
FRANC: A Lightweight Java Framework for Wireless Multihop
Communication∗

David Cavin Yoav Sasson André Schiper
{yoav.sasson,david.cavin,andre.schiper}@epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL)
1015 Lausanne, Switzerland

Technical Report IC/2003/22

Abstract

Simulation and emulation are popular means for evaluating wireless Mobile Ad hoc Networks (MANETs) pro-
tocols. Since MANETs are highly dependant on their physical environment, these techniques offer only a partial
understanding of factors that may influence performance. Deploying real-life MANETs is therefore an indispensable
complementary step for the advancement of MANETs. This paper presents FRANC1, a dedicated extensible Java
framework for the development, deployment and evaluation of applications and algorithms for wireless mobile ad hoc
networks.

1 Introduction

Mobile ad hoc networks (MANETs) are self-organizing mobile wireless networks that do not rely on a preexisting
infrastructure to communicate. Nodes of such networks have limited transmission range, and packets may need to
traverse multiple nodes before reaching their destination. Research in MANETs was initiated 30 years ago by DARPA
for packet radio projects [1], but has regained popularity nowadays due to the widespread availability of portable
wireless devices such as cell phones, PDAs and WiFi / Bluetooth enabled laptops.

The design, development, deployment and analysis of algorithms and applications for MANETs are complex
tasks. Despite the considerable amount of research devoted to the MAC and routing levels, very little effort has been
dedicated to the engineering of applications. Indeed, current MANET evaluation tools such as simulators, emulators
and testbeds are mainly concerned with the lower layer of the communications stack. Real-life implementation of
applications is a necessary step to fully comprehend their behavior in the complex environment of MANETs.

Software development frameworks facilitate the development of a specific category of applications by offering a
context, supporting a design architecture and providing a set of tools that are likely to be used. Examples of recurrent
primitives used by MANET applications and algorithms are neighbor discovery and multihop routing. A dedicated
MANET application development framework would therefore not only reduce development time but would further
offer a more structured implementation facilitating program verification and statistics collection.

Desired requirements for a MANET development framework are for it to run on heterogeneous devices (type,
OS), offer easy configuration, statistics gathering mechanism for performance evaluation, simplicity, modularity and
extensibility. The framework must also be lightweight in the sense that it has to be adapted to the limited computing,
energy and bandwidth resources of devices composing MANETs.

∗The work presented in this paper was supported by the National Competence Center in Research on Mobile Information and Communication
Systems (NCCR-MICS), a center supported by the Swiss National Science Foundation under grant 5005-67322.

1FRamework for Ad hoc Network Communication

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902691?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
{yoav.sasson,david.cavin,andre.schiper}@epfl.ch


Although there exists numerous application development frameworks for wired networks, very little has been done
for MANETs. In this paper we presentFRANC, the first modular and configurable framework for the development
and evaluation of Java wireless multihop applications, meeting the aforementioned requirements.

The remainder of the paper is organized as follows. The next section presents the most important features of
FRANC. In Section3 we present the different applications and algorithms that have been developed with FRANC.
Section4 provides an overview of the various tools for the evaluation of MANET protocols as well as an overview of
distributed application development frameworks in general. We finally conclude and describe future work in Section5.

2 Feature Tour

2.1 Requirements

The initial motivations for the framework were to complement simulations for evaluating mobile ad-hoc algorithms
with a set of recurrent building blocks. MoreoverFRANChas been developed with the concern of meeting several
requirements specific to mobile Ad-hoc networks. Firstly,FRANCmust run on heterogeneous devices with various
computing, energy and bandwidth resources and operating systems. The framework must also provide a mean to
emulate seamlessly a multihop wireless communication for the needs of a small scale demonstration. It must be easily
extensible with new protocols, middleware algorithms (eg. distributed algorithms) and higher-level applications. The
configuration of the protocol stack and the setting up of all parameters must be easy to express.

2.2 Architecture

FRANCis composed of three different types of objects : the protocol stack, the services repository and the message
pool (Figure1).

Communication

Statistics

Routing

Dispatcher

Application

Java virtual machine

Operating system

Chat

Flooding
AODV

UDP
IP multicast

Neighboring

Statistics

S
ervices

msg

msg

msg

msg

msg

M
essage pool

Wireless medium

Virtual networks

M
ul

tih
op


co

m
m

un
ic

at
io

n
Lo

ca
l

co
m

m
un

ic
at

io
n

Figure 1: General Architecture

2.2.1 The protocol stack

It is dynamically built at startup according to the layers’ description read from an XML configuration file. We have
currently implemented and successfully tested six layers. At the bottom, thecommunication layerrelies on UDP/IP
multicast and provides a mean for the layer above to send a broadcast message within the node’s transmission range.
Above there is thevirtual network layer that emulates a multihop environment by filtering and discarding received
messages (cf. Section2.3). This feature allows to create a multihop topology even if nodes can actually physically (at
the MAC layer) exchange messages. The next layer can collect various kind of statistics such as the amount of bytes
or the number of messages transmitted or received. It regularly publishes the statistics collected to theStatistic service
(cf. Section2.2.2). Then above this layer, we have implemented two routing algorithms, aprobabilistic flooding
algorithm [2] and theAd-hoc On Demand Distance Vector(AODV) [3]. From this point in the protocol stack the

2



communication becomes multihop. Then there is theDispatcher that connect theservicesto the protocol stack.
It is described in more details in Section2.2.2. Finally, on the top of the stack, we have implemented two demo
applications: aChat and a token based topology discovery algorithm (cf. Section3). Both illustrate most of the
features developed in the framework.

All layers must conform to an interface calledAsynchronousLayer that exports, in particular, asend and an asyn-
chronousreceive method (cf. Figure2). This means that the message passing mechanism between layers supposes a
shared data structure (a buffer) to forward up the message asynchronously in the protocol stack. On the contrary, the
send method is synchronous in the sense that when it returns the message is actually sent.

Asynchronous
layer

Asynchronous
layer

Thread

Thread

receive

receive

buffer

buffer

send

send

Figure 2: Asynchronous Delivery

EachAsynchronousLayer contains a thread and a buffer. The thread executes an infinitewhile loop (cf. Algo-
rithm 1) that tries to read any incoming message from the buffer located in the layer below. Each time a new message
is received, the layer checks, according to the type of the message, if it has to handle it. If not, the message is stored
in the buffer that will be consumed by the above layer’s thread. A newly received message thus traverses the protocol
stack until it reaches a layer that handles it.

Algorithm 1 : Asynchronous layers’ pseudo-code
1: AsynchronousLayer(lowerLayer)
2: void initialize() . . .
3: // Thread infinite loop
4: while truedo
5: Msg m = lowerLayer.buffer.read();
6: switch (m.type)
7: case myMSG:
8: handle(m);
9: default :

10: buffer.add(m);
11: end switch
12: end while

2.2.2 The services repository

The protocol stack presented in the previous section respects a strict hierarchical interaction which means that each
layer has only a reference to the layer that is just below. But in some cases, several layers may need a same information
(eg. neighbors) that could be maintained besides the stack and kept available for all layers interested in. These general
purpose informations are calledservicesand can be accessed through theDispatcherlayer. TheDispatcheracts as a
message router and a service repository that takes messages out of the stack and forwards them to a particular service.
Practically, whenever a layer needs an information hold by a service it asks theDispatcherfor a reference to the
service. We have currently implemented twoservices: the neighboring service and the statistic service. The first
one, by broadcasting regularly hello packets, maintains the actual list of surrounding nodes. The second one stores the

3



Dispatcher

Neighboring

Statistics

msg ID = 4
msg ID = 17

Asychronous layers

Application

send

Query

Response

Services

Figure 3: The Dispatcher Layer

statistics collected by the statistics layer. This latter service provides hints about the network state and can be exploited
to adapt a routing policy, for example.

2.2.3 The message pool

With Java, and especially with small virtual machines, the creation and the destruction (ie. garbage collection) of
objects is costly in terms of time and resources. We have thus implemented a centralized shared object that exports
all operations related to message handling and stores the different message factories and types. A locking mechanism
also allows to reuse existing references to old messages safely preventing the simultaneous access to a same reference
until the message is explicitly freed.

2.3 Virtual Networks

It can be rather tedious to demonstrate the correct execution of a multihop wireless application in a real environment
(typically a room) because the transmission ranges are often greater than several tenth or hundreds of meters. We have
thus implemented inFRANCa filtering layer that can emulate a virtual multihop environment. At startup, each node is
configured to belong to one or severalvirtual networksand can thus only receive messages sent from the samevirtual
networks. The feature allows to demonstrate, at small scale, the execution of a multihop application. Figure4 shows
an example of three virtual networks (A, B and C). It is important to notice that the emulated multihop environment
is implemented at the application level and does not affect the MAC layer. More precisely, this mechanism does not
prevent messages sent by logically out of range nodes (ie. belonging to differentvirtual networks) to collide.

A
B

C

Figure 4: Virtual Networks

2.4 Serialization

The serialization of Java messages is an important issue with respect to performance and bandwidth usage. In order
to prevent the systematic use of the costly standard Java object serialization,FRANC leaves the responsibility of
serialization to developers that implement their own message types. Each message object that is sent through the
network, must implement asetByte(byte datas[]) and abyte[] getBytes() method. The developer decides

4



what information in the message have to be serialized for a particular message type. It is not necessary to transmit
everything (some fields are useless at the other side or can be deducted). Moreover,FRANCprovides several optimized
serialization methods that can transform all Java primitive types into bytes. This feature encourages the developers
to encode complex data structures using simple Java types (eg. int, String, float, double, etc.) and thus reduces the
amount of bytes transmitted over the network.

socket

byte[] getBytes();

MyMessage

100110+MSG_ID 100110+MSG_ID

Config file

MyMessage -> MSG_ID

+

setBytes(byte data[]);

MyMessage

+=

=
Config file

MSG_ID -> MyMessage

Figure 5:FRANCSerialization

Figure5 depicts the serialization mechanism ofFRANC. When a message is ready to be sent, the communication
layer generates a header, with the help of the configuration file (cf. Section2.6), that contains in particular the message
ID (an integer that maps to a given message class), the source and destination nodes and a sequence number (unique
for a given node). The header is then concatenated with the bytes returned by thegetBytes() method of the message.
At the other end, when the message is received, the destination node first reads and decode the headers. According
to the message ID, and again with the help of the configuration file, it constructs the corresponding message (initially
empty). Then the communication layer calls the newly allocated message’s methodsetBytes with the remaining
bytes.

This lightweight serialization procedure has several advantages. First, it gives to the developers more control over
the binary representation of messages without adding more complexity. It is also more flexible because it allows two
nodes to have different implementations of a same message by mapping different class names to the same message ID.

2.5 Statistics Gathering

Statistics gathering has two proposes. First, the dynamic collection of basic network metrics at runtime, can be used as
hints for other layers (eg. routing algorithms or services). This is achieved with the help of thestatistics servicewhich
can be accessed asynchronously by different layers. Secondly, more complex statistics can be gathered (or logged) for
evaluating the performances of the framework itself or of the wireless medium (eg. throughput, latency, RTT)

2.6 Startup and Configuration

The startup procedure ofFRANCgoes through four different phases. First, the XML configuration file, given as a
parameter, is parsed again the frameworkDocument Type Definition(DTD). The DTD is a kind of grammar (rules)
that defines constraints for XML document (tag names, order, etc.). The parsing step is made by Java, which rejects
configurations that do not match any of the rules stated in the DTD. An sample XML configuration file is presented
in Figure 6. The configuration file is made of two different sections. The first section, calledglobal defines all
the parameters necessary to start the framework. More precisely, the layers and services class names and exported
parameters, the message types, IDs and the corresponding factories. The second section is optional and defines one or
several sub-configurations that inherit all global parameters except those locally overridden. The example presented in
Figure6 launches a "faulty" node by replacing the global communication layer by a faulty communication layer, that
loses or corrupts messages, for example. This mechanism is very convenient because it is possible to start different
types of nodes (eg. faulty or router nodes) without having to change the XML configuration file.

After the parsing step, the second step of the startup procedure is the creation of all the layers and services. The
layers are connected according to the order specified in the configuration file. Then theinitialize method of each
layer is invoked with the parameters given (for each layer) in the XML file. The last step is the invocation of the
startup method from the lowest layer to the highest which actually starts the framework.

5



<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE request PUBLIC
"-//DTD MANET Configuration 1.0//EN" "FrameworkConfig.dtd">

<global>
<layers>

<layer class="communicationslayers.AsynMulticast">
<param name="port" value="20177"/>

</layer>
.
<!-- Additional layers description -->
.

</layers>
</global>
<subconfiguration name="faulty">
<layers>

<layer class="communicationslayers.FAULTY_AsynMulticast">
<param name="port" value="20177"/>

</layer>
</layers>

</subconfiguration>

Figure 6: XML sample file

3 Applications

This section presents two applications and a broadcast algorithm that have been developed with FRANC.

3.1 Chat

A multihop chat application similar to the wide-spread instant messaging programs is the first application developed
using FRANC. It serves well as an illustration of a multihop application as well as for debugging purposes. Figure7
presents a screenshot of the chat application in action. Besides the chat itself (bottom window) are windows displaying
the framework’s configuration and status information, neighboring nodes and message statistics.

3.2 Distributed Token Passing

Tokens travelling from node to node, harvesting, disseminating and sharing information, gradually converging toward
a desired goal is a promising communication means and policy enforcement technique adapted to the high dynamics
of MANETs.

We have implemented theLRandLF distributed token passing algorithms defined in [4]. In LR, the next recipient
of the token is chosen among the neighboring nodes based on howrecentlythe nodes have had the token. ForLF, the
decision is taken based on howfrequentlythe nodes have had the token.

The two token passing algorithms have been implemented as a service (cf. Section2.2.2), since they may poten-
tially be used by more than one layer in the stack. Indeed, token passing may be used by the routing layer for route
discovery and message routing, while applications may exploit tokens to disseminate and gather various information.

3.3 Reliable Broadcast

The basic communication primitive of the framework is an unreliable one-hop UDP broadcast. Coupled with the fact
that the 802.11b MAC in DCF mode does not enforce RTS/CTS/ACK, a significant number of packets may be lost
due to packet collisions. We have implemented a first solution to the problem by developping areliableLayer layer
requiring an ACK to be sent by all neighbors of a one-hop broadcast. By placingreliableLayer directly above the
Virtual Networks layer (cf. Fig.1), reliability of all overlying layers (routing in particular) will automatically see their
reliability enhanced. The reason for not placingreliableLayer beneath the Virtual Networks layer is because we do
not not want nodes to acknowledge for messages from other virtual networks. ThereliableLayer may be activated
or deactivated through FRANC’s XML configuration file (cf. Section2.6).

6



Figure 7: Multihop Chat Application

4 Related Work

In this section we present the most popular tools used for the evaluation of MANET protocols as well as distributed
application development frameworks in general.

4.1 Simulators and Emulator Testbeds

NS-2 is currently the most popular simulator within the MANET community, but suffers from poor scalability with
respect to the number of nodes simulated. GloMoSim [5] is also a widespread MANET simulator, appreciated for its
scalability by using Parsec’s [6] parallel processing capabilities. Its development however has somewhat slowed down
in favor of its Qualnet [7] commercial counterpart. Finally, OPNET Modeler [8] is a commercial simulator for which
third-party MANET routing protocols [9, 10] are available.

Simulation in itself does not suffice for evaluating MANET protocols. Useful for initial study of protocols,
MANET simulators are bound to make numerous assumptions due to the complexity of ad hoc networks resulting
in inaccurate physical layer and environment models. Furthermore, different simulators often provide contradictory
performance results for the same protocols [11].

Emulation offers more precise results than simulation since protocols are run over a live network. The most mature
emulator for MANETs is the APE testbed [12]. APE comes as a small Linux distribution with integrated MANET
routing protocols and performance analysis tools. APE has been tested to scale up to 30 nodes. Among other emulators
are JEmu [13], EWANT [14] and EMWIN [15].

Emulating all aspects of MANET is however a more daunting effort than for wired networks, as issues such as
mobility and network topology render experiments difficult and costly to reproduce.

Current MANET simulators and emulator testbeds concentrate on the lower layers of the communcation stack.
Currently there is no environment for the development, deployment and evaluation of application-layer distributed al-
gorithms and applications for MANETs. The goal of FRANC is to offer such a tool by concentrating on the application
level.

4.2 Frameworks for Wired Networks

There exists many frameworks for the development of distributed applications within traditional wired networks. They
all concentrate on implementation flexibility, but differ in their approach for application decomposition and interaction

7



between the components. Among the frameworks similar in their intentions to FRANC are Appia [16], Cactus [17, 18]
and Neko [19].

Appia [16] is a layered communication framework implemented in Java. Appia’s architecture appears as a stack of
layers communicating through events that may carry information or messages. An interesting characteristic of Appia
is its single-threaded approach: events within the stack are all processed by one single execution thread.

In Cactus [17, 18], applications are decomposed into protocols (may be seen as modules) structured hierarchically
in a stack. Protocols themselves may be composed of micro-protocols, which offer yet a finer grain decomposition
of the tasks. Interaction between protocols are message-based, whereas interaction between the micro-protocols of a
protocol are event-based. By default, Cactus adopts a thread-per-message approach. Java, C and C++ implementations
of Cactus are available.

Neko [19] is a Java based framework offering a uniform environment for the development and performance evalu-
ation of distributed algorithms. Applications in Neko are built as a hierarchy of layers. Layers communicate through
message passing, with a thread-per-layer approach. The main characteristic of Neko is its ability to use the same
algorithm implementation for simulation as well as execution within a real network.

FRANC on the other hand is a much smaller and lightweight framework specifically geared at wireless devices.
The architecture of FRANC, described in Section2.2, addresses the limitations of such devices and offers implemen-
tations of layers that provide tools for multihop wireless communication.

5 Summary and Future Work

In this paper we present FRANC, an extensible Java framework for the development, deployment and evaluation of
applications and algorithms for wireless mobile ad hoc networks. Among the benefits of such a framework is acceler-
ated MANET application development and facilitated algorithm verification and performance analysis. FRANC in its
current state is fully functional and has been extensively tested. We are actively pursuing the development of FRANC.
Development efforts are carried on two fronts, enhancing the framework itself as well as implementing MANET
protocols and algorithms with help of the framework.

Regarding framework itself, we are currently working on a GUI that abstracts the complexity of editing directly
the XML configuration files, as well as a set of tools to extract and analyze various performance metrics related to
the framework. We would like to offer at a later stage simulation capabilities to FRANC. Simulation may be used
as a first assessment of performance and reduces the difficulty of conducting numerous experiments comprising of a
large number of mobile nodes. By implementing a wireless MAC layer such as 802.11b as well as simulated mobility
patterns, it will be possible to evaluate thesameimplementation of algorithms simulated and real-life settings.

In terms of algorithms and applications, we are investigating several flavors of broadcast primitives offering dif-
ferent levels of quality of service. We may also consider evaluating typical P2P applications relevant in the context of
MANETs.

We intend on making the source code of FRANC as well as its documentation available for download. Given
sufficient interest, we will set up an open-source project around it.

Acknowledgments

We would like to thank Javier Bonny and Urs Hunkeler for their contribution to the implementation of the framework,
as well as Bertrand Grandgeorge and Reto Krummenacher for the development of modules and protocols.

References
[1] J. Jubin and J. D. Tornow, “The DARPA packet radio network protocol,” vol. 75, no. 1, pp. 21–32, Jan. 1987.

[2] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for flooding in wireless mobile ad hoc networks,” inProceedings
of IEEE Wireless Communications and Networking Conference (WCNC 2003), New Orleans, LA, Mar. 2003.

[3] C. E. Perkins, E. M. Royer, and S. R. Das, “Ad hoc On-Demand Distance Vector (AODV) Routing, Internet Draft (draft-ietf-
manet-aodv-09.txt),” Nov. 2001, work in Progress.

[4] N. Malpani, N. Vaidya, and J. L. Welch, “Distributed token circulation in mobile ad hoc networks,” inProceedings of the 9th
International Conference on Network Protocols (ICNP), Nov. 2001.

8



[5] X. Zeng, R. Bagrodia, and M. Gerla, “GloMoSim: a library for parallel simulation of large-scale wireless networks,” inThe
12th Workshop on Parallel and Distributed Simulations (PADS’98), Banff, Alberta, Canada, May 1998.

[6] R. A. Meyer,PARSEC User Manual, UCLA Parralel Computing Laboratory, http://pcl.cs.ucla.edu.

[7] QualNet, http://www.scalable-networks.com/products/QualNet.

[8] OPNET Modeler, http://www.opnet.com/products/modeler/home.html.

[9] “NIST ad hoc on-demand distance vector (AODV) routing protocol OPNET model,”
http://w3.antd.nist.gov/wctg/manet/prd_aodvfiles.html.

[10] “NIST dynamic source routing (DSR) routing protocol OPNET model,” http://w3.antd.nist.gov/wctg/prd_dsrfiles.html.

[11] D. Cavin, Y. Sasson, and A. Schiper, “On the accuracy of MANET simulators,” inProceedings of the
Workshop on Principles of Mobile Computing (POMC’02). ACM, Oct. 2002, pp. 38–43. [Online]. Available:
http://lsewww.epfl.ch/Publications/ById/319.html

[12] H. Lundgren, D. Lundberg, E. Nordström, C. Tschudin, and J. Nielsen, “A large-scale testbed for reproducible ad hoc protocol
evaluations,” inProceedings of IEEE Wireless Communications and Networking Conference (WCNC 2002), Orlando, Florida,
Mar. 2002.

[13] J. Flynn, H. Tewari, and D. O’Mahony, “JEmu: A real time emulation system for mobile ad hoc networks,” inProceedings of
the Firsit Joint IEI/IEE Symposium on Telecommunications Systems Research, Dublin, Ireland, Nov. 2001.

[14] S. Sanhani, T. X. Brown, S. Bhandare, and S. Doshi, “EWANT: The emulated wireless ad hoc network testbed,” inProceed-
ings of IEEE Wireless Communications and Networking Conference (WCNC 2003), New Orleans, LA, Mar. 2003.

[15] P. Zheng and L. M. Ni, “Emwin: emulating a mobile wireless network using a wired network,” inProceedings of the 5th ACM
international workshop on Wireless mobile multimedia. ACM Press, 2002, pp. 64–71.

[16] H. Miranda, A. Pinto, and L. Rodrigues, “Appia, a flexible protocol kernel supporting multiple coordinated channels,” in
Proceedings of The 21st International Conference on Distributed Computing Systems (ICDCS-21). Phoenix, Arizona, USA:
IEEE Computer Society, Apr. 2001, pp. 707–710.

[17] N. T. Bhatti, “A system for constructing configurable high-level protocols. Ph.D. Dissertation, University of Arizona,” 1996.

[18] N. T. Bhatti, M. A. Hiltunen, R. D. Schlichting, and W. Chiu, “Coyote: a system for constructing fine-grain configurable
communication services,”ACM Transactions on Computer Systems, vol. 16, no. 4, pp. 321–366, Nov. 1998. [Online].
Available: http://www.acm.org:80/pubs/citations/journals/tocs/1998-16-4/p321-bhatti/

[19] P. Urbán, X. Défago, and A. Schiper, “Neko: A single environment to simulate and prototype distributed algorithms,”
Journal of Information Science and Engineering, vol. 18, no. 6, pp. 981–997, Nov. 2002. [Online]. Available:
http://lsewww.epfl.ch/Publications/ById/307.html

9

http://lsewww.epfl.ch/Publications/ById/319.html
http://www.acm.org:80/pubs/citations/journals/tocs/1998-16-4/p321-bhatti/
http://lsewww.epfl.ch/Publications/ById/307.html

	Introduction
	Feature Tour
	Requirements
	Architecture
	The protocol stack
	The services repository
	The message pool

	Virtual Networks
	Serialization
	Statistics Gathering
	Startup and Configuration

	Applications
	Chat
	Distributed Token Passing
	Reliable Broadcast

	Related Work
	Simulators and Emulator Testbeds
	Frameworks for Wired Networks

	Summary and Future Work

