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Distributed Systems Laboratory

School of Computer and Communication Sciences
Swiss Federal Institute of Technology (EPFL)

CH-1015 Lausanne
{Stefan.Pleisch,Arnas.Kupsys,Andre.Schiper}@epfl.ch

Technical Report IC/2003/09

Abstract

In today’s systems, application are composed from various components that may be located on
different machines. The components may have to collaborate in order to service a client request.
More specifically, a client request to one component may trigger a request to another component.
Moreover, to ensure fault-tolerance, components are generally replicated. This poses the problem
of a replicated server invoking another replicated server. We call it the problem of replicated
invocation.

Replicated invocation has been considered in the context of deterministic servers. However,
the problem is more difficult to address when servers are non-deterministic. In this context, work
has been done to enforce deterministic execution. In the paper we consider a different approach.
Instead of preventing non-deterministic execution of servers, we discuss how to handle it. The
paper first discusses the problem of non-deterministic replicated invocation. Then the paper pro-
poses a different solution to solve these problems.

Keywords: FT Algorithms, FT Replication, Non-determinism, Passive Replication, Nested Invo-
cation.

1 Introduction

In today’s systems, applications are composed from various components that can be collocated, but
may also be located on different machines (e.g., in CORBA [21]). The components collaborate in
order to service a client request. More specifically, a client request executed in one component may
trigger a request to another component. While acting as a server component to the client, the compo-
nent at the same time assumes the role of a client, by invoking a service on another server.

Consider a system where clientC invokes serverR (Figure1 (a)). To processC ′s request, server
R invokes another serverS, i.e., R itself acts as a client to serverS. We denote byr (resp. s) the

∗An important part of this work was performed while the author was working at the IBM Zurich Research Laboratory,
CH-8803 R̈uschlikon.
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processing onR (resp.S). We say thats is a subinvocation or nested invocation ofr. If no failures
occur the servers update their states andR sends the reply to the client. However, a component may
be subject to a failure. IfR fails before sending the reply toC (Figure1 (b)), C will eventually notice
the failure, but notS (sinceS already finished the processing). The state ofS will reflect invocation
r, which is not finished properly. Hence, the state ofS is inconsistent. In this case we calls anorphan
request. If at this point some other client accessesS, there is a danger that the inconsistent state ofS
will propagate in the system. Note, that the failure ofS causes a different problem. Indeed, it does
not result in an orphan request, rather the state ofS is no more available.

C

R r

S s
orphan
request

crash

Figure 1: Nested request invocations. The processing of the request is shown by gray bars.

To ensure that applications work even in the face of failures, replication is generally used within
the components. While the problem of replicating a server has been thoroughly studied [23, 3, 12], the
problem of a replicated server invoking another server, has not been addressed in a satisfying manner.
We call such invocation areplicated invocation. Replicated invocation in the context of deterministic
servers causes a problem ofduplicate requests. This problem is addressed in [15], where proxies
are presented to filter the requests using their ID numbers. However, the proxy solution assumes
deterministic replicas. Thus, it is not applicable for non-deterministic servers, because the requests
sent by the replicas of non-deterministic servers may be not identical [22]. In the context of non-
deterministic servers replicated invocation cause a different problem: the problem of orphan requests,
presented above.

The work in [20] provides mechanisms to enforce deterministic execution. We, in contrary, sug-
gest an approach that prevents orphan requests, even if the client replicas execute non-deterministically.
Our approach is based on the idea of exchanging sufficient undo information prior to the server invo-
cation to allow other client replicas to undo the requests of failed client replicas. In contrary to [8],
we do not limit our approach to three-tier architectures [14] and stateless clients. Rather, we assume
that the client replicas do maintain their own state. Moreover, we show that our approach allows us
to prevent blocking when the server uses locking to ensure concurrency control [11]. A failure of the
client in such a scenario may prevent the termination of the transaction on the server, and thus any
other client cannot access the locked data items.

The rest of this paper is structured as follows. We first introduce replicated invocation in Section2.
In Section3 we specify the problem of replicated invocations in terms of transactions. The problem
of orphan subtransactions is discussed in Section4. The core contribution of the paper is presented
in Section5. In this section, we present an orphan-subtransaction-free replicated invocation protocol
in the context of non-deterministic execution. Finally, we relate our solution to the existing work in
Section6 and conclude the paper with Section7.
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2 Replicated Invocation

Replication is a widely used technique to address failures of a server. If a failure of one server replica
occurs, another replica takes over and services clients’ requests. If a replicated server acts as a client to
another server, i.e., invokes a service on it, we call this invocation areplicated invocation. In Figure2,
the invocation from the replicated serverR to the serverS is a replicated invocation. The replicated
invocation problem can be addressed in the context of deterministic or non-deterministic serverR. We
do not make any assumptions about the replication strategy that can be used byS (passive, active [25],
semi-passive [6], or semi-active [23]), as this replication strategy is not relevant for the contribution
of the paper.

2.1 Deterministic Servers

Server replicas are said to be deterministic if, being in the same initial state and supplied with the
same request, all transit to the same state and return the same reply. We show, that orphan requests do
not happen with replicated deterministic servers.

With deterministic serversactive replicationcan be used. In active replication clients multicast
the request to all server replicas, which process the requests in parallel (see Figure2, 1©). If this pro-
cessing requires the invocation of another server, each replica issues exactly the same invocation2©.
Because these invocations are identical, duplicate invocations can easily be detected and filtered, in
order not to process them multiple times3©. This is done by having the replicasRi assign IDs to their
invocation1. Duplicate invocation filtering is addressed in [15, 17, 20]. The result of processing onS
is valid for every replicaRi and is multicast to them4©. Also, each replicaRi sends the reply back to
the clientC 5©. Generally, the client accepts the first one and discards the others.
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Figure 2: Deterministic serverR, replicated using active replication.

The orphan request problem does not appear with replicated deterministic serverR, as all replicas
share the same requests0 (see Figure2). Consequently, the failure of one or multipleRi does not
leaves0 as an orphan, as long as there is at least onecorrect(not failed) replicaRi.

1One could argue that the client can assign a unique ID to its invocation, which can be reused for the nested invocations
as well. However, this does not work: the request ID must be assigned byR. Indeed, assume, that processing onR leads to
multiple invocations toS: the client assigned ID is not enough.
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2.2 Non-Deterministic Servers

Non-deterministic execution requires that the serverR uses passive replication (Figure3 (a)) [12].
In passive replication (also calledprimary-backup[3]) only one replica, theprimary, executesC ’s
request. The update is then sent to the backup replicas. The backup replicas do not directly com-
municate withC; rather, they only communicate with the primary. As only the primary executes
the request, passive replication supports non-deterministic execution. However, passively replicated
server needs to handle failures of the primary. If the primary fails, one of the backups takes over the
role of the primary (Figure3 (b)). The clientC eventually time-outs, has to learn the identity of the
new primary (e.g.,R1), and reissues the request.
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(b) With a failure of the primary.

Figure 3: Non-deterministic serverR, replicated using passive replication.

Consider nested invocation in the context of the passively replicated non-deterministic serverR
(see Figure3 (b)). To serve client’sC request1©, the primary replicaR0 invokes serverS 2©, but
fails before updating the backups. A new primary, sayR1, is elected and the clientC resends its
request3©. As the replicas ofR are non-deterministic, to serve the sameC ’s request,R1 might issue
a different invocation to serverS. It also might choose a different serverD 4©, or it might not issue
the invocation at all. The result computed forr0 cannot be reused forr1, andd1 must be processed
separately. This leavess0 as an orphan request, which has a pending effect on the state ofS. A new
invocation ofS at this point, would likely lead to an inconsistent reply. So the problem of the orphan
requests0 needs to be addressed. In the rest of the paper we focus on replicated invocation in the
context of non-deterministic replicated servers. Later in the paper we present areplicated invocation
protocol, which handles the problem of orphan requests. But before, we introduce the specification
and notation we use to model this problem.

3 Specification of Replicated Invocation with Non-Deterministic Servers

In this section, we give a specification of replicated invocation in terms of transactions. The problem
of orphan request was caused by partial execution ofC ’s request, thus the transaction model is useful,
because it addresses the issue of atomicity of a set of operations. Informally, a transaction always
terminates by either committing its modifications, or aborting them.

Transactions (recursively) decomposed into subtransactions are callednested transactions[18].
Every subtransaction forms a logically related subtask. A successful subtransaction becomes perma-
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nent, i.e., commits, if all its parent transactions (the transaction that encompasses this subtransaction)
commit as well. In contrast, a parent transaction can commit (provided its parent transaction com-
mits) although some of its subtransactions may have aborted. A subtransaction is ready to commit, if
it has successfully executed and is waiting for the commit or abort decision of its parent transaction.
A ready-to-commit transactiont, denotedReadyToCommitt, cannot spontaneously abort any more
(i.e., itself decide abort), but only aborts if its parent transaction aborts. Finally,→ denotes the prece-
dence operator as specified in [2]. More specifically, ift1 → t2, t1 is executed beforet2. In other
words, any operation oft1 that conflicts with an operation oft2 is executed before that operation oft2.

We first specify the invocation between the clientC and the serverR in terms of transactions
(Section3.1), and then extend this specification to also encompass the invocation between serverR
and serverS (Section3.2).

3.1 InvocationC ←→ R

Consider Figure3. We model the execution ofC ’s request on serverR as follows. Upon reception
of C ’s request, the primary replicaR0 starts transactiont0 (see Figure4). This transaction contains
subtransactionspr0 (pr stands forprocessing) andup0 (up stands forupdate). Subtransactionpr0

executes the client request on the primary, subtransaction’sup task is to update the backup replicas of
R, i.e.,R1 andR2.

R0

R1

R2

C

transaction t0

pr0

up0

processing of client request
request reply

Figure 4: Representation of client’s invocation in terms of (sub)transactions.

The specification is stated in terms of properties of transactions. We mention only those that are
related to the replicated invocation, and omit basic transaction properties. The full set of properties
for nested transactions can be found in [5]. The invocationC ←→ R can be specified as follows (the
subscripti refers to the primary replica):

1. Abortti ⇒ (Abortpri ∧Abortupi)
If transactionti aborts, all of its subtransactions (i.e.,pri andupi) must abort. This is a standard
nested transaction property.

2. (Cruciality) Abortpri ∨Abortupi ⇒ Abortti
If one of subtransactionspri or upi aborts,ti also aborts:pri andupi are crucial forti. Trans-
actionti doesn’t make sense without either of these transactions.

3. (Sequence)pri → upi

Transactionpri always executes beforeupi. This is becauseupi updates the backups with the
results ofpri execution.
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4. (Termination)If Ri executesti, then all correct replicas ofR eventually know the outcome (i.e.
commit or abort) ofti.

5. (Non-triviality) ReadyToCommitpri ∧ReadyToCommitupi ⇒ outcome ofti is commit.

The success of subtransactionspri andupi is crucial for the success ofti: in other words,ti can
only commit if the processing transactionpri and the update transactionupi of the backup replicas
have succeeded (Property2). Note that this specifies a particular case of nested transactions, namely
a distributed flat transaction [11]. We use the nested transaction model as it will be mandatory when
we extend our specification to the invocation betweenR andS in Section3.2.

The sequence property (Property3) is inherited from passive replication: first the client request is
processed on the primary, then the backups are updated with the result obtained from the processing.

The termination property (Property4) ensures that once transactionti is started, it eventually ter-
minates by either commit or abort. Property4 is also a liveness property, which ensures that the
outcome of transactionti is eventually decided and that all subtransactions executing on correct pro-
cesses eventually terminate. Clearly, ifR0 fails before committingt0, thent0 and its subtransactions
will not be committed. Property4 also ensures, that started transactions eventually terminate, even if
the primary replica fails. This property is essential in preventing orphan subtransactions. The protocol
we present later in this paper is designed to provide this property.

Finally, the non-triviality property (Property5) specifies, that if both subtransactionspri andupi

are ready to be committed, then the outcome ofti is commit. Note that we do not require thatti be
committed byRi (whereti executes), asRi may have failed. Moreover, the specification still allows
Ri to always immediately abortpri despite this property.

In our system model, we assume that crashed processes do not recover.2 Consequently, the failure
of a replicaRi erases all traces of the transaction onR, unless the other replicas have been updated.

3.2 InvocationR←→ S

In the previous section, we have specified the invocation betweenC andR in terms of transactions. In
this section, we extend this specification to the cases where the primaryR0 invokes transactionest0
(external server transaction) on another serverS (see Figure5). The invocation betweenR andS
corresponds to the replicated invocation presented in Section2.2. Transactionest0 is a subtransaction
of transactionpr0. Remember that serverS is represented as a single, non-replicated server. For our
discussion, it is not relevant whetherS is replicated or not.

Figure6 illustrates the hierarchy of transactions. The top-level transaction ist, which is started
after reception of the client request (see Figure5). It contains the subtransactionspr andup. Sub-
transactionpr, in turn, containsest. Subtransactions that are crucial to the commit of the top-level
transaction are surrounded by dotted circles. In other words, if one of the crucial transactions aborts,
transactiont aborts (see Property2).

Replicated invocation betweenR and S can thus be specified by the properties mentioned in
Section3.1and the following two additional properties:

7. Abortpri ⇒ Abortesti
If subtransactionpri is aborted,esti is aborted as well.

2 This is the standard assumption that forces a protocol to be non-blocking. In other words the protocol presented later
is non-blocking.
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8. ReadyToCommitesti ∧ Commitpri ⇒ Commitesti
If subtransactionesti has successfully executed and is ready to be committed, and its parent
transactionpri commits, thenesti is also committed.

Properties7 and8 ensure that subtransactionesti eventually is terminated, i.e., either commits or
aborts. Clearly, we assume here, that serverS is available, which is the case ifS is fault-tolerant (i.e.,
if S is itself replicated).

4 The Problem of Orphan Subtransactions with Replicated Invocation

In the previous section, we have specified replicated invocation in terms of a hierarchy of transactions.
A standard solution to implement distributed transactions is to rely on a TP (transaction processing)
monitor [11]. However TP monitors centralize the control and are prone to blocking. In particular,
TP monitors usually rely on a two-phase commit protocol (2PC) to ensure atomicity. However, the
2PC protocol is blocking [1]. In contrast, we want a completely decentralized non-blocking solution
(progress despite of failures).

According to the specification, the outcome of the entire execution (i.e., commit or abort) is de-
cided by the top-level transaction, and then this decision is propagated to the subtransactions, which
in turn, propagate it to their subtransactions. The failure of a replicaRi may interrupt the mecha-
nism, that notifies the subtransactions of the commit or abort decision. Assume, for instance, that the
primary fails before it has forwarded the commit or abort decision toS (Figure7, left part). As a
consequence,est0 ignores the outcome oft0 and thus cannot terminate. In this case,est0 is called
anorphan subtransaction. Clearly, orphan subtransactions are undesirable, because they maintain the
locks on data items and prevent other transactions from accessing these items. Note that subtransac-
tion est0 cannot spontaneously abort, because its parent transaction decides the final outcome.

R0

R1

R2

S

C

pr
0

est
0

processing of client request 1

transaction t
1

pr
1

est
1

transaction t
0

processing of client request 2

f   a   i   l  e  d

Waits for the termination
message from R 0, holds
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Figure 7: An orphan subtransactionest0 on pessimistic serverS.

Orphan subtransactions correspond to orphan requests presented in Section2.2. To comply with
the model, from now on orphan requests we will call orphan subtransactions. Depending on the
processing of serverS (optimistic or pessimistic) orphan subtransactions cause different problems.

4.1 Pessimisticvs. Optimistic Server S

To ensure transaction atomicity, data items are locked. When a transaction starts, the needed locks
are acquired; when the transaction finishes, the locks are released, and the result of the processing
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becomes visible in the system. If the locks are not available for some transactiont, the processing
blocks until the locks are released by the transaction holding the locks. Asubtransactionholding
the locks has two options upon finishing its processing: (1) it can release the locks immediately (i.e.,
temporary commit), or (2) it can wait for the commit/abort decision from a higher entity (i.e., parent
transaction), keeping the locks on the data. The latter solution is calledpessimistic processing, and the
server is called apessimistic server. The first solution is calledoptimistic processing, and the server
is called anoptimistic server.

4.1.1 Blocking with Pessimistic Server S

Consider the case of an orphan subtransaction (Figure7) with a pessimistic serverS. Assume that after
the crash of the primaryR0, the new primaryR1 calls the same serverS, and executes subtransaction
est1, which accesses some of the same data items accessed byest0. In this caseest1 has to wait until
est0 releases the locks. Hence, the entire clientR is blocked. Blocking ofR is undesirable, as it
acts itself as a server for other applications. Moreover, other clients may also block when accessing
serverS.

4.1.2 Inconsistency with Optimistic Server S

The problem with optimistic servers is different: the temporary commit might have to be undone. This
can be handled bycompensating actions: to abort a committed transaction acompensating transac-
tion [9, 10] is executed on the server. A compensating transaction semantically undoes the modifica-
tions caused by the original transaction. Assume, for instance, that transactiont reserves a ticket on a
flight, thencompensate t simply cancels this reservation.

Using an optimistic approach, blocking is prevented. Indeed, the locks held by subtransactionest0
(Figure8) are immediately released and the data items are again accessible byest1 (unless another
transaction has acquired them in the meantime). However, in this case, subtransactionest0 needs to
be compensated, since the state of serverS reflectsest0, but after the crash ofR0, est0 is not valid
any more.
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Figure 8: An orphan subtransactionest0 on optimistic serverS.

In the next section we present solutions for pessimistic and optimistic servers.
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5 Replicated Invocation Protocol in the Case of Non-Deterministic Ex-
ecution

This section first presents the basic idea to solve the problem of orphan requests/subtransactions in
the context of replicated invocation, and then the protocol that implements this idea.

5.1 Basic Idea

5.1.1 The Problem of Finding out S

To prevent orphan subtransactions in replicated invocations, it is crucial that a new primary replicaRi

is able to find out the identities of the servers that have been accessed by the previous primaryRj .
This allowsRi to send abort message or compensating transactions toS. How canS be known toRi?
The identity ofS is trivially known if (1) it can be deterministically computed by the replicas ofR, or
(2) if the set of servers is sufficiently small. In the latter case, a message is sent to all servers to find
out the one that was invoked byRj . Here we address the more complex cases in which the identity of
S cannot be found a posteriori. This is especially the case if:

• the set of servers is large, and

• the identity ofS is dynamically computed during the processing ofRi. In other words, the iden-
tity of S is not known to the replica prior to the processing ofC ’s request, and it is impossible
for Ri to find out the identity ofS computed by other replicaRj .

5.1.2 Sending Undo Information

We call undo information, the information that allows to undo a particular request; it includes the
name of the serverS to which the requests is sent, and the description of an action to perform. The
solution to orphan requests/subtransactions consists to make the undo information available to other
replicas ofR, before the primary invokesS. In the context of the undo information, we distinguish
betweentermination requestandcompensation requests:

1. unterminated orphan subtransactions on pessimistic servers need to be terminated, and

2. terminated orphan subtransactions on optimistic servers need to be compensated.

In case (1),termination requestsare COMMITand ABORTmessages3. In case (2), to restore
the consistent state of the system, compensating actions are included in the undo information. Note
however, that compensating the request of a replica is not easy. For example the sequence of requests
(rqx; rqy; compensate rqx) must be a valid sequence and must be semantically equivalent to the
sequence that consists only ofrqy.

5.2 The Protocol

The Replicated Invocation Protocolfor non-deterministic execution is presented in Figures9, 10
and11. Figure9 first introduces two message types:StandardRequestandUndoInformation. Mes-
sages of the first type contain two fields: the request itself and the request id, which uniquely identify

3We assume that the execution of termination requests is idempotent.
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the request in the system. Messages of the typeUndoInformationcontain four fields: compensating
request, request identification, parent request id and target. The compensating request is used with op-
timistic server and contains the request, which semantically undoes the results of the original request.
The request identification holds the id of the original request. It is used in the pessimistic server case.
The other two fields are used for both pessimistic and optimistic types of servers. The parent id field
holds the id of client’s request toR, which triggered the request toS. The target field identifies the
serverS, to which the UndoInformation message has to be sent, if needed.

The protocol itself consists of five procedures executed on the primary ofR. When the primary
gets a request from clientC, Procedure 1 (Fig.10) is executed. If the request was not processed
before, the primary starts a transaction, which in our model corresponds to transactiont in Figure5.
The transaction contains two nested subtransactions, which correspond to proceduresProcess Request
(Procedure 2) andUpdate Backups(Procedure 3), presented later. After the client’s request is pro-
cessed and the backups are updated, the processing on distant pessimistic servers must be committed.
Undo information, sent to backups during the processing, must be garbage collected. Procedure 1
terminates after sending the reply to the client.

Procedure 2 (Fig.10) corresponds to the transactionpr in Figure5. Assume that during process-
ing, the primary needs to send a nested request to some other serverS. Before doing so, a message
of type UndoInformation is prepared for that request and multicast to the backups (this multicast is
denoted byUniform-VScastin Procedure 3)4. The content of the undo message depends on the type
of server the original request is sent to.

Procedure 3 (Fig.11) corresponds to the transactionup in Figure5. The updates are multicast to
the backups also using uniform VScast mentionned above.

Procedure 4 (Fig.11) is called when a replica becomes a primary, which happens if the previous
primary fails or is wrongly suspected to have failed. Before starting serving client’s requests, the new
primary must take care of orphan subtransactions. Managing orphan subtransactions in Procedure 5
(Fig. 11), depends on the type of server: pessimistic or optimistic. We describe each case separately.

New Message TYPE StandardRequest = {req, id};
req - a request to be sent ;
id - identification number, which uniquely specifies the request ;

New Message TYPE UndoInformation = {comp, reqId, parentId, target};
comp - compensating request ;
reqId - identification number of the request,

to which this undo message relates ;
parentId - client request id, which processing

triggered undo message ;
target - the server, to send this undo message to, if needed ;

Figure 9: Message type declaration.

4 In the context of group communication, this multicast corresponds to what is calleduniform view synchronous broad-
cast [4, 24]. Roughly speaking, uniform view synchronous broadcast ensures that if some process delivers the message,
then all correct processes eventually deliver the message. More information about using group communication for passive
replication can be found in [12]. We do not discuss these issues here, since they are not really needed to understand the
contribution of the paper.
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r : StandardRequest;
u : UndoInformation;
U : set of UndoInformation messages;

Procedure 1. Upon reception of request r from C:

if update for request with id =r.id is available then
send(reply for r) to C;

else
begin-transaction

Process Request( r);
Update Backups(update for r);
for every (u : u ∈ U and u.reqId = r.id) do

if server u.target is pessimistic then
send( COMMIT , u.reqId) to u.target;

U ← U \ {u};
Uniform-VScast( U );
wait to deliver( U );

send(reply for r) to C;
end-transaction

Procedure 2. Process Request( r):

begin-transaction
...
if primary needs to send nested request to S then

new s : StandardRequest;
s.req ← request to S;
s.id ← assign unique id;
new u : UndoInformation;
u.parentId ← r.id;
u.target ← S;
if server S is pessimistic then

u.comp ← NULL;
u.reqId ← s.id;

else if server S is optimistic then
u.comp ← compensating request for s;
u.reqId ← NULL;

U ← U ∪ {u};
Uniform-VScast( U );
wait to deliver( u);
send( s) to S;
wait for reply;

...
end-transaction

Figure 10: Replicated invocation protocol (Part 1).

12



Procedure 3. Update Backups(update for r):

begin-transaction
Uniform-VScast(update for r);
wait to deliver(update for r);

end-transaction

Procedure 4. When Ri becomes a primary:

for every (u : u ∈ U) do
Manage Orphan( u);
U ← U \ {u};
Uniform-VScast( U );
wait to deliver( U );

Procedure 5. Manage Orphan( u):

if update for request with id =u.parentId is available then
if server u.target is pessimistic then

send( COMMIT , u.reqId) to u.target;
else (* if update is not available *)

if server u.target is pessimistic then
send( ABORT , u.reqId) to u.target;

else if server u.target is optimistic then
send( u.comp) to u.target;

Figure 11: Replicated invocation protocol (Part 2).

5.2.1 Pessimistic ServerS

If serverS executes pessimistically, a termination message is always required. Indeed, assume that
the primaryR0 fails after updating the backups, but before sending the result to the client (Fig.12(a)).
In this case, as the new primaryR1 has received the update, aCOMMITmessage is sent toS together
with the id of the request to be committed. In contrary, anABORTmessage is sent toS by R1, if R0

fails before it updates the backups (Fig.12 (b)). WhenC resends its request, this request is executed
by R1.

Consider the particular case ofR0’s failure after sending the undo information, but before sending
the request toS. In the case of pessimistic serverS, no special mechanisms are needed. Indeed,
termination messages not related to an actual request are simply ignored byS.

5.2.2 Optimistic ServerS

To undo the requests sent to optimistic serverS, an compensating request is used. Consider first
the case where no compensating request is required (Fig.13 (a)). In this case, the primary (i.e.,R0)
executesC ’s request (which requires the sending of a request toS), updates the backups, and crashes.
As the state of the backups is updated, whenC resends its request, the new primaryR1 simply returns
the result previously computed byR0.

However, ifR0 fails before updating the backups (Fig.13 (b)), the effects caused bys onS need
to be undone. Thus a compensating request is sent to serverS. Eventually,C resends its request to
the new primaryR1, which recomputes the result. Note that the order of compensating an original
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Figure 12: Primary’sR0 failure, after invoking pessimistic serverS.
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Figure 13: Primary’sR0 failure, after invoking optimistic serverS.

14



requests is not significant: the compensating request can be sent at any time after the new primary is
elected. This is a consequence of the properties of the compensating request (see Section5.1.2).

A particular case arises ifR0 fails after having sent the undo information to the backup replicas,
but before sending the request toS. As the backup replicas have received the undo informationu (see
Procedure 2), the new primary will use this undo information to send a compensating request toS
(see Procedure 5). Assume thatu arrives atS befores. S must handle this case: ifs has not been
received, thenu is not executed but stored to be reused in cases eventually arrives (if it does at all).
Note that such early undo messages are possible even ifR0 fails after sendings.

6 Related Work

Most of the work performed in the context of replicated invocation assumes deterministic execution.
For example, Mazouni’s work [16, 17, 15] addresses transparency of the replication technique in the
context of replicated invocation. More specifically, the replication mechanism of the client needs to be
hidden from the server, and vice-versa. Mazouni advocates the use of proxies to achieve transparency,
for both the invocation and the reply to the invocation. Hence, a proxy is located with each client
and server replica. To achieve transparency, these proxies also filter duplicate invocations and results,
assuming that the clients and the actively replicated servers are deterministic.

In contrast, Narasimhan, instead of assuming determinism, enforces determinism (in the context
of multithreaded applications). The work was performed in the context of Eternal [20], a replication
infrastructure for CORBA objects. The work introduces the notion ofMT-domain(MT stands for
multithreaded), to refer to any CORBA client or server that supports multiple (application level or
ORB level) threads, which may access shared data. MT-domain contains one or more CORBA objects.
The Eternal system enforces deterministic behavior within the MT-domain by allowing onlya single
logical thread of control, at any point in time, within each replica of the MT-domain. Each replica
maintains a consistent queue of messages containing operations and responses destined for the MT-
domain. Based on this incoming sequence of messages, the scheduler at each replica decides on the
immediate or delayed delivery of the messages to that replica. These decisions are consistent and
deterministic for every replica.

Zhao, Moser and Melliar-Smith [26] unify fault-tolerant CORBA (FT-CORBA) and CORBA Ob-
ject Transaction Service (OTS) in the context of a three-tier architecture. Their work also assumes
deterministic execution. The proposed infrastructure replicates transactional application servers to
protect business logic tier from failures. The middle-tier is augmented with an automatic transaction
retry mechanism, which in the case of failure prevents client from reissuing the request (this prevents
duplicate invocations from the client-tier). Replicated out-bound gateways are introduced between the
middle-tier and the data-tier: they are responsible for filtering duplicate invocations and manage trans-
action retry. If failure occurs and an ongoing transaction isnot ReadyToCommit, the infrastructure,
transparently to the client, aborts and retries the transaction. Abort is achieved by resetting the state
of all objects involved in the transaction to the last checkpoint done by the logging mechanism. All
logged messages, up to, but not including the one that started the transaction, are replayed. The ones
within the aborted transaction are discarded. Finally the message that initiated the transaction is re-
played at the transaction’s initiator (the transaction is retried). If fault occurs when the transaction is
ReadyToCommit, the infrastructure reissue the logged request of the second phase of 2PC protocol.

Frølund and Guerraoui [7] present a correctness criterion for exactly-once in the context of repli-
cation, that addresses also non-determinism in the execution, and external side-effects. They also
propose a replication protocol, calledasynchronous replication. The protocol is targeted towards the
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classical three-tier architecture, with slim client, stateless application servers, and databases. In con-
trary, our approach is more general in that it also addresses statefull components. Indeed, our approach
does not make the distinction between clients and servers. Rather, any client can at the same time act
as a server for another client. Assuming statefull components clearly leads to stronger requirements,
e.g., the update of all replicas.

7 Conclusion

In the paper we have presented the problem of orphan invocations. We have shown that the prob-
lem, which is easily addressed with deterministic replicated servers, remains in the context of non-
deterministic replicated servers. The protocol for preventing orphan invocations is based on undo
information, sent by a serverRi to its replicas before issuing the nested invocation toS. Our protocol
handles both pessimistic and optimistic handling of the invocation onS.

The approach presented in this paper has two limitations. This limitations might however be
inherent to the replicated invocation itself, and not at all related to our solution:

• The first drawback is that server(s)S are not allowed to spontaneously abort unterminated
invocations. In our solution, the client replicasR are responsible for terminating pending in-
vocations, and the server(s)S relies entirely on the replicasR. In other words, the server(s)S
must trust the clientsR to do their job.

• A pessimistic serverS needs to support the abort/commit of a transaction (i.e., invocation)
by another process than the one that has issued the invocation (see Section5.2.1). To our
knowledge, although a mechanism to pass on the responsibility for a transaction to another
process is foreseen in the XA Specification for distributed transaction processing [13], this
mechanism seems not to encompass the situation where processes fail. Rather, in this case, the
unterminated transaction is simply aborted.

In the future, we plan to quantitatively evaluate our approach and compare its overhead to determinis-
tic execution. Also, by studying in more detail the sources of non-determinism [22], relaxed schemes
of our approach may yield better performance in particular application contexts.

Acknowledgments. We would like to thank Matthias Wiesmann for his comments on an earlier
version of this paper.
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