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Abstract

We try to analyze a generic model for 2-tier distributed systems, exploring the possibility of
optimal cluster sizes from an information management perspective, such that the overall cost for
updating and searching information may be minimized by adopting a judiciously lazy updating
policy. We do not assume either centralized coordination or decentralization, and since it is
an initial work, we only advocate the existence of such optimal policies rather than how such
policies may be discovered by the system participants. We put our work in perspective using
two examples from diverse domains of distributed systems, namely the wireless cellular networks,
which are based on centralized coordination and peer-to-peer systems using clusters (like Kazaa).

Keywords: Cellular Wireless Networks, Peer-to-Peer Systems, Clustering, Lazy Updates, Optimiza-
tion.

1 Introduction

Distributed systems often have hierarchical structure, with some participants having a specialized role,
thus coordinating other participants. We investigate the case of 2-tier hierarchy. Our investigation
focuses on determining optimal cluster sizes that could be coordinated by a cluster head, vis-a-vis
the update cost incurred by participants and the search cost in such distributed systems, and also
explore the possibility of using a lazy update policy such that the overall cumulative cost of updating
and searching is optimized. While 2-tier systems are a very special case of the general hierarchical
systems, the results nonetheless provide an insight about the possibility of optimal cluster sizes, and
such 2-tier systems are indeed often found in some real systems. We put our work in perspective
with respect to two such instances, one that of peer-to-peer systems like Kazaa and the other that of
mobile wireless communication systems, where the base stations can be thought to be cluster heads.
While our work discusses distributed systems, it does not assume decentralization or otherwise, and
hence the results are valid for either case. The work is a stepping stone for further work, and thus
we identify the possibility of having an optimal update policy and optimal clusters. Discussion of
schemes to achieve the optimal update policy or formation of optimal clusters, either by centralized
coordination or self-organization in decentralized systems, is beyond the scope of the present work.

Moreover there are several assumptions, particularly of the cost functions, which are only indicative
and do not necessarily reflect realistic systems. Thus the results provided in this paper are meant to
give a qualitative insight rather than quantitative results.
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The paper is organized as follows. In Section 2 we introduce 2-tier systems and its motivation in
the context of state-of-the-art cellular and P2P systems. We make our case that there exists optimal
designs for such 2-tier distributed systems by analyzing a generic model in Section 3. We present our
results in Section 4 and draw conclusions in Section 5.

2 2-tier systems

While 2-tier systems are the simplest among the hierarchical systems, some of the popular and well
known systems can be modeled as such. These include traditional cellular networks to more recent
peer-to-peer systems like Kazaa.

2.1 Cellular wireless networks

The cellular wireless networks are perhaps the most obvious example of a 2-tier system. The users
are divided into groups called cells by their geographic location and each cell is coordinated by a
group head called a base station as shown in Figure 1. The base station controls and knows whatever
happens in a cell based on updates from the user. The users can communicate with each other only
through their respective base stations. The base stations in turn communicate with each other, not
visible to the users, to provide a communication service. This 2-tier structure of the cellular networks
will continue to exist even with the rapid developments in mobile ad-hoc networks because ad-hocness
can be interesting in a local area but not at a global scale. The cellular 2-tier system also makes sense
because [4],

• Cellular structure of networks is necessary to maximize throughput and optimize battery per-
formance.

• The network has to be hierarchy based to avoid unnecessary updates or find operations through
the whole network to track a particular user.

• Memory intensive tasks like directory search operations and transfer of trunk route data will
rely on less mobile and reliable nodes higher in the hierarchy and moreover there may not be
enough number of nodes between a source and destination to complete a communication session
in an ad-hoc fashion.

Geographical boundary

Users

Base Station

Cell

Figure 1: Cellular Architecture

2.2 P2P systems

Napster is one of the most widely known P2P systems. It used a central index for all the content
available at all the end-points (peers). Thus for searching information, the central index was required
to be queried. Similarly for sharing information the central server was required to be informed.
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Napster, shown in Figure 2(a) suffered from the typical drawbacks of centralized solutions, namely
single point of failure as well as scalability problems.

Gnutella like systems on the other hand are in the other extreme, where all peers maintain their
own information, however for searching, the whole network needs to be flooded with a query. Thus
every peer asks all other peers that it is in touch with, in order to perform a search. The system
topology is shown in Figure 2(b). Gnutella suffered from the typical drawbacks of unstructured
decentralization, namely high overhead and latency for message flooding. Thus to say, flooding based
systems are inefficient and expensive.

Chronologically and logically systems like Kazaa evolved, which use a hybrid of both Napster
and Gnutella architectures, thus forming small clusters, where the cluster heads centrally store all
information about their members in a way similar to Napster, while such cluster heads communicate
among themselves in a more ad-hoc way similar to Gnutella. While the actual system topology for
Kazaa is not known, it may be speculated to have a topology as has been shown in Figure 2(c).

(a) (b)

Cluster Heads

Nodes

Napster like clusters

Gnutella like
communication
among cluster 

heads

Cluster Heads

Nodes

Napster like clusters

Gnutella like
communication
among cluster 

heads

(c)

Figure 2: (a)Napster, (b)Gnutella and (c)Kazaa(speculated) system architectures

2.3 Optimal clusters

For a given peer population of n and the number of cluster heads or clusters s, Napster may be thought
to be a special case of Kazaa with only one cluster head (s = 1) and n members within a single cluster,
while Gnutella at the other extreme, with n cluster heads (s = n) and single member per cluster.
Performance wise, it has been observed that Kazaa is much more efficient than Gnutella, and indeed
compares with Napster, on the other hand, Kazaa has the fault tolerant and resilient properties of
Gnutella networks.

In mobile cellular networks also its not easy to allocate an appropriate load of users on a base
station. Huge load of users on a particular base station may result in an enormous processing load
on that base station and hence result in poor quality of service or dropping of calls whereas another
base station nearby may be operating at below its capacity. It would make sense to optimally assign
user load on the base stations i.e finding optimal cluster sizes, so that the overall operating cost is
minimized.

Such interesting observations motivate the quest for optimal cluster sizes. In order to do so, we
need to understand and quantify the various tradeoffs. As an initial step we use a simple cost model
for searching and updating in such systems.

2.4 Search and lazy updates in 2-tier systems

Whenever information is stored in a distributed manner, there are two costs to be incurred, that of
searching and that of updating. It is thus desirable to adopt a lazy approach for making updates
[7, 5], so that instead of updating every time there is a change locally at a participant, such changes
are intimated to the cluster head only if a certain number of updates are locally accumulated. The
drawback with such a lazy policy is that if some other participant is searching for the information,
then the information obtained from the cluster head is stale, and thus there is a penalty to be paid,
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either because a stale information is used, or else in order to obtain the latest information from the
original participant who had failed to inform the cluster head.

In the 2-tier systems that we discussed, search cost will actually have two constituents.

Inter-cluster search: If the information being searched is not available within the cluster where the
search is initiated, the cluster heads will have to communicate among themselves in order to
locate the cluster where the information resides. This inter-cluster communication can possibly
be done in a deterministic way, in which case the lower bound for communication is s− 1, while
if it is done in a randomized manner [6, 2], the cost will be O(s log(s)). This is not the lower
bound, but is easily achievable, as has been argued in [6]. Under the assumption of uniform data
distribution as well as query distribution, inter-cluster searches will occur with a probability of
s−1

s .

Intra-cluster search: Either if the search is initiated for information resident in the same cluster,
or if a search request comes from another cluster head, an intra-cluster search is needed unless
the cluster head has up-to-date information. The query may actually be answered by the cluster
head provided it has the information, or else it will have to ask its members. The cost incurred
in asking members will depend on the cluster population n

s .

Thus we see that inter-cluster searches are more expensive with growing number of clusters, and
also more probable (1 − 1

s ). This implies that smaller number of clusters (small s) is desirable. A
fact affirmed by Napster’s performance. But this does not account for either load balancing nor the
susceptibility of a single point of failure.

On the other hand, intra-cluster searches become cheap with smaller cluster size (thus larger s).
These define the tradeoffs, which we will study to determine optimal cluster sizes.

One may argue that intra-cluster searches are not required if the cluster heads are kept up-to-
date. It is a well established and accepted fact though that lazy updates are cost efficient for many
kinds of information and application domains [5, 3]. If updates are not lazily made, that would mean
frequently initiating updates, which is not desirable. For example, in wireless systems, uplink is a
scarce and expensive resource in terms of bandwidth and battery life of the handset. Or in the case
of P2P systems, these may lead to a lot of unnecessary network traffic because of packet overheads,
which prompts to make a more judicious, that is to say, a lazy updating scheme. Another equally
important justification of lazy updates is that otherwise the cluster heads may be overwhelmed with
update requests.

This determines the tradeoff so that for any cluster size, we need to find an optimal updating
policy in order to reduce the cumulative search and update cost over the whole network.

Having thus defined our tradeoffs, the question that we want to answer is whether there is an
optimal updating policy and an optimal cluster size, given overall population and search and update
characteristics.

We analytically model 2-tier systems in our quest for optimal clusters and lazy update policy, as
will be elaborated next.

3 Optimizing the cumulative cost of updates and searches in
2-tier distributed systems

We consider a situation where n nodes are distributed into s clusters of equal size. Each cluster
is headed by a node called the cluster head and rest of the nodes in that cluster are called cluster
members. Each node’s attributes experience changes at discrete time k. All nodes belonging to a
cluster report their information of any change of attributes or updates to the cluster heads. The
changes can occur with the nodes remaining within the given cluster or the change may result in a
node moving to a new cluster in which case it must update its information to the new cluster head. We
assume reliable communication among cluster heads either in a deterministic or randomized fashion.
For searches, the best situation can be if nodes always update their changes to their cluster heads in
which case the information at the cluster heads is always current. Any search for information about
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a node’s attributes will consume less resource and the information found will be “fresh”. Whereas
if the nodes never update, the search for that information would consume more resource and would
return a “stale” information. This means there is a tradeoff between the update and search, which
implicitly depends also on the number of clusters. Hence there exists an optimal number of clusters
and update policy for each node which optimizes the total resource cost.

3.1 System Model

The events and their notation with their statistic is as follows:

Cluster change: Random variable vk ∈ {0, 1} for a node denotes the event that the node moves
from one cluster to another at time k. It takes a value 1 if the node changes cluster and 0
otherwise.

P (vk) =
{

β : vk = 1
1 − β : vk = 0 (1)

Local change (within a cluster): Random variable wk ∈ {0, 1} denotes the event that a change
occurs in a node within a cluster at time k. It takes a value 1 if a change occurs and 0 otherwise.

P (wk) =
{

α : wk = 1
1 − α : wk = 0 (2)

This change can be imagined to be a change of cell by an user in the case of cellular networks or
a change of file data or application availability at a node in the case of peer-to-peer networks.

Decision by a node at time k to update: uk ∈ {0, 1} denotes the decision by a node at time step
k to update the changes to the cluster head. The decision to update is denoted by 1 and the
decision not to update is denoted by 0.

Staleness counter or state of a node: xk denotes the number of changes that has happened on a
node since it last reported updates to its cluster head.

Search probability: At each time k, a node (or an information it holds) can be searched for with
probability γ. It is possible that there are simultaneous searches for same item, in which case
further optimization is possible, but we ignore such complications in the model.

3.1.1 State equation

The above events can be combined to write a state equation which gives a description of the next
state at time k + 1 given the description at time k which is

xk+1 = [xk(1 − uk) + wk](1 − vk). (3)

The equation above describes the phenomenon because if the user updates (uk = 1) or it changes
a cluster (vk = 1), the state level is reset to zero. A change within a cluster (wk = 1) without update
results in an increase of the state by a step.

3.1.2 Cost function

The cost function comprises of two costs; the update cost and the search cost. Our search for an
optimal policy is the one which minimizes the sum of the update and the search cost.

Search cost: The search cost has two components; the cost of searching inside a cluster (fintra)
and the cost of searching in a different cluster (finter) if not found in the given cluster. The
cost of intra cluster search is inversely proportional to the number of clusters (more clusters
means less nodes per cluster and vice versa). The search may yield a stale information which is
undesirable and hence a penalty depending on the staleness of the information (xk) about the
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node or resource is imposed. Hence the intra cluster search cost is a function fintra(xk, n
s ). We

intend to study two kinds of this function. They are

fintra(xk,
n

s
) =

{
nexk

s : exponential cost
nxk

s : linear cost
(4)

The inter cluster search can result if the queried resource or node is not found by the cluster
head in its cluster and hence has to contact other cluster heads to find the resource or the
node. It can happen with probability s−1

s . The cost of searching s − 1 cluster heads for the
information is O(s−1) if the communication between the cluster heads is deterministic or it can
be O(s log(s)) if the communication between cluster heads is randomized. Therefore the inter
cluster search is a function finter(s).

Hence the total expected search cost at time k is,

S(xk, s) = γC1[fintra(xk,
n

s
) +

s − 1
s

finter(s)] (5)

where C1 is a proportionality constant which depends on the actual system.

Update cost: The total update cost at time k is the cost due to an update in the cluster (uk = 1)
and the necessary update if there is a change in cluster (vk = 1).

Uk = C2uk(1 − vk) + C2vk (6)

where C2 is the cost per update. Therefore the total expected update cost is,

Evk
[Uk] = C2uk(1 − β) + C2β. (7)

Since our objective is to find an optimal policy that minimizes the total cost over time, we can
write the cumulative-optimal-cost function from time k to a finite horizon [1], J∗

k (xk, s), for a given s
as,

J∗
k (xk, s) = min

uk=0,1
Ewk,vk

{S(xk, s) + Uk + J∗
k+1(xk+1, s)}. (8)

The policy that minimizes the cumulative-optimal-cost function from a finite horizon to a time k
is also the optimal policy at each step from time k to the finite horizon because by the principle of
optimality, if it was not then we could have chosen any other minimizing policy at a time step and
minimized the overall cost further. Thus the policy we obtain tells us the optimal thing to do at each
time step.

3.2 Analysis

From (3) and (8) we can now set up a dynamic programming problem [1] with state variable xk,
control variable uk and random disturbances wk and vk. The cost function can be defined both in
forward or backward recursion but it turns out in our case that its easier to solve our problem by
backward recursion starting from a finite horizon and a terminal value.

From (8), we have,

J∗
k (xk, s) = min

uk=0,1
{S(xk, s) + Evk

[Uk] + Ewk,vk
[J∗

k+1(xk+1, s)]} (9)

Replacing (3) in Ewk,vk
[J∗

k+1(xk+1, s)] and from the assumption that wk and vk are independent,
we have,

Ewk,vk
{J∗

k+1(xk+1, s)} = ᾱβ̄J∗
k+1(xk(1 − uk), s) + αβ̄J∗

k+1(xk(1 − uk) + 1, s) + βJ∗
k+1(0, s) (10)

where ᾱ = 1 − α and β̄ = 1 − β.

Replacing (7) and (10) in (9) we have,

J∗
k (xk, s) = min

{
S(xk, s) + βC2 + J̃(xk, s) : uk = 0

S(xk, s) + C2 + J̃(0, s) : uk = 1
(11)

6



where J̃(xk, s) = βJ∗
k+1(0, s) + αβ̄J∗

k+1(xk + 1, s) + ᾱβ̄J∗
k+1(xk, s). From the above equation we see

that at each time k, the values of xk can clearly be divided into two regions where if xk is lower than
some threshold value t, the policy is not to update (uk = 0) and if xk is above t we decide to update
(uk = 1). Since J∗

k (xk, s) is an increasing function of xk at time k, (11) will always lead to a threshold
kind of a decision rule.

We also see from (11) that the threshold t is given by the solution of the equation where the cost
due to decision uk = 0 is equal to the cost due to the decision uk = 1. This is equal to,

βC2 + J̃(xk, s) = C2 + J̃(0, s)

or

J̃(xk, s) − J̃(0, s) = β̄C2 (12)

If we solve (11) numerically as a finite horizon problem, we have the optimal decision regions at
each time as shown in Figure 3. Numerical solutions show that asymptotically the threshold always
reaches a steady state value. However we do not have an analytical proof of the asymptotic behavior
of the threshold.
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Figure 3: Existence of a stationary threshold

Assuming the steady state nature of the threshold, we can solve for the steady state values of (11)
and (12) as shown in Appendix A, and we have the steady state threshold t̃ which is given by,

t̃(s) = max
{
t

∣∣∣ S′(t, s) − δt+1S′(t, s) − βδ

αβ̄

t∑
j=1

δjS′(j, s) ≤ βC2, t ∈ {1, 2, ...}
}

(13)

where S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s), δ = αβ̄
1−ᾱβ̄

and s ∈ {1, 2, · · · , n}.
Once we have the optimal-stationary-policy thereshold function t̃(s) from (13), we assume that it

is used in the network. When the value of xk is below t̃(s), we do not update and therefore we do
not incur any update cost but we incur the search cost penalty S(xk, s). But if xk is above t̃(s) we
update, which from (3) resets xk to zero. Thus we incur a minimum expected cost, MinCost(s), for
a given s, which is equal to,

MinCost(s) = E{xk|xk≤t̃(s)}[S(xk, s)] (14)

This MinCost(s) tells us that given a cluster size n
s , we have an optimal threshold t̃(s), where, if

xk is below or equal to t̃(s), we do not update and if xk is above t̃(s), we decide to update, and thus
incur the minimum cost MinCost(s).

Since the state transition of xk in our problem is independent of any xk, at any given time, all
possible values of xk are equally likely. Therefore the expectation in (14) becomes an average,

MinCost(s) =
1

t̃(s) + 1

t̃(s)∑
xk=0

S(xk, s)
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=
1

t̃(s) + 1

t̃(s)∑
x=0

S(x, s) (15)

Now the optimal number of clusters is the one which incurs the minimum of this object function
MinCost(s). Therefore, the optimal number of clusters s∗ is given by,

s∗ =
{
s | MinCost(s) = min

m∈{1,2,···,n}
MinCost(m)

}
(16)

Once we have the optimal number of clusters s∗, we can use the function t̃(s) found from (13) to
find the optimal threshold t∗ for this optimal number of clusters.

Thus we have an optimal update policy given by,

uk =
{

0 : xk ≤ t∗

1 : xk > t∗ (17)

and an optimal cluster size n
s∗ for a given number of nodes n.

4 Result

To give an example of our framework, we take some reasonable values of the parameters α and β. We
assume α = 0.5 which means that there is a high rate of change activity at the nodes. We assume that
the event that a node changes cluster is relatively rare which is why we choose β = 0.005. This makes
sense in the context of both mobile cellular networks and typical peer-to-peer systems. For example
in case of a cellular network a user is likely to reamin around its area of residence or place of work. In
the case of a peer-to-peer system, the nodes change cluster only if they do not get the desired quality
of service or a node goes offline and then comes up again. Both of these events are relatively rare as
compared to other events at the nodes. We choose some arbitrary values for γ and n as well as the
constants C1 and C2. The actual values would depend on the real system characteristics.

We find the optimal thresholds and cluster sizes for different cases of intra-cluster cost penalty for
lazy update and inter-cluster cost of search propagation. The expressions for steady state threshold for
various cases of intra-cluster cost penalty for lazy update and inter-cluster cost of search propagation
are shown in Appendix B, using the general expression in (13). Using the expressions for the different
cases in Appendix B, the plot of MinCost(s) against s is shown in Figure 4 as below.

(a) Linear-Cost penalty and Randomized search propagation.

(b) Exponential-Cost penalty and Randomized search propagation.

(c) Linear-Cost penalty and Deterministic search propagation.

(d) Exponential-Cost penalty and Deterministic search propagation.

From this plot we find the optimal s∗ which gives the minimum cost. Once we have s∗ we reuse
(13) to find the optimal threshold t∗ for the various cases.

When penalty for stale information is exponential, the threshold for lazy updates is much lower
than when the penalty is linear, as expected. We also see that the number of clusters, when the
inter-cluster search is propagated in a randomized manner, is significantly smaller than when search
is (can be) propagated deterministically. Thus, depending on the feasibility issues, like the infrastruc-
tural requirements or the (im)possibility of deterministic communication among cluster heads, system
designer can choose appropriate policies to develop an efficient 2-tier distributed system.

We also infer that the cumulative cost can indeed be minimized for each of the communication
policies (for search propagation) and for different penalties for stale information at cluster heads on
account of lazy updates, provided judicious threshold for laziness is chosen. The clustering itself can
be done optimally in order to globally reduce the cost over all possibilities of cluster sizes.
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Figure 4: Plots of minimum cost and their corresponding cluster size and threshold.

5 Conclusion

Our analytical model of 2-tier distributed systems adds qualitative understanding as to why a system
like Kazaa enjoys the good features of both centralized systems like Napster or totally decentralized
system like Gnutella. Similar conclusion about performance and resilience can be made about cellular
networks as well. While in our initial work we do not address the issue of forming optimal clusters
or achieving optimal thresholding policies, we however show that such optimal choices can be made.
The quest for searching such solution is the next logical step, thus determining the future direction of
our research.

Previously, in the context of efficiency and reliability of mobile ad-hoc routing, clustering had
been advocated [8]. Efficient information management can be a complementary reason for clustering
in mobile ad-hoc networks and our present work may be extended to that end.
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Appendix

A Proof of (13)

From (12) we have that the threshold tk at time k, is the solution to the equation,

J̃(xk, s) − J̃(0, s) = β̄C2
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From (11) and (12),

βJ∗
k+1(0, s) + αβ̄J∗

k+1(xk + 1, s) + ᾱβ̄J∗
k+1(xk, s) − βJ∗

k+1(0, s) − αβ̄J∗
k+1(1, s) − ᾱβ̄J∗

k+1(0, s) = β̄C2

or

αJ∗
k+1(xk + 1, s) + ᾱJ∗

k+1(xk, s) − αJ∗
k+1(1, s) − ᾱJ∗

k+1(0, s) = C2. (18)

We can remove the index of xk and write a new function at time k as,

J ′
k(x, s) = αJ∗

k+1(x + 1, s) + ᾱJ∗
k+1(x, s) − αJ∗

k+1(1, s) − ᾱJ∗
k+1(0, s) (19)

Therefore the threshold at time k is given by the solution of the equation,

J ′
k(x, s) = C2. (20)

The steady state form of J ′
k(x, s) will give the solution of the steady state threshold. To find the

steady state form of J ′
k(x, s), we have to find the recursion of J ′

k(x, s) and then set the functions
at the two time indexes to be the same i.e. J ′

k+1(x, s) = J ′
k(x, s) = J ′(x, s) to get the steady state

expression J ′(x, s) which then can be used to find the steady state threshold.

Towards that end, from (11) we have,

J∗
k+1(x + 1, s) = S(x + 1, s) + βJ∗

k+2(0, s) + min
{

βC2 + αβ̄J∗
k+2(x + 2, s) + ᾱβ̄J∗

k+2(x + 1, s)
C2 + αβ̄J∗

k+2(1, s) + ᾱβ̄J∗
k+2(0, s) (21)

J∗
k+1(x, s) = S(x, s) + βJ∗

k+2(0, s) + min
{

βC2 + αβ̄J∗
k+2(x + 1, s) + ᾱβ̄J∗

k+2(x, s)
C2 + αβ̄J∗

k+2(1, s) + ᾱβ̄J∗
k+2(0, s) (22)

J∗
k+1(1, s) = S(1, s) + βJ∗

k+2(0, s) + min
{

βC2 + αβ̄J∗
k+2(2, s) + ᾱβ̄J∗

k+2(1, s)
C2 + αβ̄J∗

k+2(1, s) + ᾱβ̄J∗
k+2(0, s) (23)

J∗
k+1(0, s) = S(0, s) + βJ∗

k+2(0, s) + min
{

βC2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)
C2 + αβ̄J∗

k+2(1, s) + ᾱβ̄J∗
k+2(0, s) (24)

From (19), (21), (22), (23) and (24) we have,

J ′
k(x, s) = αJ∗

k+1(x + 1, s) + ᾱJ∗
k+1(x, s) − αJ∗

k+1(1, s) − ᾱJ∗
k+1(0, s)

= αS(x + 1, s) + αβJ∗
k+2(0, s) + α min

{
βC2 + αβ̄J∗

k+2(x + 2, s) + ᾱβ̄J∗
k+2(x + 1, s)

C2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)

+ ᾱS(x, s) + ᾱβJ∗
k+2(0, s) + ᾱ min

{
βC2 + αβ̄J∗

k+2(x + 1, s) + ᾱβ̄J∗
k+2(x, s)

C2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)

− αS(1, s) − αβJ∗
k+2(0, s) − α min

{
βC2 + αβ̄J∗

k+2(2, s) + ᾱβ̄J∗
k+2(1, s)

C2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)

− ᾱS(0, s) − ᾱβJ∗
k+2(0, s) − ᾱ min

{
βC2 + αβ̄J∗

k+2(1, s) + ᾱβ̄J∗
k+2(0, s)

C2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s) (25)

Adding and subtracting αβ̄J∗
k+2(1, s)+ᾱβ̄J∗

k+2(0, s) and βC2 in each of the min expressions and using
the definition of J ′

k+1(x, s) from (19), we have,

J ′
k(x, s) = [αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s)]

+ α[βC2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)] + α min
{

β̄J ′
k+1(x + 1, s)

β̄C2

+ ᾱ[βC2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)] + ᾱ min
{

β̄J ′
k+1(x, s)

β̄C2

− α[βC2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)] + α min
{

β̄J ′
k+1(1, s)

β̄C2

− ᾱ[βC2 + αβ̄J∗
k+2(1, s) + ᾱβ̄J∗

k+2(0, s)] + ᾱ min
{

0
β̄C2

(26)
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or

J ′
k(x, s) = S′(x, s) + α min

{
β̄J ′

k+1(x + 1, s)
β̄C2

}
+ ᾱ min

{
β̄J ′

k+1(x, s)
β̄C2

}
− α min

{
β̄J ′

k+1(1, s)
β̄C2

}

= S′(x, s) + αβ̄ min
{

J ′
k+1(x + 1, s)

C2

}
+ ᾱβ̄ min

{
J ′

k+1(x, s)
C2

}
− αβ̄ min

{
J ′

k+1(1, s)
C2

}

(27)

where S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s).

The steady state solution of J ′
k(x, s) is obtained by putting J ′

k+1(x, s) = J ′
k(x, s) = J ′(x, s). Then

we have from (27),

J ′(x, s) = S′(x, s) + αβ̄ min
{

J ′(x + 1, s)
C2

}
+ ᾱβ̄ min

{
J ′(x, s)

C2

}
− αβ̄ min

{
J ′(1, s)

C2

}

(28)

Let the steady state threshold be t̃(s) = t̃. Then replacing x = t̃ in (28) and using (20) and assuming
t̃ > 1, we have,

C2 = J ′(t̃, s)
= S′(t̃, s) + αβ̄C2 + ᾱβ̄C2 − αβ̄J ′(1, s)

or

J ′(1, s) =
1

αβ̄
S′(t̃, s) − β

αβ̄
C2 (29)

Now replacing x = t̃ − 1 in (28), we have,

J ′(t̃ − 1, s) = S′(t̃ − 1, s) + αβ̄C2 + ᾱβ̄J ′(t̃ − 1, s) − αβ̄J ′(1, s)

or

J ′(t̃ − 1, s) =
δ

αβ̄
S′(t̃ − 1, s) + δC2 − δJ ′(1, s) (30)

where δ = αβ̄
1−ᾱβ̄

.

Now if x < t̃ − 1 the recursion of (28) has a general form,

J ′(x, s) = S′(x, s) + αβ̄J ′(x + 1, s) + ᾱβ̄J ′(x, s) − αβ̄J ′(1, s)

or

J ′(x, s) =
δ

αβ̄
S′(x, s) + δJ ′(x + 1, s) − δJ ′(1, s) (31)

Replacing x = t̃ − 2 in (31), we have,

J ′(t̃ − 2, s) =
δ

αβ̄
S′(t̃ − 2, s) + δJ ′(t̃ − 1, s) − δJ ′(1, s) (32)

Replacing x = t̃ − 3 in (31), we have,

J ′(t̃ − 3, s) =
δ

αβ̄
S′(t̃ − 3, s) + δJ ′(t̃ − 2, s) − δJ ′(1, s)

=
δ

αβ̄
S′(t̃ − 3, s) − δJ ′(1, s) + δJ ′(t̃ − 2, s) (33)

Replacing (32) in (33), we have,

J ′(t̃ − 3, s) =
δ

αβ̄
[S′(t̃ − 3, s) + δS′(t̃ − 2, s)] − J ′(1, s)[δ + δ2] + δ2J ′(t̃ − 1, s) (34)
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Replacing x = t̃ − 4 in (31), we have,

J ′(t̃ − 4, s) =
δ

αβ̄
S′(t̃ − 4, s) + δJ ′(t̃ − 3, s) − δJ ′(1, s)

=
δ

αβ̄
S′(t̃ − 4, s) − δJ ′(1, s) + δJ ′(t̃ − 3, s) (35)

Replacing (34) in (35), we have,

J ′(t̃ − 4, s) =
δ

αβ̄
[S′(t̃ − 4, s) + δS′(t̃ − 3, s) + δ2S′(t̃ − 2, s)] − J ′(1, s)[δ + δ2 + δ3] + δ3J ′(t̃ − 1, s)

(36)

and so on.

Since we are only interested to find another equation for J ′(1, s) so that we can use (29) to solve
for t̃, we consider the form of J ′(1, s) = J ′[t̃ − (t̃ − 1), s] if the recursion in (36) is followed. This is
given by,

J ′(1, s) = J ′[t̃ − (t̃ − 1), s]

=
δ

αβ̄

t̃−2∑
j=1

δj−1S′(j, s) − δJ ′(1, s)
t̃−2∑
j=1

δj−1 + δt̃−2J ′(t̃ − 1, s) (37)

Now replacing (30) in (37) we have,

J ′(1, s) =
δ

αβ̄

t̃−2∑
j=1

δj−1S′(j, s) − δJ ′(1, s)
t̃−2∑
j=1

δj−1 + δt̃−2[
δ

αβ̄
S′(t̃ − 1, s) + δC2 − δJ ′(1, s)]

or

1 − δt̃

1 − δ
J ′(1, s) =

δ

αβ̄

t̃−1∑
j=1

δj−1S′(j, s) + δt̃−1C2 (38)

Replacing (29) in (38), we have,

1 − δt̃

1 − δ

[
1

αβ̄
S′(t̃, s) − β

αβ̄
C2

]
=

δ

αβ̄

t̃−1∑
j=1

δj−1S′(j, s) + δt̃−1C2

or

1
βδ

S′(t̃, s) − δt̃

βδ
S′(t̃, s) − δ

αβ̄

t̃−1∑
j=1

δj−1S′(j, s) =
1
δ
C2

or

S′(t̃, s) − δt̃S′(t̃, s) − βδ

αβ̄

t̃−1∑
j=1

δjS′(j, s) = βC2 (39)

Adding and subtracting βδ
αβ̄

δt̃S′(t̃, s) in (39), we have,

S′(t̃, s) +
βδ

αβ̄
δt̃S′(t̃, s) − δt̃S′(t̃, s) − βδ

αβ̄
δt̃S′(t̃, s) − βδ

αβ̄

t̃−1∑
j=1

δjS′(j, s) = βC2

or

S′(t̃, s) +
[

βδ

αβ̄
− 1

]
δt̃S′(t̃, s) − βδ

αβ̄

t̃∑
j=1

δjS′(j, s) = βC2
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or

S′(t̃, s) − δt̃+1S′(t̃, s) − βδ

αβ̄

t̃∑
j=1

δjS′(j, s) = βC2 (40)

We know that our values of x can only be integers and so should be the values of t̃. Now the t̃ found
by solving (40) may not be an integer. Therefore we define our threshold as �t̃�. Using this definition
of the stationary threshold and using (40), the stationary threshold t̃(s) can be equivalently written
as,

t̃(s) = max
{
t

∣∣∣ S′(t, s) − δt+1S′(t, s) − βδ

αβ̄

t∑
j=1

δjS′(j, s) ≤ βC2, t ∈ {1, 2, ...}
}

(41)

�

B Stationary threshold expressions for various intra-cluster

and inter-cluster penalties

(a) Linear-Cost penalty and Randomized search propagation

For this case, from (4) and (5), we have

S(x, s) = γC1[fintra(x,
n

s
) +

s − 1
s

finter(s)]

= γC1[
nx

s
+

s − 1
s

s log(s)]

= γC1
nx

s
+ γC1(s − 1) log(s) (42)

Therefore from (42) and (13),

S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s)

=
nγC1x

s
(43)

Now from (43) and (13),

βC2 ≥ S′(t, s) − δt+1S′(t, s) − βδ

αβ̄

t∑
j=1

δjS′(j, s) =
nγC1t

s
− δt+1 nγC1t

s
− βδ

αβ̄

t∑
j=1

δj nγC1j

s

=
nγC1t

s
− δt+1 nγC1t

s
− βδnγC1

αβ̄s

t∑
j=1

jδj

or

sβC2

nγC1
≥ t − tδt+1 − βδ

αβ̄

t∑
j=1

jδj

= t − tδt+1 − βδ

αβ̄

[
δ − δt+1

(1 − δ)2
− tδt+1

(1 − δ)

]

= t − tδt+1 − βδ2

αβ̄(1 − δ)2
+

βδt+2

αβ̄(1 − δ)2
+

βtδt+2

αβ̄(1 − δ)

= t − tδt+1 − αβ̄

β
+

βδt+2

αβ̄(1 − δ)2
+

βtδt+2

αβ̄(1 − δ)
[From definition of δ]

or

t − tδt+1 +
βδt+2

βδ(1 − δ)
+

βtδt+2

βδ
≤ sβC2

nγC1
+

αβ̄

β
[because αβ̄(1 − δ) = βδ]
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or

(1 − δ)t + δt+1 ≤ (1 − δ)sβC2

nγC1
+ δ (44)

Therefore, for the case of linear-cost penalty and randomized search propagation, we see from (44),
that (13) becomes equal to,

t̃(s) = max
{
t

∣∣∣ (1 − δ)t + δt+1 ≤ (1 − δ)sβC2

nγC1
+ δ, t ∈ {1, 2, ...}

}
(45)

(b) Exponential-Cost penalty and Randomized search propagation

For this case, from (4) and (5), we have

S(x, s) = γC1[fintra(x,
n

s
) +

s − 1
s

finter(s)]

= γC1[
nex

s
+

s − 1
s

s log(s)]

= γC1
nex

s
+ γC1(s − 1) log(s) (46)

Therefore from (46) and (13),

S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s)

=
nγC1

s
(αe + ᾱ)(ex − 1) (47)

Now from (47) and (13),

βC2 ≥ S′(t, s) − δt+1S′(t, s) − βδ

αβ̄

t∑
j=1

δjS′(j, s)

=
nγC1

s
(αe + ᾱ)(et − 1) − δt+1 nγC1

s
(αe + ᾱ)(et − 1) − βδ

αβ̄

t∑
j=1

δj nγC1

s
(αe + ᾱ)(ej − 1)

or

sβC2

nγC1(αe + ᾱ)
≥ (et − 1) − δt+1(et − 1) − βδ

αβ̄

t∑
j=1

δj(ej − 1)

= (et − 1) − δt+1(et − 1) − βδ

αβ̄

{
δe[1 − (δe)t]

1 − δe
− δ[1 − δt]

1 − δ

}

= et − 1 − etδt+1 + δt+1 − βδ2e[1 − (δe)t]
αβ̄(1 − δe)

+ δ − δt+1

or

et − etδt+1 − βδ2e[1 − (δe)t]
αβ̄(1 − δe)

≤ sβC2

nγC1(αe + ᾱ)
+ (1 − δ)

or

et − etδt+1 − (1 − δ)δe[1 − (δe)t]
(1 − δe)

≤ sβC2

nγC1(αe + ᾱ)
+ (1 − δ) (48)

Therefore, for the case of exponential-cost penalty and randomized search propagation, we see from
(48), that (13) becomes equal to,

t̃(s) = max
{

t
∣∣∣ et − etδt+1 − (1 − δ)δe[1 − (δe)t]

(1 − δe)
≤ sβC2

nγC1(αe + ᾱ)
+ (1 − δ), t ∈ {1, 2, ...}

}

(49)
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(c) Linear-Cost penalty and Deterministic search propagation

For this case, from (4) and (5), we have

S(x, s) = γC1[fintra(x,
n

s
) +

s − 1
s

finter(s)]

= γC1[
nx

s
+

s − 1
s

(s − 1)]

= γC1
nx

s
+ γC1

(s − 1)2

s
(50)

Therefore from (50) and (13),

S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s)

=
nγC1x

s
(51)

We see that the expression of S′(x, s) is same as the case of linear-cost penalty and randomized-search
propagation. Therefore the expression of the stationary threshold also remains the same which is
equal to,

t̃(s) = max
{

t
∣∣∣ (1 − δ)t + δt+1 ≤ (1 − δ)sβC2

nγC1
+ δ, t ∈ {1, 2, ...}

}
. (52)

However note that the expression of the quantity MinCost(s) for this case will be different from the
linear-cost penalty and randomized-search propagation case. This will result in a different s∗ and so
a different t∗ = t̃(s∗).

(d) Exponential-Cost penalty and Deterministic search propagation

For this case, from (4) and (5), we have

S(x, s) = γC1[fintra(x,
n

s
) +

s − 1
s

finter(s)]

= γC1[
nex

s
+

s − 1
s

(s − 1)]

= γC1
nex

s
+ γC1

(s − 1)2

s
(53)

Therefore from (53) and (13),

S′(x, s) = αS(x + 1, s) + ᾱS(x, s) − αS(1, s) − ᾱS(0, s)

=
nγC1

s
(αe + ᾱ)(ex − 1) (54)

We see that the expression of S′(x, s) is same as the case of exponential-cost penalty and randomized-
search propagation. Therefore the expression of the stationary threshold also remains the same which
is equal to,

t̃(s) = max
{

t
∣∣∣ et − etδt+1 − (1 − δ)δe[1 − (δe)t]

(1 − δe)
≤ sβC2

nγC1(αe + ᾱ)
+ (1 − δ), t ∈ {1, 2, ...}

}

(55)

However, note that in this case too, the expression of the quantity MinCost(s) will be different from
the exponential-cost penalty and randomized-search propagation case. This will result in a different
s∗ and so a different t∗ = t̃(s∗).
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FOCS, 2000.

[7] A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving the quality of
data on the web. In The VLDB Journal, pages 391–400, 2001.

[8] M.Jiang, J.Li, and Y.C.Tay. Cluster Based Routing Protocol (CBRP) Function Specifications,
1999. IETF Draft.

16


