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Abstract

In today’s systems, application are composed from various components that may be located on
different machines. The components may have to collaborate in order to service a client request.
More specifically, a client request to one component may trigger a request to another component.
Moreover, to ensure fault-tolerance, components are generally replicated. This poses the problem
of a replicated server invoking another replicated server. We call it the problem of replicated
invocation.

Replicated invocation has been considered in the context of deterministic servers. However,
the problem is more difficult to address when servers are non-deterministic. In this context, work
has been done to enforce deterministic execution. In the paper we consider a different approach.
Instead of preventing non-deterministic execution of servers, we discuss how to handle it. The
paper first discusses the problem of non-deterministic replicated invocation. Then the paper pro-
poses a different solution to solve these problems.

Keywords: FT Algorithms, FT Replication, Non-determinism, Passive Replication, Nested Invo-
cation.

1 Introduction

In today’s systems, applications are composed from various components that can be collocated, but
may also be located on different machines (e.g., in CORBH)[ The components collaborate in
order to service a client request. More specifically, a client request executed in one component may
trigger a request to another component. While acting as a server component to the client, the compo-
nent at the same time assumes the role of a client, by invoking a service on another server.

Consider a system where cliefitinvokes serverr (Figurel (a)). To proces§" s request, server
R invokes another servef, i.e., R itself acts as a client to servét. We denote by (resp. s) the

*An important part of this work was performed while the author was working at the IBM Zurich Research Laboratory,
CH-8803 Rischlikon.
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processing orR (resp. S). We say thak is a subinvocation or nested invocationroflf no failures
occur the servers update their states &wends the reply to the client. However, a component may
be subject to a failure. IR fails before sending the reply @ (Figurel (b)), C will eventually notice

the failure, but notS (sincesS already finished the processing). The staté avill reflect invocation

r, which is not finished properly. Hence, the stat&a$ inconsistent. In this case we calhnorphan
request If at this point some other client accessgghere is a danger that the inconsistent staté of
will propagate in the system. Note, that the failureSo€auses a different problem. Indeed, it does
not result in an orphan request, rather the stat® isfno more available.

C >
e
R -----------»
S orphan S >
request

Figure 1: Nested request invocations. The processing of the request is shown by gray bars.

To ensure that applications work even in the face of failures, replication is generally used within
the components. While the problem of replicating a server has been thoroughly sg8jigd p)], the
problem of a replicated server invoking another server, has not been addressed in a satisfying manner.
We call such invocation eeplicated invocationReplicated invocation in the context of deterministic
servers causes a problem aiplicate requests This problem is addressed i), where proxies
are presented to filter the requests using their ID numbers. However, the proxy solution assumes
deterministic replicas. Thus, it is not applicable for non-deterministic servers, because the requests
sent by the replicas of non-deterministic servers may be not idenfizhl [n the context of non-
deterministic servers replicated invocation cause a different problem: the problem of orphan requests,
presented above.

The work in R0] provides mechanisms to enforce deterministic execution. We, in contrary, sug-
gest an approach that prevents orphan requests, even if the client replicas execute non-deterministically.
Our approach is based on the idea of exchanging sufficient undo information prior to the server invo-
cation to allow other client replicas to undo the requests of failed client replicas. In contraly to [
we do not limit our approach to three-tier architectur4 pnd stateless clients. Rather, we assume
that the client replicas do maintain their own state. Moreover, we show that our approach allows us
to prevent blocking when the server uses locking to ensure concurrency cddjrd[failure of the
client in such a scenario may prevent the termination of the transaction on the server, and thus any
other client cannot access the locked data items.

The rest of this paper is structured as follows. We first introduce replicated invocation in S&ction
In Section3 we specify the problem of replicated invocations in terms of transactions. The problem
of orphan subtransactions is discussed in Seetiofhe core contribution of the paper is presented
in Section5. In this section, we present an orphan-subtransaction-free replicated invocation protocol
in the context of non-deterministic execution. Finally, we relate our solution to the existing work in
Section6 and conclude the paper with Sectién



2 Replicated Invocation

Replication is a widely used technique to address failures of a server. If a failure of one server replica
occurs, another replica takes over and services clients’ requests. If a replicated server acts as a client to
another server, i.e., invokes a service on it, we call this invocatieplecated invocationin Figure2,

the invocation from the replicated serv@rto the servelS is a replicated invocation. The replicated
invocation problem can be addressed in the context of deterministic or non-deterministidseier

do not make any assumptions about the replication strategy that can be uUséolsgive, activeZs),
semi-passived], or semi-active 23)), as this replication strategy is not relevant for the contribution

of the paper.

2.1 Deterministic Servers

Server replicas are said to be deterministic if, being in the same initial state and supplied with the
same request, all transit to the same state and return the same reply. We show, that orphan requests do
not happen with replicated deterministic servers.

With deterministic serveractive replicationcan be used. In active replication clients multicast
the request to all server replicas, which process the requests in parallel (see-@rdf this pro-
cessing requires the invocation of another server, each replica issues exactly the same in@&cation
Because these invocations are identical, duplicate invocations can easily be detected and filtered, in
order not to process them multiple tim@gs This is done by having the replicég assign IDs to their
invocatiort. Duplicate invocation filtering is addressed 5[ 17, 20]. The result of processing oft
is valid for every replicak; and is multicast to ther@. Also, each replicak; sends the reply back to
the clientC' 5. Generally, the client accepts the first one and discards the others.

Discard
duplicates

,‘/@

Filter
duplicates

Figure 2: Deterministic servek, replicated using active replication.

The orphan request problem does not appear with replicated deterministic Reageall replicas
share the same request (see Figure2). Consequently, the failure of one or multipié does not
leaves, as an orphan, as long as there is at leastoame=ct (not failed) replicaR;.

10One could argue that the client can assign a unique ID to its invocation, which can be reused for the nested invocations
as well. However, this does not work: the request ID must be assign&d Imdeed, assume, that processingileads to
multiple invocations ta5: the client assigned ID is not enough.



2.2 Non-Deterministic Servers

Non-deterministic execution requires that the serReuses passive replication (Figude(a)) [12).

In passive replication (also callggimary-backup[3]) only one replica, therimary, execute’s
request. The update is then sent to the backup replicas. The backup replicas do not directly com-
municate withC'; rather, they only communicate with the primary. As only the primary executes
the request, passive replication supports non-deterministic execution. However, passively replicated
server needs to handle failures of the primary. If the primary fails, one of the backups takes over the
role of the primary (Figur& (b)). The clientC eventually time-outs, has to learn the identity of the
new primary (e.g.R1), and reissues the request.
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(a) Without failures. (b) With a failure of the primary.

Figure 3: Non-deterministic serveé, replicated using passive replication.

Consider nested invocation in the context of the passively replicated non-deterministiciBerver
(see Figure3 (b)). To serve client's” requestd), the primary replicaR, invokes servels @), but
fails before updating the backups. A new primary, gay is elected and the cliert' resends its
request3d. As the replicas oR are non-deterministic, to serve the saftie request,R; might issue
a different invocation to servef. It also might choose a different servBr@), or it might not issue
the invocation at all. The result computed fgrcannot be reused fot;, andd; must be processed
separately. This leaveg as an orphan request, which has a pending effect on the st&tefohew
invocation ofS at this point, would likely lead to an inconsistent reply. So the problem of the orphan
requestsy needs to be addressed. In the rest of the paper we focus on replicated invocation in the
context of non-deterministic replicated servers. Later in the paper we pressglicated invocation
protocol which handles the problem of orphan requests. But before, we introduce the specification
and notation we use to model this problem.

3 Specification of Replicated Invocation with Non-Deterministic Servers

In this section, we give a specification of replicated invocation in terms of transactions. The problem
of orphan request was caused by partial executiaitefequest, thus the transaction model is useful,
because it addresses the issue of atomicity of a set of operations. Informally, a transaction always
terminates by either committing its modifications, or aborting them.

Transactions (recursively) decomposed into subtransactions are ona#ieztl transactionglg.
Every subtransaction forms a logically related subtask. A successful subtransaction becomes perma-
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nent, i.e., commits, if all its parent transactions (the transaction that encompasses this subtransaction)
commit as well. In contrast, a parent transaction can commit (provided its parent transaction com-
mits) although some of its subtransactions may have aborted. A subtransaction is ready to commit, if
it has successfully executed and is waiting for the commit or abort decision of its parent transaction.
A ready-to-commit transactioh) denotedReadyT oC ommit;, cannot spontaneously abort any more
(i.e., itself decide abort), but only aborts if its parent transaction aborts. Firaldgnotes the prece-
dence operator as specified &].[ More specifically, ift; — ts, t1 is executed before,. In other
words, any operation df that conflicts with an operation of is executed before that operation:ef

We first specify the invocation between the cli€ntand the serveR in terms of transactions
(Section3.1), and then extend this specification to also encompass the invocation betweeniserver
and servelS (Section3.2).

3.1 InvocationC «— R

Consider Figure3. We model the execution @f’s request on servek as follows. Upon reception
of C's request, the primary replicB, starts transactioty (see Figured). This transaction contains
subtransactiongry (pr stands forprocessing andupg (up stands forupdatg. Subtransactioprg
executes the client request on the primary, subtransactipriask is to update the backup replicas of
R,i.e.,R; andR,.

.

request reply
processing of client request —
R transaction ¢ |——>
0 L
pry
up,

Figure 4: Representation of client’s invocation in terms of (sub)transactions.

The specification is stated in terms of properties of transactions. We mention only those that are
related to the replicated invocation, and omit basic transaction properties. The full set of properties
for nested transactions can be found5h [The invocationC' «—— R can be specified as follows (the
subscripti refers to the primary replica):

1. Abort;, = (Aborty,, N Abort,y,)
If transaction; aborts, all of its subtransactions (i.er; andup;) must abort. This is a standard
nested transaction property.

2. (Cruciality) Abort,,, V Abort,y,, = Abort,,
If one of subtransactions; or up; abortst; also abortspr; andup; are crucial fort;. Trans-
actiont; doesn’'t make sense without either of these transactions.

3. (Sequence)r; — up;
Transactiorpr; always executes befotey;. This is becausap; updates the backups with the
results ofpr; execution.



4. (Termination)lf R; executes;, then all correct replicas dt eventually know the outcome (i.e.
commit or abort) of;.

5. (Non-triviality) ReadyT oCommit,,, A ReadyT oCommit,,, = outcome of; is commit.

The success of subtransactigns andup; is crucial for the success of. in other words¢; can
only commit if the processing transactipn; and the update transactiatp; of the backup replicas
have succeeded (Propegty Note that this specifies a particular case of nested transactions, namely
a distributed flat transactio I]. We use the nested transaction model as it will be mandatory when
we extend our specification to the invocation betw&esnd.S in Section3.2

The sequence property (Prope8lyis inherited from passive replication: first the client request is
processed on the primary, then the backups are updated with the result obtained from the processing.

The termination property (Properdy ensures that once transactigns started, it eventually ter-
minates by either commit or abort. Prope#ys also a liveness property, which ensures that the
outcome of transactiot) is eventually decided and that all subtransactions executing on correct pro-
cesses eventually terminate. ClearlyRif fails before committing, thenty and its subtransactions
will not be committed. Propert also ensures, that started transactions eventually terminate, even if
the primary replica fails. This property is essential in preventing orphan subtransactions. The protocol
we present later in this paper is designed to provide this property.

Finally, the non-triviality property (Property) specifies, that if both subtransactigns andup;
are ready to be committed, then the outcome; a§ commit. Note that we do not require thtatbe
committed byR; (wheret; executes), a®; may have failed. Moreover, the specification still allows
R; to always immediately abopt-; despite this property.

In our system model, we assume that crashed processes do not Fe€oresequently, the failure
of areplicaR; erases all traces of the transaction®runless the other replicas have been updated.

3.2 InvocationR «—— S

In the previous section, we have specified the invocation bet@esmmd R in terms of transactions. In
this section, we extend this specification to the cases where the prifganyokes transactionst
(external server transactigron another servef (see Figureb). The invocation betwee® and S
corresponds to the replicated invocation presented in SeZt®firansactiorest is a subtransaction

of transactiorpry. Remember that servéris represented as a single, non-replicated server. For our
discussion, it is not relevant whethgiis replicated or not.

Figure6 illustrates the hierarchy of transactions. The top-level transactionwaich is started
after reception of the client request (see Figbxelt contains the subtransactiops andup. Sub-
transactiorpr, in turn, containgst. Subtransactions that are crucial to the commit of the top-level
transaction are surrounded by dotted circles. In other words, if one of the crucial transactions aborts,
transactiornt aborts (see Properg).

Replicated invocation betweeR and S can thus be specified by the properties mentioned in
Section3.1and the following two additional properties:

7. Aborty,, = Abortes,
If subtransactiomr; is abortedest; is aborted as well.

2 This is the standard assumption that forces a protocol to be non-blocking. In other words the protocol presented later
is non-blocking.
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Figure 5: Representation of subtransactions (no failures).

Figure 6: Model of the replicated invocation.



8. ReadyToCommites, N Commity,, = Commites,
If subtransactiorest; has successfully executed and is ready to be committed, and its parent
transactiorpr; commits, therest; is also committed.

Properties” and8 ensure that subtransactiesy; eventually is terminated, i.e., either commits or
aborts. Clearly, we assume here, that sefveravailable, which is the casesfis fault-tolerant (i.e.,
if Sis itself replicated).

4 The Problem of Orphan Subtransactions with Replicated Invocation

In the previous section, we have specified replicated invocation in terms of a hierarchy of transactions.
A standard solution to implement distributed transactions is to rely on a TP (transaction processing)
monitor [L1]. However TP monitors centralize the control and are prone to blocking. In particular,
TP monitors usually rely on a two-phase commit protocol (2PC) to ensure atomicity. However, the
2PC protocol is blocking]]. In contrast, we want a completely decentralized non-blocking solution
(progress despite of failures).

According to the specification, the outcome of the entire execution (i.e., commit or abort) is de-
cided by the top-level transaction, and then this decision is propagated to the subtransactions, which
in turn, propagate it to their subtransactions. The failure of a regticenay interrupt the mecha-
nism, that notifies the subtransactions of the commit or abort decision. Assume, for instance, that the
primary fails before it has forwarded the commit or abort decisio {&-igure7, left part). As a
consequencessty ignores the outcome af, and thus cannot terminate. In this case is called
anorphan subtransactiarClearly, orphan subtransactions are undesirable, because they maintain the
locks on data items and prevent other transactions from accessing these items. Note that subtransac-
tion esty cannot spontaneously abort, because its parent transaction decides the final outcome.

C >
processing of client request 1 _— ~—— processing of client request 2 —
Ro transa o m—pe- — L
pry /‘
| | >
Rl / transaction t >

Waits for the termination @
message from R g, holds

AN Zthe lock.
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N

Blocked, requires the lock
held by est o

Figure 7: An orphan subtransactiest, on pessimistic serves.

Orphan subtransactions correspond to orphan requests presented in 3&ctiacomply with
the model, from now on orphan requests we will call orphan subtransactions. Depending on the
processing of servef¥ (optimistic or pessimistic) orphan subtransactions cause different problems.

4.1 Pessimistiws. Optimistic Server S

To ensure transaction atomicity, data items are locked. When a transaction starts, the needed locks
are acquired; when the transaction finishes, the locks are released, and the result of the processing



becomes visible in the system. If the locks are not available for some transacti@nprocessing
blocks until the locks are released by the transaction holding the locksub&ansactiorholding

the locks has two options upon finishing its processing: (1) it can release the locks immediately (i.e.,
temporary commit), or (2) it can wait for the commit/abort decision from a higher entity (i.e., parent
transaction), keeping the locks on the data. The latter solution is gakesimistic processingnd the
server is called @essimistic serverThe first solution is calledptimistic processingand the server

is called arpptimistic server

4.1.1 Blocking with Pessimistic Server S

Consider the case of an orphan subtransaction (Figweih a pessimistic servef. Assume that after

the crash of the primariRy, the new primaryz; calls the same servéf, and executes subtransaction

est1, which accesses some of the same data items accesset) bin this casesst; has to wait until

esty releases the locks. Hence, the entire cliénis blocked. Blocking ofR is undesirable, as it

acts itself as a server for other applications. Moreover, other clients may also block when accessing
servers.

4.1.2 Inconsistency with Optimistic Server S

The problem with optimistic servers is different: the temporary commit might have to be undone. This
can be handled bgompensating actiondo abort a committed transactiorcampensating transac-

tion [9, 1Q] is executed on the server. A compensating transaction semantically undoes the modifica-
tions caused by the original transaction. Assume, for instance, that transacgmrves a ticket on a
flight, thencompensate_t simply cancels this reservation.

Using an optimistic approach, blocking is prevented. Indeed, the locks held by subtranssigtion
(Figure 8) are immediately released and the data items are again accessiblg lfunless another
transaction has acquired them in the meantime). However, in this case, subtransdgtioeeds to
be compensated, since the state of sefveeflectsest, but after the crash aRy, estq is not valid
any more.
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Figure 8: An orphan subtransactiest, on optimistic serves.

In the next section we present solutions for pessimistic and optimistic servers.



5 Replicated Invocation Protocol in the Case of Non-Deterministic Ex-
ecution

This section first presents the basic idea to solve the problem of orphan requests/subtransactions in
the context of replicated invocation, and then the protocol that implements this idea.

5.1 Basicldea
5.1.1 The Problem of Finding out S

To prevent orphan subtransactions in replicated invocations, it is crucial that a new primary Rplica

is able to find out the identities of the servers that have been accessed by the previous grimary
This allowsR; to send abort message or compensating transactighsHow canS be known toR;?

The identity ofS is trivially known if (1) it can be deterministically computed by the replicagpbr

(2) if the set of servers is sufficiently small. In the latter case, a message is sent to all servers to find
out the one that was invoked [#§;. Here we address the more complex cases in which the identity of

S cannot be found a posteriori. This is especially the case if:

o the set of servers is large, and

o the identity ofS is dynamically computed during the processindipf In other words, the iden-
tity of S is not known to the replica prior to the processing 8§ request, and it is impossible
for R; to find out the identity ofS computed by other replic&;.

5.1.2 Sending Undo Information

We call undo information the information that allows to undo a particular request; it includes the
name of the serve$ to which the requests is sent, and the description of an action to perform. The
solution to orphan requests/subtransactions consists to make the undo information available to other
replicas ofR, before the primary invokeS. In the context of the undo information, we distinguish
betweertermination requesandcompensation requests

1. unterminated orphan subtransactions on pessimistic servers need to be terminated, and

2. terminated orphan subtransactions on optimistic servers need to be compensated.

In case (1)termination requestare COMMITand ABORTmessages In case (2), to restore
the consistent state of the system, compensating actions are included in the undo information. Note
however, that compensating the request of a replica is not easy. For example the sequence of requests
(rqe; rqy; compensate_rq;) must be a valid sequence and must be semantically equivalent to the
sequence that consists only:af,.

5.2 The Protocol

The Replicated Invocation Protocdbr non-deterministic execution is presented in Figu®ed0
and1l Figure9 first introduces two message typedtandardRequestnd Undolnformation Mes-
sages of the first type contain two fields: the request itself and the request id, which uniguely identify

3We assume that the execution of termination requests is idempotent.
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the request in the system. Messages of the typdolnformationcontain four fields: compensating
request, request identification, parent request id and target. The compensating request is used with op-
timistic server and contains the request, which semantically undoes the results of the original request.
The request identification holds the id of the original request. It is used in the pessimistic server case.
The other two fields are used for both pessimistic and optimistic types of servers. The parent id field
holds the id of client’s request t&, which triggered the request 1 The target field identifies the
serversS, to which the Undolnformation message has to be sent, if needed.

The protocol itself consists of five procedures executed on the primaRy ¥hen the primary
gets a request from clierdf, Procedure 1 (Figl0) is executed. If the request was not processed
before, the primary starts a transaction, which in our model corresponds to trangantiigure5.

The transaction contains two nested subtransactions, which correspond to proBedcess Request
(Procedure 2) antpdate BackupgProcedure 3), presented later. After the client’s request is pro-
cessed and the backups are updated, the processing on distant pessimistic servers must be committed.
Undo information, sent to backups during the processing, must be garbage collected. Procedure 1
terminates after sending the reply to the client.

Procedure 2 (FiglLO) corresponds to the transactipnin Figure5. Assume that during process-
ing, the primary needs to send a nested request to some other SeBefore doing so, a message
of type Undolnformation is prepared for that request and multicast to the backups (this multicast is
denoted byJniform-VScasin Procedure 3f. The content of the undo message depends on the type
of server the original request is sent to.

Procedure 3 (Figll) corresponds to the transactiop in Figure5. The updates are multicast to
the backups also using uniform VScast mentionned above.

Procedure 4 (Figll) is called when a replica becomes a primary, which happens if the previous
primary fails or is wrongly suspected to have failed. Before starting serving client’s requests, the new
primary must take care of orphan subtransactions. Managing orphan subtransactions in Procedure 5
(Fig. 11), depends on the type of server: pessimistic or optimistic. We describe each case separately.

New Message TYPE StandardRequest = {req, id};
req - a request to be sent ;
id - identification number, which uniquely specifies the request
New Message TYPE Undolnformation = {comp, reqld, parentld, target};
comp - compensating request
regld - identification number of the request,
to which this undo message relates ;
parentld - client request id, which processing
triggered undo message ;
target - the server, to send this undo message to, if needed ;

Figure 9: Message type declaration.

4 In the context of group communication, this multicast corresponds to what is caliedm view synchronous broad-
cast[4, 24]. Roughly speaking, uniform view synchronous broadcast ensures that if some process delivers the message,
then all correct processes eventually deliver the message. More information about using group communication for passive
replication can be found inlp]. We do not discuss these issues here, since they are not really needed to understand the
contribution of the paper.
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r : StandardRequest;
v : Undolnformation;

U : set of Undolnformation messages;
Procedure 1. Upon reception of request r from C:
if update for request with id =r.id is available then

send(reply for )
else
begin-transaction

to C,

Process Request( r);

Update Backups(update for T);
for every (u:ue€U and u.reqld=r.id) do
if server w.target is pessimistic then
send( COMMIT, wu.reqld) to wu.target;
U —U\{u};
Uniform-VScast(  U);
wait to deliver( 0);
send(reply for r) to C,
end-transaction
Procedure 2. Process Request( r):
begin-transaction
if primary needs to send nested request to S then

new s : StandardRequest;

s.req <« request

to S,

s.id < assign unique id;
new u : Undolnformation;
w.parentld «— r.id,

u.target «— S,
if server S is
u.comp «— N

pessimistic then
ULL,;

u.reqld «— s.id,

else if server

S is optimistic then

u.comp <« compensating request for s;
u.reqld «— NULL,

U—UU{u};
Uniform-VScast(
wait to deliver(
send( s) to S
wait for reply;

end-transaction

U);

u);

Figure 10

: Replicated invocation protocol (Part 1).
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Procedure 3. Update Backups(update for r):

begin-transaction
Uniform-VScast(update for r);
wait to deliver(update for r);
end-transaction

Procedure 4. When R, becomes a primary:

for every (u:u€eU) do
Manage Orphan( u);

U—U\{u};
Uniform-VScast(  U);
wait to deliver( U);

Procedure 5. Manage Orphan(  wu):

if update for request with id —=u.parentlId is available then
if server w.target is pessimistic then
send( COMMIT, w.reqld) to w.target;
else (* if update is not available *)
if server w.target is pessimistic then
send( ABORT, wu.reqld) to u.target;
else if  server w.target is optimistic then
send( u.comp) to wu.target;

Figure 11: Replicated invocation protocol (Part 2).

5.2.1 Pessimistic Servef

If serverS executes pessimistically, a termination message is always required. Indeed, assume that
the primaryR, fails after updating the backups, but before sending the result to the clienL gKaj).
In this case, as the new primaR; has received the updateCOMMITmessage is sent i together
with the id of the request to be committed. In contraryABORTmessage is sent ¥ by Ry, if Ry
fails before it updates the backups (FIg (b)). WhenC' resends its request, this request is executed
by R;.
Consider the particular case Bf's failure after sending the undo information, but before sending
the request teh. In the case of pessimistic serv€r no special mechanisms are needed. Indeed,
termination messages not related to an actual request are simply ignased by

5.2.2 Optimistic ServerS

To undo the request sent to optimistic servef, an compensating request is used. Consider first
the case where no compensating request is required{8i@)). In this case, the primary (i.eR)
execute€’’s request (which requires the sending of a requesftapdates the backups, and crashes.
As the state of the backups is updated, wheresends its request, the new primatysimply returns
the result previously computed [Ry.

However, if R, fails before updating the backups (Fig (b)), the effects caused byon S need
to be undone. Thus a compensating request is sent to senkeventually,C' resends its request to
the new primaryR;, which recomputes the result. Note that the order of compensating an original
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Figure 12: Primary'sR,, failure, after invoking pessimistic servst
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Figure 13: Primary'sR, failure, after invoking optimistic serve¥.
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requests is not significant: the compensating request can be sent at any time after the new primary is
elected. This is a consequence of the properties of the compensating request (seb3e@tion

A particular case arises Ry fails after having sent the undo information to the backup replicas,
but before sending the requestYoAs the backup replicas have received the undo informati(eee
Procedure 2), the new primary will use this undo information to send a compensating regtiest to
(see Procedure 5). Assume thaarrives atS befores. S must handle this case: ifhas not been
received, then: is not executed but stored to be reused in caseentually arrives (if it does at all).
Note that such early undo messages are possible evgyfiils after sending.

6 Related Work

Most of the work performed in the context of replicated invocation assumes deterministic execution.
For example, Mazouni’s worKlp, 17, 15] addresses transparency of the replication technique in the
context of replicated invocation. More specifically, the replication mechanism of the client needs to be
hidden from the server, and vice-versa. Mazouni advocates the use of proxies to achieve transparency,
for both the invocation and the reply to the invocation. Hence, a proxy is located with each client
and server replica. To achieve transparency, these proxies also filter duplicate invocations and results,
assuming that the clients and the actively replicated servers are deterministic.

In contrast, Narasimhan, instead of assuming determinism, enforces determinism (in the context
of multithreaded applications). The work was performed in the context of Et2fiald replication
infrastructure for CORBA objects. The work introduces the notiotMdtdomain(MT stands for
multithreaded), to refer to any CORBA client or server that supports multiple (application level or
ORB level) threads, which may access shared data. MT-domain contains one or more CORBA objects.
The Eternal system enforces deterministic behavior within the MT-domain by allowingaaihgle
logical thread of contrglat any point in time, within each replica of the MT-domain. Each replica
maintains a consistent queue of messages containing operations and responses destined for the MT-
domain. Based on this incoming sequence of messages, the scheduler at each replica decides on the
immediate or delayed delivery of the messages to that replica. These decisions are consistent and
deterministic for every replica.

Zhao, Moser and Melliar-Smitt2p] unify fault-tolerant CORBA (FT-CORBA) and CORBA Ob-
ject Transaction Service (OTS) in the context of a three-tier architecture. Their work also assumes
deterministic execution. The proposed infrastructure replicates transactional application servers to
protect business logic tier from failures. The middle-tier is augmented with an automatic transaction
retry mechanism, which in the case of failure prevents client from reissuing the request (this prevents
duplicate invocations from the client-tier). Replicated out-bound gateways are introduced between the
middle-tier and the data-tier: they are responsible for filtering duplicate invocations and manage trans-
action retry. If failure occurs and an ongoing transactiamis ReadyT oCommit, the infrastructure,
transparently to the client, aborts and retries the transaction. Abort is achieved by resetting the state
of all objects involved in the transaction to the last checkpoint done by the logging mechanism. All
logged messages, up to, but not including the one that started the transaction, are replayed. The ones
within the aborted transaction are discarded. Finally the message that initiated the transaction is re-
played at the transaction’s initiator (the transaction is retried). If fault occurs when the transaction is
ReadyToCommit, the infrastructure reissue the logged request of the second phase of 2PC protocol.

Frelund and Guerraoui/] present a correctness criterion for exactly-once in the context of repli-
cation, that addresses also non-determinism in the execution, and external side-effects. They also
propose a replication protocol, calladynchronous replicatioriThe protocol is targeted towards the
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classical three-tier architecture, with slim client, stateless application servers, and databases. In con-
trary, our approach is more general in that it also addresses statefull components. Indeed, our approach
does not make the distinction between clients and servers. Rather, any client can at the same time act
as a server for another client. Assuming statefull components clearly leads to stronger requirements,

e.g., the update of all replicas.

7 Conclusion

In the paper we have presented the problem of orphan invocations. We have shown that the prob-
lem, which is easily addressed with deterministic replicated servers, remains in the context of non-
deterministic replicated servers. The protocol for preventing orphan invocations is based on undo
information, sent by a servét; to its replicas before issuing the nested invocatio.t@ur protocol
handles both pessimistic and optimistic handling of the invocatiofi.on

The approach presented in this paper has two limitations. This limitations might however be
inherent to the replicated invocation itself, and not at all related to our solution:

e The first drawback is that server(§) are not allowed to spontaneously abort unterminated
invocations. In our solution, the client replic&sare responsible for terminating pending in-
vocations, and the server(S)relies entirely on the replicaB. In other words, the server(s)
must trust the client® to do their job.

e A pessimistic serveS needs to support the abort/commit of a transaction (i.e., invocation)
by another process than the one that has issued the invocation (see Seziihn To our
knowledge, although a mechanism to pass on the responsibility for a transaction to another
process is foreseen in the XA Specification for distributed transaction procedshgHis
mechanism seems not to encompass the situation where processes fail. Rather, in this case, the
unterminated transaction is simply aborted.

In the future, we plan to quantitatively evaluate our approach and compare its overhead to determinis-
tic execution. Also, by studying in more detail the sources of non-determir@ghrglaxed schemes
of our approach may yield better performance in particular application contexts.

Acknowledgments. We would like to thank Matthias Wiesmann for his comments on an earlier
version of this paper.
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