
Revisiting Liveness Properties
in the Context of Secure Systems

Felix C. Gärtner

École Polytechnique Fédérale de Lausanne (EPFL)
Departement de Systèmes de Communications

Laboratoire de Programmation Distribuée
CH-1015 Lausanne, Switzerland
fgaertner@lpdmail.epfl.ch

École Polytechnique Fédérale de Lausanne (EPFL)
School of Computer and Communication Sciences

Technical Report 200278
November 4, 2002

Abstract. Distinguishing trace-based system properties into safety prop-
erties on the one hand and liveness properties on the other has proven
very useful for specifying and validating concurrent and fault-tolerant
systems. We study the adequacy of these abstractions, especially the
liveness property abstraction, in the context of secure systems for two
different scenarios: (1) Denial-of-service attacks and (2) brute-force at-
tacks on secret keys. We argue that in both cases the concept of a liveness
property needs to be adapted. We show how this can be done and relate
the resulting concepts to related work in the areas of concurrency theory
and fault-tolerance.

Keywords: Safety, Liveness, Security, Modeling, Denial-of-service

1 Introduction

It was observed in 1977 by Lamport [24] that system properties can informally be
classified into two distinct classes: safety properties and liveness properties. Gen-
erally speaking, safety properties state that “something bad never happens”, i.e.,
a certain bad condition will never occur in any system configuration. Mutual ex-
clusion and partial correctness are two prominent examples of safety properties.
For the former, the bad condition is that two processes are in their critical section
at the same time. For the latter, the bad condition describes a termination state
where the postcondition does not hold. Safety properties are a well-established
concept and a lot of theory and practice has evolved around it.

In contrast to safety properties, liveness properties demand that “something
good eventually happens”, i.e., a certain desired condition will eventually be
true for some system configuration. The most prominent example of a liveness

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902669?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


property is termination. Liveness properties can be regarded as a first-order ap-
proximation of real-time properties. The distinction made is merely that between
“finite” and “infinite” time. While safety properties are violated in finite time,
liveness properties are violated in infinite time. In a later article, Lamport elab-
orates on the meaningfulness of a system satisfying a liveness property as follows
[25]:

The question of whether a real system satisfies a liveness property is
meaningless; it can be answered only by observing the system for an
infinite length of time, and real systems don’t run forever. Liveness is
always an approximation to the property we really care about. We want
a program to terminate within 100 years, but proving that it does would
require addition of distracting timing assumptions. So, we prove the
weaker condition that the program eventually terminates. This doesn’t
prove that the program will terminate within our lifetimes, but it does
demonstrate the absence of infinite loops.

Despite such drastic statements, liveness properties are a widely accepted con-
cept when modeling and analyzing the timing behavior of algorithms.

Safety and liveness have been considered adequate in the area of fault-tolerant
systems too. Specifying systems using safety properties directly translates to this
area since safety properties make sense without change in the presence of faults.
In the context of silent crash faults it was observed that liveness properties must
be restricted to those parts of the system which remain alive. For example, the
standard specification of the consensus problem [6, 33], the basis of distributed
transactions and hence a very important problem in fault-tolerant computing,
involves a safety property and a liveness property:

– (Safety) If two processes choose a certain value v ∈ {commit , abort}, they
choose the same value.

– (Liveness) Every process eventually chooses a value.

The safety property perfectly makes sense if processes can crash. But the liveness
property needs to be weakened into

– (Liveness) Every process that doesn’t crash eventually chooses a value.

to be implementable, yielding the definition of uniform consensus. In other fault
settings, the specification needs to be adapted in similar ways (see for example
the area of self-stabilization [16]).

In this paper we turn our attention to the adequacy of liveness properties
when studying secure systems. We will not attempt to define what security means
in general, but rather look at two individual examples of properties which we
intuitively regard as security properties and which we would like to formalize, if
possible, as liveness properties. The example properties come up in the context
of two different forms of attacks:

– Denial-of-service attacks [12]: In a denial-of-service attack a user is prevented
from using a remote resource by, for example, flooding the network with

2



bogus messages. In this setting we ask: What are sensible forms of liveness
to specify the progress properties we require of a system in the presence of
such attacks?

– Brute-force attacks on cryptographic (public) keys: In these types of attacks,
an adversary tries to compromise the secrecy of a cryptographic key by trying
and testing every possible solution from the key space. While this usually
takes a prohibitively long period of time, some instances of such attacks
are feasible. (For example, it was possible to break an instance of the Data
Encryption Standard DES in less than a day [30].) But even when abstracting
from concrete time instances (as is done in the domain of liveness), a brute
force attack is guaranteed to terminate. (Note that while private (symmetric)
key cryptography may in some cases be resilient to brute force attacks, public
(asymmetric) key cryptography can always be attacked in this way since
one key is necessarily disclosed.) In this setting we ask: What are sensible
concepts in the spirit of liveness properties to model the resilience of an
algorithm to brute-force attacks if an adversary can delay the progress of
the algorithm for an arbitrary (but finite) amount of time?

In both cases we describe concepts that can help model the properties in ques-
tion. For the denial-of-service case we end up with a concept which we call
self-controlled liveness properties. These properties can be seen as being the
particular subset of liveness properties which the adversary cannot control. We
define this concept formally and relate it to the similar concept of machine-
closure [25] from concurrency theory. This work aims in the direction of better
understanding system properties in the context of denial-of-service attacks, an
open issue recently stated by Meadows [29].

In the brute-force case we describe and advocate concepts of other authors
[11, 22] which, we think, deserves more attention. The path in this case is to
introduce concepts from complexity theory in a way which complements speci-
fications based on safety and liveness properties. Briefly spoken, the additional
efficiency property mandates that an adversary does not have the computational
power to delay the execution “long enough” (in a complexity theoretic sense).

The paper is structured as follows: We first state the formal background
of reasoning about systems in the context of fault-tolerance and security in
Section 2. Sections 3 and 4 deal with the cases of denial-of-service and brute-
force attacks, respectively. Section 5 concludes the paper.

2 Trace-based System Models and Properties

We now briefly recall the concepts of trace-based specifications for reactive sys-
tems.

2.1 Transition Systems and Traces

Usually, an interactive system is modeled as a state machine which moves from
one state to another by means of actions. Formally this corresponds to the defi-
nition of a labeled transition system. In the black box view of systems, we wish to

3



define the behavior of such a system in terms of the states and actions it exhibits
at its visible interface. In the literature this is termed observation semantics and
there are many different possibilities of defining observation semantics for concur-
rent systems. We will use one of the simplest semantics, called trace semantics,
which amounts to defining an observation simply as a sequence of states and
actions which are visible at the system interface. Formally, a trace is written

s1
a1→ s2

a2→ s3 . . .

and denotes that starting from state s1 the system reaches state s2 by executing
action a1 etc.

Note that trace semantics can also be used to describe the behavior of con-
current systems by defining a state as being a distributed state (i.e., a vector of
local states) and viewing a trace as the interleaving of the individual local traces
of the concurrent processes. For example, if s1

a1→ s2
a2→ s3 . . . is the trace of a

process p and s′
1

a′
1→ s′

2

a′
2→ s′

3 . . . is the trace of process p′, we can model a trace
of the concurrent system where p and p′ take turns as:

(s1, s
′
1)

a1→ (s2, s
′
1)

a′
1→ (s2, s

′
2)

a2→ (s3, s
′
2)

a′
2→ (s3, s

′
3) . . .

The type of interleaving can be used to distinguish different synchrony assump-
tions between processes. One of the most general assumptions is that in an
infinite trace both processes must take steps infinitely often. Since this rules out
one process dominating the trace, this concept is often called fair interleaving.

2.2 Safety and Liveness

A property is defined to be a set of traces. A trace σ satisfies a property P
if σ ∈ P . If σ does not satisfy P we say that σ violates P . There are two
important types of properties called safety and liveness [2]. Informally spoken, a
safety property demands that “something bad never happens” [24], i.e., it rules
out a set of unwanted trace prefixes. Mutual exclusion and partial correctness are
two prominent examples of safety properties. A liveness property on the other
hand demands that “something good will eventually happen” [24] and can be
used to formalize, e.g., notions of termination. Safety and liveness properties are
defined as follows.

A safety property is a property S such that for each trace σ that violates S,
there exists a finite prefix α of σ such that for all traces β, α · β violates S (the
dot “·” denotes concatenation). A liveness property is a property L such that for
all finite traces α exists a trace β such that α · β ∈ L.

The distinction between safety and liveness was motivated by different proof
techniques used to validate them [21]. In general, safety properties can be proved
by an inductive argument involving an invariant over the state of the system.
Liveness properties are proved using well-foundedness arguments involving a
termination function. Alpern and Schneider [2] have shown that every property
(defined as a set of traces) can be written as the intersection between a safety
property and a liveness property.

4



2.3 Asynchronous Systems

Systems with fair interleaving have a close relationship to asynchronous systems.
The main advantage of asynchronous systems is that they can be characterized
more by non-assumptions than by assumptions [32]: In asynchronous systems
there is no assumed or existing bound on the relative processing speeds of pro-
cesses. This means that while one process takes a single step, any other process
can take an arbitrary (but finite) number of steps. In asynchronous systems
where communication is through sending and receiving messages, usually also
channels are assumed to be asynchronous [17] meaning that there is no upper
bound on the time it takes for the system to deliver a sent message. Because
they are so simple, the asynchronous system model has been used as the basis
for many investigations in distributed algorithms.

2.4 Modeling Faults and Attacks

In the context of security we need to model faults and attacks. This is the basis
for validating a certain system formally. In this paper, we take the view that
attacks and faults can be modeled in the same way and hence we will use the
terms “fault” and “attack” synonymously. According to Rushby [31], this can
be done either in a calculational or specificational way. In the calculational ap-
proach, faults are modeled as unwanted program transitions which are explicitly
incorporated into the faulty program. In effect, these approaches “calculate”
the effects of faults and see whether the resulting traces still satisfy the speci-
fication. For example, work by Arora, Gouda and Kulkarni [4, 5] falls into this
catgory as does all the work on software-implemented fault-injection [20]. In the
specificational approach, faults are modeled by “weakening” the interface speci-
fications of subcomponents. This is commonly done in the classical literature on
fault-tolerant distributed algorithms [7, 23]. In both fault-modeling approaches,
the faults have the effect of potentially adding behavior to a system, i.e., more
system executions are possible if no countermeasures are taken. Hence, a system
in the presence of faults is the original system which is modified to allow faulty
behavior.

In this paper, a specification is a property, i.e., a set of traces. A system
satisfies a specification in the presence of faults if all traces of the system in the
presence of faults satisfy the specification.

2.5 Fault Classifications

Given a specification consisting of a safety and a liveness property, faults can
be classified according to the type of property which they directly endanger.
For example, memory perturbations that can be the effect of cosmic rays in
spacecraft may lead to a direct violation of the safety property. In contrast to
that, (silent) crash faults of processes do not necessarily endanger the safety
property of the system but rather the liveness property (e.g., a process which is
required to terminate but crashes before terminating).

5



Fault assumptions (like memory perturbation and crash) usually come with a
restriction on the number of times faults of this class can happen. For example,
in the context of self-stabilization [16] memory perturbations are assumed to
occur only finitely many times. Similarly, for crash faults there is usually an
assumed upper bound on the number of processes which are allowed to crash.
The two aspects of a fault assumption are usually called local and global. While
the local fault assumption enables additional component behavior, the global
fault assumption restricts component behavior again.

In a sense, the Byzantine fault assumption [23] can be regarded as the
strongest possible combination of safety and liveness violating faulty behav-
ior. Byzantine behavior is arbitrary behavior of at most t components in the
system. Some weaker variants of the pure Byzantine fault assumption (like non-
cooperative Byzantine [28]) have also been defined. Sometimes their assumptions
rely on the use of cryptographic primitives, like the authenticated Byzantine
model [23] which is used to increase the resilience of Byzantine agreement pro-
tocols. In this context, the arbitrary behavior of the Byzantine adversary is
restricted to not being able to “guess” a cryptographic key which it has no ac-
cess to. In the context of secure message-passing systems, the Byzantine fault
assumption has been adapted to additionally encompass the message transport
system. This has become known as the Dolev-Yao attacker assumption [15]. In
this model, the corrupted components (processes) together with the message
system are seen as the adversary, i.e., messages (even between two uncorrupted
parties) can be arbitrarily delayed or lost. However, signatures of uncorrupted
processes cannot be forged.

Note that usually it is trivial to maintain a safety specification in the pres-
ence of faults if only “liveness affecting” faults (like crashes) may occur. Hence,
satisfying both safety and liveness in the presence of faults is important. In the
remainder of this paper, we will assume the Dolev-Yao model and investigate
the role which liveness plays in the analysis of security protocols in this model.

3 Adapting Liveness in the Context of Denial of Service

3.1 Motivation

“Denial of Service” (DoS) attacks are a well-known threat to the availability of
systems and these types of attacks have been widely experienced on the Internet.
For example, a DoS attack in early 2000 seriously disrupted the services of some
prominent Internet sites such as Amazon, eBay and Yahoo [13]. According to the
CERT Coordination Center [12], a DoS attack “is characterized by an explicit
attempt by attackers to prevent legitimate users of a service from using that
service.” This can be performed in a multitude of ways, including flooding the
network, thereby preventing legitimate network traffic.

3.2 The Difficulty of Defining Denial of Service

The definition of CERT [12] can be regarded as seeing the “absence of liveness” as
a definitory result of a DoS attack. Apart from compromising the availability of

6



the service, a successful DoS attack may wreak other forms of havoc, like a server
operating system crash. These unwanted conditions can be incorporated into
the safety specification of the system, and so a first approximation to formally
defining DoS tolerance seems to be the following:

Definition 1 (tentative definition of DoS tolerance). Given a system with
a safety specification S and a liveness specification L in the Dolev-Yao model.
The system is DoS tolerant if it satisfies S in the presence of faults.

Since L is not required to be satisfied in the presence of faults, the system may
lose all forms of liveness if it is attacked. This is similar to making satisfaction
of liveness dependent on the behavior of the adversary. For example, Cachin
et al. [8] define the liveness requirement of a validated Byzantine agreement
protocol as follows:

If all honest servers have been activated on [a certain instance of agree-
ment] and all associated messages have been delivered [by the adversary],
then all honest servers have decided [. . . ].

Unfortunately, a definition in the spirit of Definition 1 is too weak to be useful
since there are trivial implementations that tolerate DoS, namely systems that
do nothing. However, a useful definition of DoS tolerance should at least contain
Definition 1, since safety should be maintained at all times. For example, this al-
lows to prohibit system crashes or other unpleasant consequences from excessive
system load which usually are the effect of distributed DoS attacks.

The weakness of Definition 1 stems from its inability to reflect the behavior
of practical DoS tolerant systems. In such systems, countermeasures are taken
to prevent damage caused by high system loads. For example, the system can
instruct a firewall or router to dismiss certain network traffic from malicious
machines. If even this is not possible, the machine can cut off all its network
connections alltogether (by shutting down the network interface). As a last re-
sort, the system may cease operation alltogether by shutting down in a safe state.
From these descriptions it should be obvious that real systems that tolerate DoS
do not lose all forms of liveness in the presence of faults. They are still able to
make a certain (limited) amount of progress, a form of “self-controlled” liveness.

3.3 Self-controlled Liveness

For a given labelled transition system with a set of actions A, define Ap as the
set of actions controlled by process p. Formally, Ap includes all actions of p which
have preconditions defined only over the local state of p. This means, process p
can execute the actions in Ap independently of other processes in the system.

Definition 2 (self-controlled liveness). A self-controlled liveness property
for process p is a property L such that for all finite traces α exists a trace β such
that α · β ∈ L and β consists only of actions from Ap.

Using Definition 2 we can now define DoS tolerance as follows:

7



Definition 3 (DoS tolerance). Given a system with a safety specification S
and a liveness specification L in the Dolev-Yao model and let Lp be the largest
self-controlled liveness property contained in L. The system is DoS tolerant for
process p if p satisfies S and Lp in the presence of faults.

3.4 Relation to Machine Closure

We note here that there exists an interesting relation between Definition 2 and
a concept from concurrency theory. Definition 2 is very close to the notion of
machine-closure [25] (sometimes also called feasibility [3] or machine-realizability
[1]). A liveness property L is machine-closed for a particular system iff for any
finite trace its continuation demanded by L is a trace of the system. Metaphor-
ically, this was characterized as the inability for a system “to paint itself into a
corner” [34]. Self-controlled liveness properties are a specialization of machine-
closure restricted to a subset of program actions. In the context of secure systems
and DoS, this concept can therefore be helpful to characterize the ability to op-
erate under the “progress restrictions” of an adversary. The relations between
the different forms of liveness properties are depicted in Figure 1.

LpL LΣ

Fig. 1. Relations between all liveness properties, L, liveness properties which are
machine-closed with respect to a system Σ, LΣ , and self-controlled liveness proper-
ties for a particular process p from Σ, Lp.

3.5 Relation to Fail-Awareness

Recently, Cristian and Fetzer [14] introduced the timed asynchronous system
model. This model is at heart an asynchronous system model. It contains, how-
ever, an explicit notion of real-time through the assumption that processes have
access to local hardware clocks and that these clocks run within a linear envelope
of real-time. This means that it is always possible to state a real-time bound on
the maximum clock difference between each pair of clocks. Note that this does
not mean that bounds exist on processing speeds or message delivery delays.
On the contrary, the model explicitly assumes that communication is via mes-
sage passing and there is no bound on message delivery delay. Just like in the
time-free model, there is no bound on the relative processing speed of processes.

8



Through the notion of real-time provided by the hardware clocks it is possible
to define real-time bounds for all services provided in a timed asynchronous
system. In fact, this part of a service specification is mandatory. This means
that while it is still impossible to, for example, reliably detect a process crash, it
is now possible to tell whether a reply has not met its real-time deadline. This
is called fail-awareness [18]. Since there are no bounds on fault occurrences, in
this model it is not possible to ensure any liveness property at all.

To address the question of liveness, Cristian and Fetzer made the following
observation: In practice, systems alternate between long periods of stability and
short periods of instability. The measurements they give in their article [14]
which were made in a local area network environment show that the average
distance between unstable periods is 218 seconds, while the average length of an
unstable period was about 340 milliseconds (this gives a ratio of 641 : 1). This
observation allows to formulate progress assumptions of the form: “There exists
a constant c, such that infinitely often there will be a stable period of length
at least c.” In other words, this means that infinitely often the system will be
synchronous for at least c time.

Using progress assumptions it is now possible to specify liveness properties
in the following way: “Assuming that some stability predicate holds, then the
system will eventually perform an action.” The stability predicate S can be, e.g.,
“infinitely often a majority of processes is synchronous for at least 2 seconds.”
Liveness properties of form L are transformed into weaker variants of the form
S ⇒ L called conditional timeliness properties [14].

In contrast to self-controlled liveness properties, conditional timeliness prop-
erties are restrictions on the global asynchrony, i.e., restrictions on the ability of
the adversary to choose the scheduling of processes. Low-level timing assump-
tions can therefore be made explicit which are usually not expressible in the
basic asynchronous system model. Self-controlled liveness properties restrict lo-
cal “asynchrony”, i.e., the ability of the adversary to stop an alive process. In
this sense, self-controlled liveness properties can be regarded as a specialization
of conditional timeliness properties.

4 Adapting Liveness in the Context of (Public-Key)
Cryptography

4.1 Motivation

In the Dolev-Yao attacker model [15] all corrupted parties and the complete mes-
sage system are assumed to be under the control of the adversary. However, it
is often assumed that channels are secure and authentic meaning that messages
between uncorrupted parties which are delivered by the adversary can be veri-
fied as being authentic and their message content remains secret. As discussed in
Section 3, reactive protocols which are driven by messages cannot satisfy (gen-
eral) liveness properties in this context since the adversary can alter, inject and
schedule messages at its own choice. Interestingly, in this model it is possible to
achieve liveness while losing security, as we now explain.

9



Systems involving cryptography are naturally prone to attacks based on
cryptanalysis or on brute-force calculations to retrieve a secret piece of infor-
mation. Now consider a system which satisfies a particular liveness property,
say, termination. Since liveness properties do not state anything about the time
it takes to achieve them, the adversary can delay the termination event as long
as necessary to break the cryptographic keys involved in the protocol. This is
one deficiency of the liveness property abstraction which only becomes apparent
in the context of secure systems. In this section we review an interesting sys-
tem model of Cachin, Kursawe, and Shoup [11, 22] (with extensions [8, 9]) from
this perspective. The model introduces complexity theoretic means to rigorously
analyse the security of a randomized Byzantine agreement protocol which is im-
plemented using cryptography. Since in this model the cryptographic view of
security prevails, the aim of this section is to explain it in a terminology related
more to distributed systems and formal verification people.

4.2 Turing Machines, Security Parameters and Negligible Functions

Instead of transition systems, the model uses probabilistic interactive Turing ma-
chines (PITMs) to model individual processes. The reason for this is that, since
they can read input from a dedicated input tape, PITMs have well-defined com-
plexity measures with respect to their input. Theoretically there is no difference
between a PITM and a parametrized transition system.

The input of such a PITM consists of a security parameter. This is also a
concept rather unkown to regular distributed systems people. Briefly spoken,
the security parameter k can be thought of as the “strength” of the underlying
cryptography (e.g., the length of the secret key in bits). Attacks on the cryp-
tosystem are assumed to have a running time which takes more than polynomial
time in k. For example, a brute force attack on a cryptosystem with k key bits
takes 2k time. The hope is that by increasing k it is easily possible to combat
the increasing processing power of new equipment. By having the PITMs read
k from the input tape, the system model is parametrized in k.

Even though the complexity of a brute force attack increases exponentially
in k, there is still a non-zero chance of an attacker simply “guessing” the right
key. In practice, this chance is assumed to be negligible for the most common
cryptosystems. For example, the chances of guessing an RSA key decreases expo-
nentially in the length of the key, since all known algorithms for factoring large
numbers need exponential time. Hence, the probability of guessing the right key
decreases faster than any polynomial. This is formalized using the concept of
a negligible function in k. A function f(k) is called negligible if for all c > 0
there exists a k0 such that f(k) < 1

kc for all k > k0. Hence, a negligible function
decreases faster than any polynomial.

The adversary (which includes all corrupted processes as well as the message
subsystem) is also modelled as a PITM with a time complexity bounded by
a polynomial in k. The honest (i.e., uncorrupted) processes are considered to
be “message driven” by the adversary, i.e., they only take one initial step (and
generate a finite set of messages) and then only take steps whenever a message is

10



delivered to them by the adversary. In this case they perform a state transition
and generate a (possibly empty) set of messages which are inserted into the
message subsystem again.

4.3 The Liveness Property

Similar to restricting the liveness property in the presence of crash faults to all
alive processes, any liveness property of a message-driven protocol in the context
of the Dolev-Yao attacker model must be dependent on the extent to which the
adversary delivers messages. For example, the liveness property of consensus
from the introduction of this paper would be reformulated as:

– (Liveness) If all messages associated to a particular instance of consensus
have been delivered, then all uncorrupted processes eventually decide.

Any other form of liveness would be trivially impossible to implement without
dedicated resources. However, as motivated above, these properties alone do not
capture the intuition of not being able to delay the protocol arbitrarily.

4.4 The Efficiency Property

Because the model is used to analyse the security of a protocol using complexity
theory, runs necessarily need to be finite. The basic assumption of the model
therefore is that any algorithm runs in a time which is polynomial in k. Hence, the
length of any trace generated by an individual process in the system is bounded
by some polynomial in k. For distributed systems people this may seem unusual
at first since the notion of reactive systems was introduced explicitly to model
non-terminating tasks like operating systems or schedulers. However, even “non-
terminating” tasks terminate in practice, and because k and the polynomial can
be freely chosen, the running time can be large enough to meet these facts.

Since processes are probabilistic, successive invocations of the system will
usually generate different traces. For a given trace it is possible to define some
complexity measure. For example, the communication complexity of a trace is
the total bit length of all messages generated by honest processes during the
trace. The communication complexity of the protocol consequently is a random
variable that depends on the adversary and on k.

Given a particular protocol, it is possible to define a protocol statistic X
which is a collection of random variables {XA(k)} for different adversaries A
and different security parameters k. One member of this collection is obtained
by measuring a particular complexity measure (like communication complexity)
running the protocol with a particular adversary A and a particular security
parameter k. The protocol statistic can therefore be seen as an abstraction of the
behavior of the protocol for all adversaries and all security parameters (remember
that only adversaries are allowed that run in polynomial time in k).

The idea now is to give a definition of what it means for a protocol to be
“bounded” for all allowed adversaries and security parameters. This definition

11



can then be instantiated for different complexity measures. Intuitively, the com-
plexity of a “bounded” protocol should always be bounded by a polynomial, no
matter how the adversary operates.

Formally, a protocol statistic X is uniformly bounded if there exists a fixed
polynomial p(k) such that for all adversaries A there is a negligible function e(k)
such that for all k > 0 holds:

Pr[XA(k) > p(k)] ≤ eA(k) (1)

This means that the probability that the complexity of the protocol lies above
a certain fixed polynomial is negligible. Note that this holds for all (allowed)
adversaries and security parameters.

Using the notion of uniformly bounded protocol statistic it is now possible
to define an additional efficiency property for a protocol.

Definition 4 (efficiency property). The communication complexity of the
protocol is uniformly bounded.

If the protocol in question is not randomized, it is possible to simplify For-
mula 1 and also Definition 4 to state that the communication complexity (de-
pendent on k) should be below a fixed polynomial p(k). To explain the intuition
behind the definition, it should be instructive to look at a protocol which does
not satisfy Definition 4 in the simplified (non-probabilistic) setting. Take for ex-
ample a protocol with two types of messages: a-messages and b-messages. In the
protocol a process, upon receiving an a-message, sends n + 1 messages in reply
to other processes which need to be processed in order to terminate (n being
the number of processes in the system): n a-message and a b-message. The ad-
versary can now hold back the b-message and deliver the a-message to generate
additional messages. By repeating this procedure, the adversary can generate an
exponential number of “correct” protocol messages in a time linear in k. Hence,
the communication complexity for this particular adversary can surmount any
polynomial in k. So this protocol does not satisfy the efficiency condition.

Intuitively spoken, the efficiency property ensures that the protocol termi-
nates “fast” with respect to the extent to which the adversary delivers messages.
The only assumption on the adversary is that its computing power is polynomi-
ally bounded. Hence, if a protocol satisfies efficiency then such a polynomially
bounded adversary cannot delay the protocol in a superpolynomial way. But a
superpolynomial delay is needed for a successful brute-force attack on the given
cryptosystem. We can compare this setting metaphorically to a race with two
competitors (protocol and adversary) and take the running time to be the mea-
sure of complexity. Both start running and the protocol wins if itself finishes
in polynomial time. The adversary wins if the protocol takes superpolynomial
time. The efficiency condition therefore ensures that the protocol always wins.

5 Conclusions

In the area of secure systems we are experiencing the development of an increas-
ingly flexible formal machinery to help designing and validating them. We have

12



presented two concepts which we feel help to formalize and understand system
properties in the presence of two different attacks: denial-of-service and brute-
force attacks on cryptographic keys. We have argued that the security properties
involved can be formalized in a way which builds on the well-established concepts
of safety and liveness.

We feel that it has many methodological advantages to keep the framework of
safety and liveness at the heart of any security investigations and find extensions
in areas that fall outside of this domain. For example, distinguishing between
(adversary-dependent) liveness properties and the efficiency property (as done
in Section 4) allows the following: Security protocols can first be specified and
analysed in the usual context of safety and liveness. If this is done, the efficiency
of the protocol can then be investigated seperately. Hence, studying the resilience
of protocols to brute-force attacks is compatible to the established methodology
of verifying safety and liveness. This point is worth noting because other work
has also developed methods to “incrementally” reason about properties that fall
out of the safety/liveness domain. To the best of our knowledge, this has been
done for information-flow properties in the context of non-interference [27] and
real-time properties in the context of fault-tolerant algorithms [19, 26]. The goal
is to continuously extend the collection of these analysis methods to tame the
complexity of system validation by compositional reasoning.

Acknowledgments

The author wishes to thank Klaus Kursawe for his insightful explanations on the
motivations of his work. Thanks also to Heiko Mantel, Michael Waidner, Holger
Vogt and Hagen Völzer for helpful discussions.

References

1. Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM Transactions
on Programming Languages and Systems, 15(1):73–132, January 1993.

2. Bowen Alpern and Fred B. Schneider. Defining liveness. Information Processing
Letters, 21:181–185, 1985.

3. Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in lan-
guages for distributed programming. Distributed Computing, 2(4):226–241, 1988.

4. Anish Arora and Mohamed Gouda. Closure and convergence: A foundation of fault-
tolerant computing. IEEE Transactions on Software Engineering, 19(11):1015–
1027, 1993.

5. Anish Arora and Sandeep S. Kulkarni. Component based design of multitolerant
systems. IEEE Transactions on Software Engineering, 24(1):63–78, January 1998.

6. Michael Barborak, Anton Dahbura, and Miroslaw Malek. The consensus problem
in fault-tolerant computing. ACM Computing Surveys, 25(2):171–220, June 1993.

7. Gabriel Bracha and Sam Toueg. Asynchronous consensus and broadcast protocols.
Journal of the ACM, 32(4):824–840, October 1985.

8. Christian Cachin, Klaus Kursawe, Anna Lysyanskaya, and Reto Strobl. Asyn-
chronous verifiable secret sharing and proactive cryptosystems. In Proceedings of
the 9th ACM Conference on Computer and Communications Security (CCS-9),
Washington, DC, 2002.

13



9. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. In Advances in Cryptology – CRYPTO
’ 2001, Lecture Notes in Computer Science. International Association for Crypto-
logic Research, Springer-Verlag, 2001. See [10] for long version.

10. Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. Secure and
efficient asynchronous broadcast protocols. Record 2001/006, Cryptology ePrint
Archive, January 2001. An extended abstract was published as [9].

11. Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in con-
stantinople: practical asynchronous Byzantine agreement using cryptography. In
Proceedings of the Symposium on Principles of Distributed Computing, pages 123–
132, Portland, Oregon, 2000.

12. CERT Coordination Center. Denial of service attacks. Internet: http://www.cert.
org/tech_tips/denial_of_service.html, June 2001.

13. CNN.com. Cyber-attacks batter web heavyweights. Internet: http://www.

cnn.com/2000/TECH/computing/02/09/cyber.attacks.01/index.htm%l, Febru-
ary 2000.

14. Flaviu Cristian and Christof Fetzer. The timed asynchronous distributed system
model. IEEE Transactions on Parallel and Distributed Systems, 10(6), June 1999.

15. Danny Dolev and A. C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–208, March 1983.

16. Shlomi Dolev. Self-Stabilization. MIT Press, 2000.
17. Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence

of partial synchrony. Journal of the ACM, 35(2):288–323, April 1988.
18. Christof Fetzer and Flaviu Cristian. Fail-awareness: An approach to construct

fail-safe applications. In Proceedings of The Twenty-Seventh Annual International
Symposium on Fault-Tolerant Computing (FTCS’97), pages 282–291. IEEE, June
1997.

19. Jean-François Hermant and Gérard Le Lann. Fast asynchronous uniform consensus
in real-time distributed systems. IEEE Transactions on Computers, 51(8):931–944,
August 2002.

20. Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K. Iyer. Fault injection
techniques and tools. IEEE Computer, 30(4):75–82, April 1997.

21. Ekkart Kindler. Safety and liveness properties: A survey. EATCS-Bulletin, (53),
June 1994.

22. Klaus Kursawe. Asynchronous byzantine group communication. In Proceedings of
the 21st IEEE Symposium on Reliable Distributed Systems (SRDS), Workshop on
Reliable Peer-to-Peer Distributed Systems, pages 352–357, Osaka, Japan, October
2002. IEEE Computer Society Press.

23. L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

24. Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Trans-
actions on Software Engineering, 3(2):125–143, March 1977.

25. Leslie Lamport. Fairness and hyperfairness. Distributed Computing, 13(4):239–245,
2000.

26. Gerard Le Lann. On real-time and non real-time distributed computing. In Pro-
ceedings of the 9th International Workshop on Distributed Algorithms (WDAG95),
pages 51–70, September 1995.

27. Heiko Mantel. Possibilistic definitions of security - An assembly kit. In Proceed-
ings of the 13th IEEE Computer Security Foundations Workshop (CSFW 2000),
Cambridge, England, July 2000. IEEE Computer Society Press.

14



28. Asif Masum. Non-cooperative Byzantine failures: A new framework for the design
of efficient fault tolerance protocols. PhD thesis, Universität-Gesamthochschule
Essen, Fachbereich Mathematik und Informatik, 2000. Published by Libri Books
on demand, ISBN 3-8311-0815-3.

29. Catherine Meadows. Open issues in formal methods for cryptographic protocol
analysis. In DISCEX 2000, pages 237–250. IEEE Computer Society Press, January
2000.

30. Inc. RSA Data Security. Rsa code-breaking contest again won by distributed.net
and electronic frontier foundation (eff). Internet: http://www.rsasecurity.com/
company/news/releases/pr.asp?doc_id=462, January 1999.

31. John Rushby. Critical system properties: Survey and taxonomy. Reliability Engi-
neering and System Safety, 43(2):189–219, 1994.

32. Fred B. Schneider. What good are models and what models are good? In Sape
Mullender, editor, Distributed Systems, chapter 2, pages 17–26. Addison-Wesley,
Reading, MA, second edition, 1993.

33. John Turek and Dennis Shasha. The many faces of consensus in distributed sys-
tems. IEEE Computer, 25(6):8–17, June 1992.

34. Hagen Völzer. Fairness, Randomisierung und Konspiration in verteilten Algo-
rithmen. PhD thesis, Humboldt Universität zu Berlin, Fakultät für Informatik,
December 2000.

15


