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Abstract

Protocols that solve agreement problems are essential building blocks for fault
tolerant distributed systems. While many protocols have been published, little has
been done to analyze their performance, especially the performance of their fault
tolerance mechanisms. In this paper, we present a performance evaluation method-
ology that can be generalized to analyze many kinds of fault-tolerant algorithms.
We use the methodology to compare two atomic broadcast algorithms with differ-
ent fault tolerance mechanisms: unreliable failure detectors and group member-
ship. We evaluated the steady state latency in (1) runs with neither crashes nor
suspicions, (2) runs with crashes and (3) runs with no crashes in which correct
processes are wrongly suspected to have crashed, as well as (4) the transient la-
tency after a crash. We found that the two algorithms have the same performance
in Scenario 1, and that the group membership based algorithm has an advantage
in terms of performance and resiliency in Scenario 2, whereas the failure detector
based algorithm offers better performance in the other scenarios. We discuss the
implications of our results to the design of fault tolerant distributed systems.

1 Introduction

Agreement problems — such as consensus, atomic broadcast or atomic com-
mitment — are essential building blocks for fault tolerant distributed applications,
including transactional and time critical applications. These agreement problems
have been extensively studied in various system models, and many protocols solv-
ing these problems have been published [1, 2], offering different levels of guaran-
tees. However, these protocols have mostly been analyzed from the point of view
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of their safety and liveness properties, and very little has been done to analyze
their performance. Also, most papers focus on analyzing failure free runs, thus
neglecting the performance aspects of failure handling. In our view, the limited
understanding of performance aspects, in both failure free scenarios and scenarios
with failure handling, is an obstacle for adopting such protocols in practice.

Unreliable failure detectorsvs.group membership. In this paper, we compare
two (uniform) atomic broadcast algorithms, the one based onunreliable failure
detectorsand the other on agroup membership service. Both services provide pro-
cesses with estimates about the set of crashed processes in the system.1 The main
difference is that failure detectors provide inconsistent information about failures,
whereas a group membership service provides consistent information. While sev-
eral atomic broadcast algorithms based on unreliable failure detectors have been
described in the literature, to the best of our knowledge, all existing group commu-
nication systems provide an atomic broadcast algorithm based on group member-
ship (see [3] for a survey). So indirectly our study compares two classes of tech-
niques, one widely used in implementations (based on group membership), and the
other (based on failure detectors) not (yet) adopted in practice.

The two algorithms. The algorithm that uses unreliable failure detectors is the
Chandra-Toueg atomic broadcast algorithm [4], which can toleratef < n/2 crash
failures, and requires the failure detector♦S. As for an algorithm using group
membership, we chose an algorithm that implements total order with a mecha-
nism close to the failure detector based algorithm, i.e., a sequencer based algorithm
(which also toleratesf < n/2 crash failures). Both algorithms were optimized
(1) for failure and suspicion free runs (rather than runs with failures and suspi-
cions), (2) to minimize latency under low load (rather than minimize the number of
messages), and (3) to tolerate high load (rather than minimize latency at moderate
load).

We chose these algorithms because they are well-known and easily comparable:
they offer the same guarantees in the same model. Moreover, they behave simi-
larly if neither failures nor failure suspicions occur (in fact, they generate the same
exchange of messages given the same arrival pattern). This allows us to focus our
study on the differences in handling failures and suspicions.

Methodology for performance studies. The two algorithms are evaluated using
simulation. We model message exchange by taking into account contention on the
network and the hosts [5]. We model failure detectors (including the ones under-
lying group membership) in an abstract way, using the quality of service (QoS)
metrics proposed by Chen et al. [6]. Our performance metric for atomic broadcast
is calledlatency, defined as the time that elapses between the sending of a mes-
sagem and the earliest delivery ofm. We study the atomic broadcast algorithms
in several benchmark scenarios, including scenarios with failures and suspicions:
we evaluate the steady state latency in (1) runs with neither crashes nor suspicions,

1Beside masking failures, a group membership service has other uses. This issue is discussed in
Section 8.
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(2) runs with crashes and (3) runs with no crashes in which correct processes are
wrongly suspected to have crashed, as well as (4) the transient latency after a crash.

We believe that our methodology can be generalized to analyze other fault-
tolerant algorithms. In fact, beside the results of the comparison, the contribution
of this paper is the proposed methodology.

The results. The paper shows that the two algorithms have the same performance
in run with neither crashes nor suspicions, and that the group membership based
algorithm has an advantage in terms of performance and resiliency a long time after
crashes occur. In the other scenarios, involving wrong suspicions of correct pro-
cesses and the transient behavior after crashes, the failure detector based algorithm
offers better performance. We discuss the implications of our results to the design
of fault tolerant distributed systems.

The rest of the paper is structured as follows. Section 2 presents related work.
Section 3 describes the system model and atomic broadcast. We introduce the al-
gorithms and their expected performance in Section 4. Section 5 summarizes the
context of our performance study, followed by our simulation model for the net-
work and the failure detectors in Section 6. Our results are presented in Section 7,
and the paper concludes with a discussion in Section 8.

2 Related work

Most of the time, atomic broadcast algorithms are evaluated using simple metrics
like time complexity (number of communication steps) and message complexity
(number of messages). This gives, however, little information on the real perfor-
mance of those algorithms. A few papers provide a more detailed performance
analysis of atomic broadcast algorithms: [7] and [8] analyze four different algo-
rithms using discrete event simulation; [5] uses a contention-aware metric to com-
pare analytically the performance of four algorithms; [9, 10] analyze atomic broad-
cast protocols for wireless networks, deriving assumption coverage and other per-
formance related metrics. However, all these papers analyze the algorithms only
in failure free runs. This only gives a partial understanding of their quantitative
behavior.

Other papers analyze agreement protocols, taking into account various failure
scenarios: [11] presents an approach for probabilistically verifying a synchronous
round-based consensus protocol; [12] analyzes a Byzantine atomic broadcast pro-
tocol; [13] evaluates the performability of a group-oriented multicast protocol; [14]
compares the impact of different implementations of failure detectors on a consen-
sus algorithm (simulation study); [15] analyzes the latency of the Chandra-Toueg
consensus algorithm. Note that [15], just as this paper, models failure detectors
using the quality of service (QoS) metrics of Chen et al. [6].

3 Definitions

3.1 System model

We consider a widely accepted system model. It consists of processes that com-
municate only by exchanging messages. The system is asynchronous, i.e., we make
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no assumptions on its timing behavior: there are no bounds on the message trans-
mission delays and the relative processing speeds of processes. The network is
quasi-reliable: it does not lose, alter nor duplicate messages (messages whose
sender or recipient crashes might be lost). In practice, this is easily achieved by
retransmitting lost messages. We consider that processes only fail by crashing.
Crashed processes do not send any further messages. Process crashes are rare,
processes fail independently, and process recovery is slow: both the time between
crashes and time to repair are much greater than the latency of atomic broadcast.

The atomic broadcast algorithms in this paper (and all the fault-tolerant algo-
rithms in the literature) use some form of crash detection. We call the parts of the
algorithms that implement crash detectionfailure detectors. The failure detector
based atomic broadcast algorithm uses failure detectors directly; the group mem-
bership based atomic broadcast algorithm uses them indirectly, through the group
membership service. A failure detector maintains a list of processes it suspects to
have crashed. It might make mistakes: it might suspect correct processes and it
might not suspect crashed processes immediately.2

Note that whereas we assume that process crashes are rare, (wrong) failure sus-
picions may occur frequently, depending on the tuning of the failure detectors.

3.2 Atomic broadcast

Atomic Broadcast is defined in terms of two primitives calledA-broadcast(m)
andA-deliver(m), wherem is some message. Informally speaking, atomic broad-
cast guarantees that (1) if a message is A-broadcast by a correct process, then all
correct processes eventually A-deliver it, and (2) correct processes A-deliver mes-
sages in the same order (see [18, 4] for more formal definitions).Uniform atomic
broadcast ensures these guarantees even for faulty processes. In this paper, we
focus on uniform atomic broadcast.

4 Algorithms

This section introduces the two atomic broadcast algorithms and the group mem-
bership algorithm. Then we discuss the expected performance of the two atomic
broadcast algorithms.

4.1 Chandra-Toueg uniform atomic broadcast algorithm

The Chandra-Toueg uniform atomic broadcast algorithm uses failure detectors
directly [4]. We shall refer to it as the FD atomic broadcast algorithm, or simply
as theFD algorithm. A process executes A-broadcast by sending a message to all
processes.3 When a process receives such a message, it buffers it until the delivery

2To make sure that the atomic broadcast algorithms terminate, we need some assumptions on
the behavior of the failure detectors [16]. These assumptions are rather weak: they can usually be
fulfilled in real systems by tuning implementation parameters of the failure detectors [17].

3This message is sent using reliable broadcast. We use an efficient algorithm inspired by [19].
The algorithm works as follows. Consider a reliable broadcast messagem sent froms to d1, . . . , dk.
s simply sendsm to all destinationsd1, . . . , dk. Processes buffer all received messages for later
retransmission.di retransmitsm when its failure detector suspects the senders and all destinations
with smaller indexesd1, . . . ,di−1. This algorithm requires one broadcast message if the sender is not

4



order is decided. The delivery order is decided by a sequence of consensus num-
bered 1, 2,. . .. The initial value and the decision of each consensus is aset of mes-
sage identifiers. Let msg(k) be the set of message IDs decided by consensus#k.
The messages denoted bymsg(k) are A-delivered before the messages denoted by
msg(k + 1), and the messages denoted bymsg(k) are A-delivered according to a
deterministic function, e.g., according to the order of their IDs.

Chandra-Toueg ♦S consensus algorithm. For solving consensus, we use the
Chandra-Toueg♦S algorithm [4].4 The algorithm can toleratef < n/2 crash
failures. It is based on the rotating coordinator paradigm: each process executes
a sequence of asynchronous rounds (i.e., not all processes necessarily execute the
same round at a given timet), and in each round a process takes the role ofco-
ordinator (pi is coordinator for roundskn + i). The role of the coordinator is to
impose a decision value on all processes. If it succeeds, the consensus algorithm
terminates. It may fail if some processessuspectthe coordinator to have crashed
(whether the coordinator really crashed or not). In this case, a new round is started.
We skip the details of the execution, since they are not necessary for understanding
the paper.

Example run of the FD algorithm. Figure 1 illustrates an execution of the FD
atomic broadcast algorithm in which one single messagem is A-broadcast and
neither crashes nor suspicions occur. At first,m is sent to all processes. Upon
receipt, the consensus algorithm starts. The coordinator sends its proposal to all
other processes. Each process acknowledges this message. Upon receiving acks
from a majority of processes (including itself), the coordinator decides its own
proposal and sends the decision (using reliable broadcast) to all other processes.
The other processes decide upon receiving the decision message.

4.2 Fixed sequencer uniform atomic broadcast algorithm

The second uniform atomic broadcast algorithm is based on a fixed sequencer [20].
It uses a group membership service for reconfiguration in case of a crash. We shall
refer to it as the GM atomic broadcast algorithm, or simply as theGM algorithm.
We describe here theuniformversion of the algorithm.

In the GM algorithm, one of the processes takes the role ofsequencer. When
a process A-broadcasts a messagem, it first broadcasts it to all. Upon reception,
the sequencer (1) assigns a sequence number tom, and (2) broadcasts the sequence

suspected (the most frequent case) and at most two broadcast messages if crashes occur but correct
processes are not suspected.

As for garbage collection: all processes piggyback which messages they received on outgoing
messages. A messagem is removed from the buffer (1) upon retransmission and (2) when its stability
is detected from the piggybacked information on incoming messages.

4Actually, we included some easy optimizations in the algorithm (reading [4] is necessary for
understanding the following explanation): (1) Phase 1 of Round 1 is skipped, and (2) the coordinator
sends an abort message in Phase 4 in rounds that fail, and the other processes wait for the abort
message before starting a new round. The latter optimization makes sure that processes do not start
Round 2 unless suspicions occur, and thus do not load the system with unnecessary messages. The
result is improved performance if no suspicions occur — which is the most common case in most
systems.
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Figure 1. Example run of the atomic broadcast algorithms. Labels on
the top/bottom refer to the FD/GM algorithm, respectively.

number to all. When non-sequencer processes have receivedm and its sequence
number, they send an acknowledgment to the sequencer.5 The sequencer waits for
acks from a majority of processes, then deliversm and sends a message indicating
that m can be A-delivered. The other processes A-deliverm when they receive
this message. The execution is shown in Fig. 1. Note that the messages denoted
seqnum, ackanddelivercan carry several sequence numbers. This is essential for
achieving good performance under high load. Note that the FD algorithm has a
similar “aggregation” mechanism: one execution of the consensus algorithm can
decide on the delivery order of several messages.

When the sequencer crashes, processes need to agree on the new sequencer.
This is why we need a group membership service: it provides a consistentviewof
the group to all its members, i.e., a list of the processes which have not crashed
(informally speaking). The sequencer is the first process in the current view. The
group membership algorithm described below can toleratef < n/2 crash failures
(more in some runs) and requires the failure detector♦S.

4.3 Group membership algorithm

A group membership service [3] maintains theview of a group, i.e., the list of
correct processes of the group. The current view6 might change because processes
in the group might crash or exclude themselves, and processes outside the group
might join. The group membership service guarantees that processes see the same
sequence of views (except for processes which are excluded from the group; they
miss all views after their exclusion until they join again). In addition to maintaining
the view, our group membership service ensuresView SynchronyandSame View
Delivery: correct and not suspected processes deliver the same set of messages in
each view, and all deliveries of a messagem take place in the same view.

5Figure 1 shows that the acknowledgments and subsequent messages are not needed in the non-
uniform version of the algorithm. We come back to this issue later in the paper.

6There is only one current view, since we consider anon-partitionableor primary partitiongroup
membership service.
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Our group membership algorithm [21] uses failure detectors to start view changes,
and relies on consensus to agree on the next view. This is done as follows. A pro-
cess that suspects another process starts a view change by sending a “view change”
message to all members of the current view. As soon as a process learns about a
view change, it sends its unstable messages7 to all others (all the other messages
are stable, i.e., have been delivered on all processes already). When a process has
received the unstable messages from all processes it does not suspect, sayP , it
computes the unionU of the unstable messages received, and starts consensus with
the pair(P,U) as its initial value. Let(P ′, U ′) be the decision of the consensus.
Once a process decides, it delivers all messages fromU ′ not yet delivered, and in-
stallsP ′ as the next view. The protocol for joins and explicit leaves is very similar.

State transfer. When a process joins a group, its state needs to be synchronized
with the other members of the group. What “state” and “synchronizing” exactly
mean is application dependent. We only need to define these terms in a limited
context: in our study, the only processes that ever join are correct processes which
have been wrongly excluded from the group. Consequently, the state of such a
processp is mostly up-to-date. For this reason, it is feasible to update the state of
p the following way: whenp rejoins, it asks some process for the messages it has
missed since it was excluded. Processp delivers these messages, and then starts to
participate in the view it has joined. Note that this only works because our atomic
broadcast algorithm is uniform: with non-uniform atomic broadcast, the excluded
process might have delivered messages never seen by the others, thus having an
inconsistent state. In this case, state transfer would be more complicated.

4.4 Expected performance

We now discuss, from a qualitative point of view, the expected relative perfor-
mance of the two atomic broadcast algorithms (FD algorithm and GM algorithm).

Figure 1 shows executions with neither crashes nor suspicions. In terms of the
pattern of message exchanges, the two algorithms are identical: only the content
of messages differ. Therefore we expect the same performance from the two algo-
rithms in failure free and suspicion-free runs.

Let us now investigate how the algorithms slow down when a process crashes.
There are two major differences. The first is that the GM algorithm reacts to the
crash ofeveryprocess, while the FD algorithm reacts only to the crash ofp1, the
first coordinator. The other difference is that the GM algorithm takes a longer
time to re-start delivering atomic broadcast messages after a crash. This is true
even if we compare the GM algorithm to the worst case for the FD algorithm,
i.e., when the first coordinatorp1 fails. The FD algorithm needs to execute Round
2 of the consensus algorithm. This additional cost is comparable to the cost of
an execution with no crashes (3 communication steps, 1 multicast and about2n
unicast messages). On the other hand, the GM algorithm initiates an expensive
view change (5 communication steps, aboutn multicast andn unicast messages).
Hence we expect that if the failure detectors detect the crash in the same time by
the two algorithms, the FD algorithm performs better.

7Messagem is stablefor processp whenp knows thatm has been received by all other processes
in the current view.
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Consider now the case when a correct process is wrongly suspected. The al-
gorithms react to a wrong suspicion the same way as they react to a real crash.
Therefore we expect that if the failure detectors generate wrong suspicions at the
same rate, the FD algorithm will suffer less performance penalty.

5 Context of our performance study

5.1 Performance measures

Our main performance measure is thelatencyof atomic broadcast. LatencyL is
defined for a single atomic broadcast as follows. LetA-broadcast(m) occur at time
t0, andA-deliver(m) onpi at timeti, for eachi = 1, . . . , n. Then latency is defined

as the time elapsed until the first A-delivery ofm, i.e.,L
def= (mini=1,...,n ti)−t0. In

our study, we compute the mean forL over a lot of messages and several executions.
This performance metric makes sense in practice. Consider a service replicated

for fault tolerance using active replication [22]. Clients of this service send their
requests to the server replicas using Atomic Broadcast. Once a request is delivered,
the server replica processes the client request, and sends back a reply. The client
waits for the first reply, and discards the other ones (identical to the first one). If we
assume that the time to service a request is the same on all replicas, and the time
to send the response from a server to the client is the same for all servers, then the
first response received by the client is the response sent by the server to which the
request was delivered first. Thus there is a direct link between the response time of
the replicated server and the latencyL.

Latency is always measured under a certain workload. We chose simple work-
loads: (1) all destination processes send atomic broadcast messages at the same
constant rate, and (2) the A-broadcast events come from a Poisson stochastic pro-
cess. We call the overall rate of atomic broadcast messagesthroughput, denoted by
T . In general, we determine how the latencyL depends on the throughputT .

5.2 Scenarios

We evaluate the latency of the atomic broadcast algorithms in various scenarios.
We now describe each of the scenarios in detail, mentioning which parameters
influence latency in the scenario. Parameters that influence latency in all scenarios
are the algorithm (A), the number of processes (n) and the throughput (T ).

Steady state of the system. We measure latency after it stabilizes (a sufficiently
long time after the start of the system or after any crashes). We distinguish three
scenarios, based on whether crashes and wrong suspicions (failure detectors sus-
pecting correct processes) occur:

• normal-steady: Neither crashes nor wrong suspicions in the experiment.

• crash-steady: One or several crashes occur before the experiment. Beside
A, T andn, an additional parameter is the set of crashed processes. As we
assume that the crashes happened a long time ago, all failure detectors in the
system permanently suspect all crashed processes at this point. No wrong
suspicions occur.
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• suspicion-steady:No crashes, but failure detectors generate wrong suspi-
cions, which cause the algorithms to take extra steps and thus increase la-
tency. BesideA, T andn, additional parameters include how often wrong
suspicions occur and how long they last. These parameters are discussed in
detail in Section 6.2.

It would be meaningful to combine the crash-steady and suspicion-steady sce-
narios, to have both crashes and wrong suspicions. We omitted this case, for we
wanted to observe the effects of crashes and wrong suspicions independently.

Transient state after a crash. In this scenario we force a crash after the system
reached a steady state. After the crash, we can expect a halt or a significant slow-
down of the system for a short period. In this scenario, we define latency such
that it reflects the latency of executions that are affected by the crash and thus hap-
pen around the moment of the crash. Also, we must take into account that not all
crashes affect the system the same way; our choice is to consider the worst case
(the crash that slows down the system most). Our definition is the following:

• crash-transient: Consider that a processp crashes at timet (neither crashes
nor wrong suspicions occur, except for this crash). We have processq (p 6= q)
executeA-broadcast(m) att. LetL(p, q) be the mean latency ofm, averaged

over a lot of executions. ThenLcrash
def
= maxp,q∈P L(p, q), i.e., we con-

sider the crash that affects the latency most. In this scenario, we have one
additional parameter, describing how fast failure detectors detect the crash
(discussed in Section 6.2).

We could combine this scenario with the crash-steady and suspicion-steady sce-
narios, to include other crashes and/or wrong suspicions. We omitted these cases,
for we wanted to observe the effects of (i) the recent crash, (ii) old crashes and
(iii) wrong suspicions independently. Another reason is that we expect the effect of
wrong suspicions on latency to be secondary with respect to the effect of the recent
crash: wrong suspicions usually happen on a larger timescale.

6 Simulation models

Our approach to performance evaluation is simulation, which allowed for more
general results as would have been feasible to obtain with measurements in a real
system (we can use a parameter in our network model to simulate a variety of differ-
ent environments). We used the Neko prototyping and simulation framework [23]
to conduct our experiments.

6.1 Modeling the execution environment

We now describe how we modeled the transmission of messages. We use the
model of [5], inspired from simple models of Ethernet networks [24]. The key point
in the model is that it accounts forresource contention. This point is important as
resource contention is often a limiting factor for the performance of distributed al-
gorithms. Both a host and the network itself can be a bottleneck. These two kinds
of resources appear in the model (see Fig. 2): the network resource (shared among
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all processes) represents the transmission medium, and the CPU resources (one per
process) represent the processing performed by the network controllers and the lay-
ers of the networking stack, during the emission and the reception of a message (the
cost of running the algorithm is neglectable). A messagem transmitted for process
pi to processpj uses the resources (i)CPUi, (ii) network, and (iii)CPUj , in this
order. Messagem is put in a waiting queue before each stage if the corresponding
resource is busy. The time spent on the network resource is our time unit. The
time spent on each CPU resource isλ time units; the underlying assumption is that
sending and receiving a message has a roughly equal cost.

Theλ parameter (0 ≤ λ) shows the relative speed of processing a message on a
host compared to transmitting it over the network. Different values model different
networking environments. We conducted experiments with a variety of settings for
λ.
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Figure 2. Transmission of a message in our network model.

Crashes are modelled as follows. If a processpi crashes at timet, no messages
can pass betweenpi andCPUi after t; however, the messages onCPUi and the
attached queues are still sent, even after timet. In real systems, this corresponds
to a (software) crash of the application process (operating system process), rather
than a (hardware) crash of the host or a kernel panic. We chose to model software
crashes because they are more frequent in most systems [25].

6.2 Modelling failure detectors

One approach to modeling a failure detector is to use a specific failure detection
algorithm and model all its messages. However, this approach would restrict the
generality of our study: another choice for the algorithm would likely give different
results. Also, it is not justified to model the failure detector in so much detail, as
other components of the system, like the execution environment, are modelled in
much less detail. We built a more abstract model instead, using the notion of quality
of service (QoS) of failure detectors introduced in [6]. The authors consider the
failure detector at a processq that monitors another processp, and identify the
following three primary QoS metrics (see Fig. 3):

Detection timeTD: The time that elapses fromp’s crash to the time whenq starts
suspectingp permanently.
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monitors process p.

Mistake recurrence timeTMR: The time between two consecutive mistakes (q
wrongly suspectingp), given thatp did not crash.

Mistake duration TM : The time it takes a failure detector component to correct a
mistake, i.e., to trustp again (given thatp did not crash).

Not all of these metrics are equally important in each of our scenarios (see Sec-
tion 5.2). In Scenarionormal-steady, the metrics are not relevant. The same holds
in Scenariocrash-steady, because we observe the system a sufficiently long time
after all crashes, long enough to have all failure detectors to suspect the crashed
processes permanently. In Scenariosuspicion-steadyno crash occurs, hence the
latency of atomic broadcast only depends onTMR andTM . In Scenariocrash-
transientno wrong suspicions occur, henceTD is the relevant metric.

In [6], the QoS metrics are random variables, defined on a pair of processes. In
our system, wheren processes monitor each other, we have thusn(n − 1) failure
detectors in the sense of [6], each characterised with three random variables. In
order to have an executable model for the failure detectors, we have to define (1)
how these random variables depend on each other, and (2) how the distribution of
each random variable can be characterized. To keep our model simple, we assume
that all failure detector modules are independent and the tuples of their random
variables are identically distributed. Moreover, note that we do not need to model
how TMR andTM depend onTD, as the two former are only relevant in Scenario
suspicion-steady, whereasTD is only relevant in Scenariocrash-transient. In our
experiments, we considered various settings forTD, and various settings for com-
binations ofTMR andTM . As for the distributions of the metrics, we took the
simplest possible choices:TD is a constant, and bothTMR andTM are exponen-
tially distributed with (different) constant parameters.

Note that these modelling choices are not realistic: suspicions from different
failure detectors are probably correlated. Our study only represents a starting point,
as we are not aware of any previous work we could build on (apart from [6] that
makes similar assumptions). We will refine our models as we gain more experience.

7 Results

We now present the results for all four scenarios. We obtained results for a
variety of representative settings forλ: 0.1, 1 and 10. The settingsλ = 0.1 and
10 correspond to systems where communication generates contention mostly on
the network and the hosts, respectively, while 1 is an intermediate setting. For
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example, in current LANs, the time spent on the CPU is much higher than the time
spent on the wire, and thusλ = 10 is probably the setting closest to reality.

Most graphs show latency vs. throughput. For easier understanding, we set the
time unit of the network simulation model to 1 ms. The 95% confidence interval is
shown for each point of the graph. The two algorithms were executed with 3 and 7
processes, to tolerate 1 and 3 crashes, respectively.

Normal-steady scenario (Fig. 4). In this scenario, the two algorithms have the
same performance. Each curve thus shows the latency ofbothalgorithms.
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Figure 4. Latency vs. throughput in the normal-steady scenario.

Crash-steady scenario (Fig. 5). With both algorithms, the latency decreases as
more processes crash. This is due to the fact that the crashed processes do not
load the network with messages. The GM algorithm has an additional feature that
improves performance: the sequencer waits for fewer acknowledgements, as the
group size decreases with the crashes. By comparison, the coordinator in the FD
algorithm always waits for the same number of acknowledgments. This explains
why the GM algorithm shows slightly better performance with the same number of
crashes.

With the GM algorithm, it does not matter which process(es) crash. With the
FD algorithm, the crash of the coordinator of Round 1 gives worse performance
than the crash of another process. However, the performance penalty when the
coordinator crashes is easily avoided: (1) each process tags its consensus proposal
with its own identifier, and (2) upon decision, each process re-numbers all processes
such that the process with the identifier in the decision becomes the coordinator of
Round 1 in subsequent consensus executions. This way, crashed processes will stop
being coordinators eventually, hence the steady-state latency is the same regardless
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of which process(es) we forced to crash. Moreover, the optimization incurs no cost.
Hence Fig. 5 shows the latency in runs in which non-coordinator processes crash.

Note also that the GM algorithm has higher resiliency on the long term if crashes
occur, as the group size decreases with the crashes. E.g., withn = 7 and 3 crashes,
the GM algorithm can still tolerate one crash after excluding the crashed processes,
whereas the FD algorithm can tolerate none.
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Figure 5. Latency vs. throughput in the crash-steady scenario. In each
graph, the legend lists the curves from the top to the bottom.

Suspicion-steady scenario (Figures 6 to 11).The occurence of wrong suspi-
cions are quantified with theTMR andTM QoS metrics of the failure detectors. As
this scenario involves crashes, we expect that the mistake durationTM is short. In
our first set of results (Fig. 6 forλ = 0.1; Fig. 7 forλ = 1; Fig. 8 forλ = 10) we
hence setTM to 0, and latency is shown as a function ofTMR. In each figure, we
have four graphs: the left column shows results with 3 processes, the right column
those with 7; the top row shows results at a low load (10 s−1; 1 s−1 if λ = 10) and
the bottom row at a moderate load (300 s−1; 30 s−1 if λ = 10); recall from Fig. 4
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that the algorithms can take a throughput of about 700 s−1 (70 s−1 if λ = 10) in
the absence of suspicions.
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Figure 6. Latency vs. TMR in the suspicion-steady scenario, with TM = 0
(λ = 0.1).

The results show that the GM algorithm is very sensitive to wrong suspicions.
We illustrate this on Fig. 7: even atn = 3 andT = 10 s−1, that is, the settings
that yield the smallest difference, the GM algorithm only works ifTMR ≥ 20 ms,
whereas the FD algorithm still works atTMR = 10 ms; the latency of the two
algorithms is only equal atTMR ≥ 5000 ms. The difference is greater with all
other settings.

In the second set of results (Fig. 9 forλ = 0.1; Fig. 10 forλ = 1; Fig. 11 for
λ = 10) TMR is fixed andTM is on the x axis. We choseTMR such that the latency
of the two algorithms is close but not equal atTM = 0. For example, withλ = 1
(Fig. 10), (i)TMR = 1000 ms forn = 3 andT = 10 s−1; (ii) TMR = 10000 ms for
n = 7 andT = 10 s−1 and forn = 3 andT = 300 s−1; and (iii) TMR = 100000
ms forn = 7 andT = 300 s−1.

The results show that the GM algorithm is sensitive to the mistake durationTM

as well, not just the mistake recurrence timeTMR.

Crash-transient scenario (Fig. 12). In this scenario, we only present the latency
after the crash of the coordinator and the sequencer, respectively, as this is the case
resulting in the highest transient latency (and the most interesting comparison).
If another process is crashed, the GM algorithm performs roughly the same, as a
view change occurs. In contrast, the FD algorithm outperforms the GM algorithm:
it performs slightly better than in the normal-steady scenario (Fig. 4), as fewer
messages are generated, just like in the crash-steady scenario (Fig. 5).
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Figure 7. Latency vs. TMR in the suspicion-steady scenario, with TM = 0
(λ = 1).

Figure 12 shows thelatency overhead, i.e., the latency minus the detection time
TD, rather than the latency. Graphs showing the latency overhead are more illustra-
tive; note that the latency is always greater than the detection timeTD in this sce-
nario, as no atomic broadcast can finish until the crash of the coordinator/sequencer
is detected. The latency overhead of both algorithms is shown forn = 3 (left) and
n = 7 (right) and a variety of values forλ (0.1, 1 and 10 from top to bottom) and
TD (different curves in the same graph).

The results show that (1) both algorithms perform rather well (the latency over-
head of both algorithms is only a few times higher than the latency in the normal-
steady scenario; see Fig. 4) and that (2) the FD algorithm outperforms the GM
algorithm in this scenario.

8 Discussion

We have investigated two uniform atomic broadcast algorithms designed for the
same system model: an asynchronous system (with a minimal extension to allow
us to have live solutions to the atomic broadcast problem) andf < n/2 process
crashes (the highestf that our system model allows). We have seen that in the
absence of crashes and suspicions, the two algorithms have the same performance.
However, a long time after any crashes, the group membership (GM) based algo-
rithm performs slightly better and has better resilience. In the scenario involving
wrong suspicions of correct processes and the one describing the transient behavior
after crashes, the failure detector (FD) based algorithm outperformed the GM based
algorithm. The difference in performance is much greater when correct processes
are wrongly suspected.
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Figure 8. Latency vs. TMR in the suspicion-steady scenario, with TM = 0
(λ = 10).

Combined use of failure detectors and group membership. Based on our re-
sults, we advocate a combined use of the two approaches [26]. Failure detectors
should be used to make failure handling more responsive (in the case of a crash)
and more robust (tolerating wrong suspicions). A different failure detector, mak-
ing fewer mistakes (at the expense of slower crash detection) should be used in the
group membership service, to get the long term performance and resiliency ben-
efits after a crash. A combined use is also desirable because the failure detector
approach is only concerned with failure handling, whereas a group membership
service has a lot of essential features beside failure handling: processes can be
taken offline gracefully, new processes can join the group, and crashed processes
can recover and join the group. Also, group membership can be used to garbage
collect messages in buffers when a crash occurs [26].

Generality of our results. We have chosen atomic broadcast algorithms with
a centralized communication scheme, with one process coordinating the others.
The algorithms are practical: in the absence of crashes and suspicions, they are
optimized to have small latency under low load, and to work under high load as
well (messages needed to establish delivery order are aggregated). In the future, we
would like to investigate algorithms with a decentralized communication scheme
(e.g., [27]) as well.

Non-uniform atomic broadcast. Our study focuses on uniform atomic broad-
cast. What speedup can we gain by dropping the uniformity requirement in either
of the approaches (of course, the application must work with the relaxed require-
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Figure 9. Latency vs. TM in the suspicion-steady scenario, with TMR

fixed ( λ = 0.1).

ments)? The first observation is that there is no way to transform the FD based
algorithm into a more efficient algorithm that is non-uniform: the effort the algo-
rithm must invest to reach agreement on Total Order automatically ensures uni-
formity ([28] has a relevant proof about consensus). In contrast, the GM based
algorithm has an efficient non-uniform variant that uses only two multicast mes-
sages (see Fig. 1). Hence the GM based approach allows for trading off guarantees
related to failures and/or suspicions for performance. Investigating this tradeoff in
a quantitative manner is a subject of future work. Also, we would like to point out
that, unlike in our study, a state transfer to wrongly excluded processes cannot be
avoided when using the non-uniform version of the algorithm, and hence one must
include its cost into the model.

Methodology for performance studies. In this paper, we proposed a method-
ology for performance studies of fault-tolerant distributed algorithms. Its main
characteristics are the following: (1) we define repeatable benchmarks, i.e., sce-
narios specifying the workload, the occurence of crashes and suspicions, and the
performance measures of interest; (2) the benchmarks include various scenarios
with crashes and suspicions; (3) we describe failure detectors using quality of ser-
vice (QoS) metrics.

The methodology allowed us to compare the two algorithms easily, as only a
small number of parameters are involved. Currently, it is defined only for atomic
broadcast algorithms, but we plan to extend it to analyze other fault tolerant algo-
rithms.
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Figure 10. Latency vs. TM in the suspicion-steady scenario, with TMR

fixed ( λ = 1).
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