
Modelling a Secure, Mobile, and Transactional System with CO-OPN

Didier Buchs, Stanislav Chachkov, David Hurzeler
Software Engineering Laboratory

Swiss Federal Institute of Technology Lausanne
1015 Lausanne, SWITZERLAND

{Didier.Buchs, Stanislav.Chachkov, David.Hurzeler}@epfl.ch

Abstract

Modelling complex concurrent systems is often difficult
and error-prone, in particular when new concepts coming
from advanced practical applications are considered.
These new application domains include dynamicity, mobil-
ity, security, and localization dependent computing. In or-
der to fully model and prototype such systems we propose
to use several concepts introduced in our specification lan-
guage CO-OPN, like context, dynamicity, mobility, subtyp-
ing, and inheritance. CO-OPN (Concurrent Object
Oriented Petri Net) is a formal specification language for
modelling distributed systems; it is based on coordinated
algebraic Petri nets. This paper focuses on the use of sever-
al basic mechanisms of CO-OPN for modelling mobile sys-
tems and the generation of corresponding Java code. A
significant example of distributors accessible through mo-
bile devices (for example, PDA with Bluetooth) is fully mod-
elled and implemented with our technique.

1. Introduction

In the world of complex distributed reactive soft-
ware systems, mobility represents a new step towards
what we might call ubiquitous computing, and has be-
come a major issue in software engineering.

The development of such systems requires model-
ling tools able to capture their properties as well as the
structure of the interactions between the software and
its environment. We also want these tools to allow for
extensibility and maintenance, and to facilitate the de-
sign choices which will enable us to guarantee some
system properties.

In this paper, we present a formal framework for the
development of mobile distributed systems from the
modelling phase to the implementation. The approach
we propose has the object-oriented paradigm as a
structuring principle. Our general formalism can ex-
press both abstract and concrete aspects of systems,
with emphasis on the description of concurrency and

abstract data types. This formalism is called Concur-
rent Object-Oriented Petri Nets (CO-OPN)[5][2]. A
coordination layer has been developed on top of this
formalism [6] so as to deal with a distributed architec-
ture taking into account information about localization
and mobility. This is what we plan to detail in this pa-
per.

We will explain our model by using a top-down ap-
proach: we will describe the evolution from a high-
level interconnection diagram between the major ac-
tors of our model, to the internal machinery of these
actors, the description of the mobile agents, and the
data types used. We will then also address the security
and extensibility issues through some semantic con-
cepts.

The paper is organized as follows: In section 2, we
informally describe the example we are going to mod-
el, and show its interest. In section 3, we explain the
model, using the top-down approach mentioned
above. We also use the model to give a little bit more
detail on the CO-OPN semantics, as far as transactions
and mobility are concerned. We end the section by jus-
tifying our modelling choices (in the part concerning
security) and by talking about subtyping and extensi-
bility. Section 4 deals with automatic (but config-
urable) code generation from a CO-OPN specification
to a Java program, with a particular emphasis on the
mobility aspects.

2. The mobile shopping example.

Let us present our example.

The system is composed of three kinds of entities,
namely the product dispensers, the mobile phones, and
a bank (see figure 1). The bank may communicate
with any other entity. A mobile phone and a product
dispenser may communicate if and only if the former
is located in what we might call the "Product Dispens-
er zone", i.e. if and only if they are close enough. In the
picture, mobile phone 1 can see both dispensers,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902686?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

whereas mobile phone 2 can only see the cigarette dis-
penser, and mobile phone 3 can see no commercial
dispenser. The bank sees and can be seen by every ac-
tor of the system.

Figure 1: The actors (real life view)

Both the product dispensers and the mobile phone
owners have an account in the bank; an owner of a mo-
bile phone may ask the bank to make a transfer from
its account to a product dispenser's account, provided
the former has enough money to do so.

A product dispenser is an entity which sells prod-
ucts from a predefined list. A mobile phone is notified
when it enters or leaves the zone of a product dispens-
er. It also receives the list of products that the dispens-
er sells.

The owner of a mobile phone may select a product
dispenser from the list of all the «reachable» product
dispensers. The mobile phone may then send both a re-
quest to the product dispenser to deliver a product, and
a transfer order to the bank. Upon receipt of the money
on its account, and if the requested product is not out
of stock, the product dispenser delivers the product,
and displays the identity of the mobile phone owner
which has requested (and paid for) it. If, for some rea-
son, the product is not delivered, the money is not
withdrawn from the mobile phone owner's account.

This example seems interesting to us for different
reasons. First of all, it looks like a realistic system
which we may well see and use in a few years; a sim-
ilar system already exists, where mobile phone owners
may pay for parking their car by phone. Second, we
believe it addresses many software engineering chal-
lenges: It is an embedded system, some of its entities

are mobile, it is concurrent, transactional, and it has
security as a main issue.

Throughout this paper, we will show how we deal
with all these features, arguing that the CO-OPN spec-
ification language allows us to model this system by
taking these features into account.

3. Modelling with CO-OPN

For obvious simplicity reasons, we will limit the
system to one mobile phone and one drinks dispenser.
We will explain how we can extend our model, and
how it is then treated very similarly.

CO-OPN is an object-oriented modelling language,
based on Algebraic Data Types (ADT), Petri nets, and
IWIM (Idealized Worker Idealized Manager) coordi-
nation models [4]. Hence, CO-OPN specifications are
collections of ADT, class and context (i.e. coordina-
tion) modules [5]. Syntactically, each module has the
same overall structure; it includes an interface section
defining all elements accessible from the outside, and
a body section including the local aspects private to
the module. Moreover, class and context modules
have convenient graphical representations which are
used in this paper, showing their underlying Petri net
model. Low-level mechanisms and other features
dealing specifically with object-orientation are out of
the scope of this paper, and can be found in [1] [2]. We
will, however, show how they have been used in our
example.

3.1 The CO-OPN coordination model, and the sys-
tem entities

In this section, we will describe the CO-OPN spec-
ification of the system described in the previous sec-
tion. We will therefore introduce the various concepts
of this language which we use to model the dispenser/
mobile phone/bank system, and use a top-down strat-
egy for the modelling. The idea is to start by the high-
est-level entities interfaces and connections, and to
refine them progressively.

Because our system is composed of several com-
puting entities, we use the high-level concept of coor-
dination programming [7] for building our system. In
our view, coordination is managing the dependencies
among activities. Work has been done to show that co-
ordination patterns are likely to be applied from the
beginning of the design phase of the software develop-
ment [3]. This process involves the use of specific co-
ordination models and languages adapted to our

Bank

Drinks
Dispenser

Cigarette
Dispenser

Drinks zone Cigarette zone

1

2

3

specific needs during the design phase of the model-
ling.

Because of their intrinsic nature, IWIM coordina-
tion models [7] are very well suited for the coordina-
tion of software elements during the design phase [3].
The coordination layer of CO-OPN [2][3][4] is a coor-
dination language based on this model, well adapted to
the formal coordination of object-oriented systems.
The CO-OPN context modules define the coordina-
tion entities [6], while the CO-OPN classes define the
basic lowest-level coordinated entities. Finally, as we
will see, CO-OPN allows one to cover the formal de-
velopment of concurrent software from the first for-
mal specification up to the final distributed software
architecture [1].

A CO-OPN context is an entity composed of a bor-
der, a signature, a finite number of other entities (ob-
jects or contexts) and number of connections between
the different services and service calls of these enti-
ties.

Structure and communication of the three main
contexts.

In this subsection we will describe the main con-
texts of our specification and show how they are con-
nected and communicate. We will also show how they
are built on classes (instantiated into objects), and
communicate by sending objects to each other. First of
all, the most high-level coordination entity is the
Wor l d context.

This context represents the environment in which
the entities we want to model are immerged.

Therefore, it contains three other contexts, namely
the Bank , the Dr i nksDi spenser , and the
Mobi l ePhone contexts, which are the major actors
of our system (figure 2). The figure also shows that
these contexts are potentially connected through dif-
ferent methods (provided services, black rectangles on
the pictures) and gates (required services, white rect-
angles on the pictures).

It has seemed realistic to make these high-level en-
tities communicate by the means of mobile agents
(represented here by mobile objects) which, in a way,
represent each context in the other contexts, and act as
messengers.

Figure 2: The coordination model

How do we make the three actors communicate?
We have chosen to model this by creating a
Wor l dConnect or class. The use of this class is to
centralize all the connections. In other words, the three
actors are all connected to the Wor l dConnect or
class, and the latter manages the connections. Let us
give an example. Suppose the Dr i nksDi spenser
context needs to send a message or an object to the
Bank context. It then sends the message/object to the
connector with the bank’s id as parameter, and the
connector retransmits it to the Bank context with the
drinks dispenser’s id as parameter to indicate origin.

The interest of such a connector class is that if we
replace a component, we only need to change the con-
nector class, and not find out which are the modules
referring to this component and change them. Also, it
diminishes the number of connections in the system (if
we have more than 2 components).

These actors and the Wor l dConnect or class are
all part of the Wor l d context. Let us explain how this
context is modelled in CO-OPN.

First of all, we define a context called
Wor l dSegment , which consists in an object of class
Wor l dConnect or and an Abst r act Cont ext
context. The Wor l dSegment context is really a ge-
neric: Wor l dSegment (Abst r act Cont ext) .
This means that it depends on a formal parameter

DispenserZone

MobilePhone

displayChoice _ : listItemPrices

send _ _ : Give agent, id

select _ : item

selectService_ : id

recieve _ _ : Takeagent, id

discovered _ : id

DrinksDispenser

displayId _ : id

giveDrink _ : drink

send _ _ : Giveagent, id

addContainer _ price_ : drink, money

addDrink _ : drink

recieve_ _ : Takeagent, id

discovered _ : id

Bank

sendTemp _ _ : Give agent, id

createAccount _ _ : id, money

recieveFinal _ _ : Takeagent, id

discovered _ : id

WorldConnector

sendFinal _ from _ to _ : agent, id, id

sendTemp _ from _ to _ : agent, id, id

receiveTemp _ from _ to _ : agent, id, id

receiveFinal _ from _ to _ : agent, id, id

sendFinal _ _ : Giveagent, id

recieveTemp _ _ : Takeagent, id

recieve_ _ : Takeagent, id

recieve_ _ : Take agent, id

send _ _ : Giveagent, id

send _ _ : Give agent, id

module. The idea is that we will make the Wor l d con-
text inherit from this context, and when doing this, we
need to replace the parameter module
Abst r act Cont ext by an actual module. The ge-
nericity is really a way of making specifications more
concise.

 We will have the Wor l d context inherit from con-
text Wor l dSegment (Dr i nksDi spenser) , con-
text Wor l dSegment (Bank) , and context
Wor l dSegment (Mobi l ePhone) . As context
Wor l dSegment (Abst r act Cont ext) has a
Wor l dConnect or object named wc , such will be
the case with all three “ instanciations” , and thus, the
Wor l d context will only have one object wc of class
Wor l dConnect or . This way, we have connected
all entities!

The Bank context can, at any time, send an agent
object to any of the other protagonists of the system.
The drinks dispenser, however, must wait until the
mobile phone is in its “zone” to be able to communi-
cate with it. We have modelled this by a method
di scover ed on the Dr i nksDi spenser context,
which we call as soon as the mobile phone is in the
right zone. Because we do not model the mobile
phone's movement in space, we will explicitly call this
method during simulation. As soon as this method is
activated, the communication link is established and
the Dr i nksDi spenser context sends one of its
agents to the Mobi l ePhone context.

send a i ddd With r ecei ve a i d mobi l e;

The AbstractContext context.

The three contexts share a common structure (in-
herited, as we will see later on, from the
Abst r act Cont ext context) to deal with these
agents: They all have an ar r i ved method and a
send gate, as well as three pending request queues to
asynchronously deal with the sending and the receiv-
ing of agents (see figure 3).

When an agent arrives in the Abst r act Cont ext
context, it is put in the qI n queue. When it leaves the
context, it is either put in the qOut Fi nal (if it leaves
with a give) or the qOut Temp (if it leaves with a
lend) queue.

The contexts also have an identity, used to identify
agents’ destinations and origins. The identities are
also used to attribute a bank account to an actor of the
system.

Please note that in the contexts inheriting from this
last context, we will not detail or even show (in the

graphical representations) all the features which are
identical to those of Abst r act Cont ext .

Figure 3: The abstract context

The Bank context

We have defined a class Account , and the bank
naturally contains one instance of this class for all the
other actors of the system (here, in this simplified
model of our example, the Dr i nksDi spenser and
Bank contexts).

Apart from the r ecei ve and send methods and
gates, the Bank context has a cr eat eAccount
method, which, given an identity and an amount of
money, creates an account for this identity that con-
tains the specified amount of money (see figure 4).

The Bank context also has a Tr ansf er Manager
object, which manages the transfers between ac-
counts, by waiting for the acknowledgement from
both protagonists before actually withdrawing the
money from one account to credit it to the other ac-
count. The reason for this will be detailed below in the
subsection addressing the security issues.

The MobilePhone context

The Mobi l ePhone context has, in addition to
what has already been mentioned, two methods
sel ect (one to select agents and one to select items),
and a Vi r t ual Shop object. When an agent arrives
in the Mobi l ePhone context, if it is a commercial
agent, it is immediately put into the Vi r t ual Shop
object. The mobile phone owner may then select the
agents in this object by calling the sel ect (agent)
method. When he does this, the agent immediately dis-

AbstractContext

sendFinal _ _ : Giveagent, id

sendTemp _ _ : Lend agent, id

receiveFinal _ _ : Takeagent, idreceiveTemp _ _ : Borrow agent, id

discovered _ : id

qIn : AutomaticQueue

send _ _ : agent, id

add _ _ : agent, id

qOutFinal : AutomaticQueue

send _ _ : agent, id

add _ _ : agent, id

qOutTemp : AutomaticQueue

send _ _ : agent, id

add _ _ : agent, id

a : Agent

moveTemp _ : id

moveFinal _ : id

arrived _ : id home_ : id

ok

init _ : id

a. moveFinal iqOutFinal . add a i

a. moveTemp i
qOutTemp . add ai

receiveFinal a i

qIn . add ai

receiveTemp ai

qIn . add ai

plays its list of products and prices, and he may then
select an I t em (in our case, a drink) (see figure 5).

Figure 5: The MobilePhone context

The DrinksDispenser context

We will not detail this context very much in this pa-
per, as it has already been treated in a previous paper
[8]. The difference is that it does not have a money and
coin management system anymore, as it now has an
account. Let us very briefly recall its features. It has a
central unit, which manages all the stock. Drinks come
into drinks containers, which may be added to the
stock (this is modelled by the external method
addDr i nk ; see figure 6, and please recall that we
have not shown all the Abst r act Cont ext fea-
tures, such as the queue). It also has a di spl ayI d
gate, which displays the identity of the buyer when a
drink is delivered.

Figure 6: The DrinksDispenser context

Please note that in the picture, we have not shown
the part inherited from the abstract context: So, the
queue and its synchronizations have not been shown.

Abstract Data Types (ADT)

CO-OPN ADT modules define data types by means
of algebraic specifications: They specify one or more
sorts (names of data types) with generators and opera-
tions. The properties of the operations are given as
positive conditional equational axioms in the body of
the module. For instance figure 7 describes the ADT
Drink which is just an enumeration of values.

Context Bank;
Inherit Abst r act Cont ext ;
Interface
 Use
 I d;
 Money;
 Account ;
 Agent ;
 Gate
 send _ _ : Gi ve agent , i d;
 Methods
 cr eat eAccount _ _ : i d, money;
 r ecei ve _ _ : Take agent , i d;
 di scover ed _ : i d;
Body
 Use
 BankAgent ;
 BTr ansf er Manager ;
 Queue;
 Method
 t r ansf er _ f r om _ t o _ : money, i d, i d;
 Objects
 BTM : bTr ansf er Manager ;
 q : queue;
 Axioms
 di scover ed i With (ba . i ni t Home i dbank Owner
i) . . ((q . add ba i) . . (q . moveAl l)) ;
 cr eat eAccount i m With a . cr eat eAccount i m;
 r ecei ve a i With (a . ar r i ved i dbank) . . (q .
moveAl l) ;
 ba . sendTel l Bank m f r om i t o j With (BTM .
send m f r om i t o j) / / ((a . get I d i) / / (a .
wi t hdr aw m)) ;
 ba . r ecei veTel l Bank m f r om i t o j With (BTM .
r ecei ve m f r om i t o j) / / ((a . get I d j) / / (a .
cr edi t m)) ;
 q . send a i Wi t h send a i ;
 a . move i Wi t h q . add a i ;
 Where
 a : account ;
 m : money;
 i , j : i d;
 ba : bankAgent ;
 a : agent ;
End Bank;

Figure 4: The Bank context

MobilePhone

displayChoice_ : listItemPrices

select _ : item

selectService_ : id

vs : VirtualShop

selectAgent _ : id

addAgent _ _ : commercialAgent, id

a : CommercialAgent

showList _ : listItemPrices

selectedItem_ Price_ : item, money

move_ : id

select _ : item

getList

arrived _ : id

home_ : id

b : BankAgent

move_ : id

arrived _ : id

vs . addAgent aj

select da. select d

a. showList c displayChoicec

selectServicei

vs. selectAgent i

sendMoney to : money id

displayId _ : id giveDrink _ : drink

addContainer _ price_ : drink, money addDrink _ : drink discovered _ : id

cu : DDCentralUnit

displayId _ : id deliver _ : drink

distribute_ _ : drink, id

addDrink _ : drink

b : BankAgent

receive_ from _ : money,id

da : DDagent

request _ _ : drink, id

init _ : id

addContainer d pricem

cu . addContainer d pricem

addDrink d

cu . addDrink d

cu . displayId i

displayId i

discovered i

da. init iddd

(1)

cu . deliver d

giveDrink d

da. request d i

cu . distributed i

takeMoney _from_ : money, id
cu.takeMoney m from i

b.receivem from i

queue
synchroniations

(2)

Classes

CO-OPN classes are described by means of modu-
lar algebraic Petri nets with particular parameterized
external transitions which are the methods of the class.
The behavior of transitions are defined by so-called
behavioral axioms, similar to the axioms in an ADT.
A method call is achieved by synchronizing external
transitions, according to the fusion of transitions tech-
nique. The axioms have the following shape:
Cond => event name With synchr o : pr e - > post

in which the terms have the following meaning:

• Cond is a set of equational conditions, similar to a
guard in Petri nets;

• event name is the name of a method with the
algebraic term parameters;

• synchr o is the synchronization expression
defining the policy of transactional interaction of
this event with other events; the dot notation is
used to express events of specific objects and the
synchronization operators are sequence, simulta-
neity and non-determinism.

• Pr e and Post are the usual Petri net flow relation
determining what it is consumed from and what it
is produced in the object state places.
CO-OPN provides tools for the management of

graphical and textual representations [9].

As an example, let us detail the agents class a little
more. We have two kinds of agents: The commercial
agents and the bank agents. In the system modelled
here, the only commercial agent is the drinks dispens-
er agent (DDagent) representing the drinks dispenser
in the mobile phone context; this agent may go to the
"discovered" mobile phone, display the list of drinks
and prices, record an order, and migrate back to the
dispenser. We also have a bank agent (Bagent) in
both the mobile phone context and the drinks dispens-
er context. This bank agent records money transfer or-
ders, and migrates back to the bank. It also helps deal
with some security issues, as detailed below.

3.2 Transactions

CO-OPN synchronization have transactional se-
mantics. It means that a synchronization succeeds if
and only if all of its sub-synchronizations succeed (cf
subsection on classes). Otherwise, the synchronization
fails and, if there is no other way to fulfil the request,
the state of the system does not change. This property
of CO-OPN remains true with mobility.

Take for example the case where the
Dr i nksDi spenser context cannot deliver the
drink chosen (and already paid for) by the customer.
The whole “select drink” transaction will be aborted,
and the customer will in fact not pay for the undeliver-
able drink: the whole system, including the mobile ob-
jects and the accounts will remain unchanged. In
particular, objects that were moved during the failed
synchronization, will be replaced in their original lo-
cations. This happens even if the failure is due to the
non-accessibility of interacting components for a short
time. In this context it is not crucial to not succeed be-
cause the transaction process is under user guidance
(the customer) and can be redone.

3.3 Mobility

In CO-OPN, mobility is the movement of an object
o from a context C1 to another context C2.

As soon as o has moved, C1 may not call its meth-
ods anymore (they fail); Symmetrically, before the
move, C2 may not call its methods (nor can it see its
gate calls). Syntactically, mobility is managed by the
four key words: give, take, lend, and borrow.

A declaration of a parameter of a context method
can be decorated with one of these four mobility key-
words. When a method that has a give parameter is
called, the corresponding argument is automatically
exported and removed from the context. Conversely,
the take keyword imports its argument into the con-
text. The difference between take/ give and
lend/ borrow is the duration of object migration.
Keywords give and take denote final moves. Key-
word lend sends an object for the duration of a trans-
action. When the transaction finishes (commits or
fails), the object is taken back. The same goes for
borrow.

An example of the use of these keywords can be
found in the interface of context
Abst r act Cont ext :

send_ : Give agent ;
r ecei ve _: Take agent ;

ADT Dr i nk;
Inherit I t em;
 Rename
 i t em - > dr i nk;
Interface
 Use I t em;
 Sort dr i nk;
 Subsort dr i nk - > i t em;
 Generators
 I ce Tea, Soda, Beer , Whi sky: - > dr i nk;
End Dr i nk;

Figure 7: The Drink ADT;

In our case, the mobile objects are the objects from
class Agent . It is crucial that a context may not call
an object's methods once it has given it to another con-
text. Otherwise, we would have dramatic security con-
sequences: The mobile phone could possibly order
more drinks without paying them, or the bank could
secretly make the mobile phone pay amounts of mon-
ey.

Another issue is that we have used the lend/
borrow keywords in order the ensure that the com-
mercial agents come back to the mobile phone after an
order. We have seen that the drinks dispenser sends an
agent to the mobile phone once it has been discovered.
If the mobile phone decides to buy a product, the agent
goes back to the dispenser, bringing the order with it.
After the product has, possibly, been delivered, we
want the agent to go back to the mobile phone, so it
may order more products. This is handled by using the
lend and borrow keywords: When the
Mobi l ePhone context orders a product, it lends the
agent to the Dr i nksDi spenser context, and once
the order transaction is finished (be it committed or
failed), the agent automatically comes back.

3.4 Security issues

For such a system, security has been our major con-
cern during the whole design and modelling phases. In
this subsection, we will detail all security issues we
got interested in, and show how we have coped with
them.

First of all, as mentioned above, we do not want a
context to be able to interact with an object which it no
longer contains. This is directly avoided with CO-
OPN mobility semantics.

Another issue, is that we need to make sure that:

• if the mobile phone owner actually pays for a
drink, he eventually receives a drink.

• if the drinks dispenser actually delivers a drink, it
has already been credited the right amount of
money on its account.
These expectations are handled by the transactional

semantics of CO-OPN. Indeed, we basically have a
transaction of the following form (figure 8 and figure
9):

Figure 8: The buying process transaction. (Leg-
end: 1. MP: MobilePhone, q: queue, ba: bank
agent of MP, da: drink distributor agent, acc_mp:
account of the mobile)

Figure 9: The buying process transaction. (Leg-
end: 2. DD: drink distributor context, ba2: bank
agent of DD, cu: central unit of DD, acc_dd: bank
account of DD, BTM: bank transfer manager)

amp.getId idmp .. amp.withdraw 10 .. BTM.send 10 idm
iddd

ba.send 10 to iddd

ba.homeAction

Bank receive ba

q.add bank
idbank

MP send ba idbank

ba.move idbank q.send ba idbank

ba.send iddd 10 .. q.moveAll q.add da iddd

da.selected beer price 10 .. da.move iddd

da.select beer
(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)
(9)

(10)

(11)

(12) (13) (14)

(15)

(16)

acc_dd.getId iddd .. BTM.receive 10 from idmp .. acc_dd.credit
10

ba2.receiveTellBank 10 from idm

ba2.homeAction

Bank receive ba2
iddd

DD send ba2 idbank

q.add ba2 idbank q.send ba2 idbank

ba2.receive 10
from icm

.. q.moveAll DD show idm //
DD deliver beer

cu.take 10 from idm // cu.show idm //
cu.deliver beer

cu.distribute beer idm

da.request beer idm

da.homeAction

DD receive da imp

MP send da iddd

d.send da iddd

q.move all

The execution of method sel ect _: i t em in
context Mobi l ePhone is composed of two sub-syn-
chronizations which are executed sequentially:
da. sel ect _: i t em (figure 8) and q. moveAl l
(figure 9). To understand these pictures, the reader
should remember that in CO-OPN, a synchronization
occurs simultaneously with all its sub-synchroniza-
tions (vertical arrows in figure 8 and figure 9). It is
similar to the merging of transitions in classical Petri
Nets. The sequential synchronizations is explicitly
specified using sequence operator _. . . Therefore,
the definition of sel ect is written as:

 sel ect i With da. sel ect i . . q. moveAl l
This way, we ensure that the execution of

q. moveAl l occurs after the execution of
da. sel ect i and the results (in terms of resources,
i.e. tokens in algebraic Petri nets) of the former are vis-
ible to the latter.

Let us present the beginning of the synchronization
sel ect beer in detail. The invocation of
da. sel ect beer ((1) on figure 8) results in se-
quential synchronization with two gates of da:
sel ect ed beer 10 (2) and move i ddd (15).
The first gate (2) notifies the environment of the pur-
chase, while the second gate (15) asks to send the
commercial agent back home. The Mobi l ePhone
context routes (figure 5) the service request
sel ect ed beer 10 to the method send 10 t o
i ddd (3) of the bank agent and, in sequence, to
q. moveAl l (6).

The bank agent records this request and asks to be
moved at the Bank context (4). As a result, it is added
(5) to the queue, awaiting to be sent.

The execution of q. moveAl l (6) that follows ac-
complishes the “send” operation. The top-level con-
text Wor l d resolves the send ba i dbank request
(8) emitted by Mobi l ePhone by calling the r e-
cei ve ba i dmp method (number 9) of Bank , that,
in its turn, invokes ba. homeAct i on (10). The ex-
ecution of the former results in recording the “send
money” order. This terminates the execution of the re-
quest da. sel ect ed beer 10 (2).

 The execution of (1) continues with da. move
i ddd (15) and then the rest of the axiom (figure 9).
Basically, commercial agent da will return to its
home host and ask to distribute the drink. Among oth-
er things, the bank agent (ba2) of the
Dr i nksDi spenser context will move to the
Bank context to receive the money sent by the mobile
phone.

Something else we thought was important (for se-
curity reasons) is that the mobile phone (owner)
should not ask the bank agent for a transfer of money
from an account i to an account j . Instead, we want
the mobile to ask for a transfer of money to account j,
and the bank agent coming back to the bank will auto-
matically ask for a transfer from its origin’s account
(which is the entity which has initially ordered the
transfer).

Finally, a mobile owner should not be able to order
a drink from the dispenser if he is not in the dispenser
zone, i.e. if he is not discovered. This is done the fol-
lowing way: The dispenser only sends one of its
agents to the contexts which have called its
di scover ed method. Conversely, once it has or-
dered a drink, it must be able to order as many drinks
as it wants: We need the dispenser agent to come back
to the Mobi l ePhone context once a first buying
transaction is finished. This is handled by the lend/
borrow mechanism.

3.5 Subtyping/Inheritance and extensibility

Let us briefly recall the meaning of subtyping and
inheritance in CO-OPN. Subtype, in CO-OPN is a
keyword indicating strong subtyping (like in Liskov
[10]) of class w.r.t. another class. Inherits is the
keyword indicating we are inheriting from another
class or context. Inheritance in CO-OPN is purely syn-
tactical. It corresponds to a simple copy and paste of
the superclass description. The technical details may
be found in [1].

During the design/modelling phases, we have often
chosen to use subtyping and inheritance mechanisms;
The reason for this may be unclear to the reader, as we
only have, for example, one kind of item (drink), or
one kind of commercial agent (drinks dispenser
agent). The motivation is extensibility.

In deed, with the way we have modelled our sys-
tem, we may add as many product dispensers as we
like, without the need to change anything. The only
constraints are that a dispenser must inherit from the
Abst r act Cont ext context, and send a commer-
cial agent upon any call of its di scover ed method.
This agent must allow a customer to select a product
with a given price. The products need only be a sub-
sort of I t em.

We can also add any number of mobile phones in
our system, and as long as they are connected to the
bank and have an account there, they will be able to or-
der products from the different dispensers. We then

reach the original complexity of our example as de-
scribed in section 2.

We may also want to replace the bank agent by a
new one which knows if an account is empty -and thus
blocked- and tells the mobile phone, for instance, that
a product request transaction fails without going back
to the bank. The only requirement then is to have the
new agent fulfill all the old agent’s roles.

Going further, we may want to replace a component
A with a new component B which behaves identically
«under certain circumstances». By this, we mean that
given a property p, the old system (with A) satisfies p
if and only if the new system (with B) satisfies p.

Let us give a little more detail on this. We feel that
many of the existing subtype relations are either too
strong and difficult to apply and prove (such as bisim-
ulation and strong subtyping a la Liskov [14]) or too
weak and not semantically meaningful, with no guar-
antee (such as syntactical relations closer to inherit-
ance). Our idea is to adapt the notion of subtyping to
each situation where we need to replace a component
by another one, and guarantee something. So we want
to check whether the new component still satisfies a
property under certain restrictions of use.

Our notion of subtyping is based on what we call
observation. The idea is that we «observe» a compo-
nent o through another predefined component: This
predefined component, called the «observer» compo-
nent, is really a way for us to examine only a subset of
component o’ s transition system. Indeed, we look at
the composition of the observer and o (see figure 10).

Figure 10: The concept of observation

We believe the observation process is valid because
the observation system’s semantics is included in the
original system’s semantics: the observer component
does not add or modify behaviours of the system.
From the latter, we design an observation system
which is a pure abstraction of the original system. We
are interested in proving a property p (for example, «if
money is taken from my account, then I eventually get
a drink») included in a set of properties P. So we first

give a formal abstraction of this property Abs(p) (for
example “ t not fireable”) and prove that the observa-
tion system satisfies Abs(p). Our claim is that the sys-
tem then satisfies p (Please note that in practice, we do
not formally verify the abstraction correctness, but try
to find several arguments in its favour during the ver-
ification process design.)

So basically, we say that component s is a subtype
of component t w.r.t. observer obs and property p iff:

,

where denotes satisfaction and denotes com-
position.

This is all very informal, and our intent here is only
to give the reader an intuition of the concepts we ma-
nipulate; The technical details may be found in [11].

Let us give an example: Suppose we want to replace
the drinks dispenser by a new one which keeps track
of what each customer has been buying it. All of its
agents have that list with them, and will automatically
deliver a particular drink upon selection of the dis-
penser once this drink has been ordered ten times in a
row by the mobile phone owner.

Figure 11: The CommercialAgent class

We can see the classes on figure 11 and figure 12
(the new agents class which «remember» the buying
history is called Commer ci al Agent 2).

methods

gates

SYSTEM TO OBSERVE

?observer

o semanticsobserver semantics

semantics of compostition
on which we test p

o

obs s⊕() p obs t⊕()⇔ p

⊕

CommercialAgent

showList _ : listItemPrices

selectedItem _ Price_ : item, money

moveTemp _ : id

moveFinal _ : id

select _ : item

getList arrived _ : id

home _ : id

ok

init _ : id

homeActionforeignAction _ : id

setActionStatus _ : boolean

Contained _

Ordered _ _ Host _ Home_

ActionStatus _

getList

c

c

select d

jic
d, i

c

(1)

(2)

foreignAction id arrived i

j ii i

arrived i

j ki k

init i

ii

home i

i

setActionStatus b

b

ok

true

Figure 12: The CommercialAgent2 class

As we can see, the main structural difference is the
place Hi st or y _ _ which contains the identities
of the buyers and the products bought.

We can now look at two subtyping relations, with
two properties.

Let us look at the property «if a mobile phone own-
er actually pays some money, he eventually receives a
drink». The observer component we use might be
something like the one in figure 13, because we are
only interested in the behaviours following a select
drink (we do not need the methods and gates used to
show the list). This is observer is fairly simple because
the only behavioural restriction we are looking at is a
signature restriction.

Figure 13: Observer for subtype relation 1

In this case the second agent is a subtype of the first
one. Indeed, the history process does not affect the se-
curity issue presented in the previous section.

However, if the subtyping relation we look at is
something like bisimulation (i.e. the property is the
conjunction of all CTL properties satisafied by the
first commercial agent), and the observer is one which

does not filter any behaviour (a «trivial» observer, if
you wish), then the new agent is not a subtype to the
first one, because in one case the mobile phone owner
needs to select a drink after choosing the dispenser,
and in the other case, he might not need choose any, if
he has been buying a same drink for a long time: A dif-
ference in trace appears after 10 successive «select
drinks dispenser - select beer»; in one case, «select
drinks dispenser» automatically starts a beer order,
and in the other, the agent still waits for a «select
drink» call.

So we see that we have defined a very flexible def-
inition of subtyping: depending on our needs, we may
find that a component is suitable for substitution or
not. We can define a subtype relation for every situa-
tion where we might be interested in replacing a com-
ponent.

4. Validation by prototyping

Prototyping (i.e. generation of executable code, see
[8][12][13]) is used to validate our specification. The
generated code is a tool to either simulate the specifi-
cation or prototypically implement a modeled system.
The former is achieved using the interpreter tool while
the latter needs drivers or user interfaces in order to
manage human communication, third-party compo-
nent interaction or hardware control.

4.1 The prototype interpreter tool

The interpreter tool executes CO-OPN synchroni-
zations using generated code and translates responses
back to CO-OPN notation. In the case of our example,
it is possible to synchronize with the methods of the
Dr i nksDi spenser , Mobi l ePhone, and Bank
contexts. The execution of the synchronization results
in success or failure. In case of success, the events
emitted (via gates) during the synchronization will be
exhibited. The Interpreter Tool also features a built-in
debugger which enables step-by-step execution of
queries, and exhibits the derivation tree during the
query.

4.2 Modularity and configurability of the code
generator

One of the cases where the code generator’s flexi-
bility is crucial is optimization. By default, the gener-
ated code uses rewriting techniques to evaluate terms.
But this might be costly in terms of time and space.
Therefore, we have made the code generator flexible
enough to allow users to improve the efficiency of

CommercialAgent

showList _ : listItemPrices

selectedItem _ Price_ : item, money

moveTemp _ : id

moveFinal _ : id

select _ : item

getList arrived _ : id

home _ : id

ok

init _ : id

homeActionforeignAction _ : id

setActionStatus _ : boolean

Contained _Ordered _ _ Host _ Home_

ActionStatus _

getList

c

c

select d

jic
d, i

c

(1)

(2)

foreignAction id arrived i

j ii i

arrived i

j ki k

init i

ii

home i

i

setActionStatus b

b

ok

trueHistory _ _

CommercialAgent

selectedItem _ Price_ : item, money

moveTemp _ : id

select _ : item

arrived _ : id

home _ : id

ok

init _ : id

homeActionforeignAction _ : id

setActionStatus _ : boolean

moveFinal _ : id

evaluation by re-configuring the default code-genera-
tion algorithm.

For example, the evaluation of a specification often
makes intensive use of numerical calculations. In this
case, term representation of numbers with the zer o
and successor operations is not suitable for effi-
cient evaluation. It is more interesting to represent nu-
merical values occurring in specifications by
numerical types of the target language - for example,
the int type in Java. Our code generator can do that by
allowing the choice of the appropriate specific code-
generation strategy: the user may choose which repre-
sentation of numbers he wants it to use.

Our generator allows the user to choose the strategy
of code-generation for an individual module, a group
of modules or an entire specification. Of course, the
choice of code-generation strategies not only address-
es data representation alternatives. More generally,
this technique allows various kinds of optimizations
and code instrumentations (for example, to allow de-
bugging).

For ease-of-use purposes, a choice of pre-defined
strategies for different kinds of modules (including
standard library modules) is featured in the tool.

4.3 Integration of generated code

As stated above, another possible use for the gener-
ated code is integration into an application. Generated
code can be integrated both as a server (you can call
it), or as a client (it will call your code). The specifics
of the CO-OPN specification language imply that the
generated code has to implement the non-determinism
and transactional semantics of specifications. The user
has the choice to either hide those aspects inside the
generated code or use them for finer integration. For
more details on how to handle non-determinism and
transactional failures in non-reversible libraries, see
[12].

5. Implementation of migration

In order to implement the migration of objects, we
have to carefully manage references, and differentiate
references of local and non-local objects (see figure
14). We use the classical Proxy mechanism to obtain
an homogeneous access to objects. This indirect refer-
ence will present local and non-local objects to clients
in a similar way. Usually, the Proxy just forwards syn-
chronizations to the real object. In the case of an al-
ready moved object, the Proxy will always respond to
inquiries by a failure.

The list of objects known by a context is managed
in the Known Objects Table (KOT). In the case where
an object returns back to a context, no new entries will
be added to the KOT. Instead, the existing Proxy will
be found and linked to the returned object. This gener-
al mechanism satisfies both centralized and distribut-
ed implementations.

The described features are already supported in our
current centralized implementation. One of our
present research goals it to generate distributed code
for such systems. We plan to implement it using Java
Remote Method Invocation mechanism.

Figure 14: Implementation of object migration. (P:
proxy, O: object, KOT: known objects table of the
context, GUID: globally unique id associated to
object)

6. Future work and conclusions

In this paper, we have presented a formal frame-
work which allows to model mobile distributed sys-
tems based on a transactional and concurrent
semantics. We have also shown how we may extend
our model, by using subtyping and inheritance mech-
anisms. We have explained how to automatically gen-
erate the code from the resulting specification through
the use of proxies, and how we may configure this
code generation. Finally, we have given some detail
on how our code can either incorporate some existing
libraries or be incorporated in an application.

 We have oriented our future work in many direc-
tions: first of all, we are working on yet another step
towards ubiquitous programming, which would be to
also allow CO-OPN contexts to move, instead of just
objects. We believe that this way we will be able to
model any mobile system. Along with this, we would
like to generate Java code to cope with such migration.

P

1
guid proxy

DrinksDispenser

PAgent
guid=1

1
guidproxy

Mobile Phone

null

KOT KOT

migration

Another of our goals is to extend our notion of sub-
typing, making it more flexible. Some work has al-
ready been conducted on this [11], and we now need
to include it in the CO-OPN semantics. We are also
working on the verification of such relations, and
would like to include a type-checking tool to Coopn-
Builder, our tool which can be downloaded at [9].

 References

[1] Didier Buchs and Nicolas Guelfi, ``A Formal Specification
Framework for Object-Oriented Distributed Systems,'' IEEE
TSE, vol. 26, no. 7, July 2000, pp. 635-652.

[2] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. Ob-
ject-oriented nets with algebraic specifications: The CO-
OPN/2 formalism. In G. Agha and F. De Cindio and G.Ro-
zenberg, editors, Advances in Petri Nets on Object-Orienta-
tion, LNCS. Springer-Verlag, 2001.

[3] Didier Buchs and Mathieu Buffo. Rapid prototyping of for-
mally modelled distributed systems. In Frances M. Tits-
worth, editor, Proc. of the Tenth International Workshop on
Rapid System Prototyping RSP’99. IEEE, june 1999.

[4] Mathieu Buffo. Experiences in coordination programming.
In Proc. of the workshops of DEXA’98 (Int. Conf. on Data-
base and Expert Systems Applications). IEEE , aug 1998.

[5] Olivier Biberstein and Didier Buchs. Structured algebraic
nets with object-orientation. In Proc.of the first int. work-
shop on “ Object-Oriented Programming and Models of
Concurrency” within the 16th Int. Conf. on Application and
Theory of Petri Nets, Torino, Italy, June 26-30 1995.

[6] Mathieu Buffo and Didier Buchs. A coordination model for
distributed object systems. In Proc. of the Second Int. Conf.
on Coordination Models and Languages COORDINA-
TION’97, vol. 1282 of LNCS, pp. 410–413. Springer , 1997.

[7] Jeff Kramer, Jeff Magee, Morris Sloman, and Naranker Du-
lay. Configuring object-based distributed programs in rex.
IEEE Software Engineering Journal, 7(2):139–149, 1992.

[8] Stanislav Chachkov and Didier Buchs, ``From an Abstract
Object-Oriented Model to a Ready-to-Use Embedded Sys-
tem Controller,'' Rapid System Prototyping, Monterey, CA,
IEEE Computer Society Press, June 2001, pp. 142-148.

[9] CO-OPN tools are available at http://lglwww.epfl.ch/Con-
form/CoopnTools/

[10] B. Liskov and J. M. Wing, A behavioral notion of subtyping,
ACM Transaction on Programming Languages and Sys-
tems, 16(6):1811--1841, November 1994.

[11] S. Costa, D. Buchs, D. Hurzeler, "Observers for substituta-
bility in CO-OPN", EPFL, technical report n°IC/2002/043,
june 2002.

[12] Stanislav Chachkov and Didier Buchs, ``Interfacing Soft-
ware Libraries from Non-deterministic Prototypes,'' Interna-
tional Workshop on Rapid System Prototyping, July 1-3,
2002, Darmstadt, Germany

[13] Stanislav Chachkov and Didier Buchs, ̀ `From Formal Spec-
ifications to Ready-to-Use Software Components: The Con-
current Object-Oriented Petri Net Approach,'' International

Conference on Application of Concurrency to System De-
sign, Newcastle, IEEE Computer Society Press, June 2001,
pp. 99-110.���������
	��������������������	�� 	"!#$��%�&('*)�+�,��-��"��.���/0�1��2�$������34�65�)�2$7�89$��%�&
';:<�>=4.��-���?�A@-2$$���<���<B0.���%�.��-CDCE$�1%<���A��%F5��-%�+-�G�A���<H�7��?2$+-CE�I&
�FJ1KLJ�MLN���O�����PLP���O�����&�Q;�1��+-C�)9+(.R��S�S���	

 Full Specification

ADTs
Adt I d;
Interface
 Sort
 i d;
 Generators
 dbuks : -> i d;
 s t as : -> i d;
 zel el e : -> i d;
 i ddd : -> i d;
 i dbank : -> i d;
 i dmobi l e : -> i d;
 i dabst r act : -> i d;
End I d;

Adt I t em;
Interface
 Sort
 i t em;
End I t em;

Adt Money;
Inherit Nat ur al s;
 Rename
 nat ur al -> money;
End Money;

In what follows, the List and the Pair packages are prespecified in the cfc CO-OPN
library.

Adt Li s t Dr i nkPr i ces As Li s t (Pai r (Dr i nk,Money));
Rename
 l i s t -> l i s t Dr i nkPr i ces;
End Li s t Dr i nkPr i ces;

Adt Li s t I t emPr i ces As Li s t (Pai r (I t em,Money));
Rename
 l i s t -> l i s t I t emPr i ces;
Interface
 Operation
 _ _ i sI nsi de _ : i t em money l i s t I t emPr i ces -
> bool ean;
Body
 Axioms
 i m i sI nsi de [] = f al se;
 i m i sI nsi de < i m > ' l = t r ue;
 ! (< i m > = < i 2 m2 >) => i m i s I nsi de < i 2 m2
> ' l = i m i sI nsi de l ;
 Where
 i : i t em;
 m : money;
 i 2 : i t em;
 m2 : money;
 l : l i s t I t emPr i ces;
End Li s t I t emPr i ces;

Parameter Adt Abst r act I d;
Interface
 Use
 I d;
 Generator
 AG : -> i d;
End Abst r act I d;

Classes

Class Account ;
Interface
 Use
 Money;
 I d;
 Type
 account ;
 Methods
 get I d _ : i d;
 wi t hdr aw _ : money;
 cr edi t _ : money;
 Creation
 cr eat eAccount _ _ : i d money;
Body
 Places
 I dent i t y _ : i d;
 Savi ngs _ : money;
 Axioms
 get I d i :: I dent i t y i : ->;
 (n > = m) = t r ue => wi t hdr aw m:: Savi ngs n -
> Savi ngs (n - m);
 cr edi t m:: Savi ngs n -> Savi ngs n + m;
 cr eat eAccount i m:: -> I dent i t y i , Savi ngs m;
 Where
 i : i d;
 m : money;
 n : money;
End Account ;

Class Queue;
Interface
 Use
 Agent ;
 I d;
 Type
 queue;
 Gate
 send _ _ : agent i d;
 Methods
 add _ _ : agent i d;
 moveAl l ;
Body
 Use
 Nat ur al s;
 Method
 move;
 Places
 Q _ _ : agent i d;
 count _ : nat ur al ;
 Initial
 count 0;
 Axioms
 add a i :: -> Q a i ;
 (t hi s = Self) => moveAl l With t hi s . move . . t h
i s . moveAl l :: ->;
 move With t hi s . send a i :: Q a i , count succ n
-> count n;
 move:: count 0 -> count 0;
 Where
 a : agent ;
 n : nat ur al ;
 t hi s : queue;
 i : i d;
End Queue;

Class Aut omat i cQueue;
Interface
 Use
 Agent ;
 I d;
 Type
 aut omat i cQueue;
 Gate
 send _ _ : agent i d;
 Method
 add _ _ : agent i d;
Body
 Transition
 send;
 Place
 Q _ _ : agent i d;
 Axioms
 add a i :: -> Q a i ;
 t hi s = Self => send With t hi s . send a i :: Q a i
 ->;
 Where
 a : agent ;
 i : i d;
 t hi s : aut omat i cQueue;
End Aut omat i cQueue;

Class Agent ;
Interface
 Use
 I d;
 Type
 agent ;
 Gates
 moveTemp _ : i d;
 moveFi nal _ : i d;
 Methods
 ar r i ved _ : i d;
 home _ : i d;

 ok;
 Creation
 i ni t _ : i d;
Body
 Use
 Bool eans;
 Methods
 homeAct i on;
 f or ei gnAct i on _ : i d;
 set Act i onSt at us _ : bool ean;
 Places
 Host _ : i d;
 Home _ : i d;
 Act i onSt at us _ : bool ean;
 Axioms
 (t hi s = Self) => ar r i ved i With t hi s . homeAct i o
n:: Host j , Home i -> Host i , Home i ;
 ! (k = i), (t hi s = Self) => ar r i ved i With t hi s
. f or ei gnAct i on i :: Host j , Home k -> Host i , Home k;
 i ni t i :: -> Home i , Host i ;
 home i :: Home i : ->;
 set Act i onSt at us b:: -> Act i onSt at us b;
 ok:: Act i onSt at us t r ue ->;
 Where
 j : i d;
 i : i d;
 k : i d;
 t hi s : agent ;
 b : bool ean;
End Agent ;

Class BankAgent ;
Inherit Agent ;
 Rename
 agent -> bankAgent ;
Interface
 Use
 Agent ;
 I d;
 Money;
 Type
 bankAgent ;
 Subtype
 bankAgent -> agent ;
 Gates
 sendTel l Bank _ f r om _ t o _ : money i d i d;
 r ecei veTel l Bank _ f r om _ t o _ : money i d i d;
 Methods
 send _ t o _ : money i d;
 r ecei ve _ f r om _ : money i d;
 Creation
 i ni t Home _ Owner _ : i d i d;
Body
 Places
 Owner I d _ : i d;
 SendOr der _ t o _ : money i d;
 Recei veOr der _ f r om _ : money i d;
 Axioms
 send m t o j With t hi s . moveTemp i :: Home i : -
> SendOr der m t o j ;
 r ecei ve m f r om j With t hi s . moveTemp i :: Home i
 : -> Recei veOr der m f r om j ;
 t hi s = Self => homeAct i on With t hi s . sendTel l Ba
nk m f r om i t o j / /
 t hi s . set Act i onSt at us t r ue:: Owner I d i : SendOr der m t
o j ->;
 t hi s = Self => homeAct i on With t hi s . r ecei veTel
l Bank m f r om i t o j / /
 t hi s . set Act i onSt at us t r ue:: Owner I d j : Recei veOr der
 m f r om i ->;
 Where
 m : money;
 i : i d;
 j : i d;
 t hi s : bankAgent ;
End BankAgent ;

Class Commer ci al Agent ;
Inherit Agent ;
 Rename
 agent -> commer ci al Agent ;
Interface
 Use
 Agent ;
 Li s t I t emPr i ces;
 I t em;
 Type
 commer ci al Agent ;
 Subtype
 commer ci al Agent -> agent ;
 Gates
 showLi st _ : l i s t I t emPr i ces;
 sel ect edI t em _ Pr i ce _ : i t em money;
 Methods
 sel ect _ : i t em;
 get Li st ;
Body
 Places
 Cont ai ned _ : l i s t I t emPr i ces;
 Or der ed _ _ : i t em i d;
 Axioms
 t hi s = Self => get Li st With t hi s . showLi st c::
Cont ai ned c -> Cont ai ned c;

 t hi s = Self, ((d m i sI nsi de c) = t r ue) => sel ect
 d With (t hi s . sel ect edI t em d Pr i ce m) . . (t hi s . move
Temp j):: Home j : Host i , Cont ai ned c -
> Or der ed d i , Cont ai ned c;

 t hi s = Self => f or ei gnAct i on i d With t hi s . get L
i st :: ->;
 Where
 c : l i s t I t emPr i ces;
 t hi s : commer ci al Agent ;
 d : i t em;
 m : money;
 i : i t em;
 j : i t em;
 i d : i d;
End Commer ci al Agent ;

Class Dr i nksCont ai ner ;
Interface
 Use
 Dr i nk;
 Type
 dc;
 Methods
 addDr i nk _ : dr i nk;
 di spenseDr i nk _ : dr i nk;
 Creation
 i ni t _ : dr i nk;
Body
 Places
 dr i nks _ : dr i nk;
 k i nd _ : dr i nk;
 Axioms
 addDr i nk d:: k i nd d -> ki nd d, dr i nks d;
 di spenseDr i nk d:: dr i nks d ->;
 i ni t d:: -> k i nd d;
 Where
 d : dr i nk;
End Dr i nksCont ai ner ;

Class DDCent r al Uni t ;
Interface
 Use
 Dr i nk;
 Money;
 I d;
 Type
 dDCent r al Uni t ;
 Gates

 t akeMoney _ f r om _ : money i d;
 di spl ayI d _ : i d;
 del i ver _ : dr i nk;
 Methods
 di s t r i but e _ _ : dr i nk i d;
 addCont ai ner _ pr i ce _ : dr i nk money;
 addDr i nk _ : dr i nk;
Body
 Use
 Dr i nksCont ai ner ;
 Place
 cont ai ner _ pr i ce _ : dc money;
 Axioms
 t hi s = Self => di s t r i but e d i With ((t hi s . t ake
Money p f r om i) . . (c . di spenseDr i nk d)) . . ((t hi s .
di spl ayI d i) / /
 (t hi s . del i ver d)):: cont ai ner c pr i ce p -
> cont ai ner c pr i ce p;
 addCont ai ner d pr i ce p With c . i ni t d:: -
> cont ai ner c pr i ce p;
 addDr i nk d With c . addDr i nk d:: cont ai ner c pr i
ce p -> cont ai ner c pr i ce p;
 Where
 t hi s : dDCent r al Uni t ;
 p : money;
 c : dc;
 d : dr i nk;
 i : i d;
End DDCent r al Uni t ;

Class Vi r t ual Shop;
Interface
 Use
 I d;
 Commer ci al Agent ;
 Type
 v i r t ual Shop;
 Methods
 sel ect Agent _ : i d;
 addAgent _ _ : commer ci al Agent i d;
 r emoveAgent _ : i d;
Body
 Use
 Nat ur al s;
 Places
 Commer ci al Agent s _ _ : commer ci al Agent i d;
 Sel ect edAgent _ _ : commer ci al Agent i d;
 count _ : nat ur al ;
 Initial
 count 0;
 Axioms
 addAgent ca i :: -> Commer ci al Agent s ca i ;
 r emoveAgent i :: Commer ci al Agent s ca i ->;
 sel ect Agent i With a . get Li st :: Commer ci al Agent
s a i , count 0 -
> Commer ci al Agent s a i , Sel ect edAgent a i , count 1;
 sel ect Agent i With a . get Li st :: Commer ci al Agent
s a i , count 1, Sel ect edAgent a2 i 2 -
> Commer ci al Agent s a i , Sel ect edAgent a i , count 1;
 Where
 ca : commer ci al Agent ;
 a : commer ci al Agent ;
 i : i d;
 t hi s : v i r t ual Shop;
 a2 : commer ci al Agent ;
 i 2 : i d;
End Vi r t ual Shop;

Class Wor l dConnect or ;
Interface
 Use
 Agent ;
 I d;
 Type

 wor l dConnect or ;
 Gates
 sendFi nal _ f r om _ t o _ : agent , i d i d;
 sendTemp _ f r om _ t o _ : agent , i d i d;
 Methods
 r ecei veTemp _ f r om _ t o _ : agent , i d i d;
 r ecei veFi nal _ f r om _ t o _ : agent , i d i d;
Body
 Axioms
 t hi s = Self => r ecei veTemp a f r om i t o j With t h
i s . sendTemp a f r om i t o j :: ->;
 t hi s = Self => r ecei veFi nal a f r om i t o j With t
hi s . sendFi nal a f r om i t o j :: ->;
 Where
 a : agent ;
 i : i d;
 j : i d;
 t hi s : wor l dConnect or ;
End Wor l dConnect or ;

Contexts

Parameter Abstract Context Abst r act Cont ext ;
Interface
 Use
 Agent ;
 I d;
 Gates
 sendFi nal _ _ : Give agent , i d;
 sendTemp _ _ : Lend agent , i d;
 Methods
 r ecei veFi nal _ _ : Take agent , i d;
 r ecei veTemp _ _ : Borrow agent , i d;
 di scover ed _ : i d;
Body
 Use
 Aut omat i cQueue;
 Objects
 qI n : aut omat i cQueue;
 qOut Fi nal : aut omat i cQueue;
 qOut Temp : aut omat i cQueue;
 Axioms
 a . moveFi nal i With qOut Fi nal . add a i ;
 a . moveTemp i With qOut Temp . add a i ;
 qOut Fi nal . send a i With sendFi nal a i ;
 qOut Temp . send a i With sendTemp a i ;
 r ecei veFi nal a i With qI n . add a i ;
 r ecei veTemp a i With qI n . add a i ;
 Where
 a : agent ;
 i : i d;
End Abst r act Cont ext ;

Context Bank;
Inherit Abst r act Cont ext ;
Interface
 Use
 I d;
 Money;
 Account ;
 Method
 cr eat eAccount _ _ : i d money;
Body
 Use
 BankAgent ;
 BTr ansf er Manager ;
 Method
 t r ansf er _ f r om _ t o _ : money i d i d;
 Object
 BTM : bTr ansf er Manager ;
 Axioms

 di scover ed i With (ba . i ni t Home i dbank Owner i)
 . . (qOut Fi nal . add ba i);
 cr eat eAccount i m With a . cr eat eAccount i m;

 qI n . send a i With a . ar r i ved i dbank;
 ba . sendTel l Bank m f r om i t o j With (BTM . send
 m f r om i t o j) / / ((a . get I d i) / /
 (a . wi t hdr aw m));

 ba . r ecei veTel l Bank m f r om i t o j With (BTM . r
ecei ve m f r om i t o j) / / ((a . get I d j) / /
 (a . cr edi t m));
 Where
 a : account ;
 m : money;
 i : i d;
 ba : bankAgent ;
 j : i d;
End Bank;

Context Mobi l ePhone;
Inherit Abst r act Cont ext ;
Interface
 Use
 I d;
 I t em;
 Money;
 Li s t I t emPr i ces;
 Vi r t ual Shop;
 Gate
 di spl ayChoi ce _ : l i s t I t emPr i ces;
 Methods
 sel ect _ : i t em;
 sel ect Ser vi ce _ : i d;
Body
 Use
 Commer ci al Agent ;
 BankAgent ;
 Object
 vs : v i r t ual Shop;
 Axioms
 sel ect d With ca . sel ect d . . ca . ok;
 ca . showLi st c With di spl ayChoi ce c;
 sel ect Ser vi ce i With vs . sel ect Agent i ;
 qI n . send b i With b . ar r i ved i dmobi l e;
 qI n . send ca i With vs . addAgent ca i / /
 ca . ar r i ved i dmobi l e;
 ca . sel ect edI t em d Pr i ce m With ca . home i . .
 (b . send m t o i . . b . ok);
 Where
 d : i t em;
 m : money;
 a : agent ;
 b : bankAgent ;
 ca : commer ci al Agent ;
 c : l i s t I t emPr i ces;
 i : i d;
 j : i d;
End Mobi l ePhone;

Context Dr i nksDi spenser ;
Inherit Abst r act Cont ext ;
Interface
 Use
 I d;
 Dr i nk;
 Money;
 Gates
 di spl ayI d _ : i d;
 gi veDr i nk _ : dr i nk;
 Methods
 addCont ai ner _ pr i ce _ : dr i nk money;
 addDr i nk _ : dr i nk;
Body
 Use
 DDCent r al Uni t ;
 DDagent ;
 BankAgent ;
 Object
 cu : dDCent r al Uni t ;
 Axioms
 addCont ai ner d pr i ce m With cu . addCont ai ner d
pr i ce m;
 addDr i nk d With cu . addDr i nk d;
 cu . di spl ayI d i With di spl ayI d i ;
 qI n . send a i With a . ar r i ved i ddd;
 di scover ed i With (da . i ni t i ddd) . . (qOut Fi na
l . add da i);
 cu . del i ver d With gi veDr i nk d;
 cu . t akeMoney m f r om i With b . r ecei ve m f r om
i ;
 da . di st r i but e d i With cu . di st r i but e d i ;
 Where
 d : dr i nk;
 m : money;
 i : i d;
 a : agent ;
 da : dDagent ;

 b : bankAgent ;
End Dr i nksDi spenser ;

Context Wor l d;
Inherit Wor l dSegment (Dr i nksDi spenser ,I d):Mor f DD;
Inherit Wor l dSegment (Bank,I d):Mor f Bank;
Inherit Wor l dSegment (Mobi l ePhone,I d):Mor f Mobi l e;
End Wor l d;

Generic Context Wor l dSegment (Abst r act Cont ext ,Abst r act I d
);
Body
 Use
 Wor l dConnect or ;
 Agent ;
 I d;
 Abst r act I d;
 Use Context
 Abst r act Cont ext ;
 Object
 wc : wor l dConnect or ;
 Axioms
 sendTemp In Abst r act Cont ext a i With wc . r ecei v
eTemp a f r om AG t o i ;
 wc . sendTemp a f r om i t o AG With r ecei veTemp In
 Abst r act Cont ext a i ;
 Where
 i : i d;
 j : i d;
 a : agent ;
End Wor l dSegment ;

Context BankSegment As Wor l dSegment I d(Bank,I d);
Morphism
 AG -> i dbank;
End BankSegment ;

Morphisms

Morphism Mor f Bank;
Morphism
 AG -> i dbank;
End Mor f Bank;

Morphism Mor f DD;
Morphism
 AG -> i ddd;
End Mor f DD;

Morphism Mor f Mobi l e;
Morphism
 AG -> i dmobi l e;
End Mor f Mobi l e;

	AbstractTitle - Abstract
	Heading1 - 1. Introduction
	Heading1 - 2. The mobile shopping example.
	FigureCaption - Figure 1: The actors (real life view)

	Heading1 - 3. Modelling with CO-OPN
	Heading2 - 3.1 The CO-OPN coordination model, and the system entities
	FigureCaption - Figure 2: The coordination model
	FigureCaption - Figure 3: The abstract context
	FigureCaption - Figure 4: The Bank context
	FigureCaption - Figure 5: The MobilePhone context
	FigureCaption - Figure 6: The DrinksDispenser context
	FigureCaption - Figure 7: The Drink ADT;

	Heading2 - 3.2 Transactions
	Heading2 - 3.3 Mobility
	Heading2 - 3.4 Security issues
	FigureLongCaption - Figure 8: The buying process transaction. (Legend: 1. MP: MobilePhone, q: queue, ba: bank agent of MP, da: drink distributor agent, acc_mp: account of the mobile)
	FigureLongCaption - Figure 9: The buying process transaction. (Legend: 2. DD: drink distributor context, ba2: bank agent of DD, cu: central unit of DD, acc_dd: bank account of DD, BTM: bank transfer manager)

	Heading2 - 3.5 Subtyping/Inheritance and extensibility
	FigureCaption - Figure 10: The concept of observation
	FigureCaption - Figure 11: The CommercialAgent class
	FigureCaption - Figure 12: The CommercialAgent2 class
	FigureCaption - Figure 13: Observer for subtype relation 1

	Heading1 - 4. Validation by prototyping
	Heading2 - 4.1 The prototype interpreter tool
	Heading2 - 4.2 Modularity and configurability of the code generator
	Heading2 - 4.3 Integration of generated code

	Heading1 - 5. Implementation of migration
	FigureLongCaption - Figure 14: Implementation of object migration. (P: proxy, O: object, KOT: known objects table of the context, GUID: globally unique id associated to object)

	Heading1 - 6. Future work and conclusions
	Reference - [1] Didier Buchs and Nicolas Guelfi, ``A Formal Specification Framework for Object-Oriented Distributed Systems,'' IEEE TSE, vol. 26, no. 7, July 2000, pp. 635-652.
	Reference - [2] Olivier Biberstein, Didier Buchs, and Nicolas Guelfi. Object-oriented nets with algebraic specifications: The CO- OPN/2 form...
	Reference - [3] Didier Buchs and Mathieu Buffo. Rapid prototyping of formally modelled distributed systems. In Frances M. Titsworth, editor, Proc. of the Tenth International Workshop on Rapid System Prototyping RSP’99. IEEE, june 1999.
	Reference - [4] Mathieu Buffo. Experiences in coordination programming. In Proc. of the workshops of DEXA’98 (Int. Conf. on Database and Expert Systems Applications). IEEE , aug 1998.
	Reference - [5] Olivier Biberstein and Didier Buchs. Structured algebraic nets with object-orientation. In Proc.of the first int. workshop o...
	Reference - [6] Mathieu Buffo and Didier Buchs. A coordination model for distributed object systems. In Proc. of the Second Int. Conf. on Coordination Models and Languages COORDINATION’97, vol. 1282 of LNCS, pp. 410-413. Springer , 1997.
	Reference - [7] Jeff Kramer, Jeff Magee, Morris Sloman, and Naranker Dulay. Configuring object-based distributed programs in rex. IEEE Software Engineering Journal, 7(2):139-149, 1992.
	Reference - [8] Stanislav Chachkov and Didier Buchs, ``From an Abstract Object-Oriented Model to a Ready-to-Use Embedded System Controller,'' Rapid System Prototyping, Monterey, CA, IEEE Computer Society Press, June 2001, pp. 142-148.
	Reference - [9] CO-OPN tools are available at http://lglwww.epfl.ch/Conform/CoopnTools/
	Reference - [10] B. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM Transaction on Programming Languages and Systems, 16(6):1811--1841, November 1994.
	Reference - [11] S. Costa, D. Buchs, D. Hurzeler, "Observers for substitutability in CO-OPN", EPFL, technical report n˚IC/2002/043, june 2002.
	Reference - [12] Stanislav Chachkov and Didier Buchs, ``Interfacing Software Libraries from Non-deterministic Prototypes,'' International Workshop on Rapid System Prototyping, July 1-3, 2002, Darmstadt, Germany
	Reference - [13] Stanislav Chachkov and Didier Buchs, ``From Formal Specifications to Ready-to-Use Software Components: The Concurrent Objec...
	Reference - [14] B. Liskov and J. M. Wing, A behavioral notion of subtyping, ACM Transaction on Programming Languages and Systems, 16(6):1811--1841, November 1994.

