue.

Process p requests to add process r to the group by invoking the operation join(r). Process r
is included in the view of process q (possibly q = p) when q executes join(r). Similarly, process
p requests to remove r from the group by invoking the operation leave(r) (p can remove itself by
invoking leave(p)). Process r is removed from the view of process q when q executes leave(r).
Process r learns that it has been removed from the group when it executes leave(r).

According to our model (Section 2.1), a process r that executes leave(r) is faulty, since it is not
member of the next view. This makes our specification very simple. A process that has left the
group is similar to a faulty process: if p has left the group, it is no more obliged to deliver messages
and cannot join again the group later.6

We introduce the following notation. The invocation of the operation join (respt. leave) is
denoted by join-inv (respt. leave-inv). The execution of the operation join (respt. leave) is denoted
by join-exec (respt. leave-exec). We want join-exec and leave-exec to be executed in the same
total order by all processes. So we simply define group membership by the properties of atomic
multicast, while renaming join-inv / join-exec and leave-inv / leave-exec:

5In these properties rmulticast must be replaced with amulticast and rdeliver with adeliver.
6However, process p could join again under a different name, similarly to a crashed process, see Section 2.1.

5



• join-inv(x), x ∈ Π, is equivalent to amulticast(add(x)), and join-exec(x) is equivalent to
adeliver(add(x)).

• leave-inv(x), x ∈ Π, is equivalent to amulticast(remove(x)), and leave-exec(x) is equiva-
lent to adeliver(remove(x)).

However, the Uniform Integrity property of atomic multicast needs to be adapted. The reason is
the following. Consider view v = {p, q, r} and processes p, q both invoking leave-inv(r) in view
v. We do not want leave-exec(r) to be executed more than once by each process, as this would
lead to fictitious view changes, e.g., from view v = {p, q} to the view v ′ = {p, q}. Fictitious view
changes may also result from invoking for example leave-inv(r) in a view that does not contain r.
Our specification of GM Uniform Integrity allows only “real” view changes.7 To summarize, we
define group membership by an initialization property (given later) and the following properties:

GR1 GM Validity: Same as the Validity property R1, with the above renaming rules.

GR2 GM Uniform Agreement: Same as the Uniform Agreement property R2, with the above
renaming rules.

GR3 GM Uniform Integrity: ∀p, every correct process q executes join-exec(p) (respt. leave-exec(p))
only once, and only if join-inv(p) (respt. leave-inv(p)) was previously invoked. Moreover, q
executes join-exec(p) (respt. leave-exec(p)) only if p was not already created (respt. if p is
in the current view of q).

GR4 GM Uniform Same View Delivery: Same as the Uniform Same View Delivery property R4,
with the above renaming rules.

GA5 GM Uniform Total Order: Same as the Uniform Total Order property A5, with the above
renaming rules.

Upon occurrence of join-exec(x) at process p in view v, the view of p atomically becomes
v ∪ {x}. Upon occurrence of leave-exec(x) at process p in view v, the view of p atomically
becomes v − {x}. We introduce the notation join-exec()v (respt. leave-exec()v) to denote that
the execution of join (respt. leave) leads to the view v. When process p executes join-exec()v or
leave-exec()v, we say that p installs view v.

The first event of a process is denoted by initv, where v is the initial view of the process. The
initialization property defines the initial view of process p to be either the initial view v0 of the
group, or a view v installed by some other process q:

G0 GM Initialization: For every process p, the first event initv is such that (i) p belongs to view v,
and (ii) either v = v0 or there exists a process q (q 6= p) which installs view v.

7This would not lead to specification problems, but may be disturbing from a user perspective.

6



It should be noted that the ordering property GA5 is actually redundant. Let us denote by op(x),
x ∈ Π, either join-exec(x) or leave-exec(x). GA5 states that if some process, say q, executes
op(x) in view v before it executes op(y), then every process p ∈ v, executes op(y) only after it has
executed op(x). We show that this follows from the other properties.

The proof is by induction on the number mop of membership operations op() performed by q.
The base case is for mop = 2. Assume that q executes op(x) in view v before executing op(y) in
view v′ (so v′ is obtained from v by execution of op(x)). Moreover assume that some process p has
executed op(y). By GR2, p has executed op(y) in view v ′. Since v′ is after v for q, v′ cannot be the
initial view v0. So v is the initial view v0. By hypothesis, we have p ∈ v, so p ∈ v0. By GR3, since
p ∈ v, op(x) cannot be join-exec(p); together with G0, this means that v0 is also the initial view of
p. Since p executes op(y) in view v′ 6= v0, p must have executed a view change operation in view
v0 leading to v′. This operation is necessarily op(x), which completes the proof of the base case.
The induction step can be proven in a similar way.

2.6 Examples

We illustrate the above specifications on two examples. The first example shows a message
amulticast in view v by p and adelivered in a different view. The initial group view v0 is {p, q} and
no process crashes:

• local history of p: init{p,q} – amulticast(m) – join-exec(r){p,q,r} – adeliver(m) – . . .
• local history of q: init{p,q} – join-inv(r) – join-exec(r){p,q,r} – adeliver(m) – . . .
• local history of r: init{p,q,r} – adeliver(m) – . . .

The second example shows a process r that is faulty because of the execution of leave-exec(r).
The initial group view v0 is {p, q, r} and no process crashes:

• local history of p: init{p,q,r} – amulticast(m) – adeliver(m) – leave-exec(r){p,q} – . . .
• local history of q: init{p,q,r} – leave-inv(r) – adeliver(m) – leave-exec(r){p,q} – . . .
• local history of r: init{p,q,r} – adeliver(m) – leave-exec(r){p,q}

This second example shows an interesting feature of our specification. Process r, despite the
fact that it is not correct because of the execution of leave-exec(r), has to execute adeliver(m).
The reason is the following. Process p executes adeliver(m) in view {p, q, r} before it executes
leave-exec(r). By the Uniform Total Order property (Section 2.4), process r in view {p, q, r} can
execute leave-exec(r) only after it has executed adeliver(m).

More generally, any process r that is not correct because of the execution of leave-exec(r) must
execute all operations (i.e., message delivery, join/leave operations) that take place after r joined
the group and before the execution of leave-exec(r).

3 Comparison with current specifications

We compare now the above specifications with those of Chockler et al. [5]. We discuss the
properties in the same order as in [5]: first safety and then liveness properties. Moreover, the
safety properties in [5] start with the properties of group membership, which is usual for current
specifications.

7



3.1 Group membership safety properties

In [5], the safety properties of group membership are split into (1) basic and (2) primary vs.
partitionable properties. There are three basic properties:8

• Property 3.1 (Self Inclusion): If process p installs view v, then p is a member of v.

Our specification is weaker than Self Inclusion.
By our GM Initialization property, the initial view of a process satisfies the Self Inclusion
property. Self Inclusion is also trivially satisfied by all subsequent views installed by some
process p, until p executes leave-exec(p). However, after leave-exec(p) process p is allowed
to install new views to which it does not belong.

• Property 3.2 (Local Monotonicity): If a process p installs view v after installing view v ′, then
the identifier of v′ is greater than that of v.

Local Monotonicity does not apply to our specifications, since we do not attach identifiers
to views (Section 2.1).

• Property 3.3 (Initial View Event): Every send, recv and safe prefix event occurs within
some view.

This property is trivially ensured by our GM Initialization property, which requires initv to
be the first event executed by a process.

There is only one non-basic safety property in [5]:

• Property 3.4 (Primary Component Membership): There is a one to one function f from the
set of views installed in the trace to the natural numbers, such that f satisfies the following
property: for every view v with f(v) > 1 there exists a view v ′, such that f(v) = f(v′) + 1,
and a member p of v that installs v in v ′ (i.e., v is the successor of v′ at process p). This
property implies that for every pair of consecutive views, there is a process that survives
from the first view to the second [5].

Our specification satisfies this property. Consider the first part of Property 3.4, and let f be
defined recursively as follows: (i) f(v0) = 0, (ii) if some process installs view v′ immedi-
ately after view v, then f(v′) = f(v) + 1. By the GM Uniform Total Order property f is
indeed a function.
We show by contradiction that the second part of Property 3.4 also holds. Assume for con-
tradiction that there exists views v and v ′ such that f(v) = f(v′) + 1 and that no process in
v′ installs v. By definition, v is not the initial view v0. By the GM Initialization property,
there exists a process q – different from p – that installs v. Since f(v) = f(v ′) + 1, q installs
v in view v′.

To summarize, our specification of group membership satisfies the relevant safety properties
of [5]. The opposite is not true. For example, the GM Uniform Integrity property does not hold
in [5], where view changes are not required to be “justified”.

8We give only the informal specification of [5]. For additional information, please refer to [5].

8



3.2 Multicast safety properties

In [5], the multicast safety properties are split into (1) basic, (2) sending view delivery and
weaker alternatives, and (3) virtual synchrony properties. There are two basic properties:9

• Property 4.1 (Delivery Integrity): For every recv event there is a preceding send event of
the same message.

This property corresponds to part (ii) of our Uniform Integrity property.

• Property 4.2 (No Duplication): Two different recv events with the same content cannot occur
at the same process.

This corresponds to part (i) of our Uniform Integrity property.

There are two properties in the category sending view delivery and weaker alternatives:

• Property 4.3 (Sending View Delivery): If a process receives message m in view v, and some
process q (possibly p = q) sends m in view v ′, then v = v′.

Our specification does not require Same View Delivery. This property could be added, but
as noticed in [5], Same View Delivery (see below) is the basic property (rather than Sending
View Delivery).

• Property 4.4 (Same View Delivery): If processes p and q both receive message m, they
receive m in the same view.

This property is ensured by our Uniform Same View Delivery property. As mentioned in [5],
Same View Delivery has been introduced to avoid blocking of the application that can happen
with Sending View Delivery.

Three properties are given in the category virtual synchrony:

• Property 4.5 (Virtual Synchrony): If processes p and q install the same view v in the same
previous view v′, then any message received by p in v ′ is also received by q in v′.

Our specification ensures this property. Consider two processes p and q that install view v
in view v′, and message m delivered (rdelivered or adelivered) by p in view v ′. Because of
the Self-Inclusion Property 3.1, since p and q install view v, we have p, q ∈ v. If q ∈ v, then
according to our model, q is correct in view v ′. Since p has delivered m in view v′, by the
Uniform Agreement and the Uniform Same View Delivery properties, q also delivers m in
view v′.

• Property 4.6 (Transitional Set) We skip this complex property, which is not relevant in our
context.

9As in Section 3.1, we give only the informal specification.

9



• Property 4.7 (Agreement on Successors): If a process p installs view v in view v ′, and if some
process q also installs v and q is a member of v ′ then q also installs v in v′. This property is
presented as an alternative to the Transitional Set property.

(a) To show that our specification satisfies this property, consider the function f defined as
above: (i) f(v0) = 0, (ii) if some process installs view v′ immediately after view v, then
f(v′) = f(v) + 1. By the GM Uniform Total Order property f is a function. Moreover,
given two processes p and q and two views vp and vq such that f(vp) = f(vq), the GM
Uniform Total Order property ensures that vp = vq.

(b) Because of the Self-Inclusion Property 3.1, and since p and q install view v, we have
p, q ∈ v. Since q ∈ v′, v is not the initial view of q: let v′′ 6= v′ be the view that q installs
immediately before v. So p installs v′ immediately before v, and q installs v ′′ immediately
before v, i.e., we have f(v′) = f(v)− 1 and f(v′′) = f(v)− 1, and also f(v′) = f(v′′). By
the result of (a), we conclude that v′ = v′′, which means that q installs v′ immediately before
v (or using the terminology of [1], q installs v in v ′).

3.3 Ordering and reliability properties

The ordering and reliability properties in [5] are split into FIFO multicast, causal multicast, and
total order multicast. Since we do not consider FIFO order and causal order, we discuss only the
total order multicast category:

• Property 6.5 (Strong Total Order): There is a timestamp function f such that messages are
received at all processes in an order consistent with f .

• Property 6.7 (Reliable Total Order): There exists a timestamp function f such that if a
process p receives a message m′, and messages m and m′ were sent in the same view, and
f(m) < f(m′), then q receives m before m′.

Reliable Total Order is stronger than Strong Total Order, as it requires processes to deliver a
prefix of the common sequence of messages delivered within each view [5]. Our specification, by
the Uniform Total Order property, ensures Reliable Total Order.

3.4 Liveness properties

The liveness properties of [5] are difficult to compare to our specifications. This is because
events that trigger view changes do not appear in the specification of [5]. For example, our GM
Validity and GM Uniform Agreement properties do not hold in [5]. Even the weaker Non-Uniform
GM Agreement property does not hold.

Concerning message multicast, we can make the following observations. Firstly, [5] does not
ensure our Validity property: a correct process executing amulticast(m) or rmulticast(m) is not
forced to deliver m. Secondly, [5] does not ensure our Uniform Agreement property. It does not
even satisfy the non-uniform version of the same property. Consider some correct process p that
delivers m (in view v): nothing requires another correct process q to deliver m.

10



3.5 Discussion

The comparison has shown that our specification satisfies the safety properties of [5] that are
meaningful in our context. Moreover, our specification has safety and liveness properties that do
not appear in [5].

4 Solving Atomic Multicast with membership changes

We start by describing the solution of atomic multicast, which is simpler to discuss than the
solution of reliable multicast.

4.1 Extending the system model

We complete the system model of Section 2.1. With respect to communication, we assume
reliable channels, defined by the primitives send(m) and receive(m), which have the following
properties: (i) if process q receives message m from p, then p has sent m to q (no creation), (ii) q
receives m from p at most once (no duplication), and (iii) if p sends m to q, and q is correct, then
q eventually receives m (no loss).

We also assume a consensus-oracle that solves consensus. The consensus-oracle is defined
by propose(k, v, val) and decide(k, decision). When process p executes propose(k, v, val), the
parameter k identifies a specific instance of consensus, v (which stands for view) denotes the
set of processes that have to reach agreement, and val is p’s initial value. Given instance k0

of consensus, the consensus oracle ensures the following property. If all processes that execute
propose(k0, v, val) do so with the same parameter v, then all processes in v that do not crash
eventually decide (Termination), the decision is one of the initial values val (Validity), and no two
processes in v decide differently (Uniform Agreement) [4].

4.2 Solution by reduction to consensus

Atomic multicast, with view changes, can be solved by reduction to consensus, much like atomic
broadcast [4]. We explain mainly the differences between the reduction in a static setting and the
reduction in our dynamic setting.

4.2.1 Two parts: Algorithm 1 and Algorithm 2

We decompose the solution in two parts. Algorithm 1 (page 13) transforms calls to join-inv(x),
respt. leave-inv(x), into calls to atomic multicast of add(x), respt. remove(x). Algorithm 2
(page 14) solves atomic multicast in a constant view. In order to express the transformation of Al-
gorithm 1, we introduce the primitive atomulticast(type, m),10 where type can take the values add,
remove or am. A call to amulticast(m) translates to atomulticast(am, m), a call to join-inv(x)
translates to atomulticast(add, x), and a call to leave-inv(x) translates to atomulticast(remove, x)
(see Algorithm 1, Task 1, Task 2 and Task 3).

10The low level primitive atomulticast should not be confused with amulticast.

11



Calls to atomulticast(type, m) atomically multicasts typed messages. These messages are deliv-
ered upon execution of atomdeliver(type, m) (line 1/13).11 Algorithms 2 implements
atomulticast(type, m) and ensures the following additional property: each sequence of events
atomdeliver(add,−), atomdeliver(remove,−) is terminated by the fictitious delivery of a mes-
sage of type processCreation (line 1/17), which triggers the creation of the joining processes.
Here is an example:12

. . . , ad(am, m) , ad(add, r) , ad(remove, p) , ad(processCreation,−) , ad(am, m′) , . . .

In this example, if ad(am, m) takes place in some view v, then ad(am, m′) takes place in the new
view v′ = v ∪ {r} − {p}.

The initialization of a newly created process is done in Algorithm 1 by executing
init1-send(c, v, joiningProcesses) (line 1/20), which sends (over a reliable channel) the new
view v – together with the set c of already created processes and the set of joining processes – to
the joining processes. We use the notation init1-send and init1-receive (line 1/2) to distinguish
them from the standard send and receive primitives used in Algorithm 1.

The initialization in Algorithm 1 satisfies the following property: if not all processes in the inter-
section of the old and the new view crash before sending the new view, then all joining processes
get the new view v′, and start execution. Moreover, if one correct joining process gets the initial
view v′, then by line 1/4 all correct joining processes get the initial view v ′.

4.2.2 Algorithm 2: atomic multicast in a constant view

Algorithm 2 solves atomic multicast in a constant view by reduction to consensus. The algorithm
is close to the static atomic broadcast algorithm in [4] that works as follows. Processes execute a
sequence of consensus numbered 1, 2, . . .. The initial value and the decision of each consensus is a
set of messages. Let adeliverk be the set of messages decided by consensus #k: (1) the messages
in the set adeliverk are delivered before the messages in the set adeliverk+1, and (2) the messages
in the set adeliverk are delivered according to a deterministic function.

The main difference with our dynamic algorithm is that the sequence of consensus is no more ex-
ecuted by a constant set of processes. Consensus #k is executed by the processes that are members
of the group when consensus #k is started. Our dynamic algorithm has four additional differences
that need to be explained:

1. Initialization of the joining processes (lines 2/1 to 2/4, and line 2/20).13

2. Line 2/22, by which p sends the messages received but not yet delivered (i.e., receivedp −
adeliveredp) to the joining processes.

3. The deterministic delivery function, which delivers messages of type am before messages
of type add or remove (line 2/17).

11We use the following notation: line f / l stands for line l in Figure f .
12atomdeliver(type, m) is simply denoted by ad(type, m).
13Note that the initialization of Algorithm 1 and of Algorithm 2 are independent. Each algorithm independently

starts when its initialization part is completed.

12



Algorithm 1 Dynamic group communication: atomic multicast (main code of process p)

1: Initialization:
2: wait until init1-receive(created, view, newProcesses)
3: c← created; v ← view; prevV iew ← ∅
4: init1-send(c, v, newProcesses) to all processes in newProcesses
5: execute initv

6: Once Initialization done:

7: To execute amulticast(m): {Task 1}
8: atomulticast(am,m)

9: To execute join(x): {Task 2}
10: atomulticast(add, x)

11: To execute leave(x): {Task 3}
12: atomulticast(remove, x)

13: upon atomdeliver(type,m) : {Task 4}
14: if type = am then adeliver(m)
15: if (type = add) and (m /∈ c) then join-exec(m) {v becomes v ∪ {m} }
16: if (type = remove) and (m ∈ v) then leave-exec(m) {v becomes v − {m} }
17: if type = processCreation then
18: create-processes(v − prevV iew)
19: c← c ∪ v
20: init1-send(c, v, v − prevV iew) to all processes in (v − prevV iew)
21: prevV iew ← v

13



4. The delivery of the fictitious message of type processCreation (line 2/18), which leads
Algorithm 1 to create processes and to send them the initial view.

Algorithm 2 Atomic multicast (code of process p)

1: Initialization:
2: wait until init2-receive(aSet, i, newProcesses)
3: k ← i; received← ∅; adelivered← aSet
4: init2-send(aSet, i, newProcesses) to all processes in newProcesses

5: Once Initialization done:

6: upon atomulticast(type,m): {Task 1}
7: send(type,m) to all processes in v

8: upon receive(type,m) for the first time : {Task 2}
9: if sender(m) 6= p then send(type,m) to all processes in v

10: received← received ∪ {(type,m)}

11: upon received − adelivered 6= ∅ : {Task 3}
12: k ← k + 1
13: a undelivered← received − adelivered
14: propose(k, v, a undelivered)
15: wait until decide(k, adeliverk)

16: prevV iew ← v
17: atomically atomdeliver all messages in adeliverk in some deterministic order such that messages

of type add or remove are delivered last
18: if atomdelivered messages of type add or remove then atomdeliver(processCreation,−)
19: adelivered← adelivered ∪ adeliverk

20: init2-send(adelivered, k, v − prevV iew) to all processes in (v − prevV iew)
21: if p ∈ v then
22: ∀(type,m) ∈ (received − adelivered) : send(type,m) to all processes in (v − preV iew)

We comment now these four points.

(1): Let us denote by vprev the view preceding a view change, and by vnew the view after the
view change. The initialization allows processes in vnew − vprev to initialize their set adelivered
(messages already delivered) and their counter k (used to identify consensus instances). Line 2/4
is needed in the case all processes in vprev − vnew crash before or during execution of line 2/20: it
ensures that if one newly joining process terminates its initialization, then all joining processes do
so unless they crash.

(2): Line 2/22 is for Validity (if a correct process executes amulticast(m), then it eventually
adelivers m). Consider a process p executing atomulticast(type, m) (line 2/6) in view v. To

14



guarantee that (type, m) is eventually atomdelivered by p, there must exist a view v ′ in which for
all non crashed processes q we have m ∈ receivedq. For this purpose, whenever the view changes,
if p is in the new view, it sends the messages received but not yet delivered to the joining processes
(line 2/22) (if p is not in the new view, p is faulty, i.e., the Validity property is trivially ensured).

(3): In each batch adeliverk, messages of type am are delivered before messages of type add
or remove for the following reason. Let consensus #k be executed by the processes in the current
view v = {p, q}, and let adeliverk = {(add, r), (am, m)} be the decision. Consider the following
two options:

i) delivery of (add, r) followed by the delivery of (am, m);

ii) delivery of (am, m) followed by the delivery of (add, r).

In case (i), the new view v′ = {p, q, r} is first installed, and m is delivered in the new view v ′.
According to the specification, process r must also deliver m, which requires a special mechanism.
In case (ii), m is delivered in view v, and then the new view v ′ is installed. Here r does not have
to deliver m. Delivering messages of type am before messages of type add or remove makes the
solution simpler.

(4): Once all messages of the current batch have been delivered, the joining processes can be
created. This is the goal of the fictitious message of type processCreation (line 2/18).

4.2.3 System initialization

Algorithm 3 System initialization

1: System initialization:
2: v0 ← any subset of Π
3: create-processes(v0 )
4: init1-send(v0, v0, v0) to all processes in v0

5: init2-send(∅, 0, ∅) to all processes in v0

Algorithm 3 is the code to be executed at system initialization. First the initial view v0 is defined
(line 2), then the processes in v0 are created (line 3), and finally these processes are initialized
upon reception of message (v0, v0, v0) – line 2 of Algorithm 1 – and of message (∅, 0, ∅) – line 2
of Algorithm 2.

4.3 Proof of atomic multicast

We prove in this section that Algorithm 1 together with Algorithm 2 satisfy the properties R1 -
R4 and A5 of atomic multicast.

Lemma 4.1

15



Let a undeliveredk
p denote the value of a undeliveredp when p executes propose(k, v,−), adeliveredk

p

the value of adeliveredp when p executes propose(k, v,−), and vk
p the view of p when p executes

propose(k, v,−). For two processes p and q and all k ≥ 1:

1. If adeliveredk
p and adeliveredk

q are both defined, then we have adeliveredk
p = adeliveredk

q .

2. If vk
p and vk

q are both defined, then we have vk
p = vk

q .

3. If a undeliveredk
p is defined, for any message m ∈ a undeliveredk

p, if q is correct and
q ∈ v, then eventually m ∈ receivedq or m ∈ adeliveredq.

4. If p executes propose(k, v,−), then q correct in v eventually executes propose(k, v,−)

5. If, after propose(k, v,−), p adelivers messages in adeliverk
p , then q correct in v eventually

adelivers messages in adeliverk
q , and adeliverk

p = adeliverk
q .14 15

PROOF: The proof is by simultaneous induction on (1), (2), (3), (4) and (5).16

Base step (1): (1) trivially holds, since adelivered1
p = adelivered1

q = ∅.

Base step (2): (2) also trivially holds, since v1
p = v1

q = v0.

Base step (3): We now show that (3) holds for k = 1. If m ∈ a undelivered1
p, since adeliveredp =

∅, p has received m at line 2/8. Since q ∈ v, p has sent m to q at line 2/9. If q is correct, since
channels are reliable, q eventually receives m, and inserts m in receivedq (line 2/10).

Base step (4): We next show that if p executes propose(1, v0,−), then q correct in v eventually
executes propose(1, v0.−). We distinguish two cases: (i) v0 is not the last view of q; (ii) v0 is the
last view of q, in which case q is correct in v0 is equivalent to q is correct. In case (i), by definition
q installs a view after v0. So q necessarily has executed propose(1, v0,−).
Case (ii): When p executes propose(1, v0,−), receivedp must contain some message m. If q
never executes propose(1, v0,−), since adeliveredq is initially empty, receiveq remains empty. A
contradiction with (3). Thus, q eventually executes Task 3 and propose(1, v0,−).

Base step (5): Finally, we show that if p adelivers messages in adelivered1
p, then q correct in v

eventually adelivers messages in adeliver1
q , and adeliver1

p = adeliver1
q . From the algorithm, if

p adelivers messages in adeliver1
p, it previously executed propose(1, v,−). From part (4) of the

lemma, all processes correct in v eventually execute propose(1, v,−). By termination and uniform
integrity of consensus, every process correct in view v eventually executes decide(1, adeliver1)
and then atomdelivers and later adelivers messages in adeliver1. By uniform agreement of con-
sensus, all processes that execute decide(1, adeliver1) do so with the same value adeliver1.

Induction step (1): We assume that the lemma holds for all 1 ≤ k ≤ l − 1. and show that
adeliveredl

p = adeliveredl
q. We consider three cases: (i) v is not the initial view of p nor of q. (ii)

v is the initial view of p only, and (iii) v is the initial view of p and q,
14adeliverk

p is the decision value of p following propose(k, v,−), not to be confused with adeliveredk
p.

15To simply the notation, in Section 4.3 adeliver means adeliver (line 2/14) or join-exec (line 2/15) or leave-exec
(line 2/16).

16The proof of (4) and (5) is adapted from [4].

16



Case (i): By line 2/19, for k > 1 we have adeliveredk
p = adeliveredk−1

p ∪ adeliverk−1
p and

the same for q. By the induction hypothesis of part (1) of this lemma we have adeliveredl−1
p =

adeliveredl−1
q . By the induction hypothesis of part (5) of this lemma we have adeliver l−1

p =
adeliverl−1

q . Together we have that adeliveredl
p = adeliveredl

q.
Case (ii): By line 2/20 there exists some process r for which v is not the initial view, such
that adeliveredl

p = adeliveredl
r. By case (i), we have that adeliveredl

r = adeliveredl
q, and

so adeliveredl
p = adeliveredl

q.
Case (iii): By line 2/20 there exists processes r and s (possibly r = s) for which v is not the initial
view, such that adeliveredl

p = adeliveredl
r and adeliveredl

q = adeliveredl
s. By case (i) we have

adeliveredl
r = adeliveredl

s. Together we have that adeliveredl
p = adeliveredl

q.

Induction step (2): We now show that vl
p = vl

q. By the induction hypothesis of part (2) and (5), we
have (i) vl−1

p = vl−1
q and (ii) adeliverl−1

p = adeliverl−1
q . By (ii), the view changes applied by p to

vl−1
p are the same as the view changes applies by q to v l−1

q . Together with (i), we have vl
p = vl

q.

Induction step (3): We now show that (3) holds for l. For p we consider three cases: (i) a undeliveredl−1
p

not defined, (ii) a undeliveredl−1
p defined and m /∈ a undeliveredl−1

p , and (iii) a undeliveredl−1
p

defined and m ∈ a undeliveredl−1
p .

Case (i): Here view v is the initial view of p. In this case, p has received m in view v, and has sent
m to all processes in v (line 2/9), including to q. Since q is correct, eventually m ∈ receivedq.
Case (ii): Since m /∈ a undeliveredl−1

p , p receives m either in view v, or in the view v ′ that pre-
cedes immediately v. If p has received m in view v, it has sent m to all processes in v, including
to q. Since q is correct, eventually m ∈ receivedq. If p has received m in view v′ and q ∈ v′, by
the same argument, eventually m ∈ receivedq. If p has received m in view v′ and q /∈ v′, then v is
the initial view of q. If m ∈ adeliverl−1

p , then p sends m to q at line 2/20, and since q is correct,
eventually m ∈ adeliveredq. If m /∈ adeliverl−1

p , since m ∈ receivedp, then p sends m to q at
line 2/22, and since q is correct, eventually m ∈ receivedq.
Case (iii): Let v′ be the view that precedes immediately view v. If q ∈ v ′, the result follows imme-
diately from the induction hypothesis. If q /∈ v ′, then v is the initial view of q, and we can apply
the same reasoning as in case (ii):
If m ∈ adeliverl−1

p , then p sends m to q at line 2/20, and since q is correct, eventually m ∈
adeliveredq. If m /∈ adeliverl−1

p , since m ∈ receivedp, then p sends m to q at line 2/22, and since
q is correct, eventually m ∈ receivedq.

Induction step (4): We show that if p executes propose(l, v,−), the q correct in v eventually
executes propose(l, v,−). If v is not the last view of q, then by definition q installs a view after v,
i.e., executes propose(l, v,−). So let us assume that v is the last view of q.

We prove the result by contradiction. Assume that q never executes propose(l, v,−). When
p executes propose(l, v,−), receivedp must contain some message m that is not in adeliveredp.
Thus m is not in adeliveredl

p. From part (1) of this lemma, adeliveredl
p = adeliveredl

q. So m is
not in adeliveredl

q.
Since q never executes propose(l, v,−) and m /∈ adeliveredl

q, then m /∈ adeliveredq. By part
(3) of this lemma, since a undeliveredl

p is defined, m ∈ a undeliveredl
p and q correct in v,

eventually m ∈ receivedq in view v. Since m /∈ adeliveredl
q, there is a time after which the

condition received− adeliveredp 6= ∅ that triggers Task 3 (line 2/11) becomes true in view v. So

17



q eventually executes Task 3 and propose(l, v,−). A contradiction.

Induction step (5): We now show that if p adelivers messages in adeliver l
p, then q adelivers mes-

sages in adeliverl
q and adeliverl

p = adeliverl
q. Since p adelivers messages in adeliverl

p, it must
have executed propose(l, v,−). By part (4) of this lemma, all processes correct in v eventually ex-
ecute propose(l, v,−). If v is not the last view of q, then by definition q eventually installs a view
after v, i.e., executes decide(l,−). If v is the last view of q, then q is correct in v is equivalent to q
is correct. By termination of consensus, q eventually executes decide(l.−) and adelivers messages
in adeliverl

q. By uniform agreement of consensus, all processes that execute decide(l, adeliver l)
do so with the same adeliverl. So adeliverl

p = adeliverl
q. 2

Lemma 4.2 The Uniform Agreement property of atomic multicast is satisfied.

PROOF: We prove that if process p adelivers message m in view v, then all processes that are
correct in v eventually adeliver m. So assume that p adelivers m in view v. By line 2/17 (messages
of type am are adelivered before messages of type add or remove), no message is adelivered by
any process in view v before the first execution of propose(k, view,−) where view = v. So, if p
adelivers m in view v, this happens after p has executed propose(k, v,−). By Lemma 4.1 part (5),
q eventually adelivers m. 2

Lemma 4.3 The Uniform Total Order property of atomic multicast is satisfied.

PROOF: Immediate from Lemma 4.1 part (5), and the fact that processes adeliver messages in each
batch in the same deterministic order. 2

Lemma 4.4 The Validity property of atomic multicast is satisfied.

PROOF:17 We have to prove that if a correct process executes amulticast(m), then it eventually
adelivers m. The proof is by contradiction. Suppose a correct process p amulticasts m in view vi0 ,
but never adelivers m. By Lemma 4.2 no process ever adelivers m.

At line 2/7 or 2/9, p sends m to all processes in view vi0 . Let vi0 , vi1 , vi2 , . . ., vilast
, be the

sequence of views of p after it has amulticast m. The sequence is finite, since the set Π is finite
(Sect. 2.1), and a process can be added and removed from the view at most once. Since m is
never adelivered by p, for all the views vij , i0 ≤ ij ≤ ilast, message m is never in the decision
adeliverk of any consensus. By line 2/20, process p sends m to all processes in vi1 − vi0 , vi2 − vi1 ,
. . ., vilast

− vilast−1
. So p sends m to all processes in vilast

, and every correct process q in vilast

eventually receives m and inserts it in receivedq. Since processes never adeliver m, they never
insert m in adelivered. Thus for every correct process q in vilast

, there is a time after which m is
permanently in receivedq − adeliveredq. From Algorithm 2 and Lemma 4.1 part (4), there is a k1

such that for all l ≥ k1, all correct processes in vilast
execute propose(l, vilast

), and they do so with
sets that always include m.

17Adapted from [4].

18



Since all faulty processes eventually crash, there is a k2 such that no faulty process executes
propose(l, vilast

,−) with l ≥ k2. Let k = max(k1, k2). Since all correct processes in view
vilast

execute propose(k, vilast
,−), by termination and uniform agreement of consensus, all correct

processes in vilast
execute decide(k, adeliverk) with the same adeliverk. By uniform validity of

consensus, some process q has executed propose(k, vilast
, adeliverk). From our definition of k,

adeliverk contains m. Thus all correct processes in vilast
, including p, adeliver m. A contradiction

that concludes the proof. 2

Lemma 4.5 The Uniform Integrity property of atomic multicast is satisfied.

PROOF: Same argument as in the proof in [4].

Lemma 4.6 The Uniform Same View Delivery property of atomic multicast is satisfied.

PROOF: We have to prove that if two correct process p and q adeliver m in view vp (for p) and in
vq (for q), then vp = vq. The result follows immediately from Lemma 4.1 part (5), which holds
for messages of type am, as well as for messages of type add and remove, and from the fact that
processes adeliver messages in each batch in the same deterministic order (line 2/17). 2

Theorem 4.7 Algorithm 1 and Algorithm 2 solve atomic multicast.

PROOF: Follows directly from Lemma 4.2 to Lemma 4.6 2

4.4 Proof of group membership

The proof of the group membership properties GR1 - GR4 (and GA5) are straightforward. Prop-
erties GR1, GR2, GR4 (and GA5) follow immediately from the corresponding properties R1, R2,
R4 (and A5) of atomic broadcast. The first part of GR3 – ∀p, every correct process q executes
join-exec(p) (respt. leave-exec(p)) only once, and only if join-inv(p) (respt. leave-inv(p)) was
previously invoked – follows from R4. The second part of GR4 – q executes join-exec(p) (respt.
leave-exec(p)) only if p was not already created (respt. p is in the current view of q) – follows from
line 15 (respt. line 16) of Algorithm 1.

5 Solving Reliable Multicast with membership changes

In this section we discuss the solution of reliable multicast. The system model is as above (see
Section 4.1).

5.1 Reliable Multicast with membership changes: brute force solution

A trivial solution is obtained by using atomic multicast to solve reliable multicast:

• upon rmulticast(m), execute amulticast(m)

19



• upon adeliver(m), execute rdeliver(m)

This solution has a drawback. The consensus oracle is used in every run, although it is obviously
not needed in runs in which join-inv and leave-inv are not invoked. We would like a solution that
satisfies the following thriftiness properties (adapted from [1]):

• If join-inv and leave-inv are not invoked, then the consensus oracle is never used.

• If there is a time after which join-inv and leave-inv are no more invoked, then there is a time
after which the consensus oracle is no more used.

A reliable multicast solution that satisfies these two properties is said to be thrifty with respect to
the consensus oracle. Such a solution can be obtained by using generic multicast instead of atomic
multicast.

5.2 Static Generic Broadcast vs. Dynamic Generic Multicast

Static generic broadcast is a flexible group communications primitive [8, 1, 9] defined by
gbroadcast, gdeliver and parametrized by a (symmetric and non-reflexive) conflict relation (de-
noted by ∼) on the set of messages: conflicting messages are delivered in the same order on all
processes, while non-conflicting messages may be delivered in any order. Intuitively, our conflict
relation would be the following: view change messages (of type add or remove) conflict with all
other messages, while reliable multicast messages (of type rm) do not conflict with other reliable
multicast messages. So reliable multicast messages would be ordered with respect to view change
messages, but not with respect to other reliable multicast messages.

Formally, (static) generic broadcast is defined by the properties that define (static) reliable broad-
cast (Validity, Uniform Agreement, Uniform Integrity) and the following Uniform Generalized
Order property:

• Uniform Generalized Order: If messages m and m′ conflict, and some process (whether
correct or faulty) gdelivers messages m before message m′, then a process gdelivers m′ only
after it has gdelivered m.

We define (dynamic) generic multicast in a similar way. The primitives gmulticast and gdeliver
are defined by the properties R1 - R4 of reliable multicast together with the above Uniform Gen-
eralized Order property.

5.3 Thrifty solution

Thriftiness with respect to an oracle has been introduced in [1] as an implementation of generic
broadcast that satisfies the following two properties:

• If all the messages that are broadcast do not conflict with each other, then the oracle is never
used.

• If there is a time after which the messages broadcast do not conflict with each other, then
there is a time after which the oracle is not used.

20



A thrifty generic broadcast solution allows us easily to get a thrifty reliable multicast solution.
Algorithm 4 (page 22) gives the main code of process p. Compared to Algorithm 1, a new message
type rm (for reliable multicast) has been added, calls to atomulticast(type, m) have been replaced
by calls to gmulticast(type, m) (lines 4/8, 4/10, 4/12), and the conflict relation is the following:

• Messages of type rm do not conflict with themselves. By Algorithm 4, line 8, rmulticast(m)
and rmulticast(m′) lead to gmulticast(rm, m) and gmulticast(rm, m′). So messages m and
m′ and not ordered by the generic multicast algorithm.

• Messages of type add conflict with all other messages, and messages of type remove conflict
with all other messages. By Algorithm 4, lines 10 and 12, join-inv(x) respt. leave-inv(x),
lead to gmulticast(add, x) respt. gmulticast(remove, x). So, view change messages are
ordered (1) with respect to other view change messages, and (2) also with respect to reliable
multicast messages. (1) is required by the GM Uniform Total Order property GA5, while (2)
is required by the Uniform Same View Delivery property R4.

A thrifty generic multicast algorithm can be obtained by adapting one of the generic broadcast
algorithms of [1] that are thrifty with respect to the atomic broadcast oracle. Calls to the atomic
broadcast oracle would result in calling our atomic multicast algorithm (Algorithm 2), which in
turn would invoke the consensus oracle. We do not discuss this issue further, as it would lead us to
discuss mainly details related to generic broadcast, which is outside the scope of this paper.

6 Conclusion

The paper has brought a new insight to the specification of dynamic reliable broadcast – called
reliable multicast – and dynamic atomic broadcast – called atomic multicast. The specifications
that we have given in this paper are simple and close the those of static group communication. This
shows that the gap between static and dynamic group communication can be made very small.

The paper has also given a new perspective on the implementation of dynamic group commu-
nication. While group membership has always been considered to be the basic layer of a group
communication infrastructure, the paper proposes a different – and probably simpler – solution,
in which atomic multicast is the basic layer – on top of which group membership can easily be
solved.

To summarize, the paper has shown that the specification and the implementation of dynamic
group communication can be simple, i.e., easily understood. This should contribute to clarify a
topic that has always been difficult to understand by outsiders.

Acknowledgements

I would like to thank Sergio Mena for his useful comments on an earlier version of this paper.

References

[1] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg. Thrifty generic broadcast.
In Proceedings of the 14th International Symposium on Distributed Computing (DISC’2000),
October 2000.

21



Algorithm 4 Dynamic group communication: reliable multicast (main code of process p)

1: Initialization:
2: wait until init1-receive(created, view, newProcesses)
3: c← created; v ← view; prevV iew ← ∅
4: init1-send(c, v, newProcesses) to all processes in newProcesses
5: execute initv

6: Once Initialization done:

7: To execute rmulticast(m): {Task 1}
8: gmulticast(rm,m)

9: To execute join(x): {Task 2}
10: gmulticast(add, x)

11: To execute leave(x): {Task 3}
12: gmulticast(remove, x)

13: upon gdeliver(type,m) : {Task 4}
14: if type = rm then rdeliver(m)
15: if (type = add) and (m /∈ c) then join-exec(m) {v becomes v ∪ {m} }
16: if (type = remove) and (m ∈ v) then leave-exec(m) {v becomes v − {m} }
17: if type = processCreation then
18: create-processes(v − prevV iew)
19: c← c ∪ v
20: init1-send(c, v, v − prevV iew) to all processes in (v − prevV iew)
21: prevV iew ← v

22



[2] E. Anceaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal specification of group
membership services. Technical Report 95-1534, Department of Computer Science, Cornell
University, August 1995.

[3] K. Birman and T. Joseph. Reliable Communication in the Presence of Failures. ACM Trans.
on Computer Systems, 5(1):47–76, February 1987.

[4] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed systems.
Journal of ACM, 43(2):225–267, 1996.

[5] G.V. Chockler, I. Keidar, and R. Vitenberg. Group Communication Specifications: A Com-
prehensive Study. Computing Surveys, 4(33):1–43, December 2001.

[6] Flaviu Cristian. Reaching Agreement on Processor Group Membership in Synchronous Dis-
tributed Systems. Distributed Computing, 4(4):175–187, April 1991.

[7] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. Technical
Report 94-1425, Department of Computer Science, Cornell University, May 1994.

[8] F. Pedone and A. Schiper. Generic Broadcast. In 13th. Intl. Symposium on Distributed
Computing (DISC’99), pages 94–108. Springer Verlag, LNCS 1693, September 1999.

[9] F. Pedone and A. Schiper. Handling Message Semanticas with Generic Broadcast Protocols.
Distributed Computing, 15(2):97–107, April 2002.

[10] A. M. Ricciardi and K. P. Birman. Using Process Groups to Implement Failure Detection
in Asynchronous Environments. In Proc. of the 10th ACM Symposium on Principles of Dis-
tributed Computing, pages 341–352, August 1991.

[11] A. Schiper and A. Sandoz. Uniform Reliable Multicast in a Virtually Synchronous Environ-
ment. In IEEE 13th Intl. Conf. Distributed Computing Systems, pages 561–568, May 1993.

Glossary

Summary of the definitions used in the paper:

• View: A view v is a subset of the (finite) set Π of processes.

• Instance of a view: inst(v) denotes the instance number of view v.

• Process p is in view v: While the membership of p is (v, inst(v)), we say that p is in view
(v, inst(v)), or simply that p is in view v.

• View v′ is after view v for p: Process p is in view v and later in view v ′.

23



• Last view of p: View v is the last view of v if there is no view after v for p.

• Process p is correct in view v: Either (a) v is the last view of all processes in v and p never
crashes, or (b) there is a view v′ that is immediately after v for some process in v and p ∈ v ′.

• Process p is correct: If and only if p is correct with respect to all its views.

• Process p installs view v: We say that p installs view v when p executes join-execv or
leave-execv.

24


