
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
Critical Evaluation of the
EJB Transaction Model

Raul Silaghi and Alfred Strohmeier

 Software Engineering Laboratory
Swiss Federal Institute of Technology in Lausanne

CH-1015 Lausanne EPFL, Switzerland

E-mail: {Raul.Silaghi, Alfred.Strohmeier}@epfl.ch

Abstract. Enterprise JavaBeans is a widely-used technology that aims at sup-
porting distributed component-based applications written in Java. One of the
key features of the Enterprise JavaBeans architecture is the support of declar-
ative distributed transactions, without requiring explicit coding. In this paper,
after a brief introduction of the concepts and mechanisms related to the EJB
Transaction Model, we provide guidelines for their consistent use. We then
evaluate the EJB Transaction Model on an Auction System case study. The
encountered limitations are presented, and possible work-arounds are pro-
posed for the auction system. We conclude with suggestions for enhancing
the current EJB Transaction Model.

Keywords. EJB, Enterprise JavaBeans, Transactions, Auction System.

1 Introduction

For three decades, transaction processing has been a cornerstone of modern information
technology: it is an indispensable asset in banking, stock trading, airline reservation sys-
tems, travel agencies, and so on. With the new millennium’s proliferation of e-Com-
merce applications, business-to-business workflows, and broad forms of Web-based e-
Services, transactional information systems are becoming even more important.

Transactions are a classic software structure for managing concurrent accesses to
global data and for maintaining data consistency in the presence of failures. The notion
of transaction was first introduced in database systems in order to correctly handle con-
current updates of data and to provide fault tolerance with respect to hardware failures
[1]. A transaction groups an arbitrary number of operations on data objects (also re-
ferred to as transactional objects), making the operations as a whole appear indivisible
to the application and with respect to other concurrent transactions.

The classic transaction scheme relies on three standard operations: begin, commit,
and abort, which mark the boundaries of a transaction. After beginning a new transac-
tion, all update operations on transactional objects are done on behalf of that transac-
tion. At any time during the execution of the transaction it can abort, which means that
the state of the system is restored (i.e., rolled back) to the state at the beginning of the
transaction. Once a transaction has completed successfully (referred to as committed),
the effects become permanent and visible to the outside world. The properties of trans-
- 1 / 16 -

https://core.ac.uk/display/147902661?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

actions are referred to as the ACID properties: Atomicity, Consistency, Isolation, and
Durability [1].

Support for transactions is an essential component of the Enterprise JavaBeans ar-
chitecture. The Enterprise JavaBeans architecture supports only flat transactions, de-
spite the fact that the classic transaction model has been extended a long time ago to
support nested transactions [2], and thus provides a more flexible support for concur-
rency and recovery.

By simply setting certain attributes in a deployment descriptor, a developer can
make his or her enterprise bean be executed within a client’s transaction context, within
a new transaction context, or within no transaction context. This power of freeing the
developer from writing transactional code, not to say to write his or her own transaction
service, comes nevertheless at a price. The simplicity in using the EJB Transactional
Model comes along with a certain rigidity that restricts the ways in which transactions
may be used and constrains the developer to stick to a certain manner of building dis-
tributed transaction-enabled applications.

For most applications, the EJB Transaction Model is adequate and can be used in a
straightforward way. For other applications, however, certain work-arounds are neces-
sary and a very precise configuration of the deployment descriptors is needed. Based on
a concrete case study, i.e., the auction system, we will present in this paper the limita-
tions that were encountered in the EJB Transaction Model, pointing out certain features
that would enhance the current model and would make it more open and flexible.

The rest of the paper is organized as follows: Section 2 provides an overview of the
Enterprise JavaBeans Transaction Model, introducing concepts that define how trans-
actions are handled and discussing some issues in using them; Section 3 briefly de-
scribes the auction system case study; Section 4 presents the implementation solution
for the auction system on top of EJBs, highlighting some problems that may arise and
proposing work-arounds when possible; Section 5 discusses some features that are
missing in the current EJB Transaction Model, and Section 6 draws some conclusions.

2 Enterprise JavaBeans Transactions

This section presents an overview of the Enterprise JavaBeans Transaction Model, set-
ting the scene for the analysis that will be performed on the auction case study.

The Enterprise JavaBeans architecture [3] is a component-based architecture for
building distributed business applications. It aims at simplifying the development of
complex systems in Java by defining six distinct roles in the application development
and deployment life cycle. These roles may be performed by different parties.

One of the roles is the Enterprise Bean Provider. Typically performed by an appli-
cation domain expert, the Bean Provider builds reusable components, called enterprise
beans, that implement the business methods without concern for the distribution, con-
currency, persistence, transaction, security, and other non-business-specific aspects of
the application. Enterprise beans are further deployed in Containers on Application
Servers. The EJB Container Provider together with the EJB Server Provider are the
ones supposed to be experts in distributed systems, concurrency, persistence, transac-
- 2 / 16 -

tions and security. They must deliver tools for the deployment of enterprise beans, and
a run-time system that provides the deployed beans with transactions and security man-
agement, distribution, management of resources, and other services. The other roles de-
fined by the EJB specification are the System Administrator, the Application Assembler,
and finally the Deployer.

Even without knowing anything about transactions, the Bean Provider must some-
how tell the Container which beans, or which methods of a bean, or which segments of
code, must be executed under the control of a transaction. The Bean Provider can
choose between using programmatic transaction demarcation inside the enterprise bean
code (this style is called bean-managed transaction demarcation) or declarative trans-
action demarcation performed automatically by the EJB Container (this style is called
container-managed transaction demarcation).

With bean-managed transaction demarcation, the enterprise bean code demarcates
transactions using the javax.transaction.UserTransaction interface. All
resource accesses between the UserTransaction.begin and UserTransac-
tion.commit calls are part of a transaction.

With container-managed transaction demarcation, the Container demarcates trans-
actions following the instructions received from the Bean Provider in the deployment
descriptor. These instructions can be set for the enterprise bean as a whole (in which
case they apply to all enterprise bean methods) or selectively for individual methods in
a bean.

The Enterprise JavaBeans architecture defines three types of enterprise bean ob-
jects: session, entity, and message-driven objects. Due to their one-to-one mapping to
tables in a database, entity beans are the most interesting for concurrency and transac-
tions. As a consequence, we will concentrate only on entity beans for the remainder of
this paper.

We will introduce now some attributes that are part of the EJB Transaction Model
and that guide the Container in providing transaction support. Some issues in using
these attributes along with the concurrency support offered by the Container will also
be presented.

2.1 Setting Transactional Attributes in the Deployment Descriptor
The EJB specification [3] does not require enterprise bean and EJB client developers to
write any special code to use transactions. Instead, the Container manages transactions
based on two deployment descriptor attributes associated with each enterprise bean or
with each enterprise bean method in particular: the transaction attribute, and the trans-
action isolation level attribute.

While transaction attributes are well standardized by the EJB specification, the
transaction isolation levels are not yet standardized. What the specification proposes,
however, are a set of guidelines that should be followed by the EJB Container Provid-
ers. In what comes next we will present the transaction attributes and the transaction iso-
lation levels as supported by the IBM WebSphere Application Server [5].
- 3 / 16 -

2.1.1 Setting the Transaction Attribute
The transaction attribute defines the transactional manner in which the Container in-
vokes enterprise bean methods. The valid values for this attribute in decreasing order of
transaction strictness are introduced in Table 1 together with their effect on the transac-
tion context.

While the second column in Table 1 indicates whether or not the bean method is in-
voked from within a client transaction context, the third column indicates the exact
transaction context in which the bean method will be executed, e.g., the client transac-
tion context, a new transaction context, or no transaction context.

Another transaction attribute that is not presented in Table 1 is
TX_BEAN_MANAGED; it notifies the Container that the bean class directly handles
transaction demarcation by using the javax.transaction.UserTransaction
interface. This attribute can only be set for session and message-driven beans, and not
for entity beans, because entity beans must always be designed with container-managed
transaction demarcation.

2.1.2 Setting the Transaction Isolation Level Attribute
The transaction isolation level determines how strongly one transaction is isolated from
another. Within a transactional context, the isolation level associated with the first
method invocation becomes the required isolation level for all other methods invoked
within that transaction. If a method is invoked with a different isolation level from that
of the first method, an exception is thrown. This constraint is mainly imposed by the
underlying databases because most resource managers interpret a change in the isola-
tion level in the middle of a transaction as an implicit sync point, committing the chang-
es done so far (even if the transaction has not committed yet).

The possible values that can be set for the isolation level attribute (from strongest
to weakest) are: TRANSACTION_SERIALIZABLE,

Table 1. Effect of the Bean’s Transaction Attribute on the Transaction Context

Transaction attribute
Client transaction
context

Bean transaction
context

TX_MANDATORY No transaction Not allowed

Client transaction Client transaction

TX_REQUIRED No transaction New transaction

Client transaction Client transaction

TX_REQUIRES_NEW No transaction New transaction

Client transaction New transaction

TX_SUPPORTS No transaction No transaction

Client transaction Client transaction

TX_NOT_SUPPORTED No transaction No transaction

Client transaction No transaction
- 4 / 16 -

TRANSACTION_REPEATABLE_READ, TRANSACTION_READ_COMMITTED, and
TRANSACTION_READ_UNCOMMITTED. None of these values permits two transac-
tions to update the same data concurrently; one transaction must end before another one
can update the same data. The values determine only how locks are managed for read-
ing data. However, risks to consistency can arise from read operations when a transac-
tion does further work based on the values read. For example, if one transaction is up-
dating a piece of data and a second transaction is permitted to read that data after it has
been changed but before the updating transaction ends, the reading transaction can
make a decision based on a change that is eventually rolled back. Thus, the second
transaction risks making a decision on transient data.

Fig. 1 presents an example of a deployment descriptor highlighting most of the el-
ements that were previously introduced. It describes an entity bean called Account,
having three fields, all container-managed. Towards the end, the transaction and isola-
tion level attributes are specified for the whole bean, meaning that every single business
method provided by this bean will be executed with the same transaction attribute and
the same isolation level.

2.2 Issues in Using the EJB Transaction Model

Sequential Access within the same Transaction Context. An entity bean object may
be accessed by multiple clients in the same transaction. A program A may start a trans-
action, and then call program B and program C in the same transaction context. If the

Fig. 1. Deployment Descriptor Example

<?xml version='1.0' encoding="ISO-8859-1" ?>
<ejb-JAR>

<!-- ...just part of a deployment descriptor... -->

<entity-bean dname="Account.ser">
<primary-key>account.AccountKey</primary-key>
<re-entrant value="false"/>
<container-managed>accountId</container-managed>
<container-managed>type</container-managed>
<container-managed>balance</container-managed>

<home-interface>account.AccountHome</home-interface>
<remote-interface>account.Account</remote-interface>
<enterprise-bean>account.AccountBean</enterprise-bean>

<jndi-name>Account</jndi-name>

<transaction-attr value="TX_REQUIRED"/>
<isolation-level value="SERIALIZABLE"/>
<run-as-mode value="SYSTEM_IDENTITY"/>
</entity-bean>

</ejb-JAR>
- 5 / 16 -

programs B and C access the same entity bean object, the topology of the transaction
creates a diamond. In this scenario, the programs B and C will access the entity object
sequentially. Concurrent access to an entity object in the same transaction context
would be considered an application programming error, and it would be handled in a
Container-specific way.

The EJB specification requires that the Container provides support for local dia-
monds. In a local diamond, all components (here A, B, C, and the entity bean) are de-
ployed in the same EJB Container. Distributed diamonds are not required to be support-
ed by an EJB Container. However, if the EJB Container Provider chooses to support
distributed diamonds, then the specification requires that it provides a consistent view
of the entity bean’s state within a transaction. Two ways of how this can be achieved
are proposed in the specification.

Concurrent Access from Multiple Transactions. For concurrent access from multi-
ple transactions, the EJB specification mentions two different strategies that the Con-
tainer typically uses to achieve proper synchronization. In the first one, the Container
acquires exclusive access to the entity object’s state in the database. It activates a single
instance of the entity bean and serializes the access from multiple transactions to this
instance, as shown in Fig. 2.

In the second one, the Container activates multiple instances of the entity bean, one
for each transaction in which the entity object is being accessed, and relies on the un-
derlying database to perform the transaction synchronization during the accessor meth-
od calls performed by the business methods, and by the ejbLoad, ejbCreate,
ejbStore, and ejbRemove methods.

While the second strategy just passes the problem to the next in line, the first one
might lead to deadlock, as presented in section 4.1.

Transaction Isolation Level Attribute Issues. The choice of the transaction isolation
level attribute depends on several factors, which include: the acceptable level of risk to
data consistency, the acceptable levels of concurrency and performance, the isolation
levels supported by the underlying database. The first two factors are related. Decreas-
ing the risk to consistency requires to decrease concurrency because reducing the risk
to consistency requires holding locks for longer periods. The longer a lock is held on a
piece of data, the longer concurrently running transactions must wait to access that data.

Fig. 2. Multiple clients can access the same entity object using a single instance

Client 1

Client 2

Entity object
Account 100

Account 100
in TX1

Account 100

Container

enterprise bean instance

TX1

TX2 The Container blocks Client 2
until Client 1 finishes
- 6 / 16 -

The TRANSACTION_SERIALIZABLE value protects data by eliminating concurrent
access to it. Conversely, the TRANSACTION_READ_UNCOMMITTED value allows the
highest degree of concurrency but entails the greatest risk to consistency. These two
factors need to be balanced appropriately depending on the application.

The third factor means that although the EJB specification allows one to request one
of the four levels of transaction isolation, it is possible that the database being used in
the application does not support all of the levels. Also, vendors of database products im-
plement isolation levels differently, so the precise behavior of an application can vary
from database to database.

Transaction Attribute Issues. Attention must be paid to the possible values of a trans-
action attribute. In particular, the TX_REQUIRES_NEW value, as shown in Table 1, di-
rects the container to always invoke a bean method within a new transaction context,
regardless of whether the client invokes the method within or outside of a transaction
context. Please notice that by “new transaction” it is meant that a new, top-level trans-
action is started and no nesting, imbrication, or overlapping is implied.

The scenario presented in Fig. 3 illustrates how misusing the TX_REQUIRES_NEW
value for the transaction attribute might lead to the violation of the all-or-nothing prop-
erty of transactions. We considered a bean method m1 with the transaction attribute set
to TX_REQUIRED, and another bean method m2 with the transaction attribute set to
TX_REQUIRES_NEW. For rendering the example more realistic, we supposed that the
two methods belong to two different entity beans, deployed in different Containers on
different Application Servers.

Imagine now that a client calls the bean method m1 from within a transaction context
T1. Receiving the call to m1 together with the transaction context T1 that comes with
the call, the container C1 follows the exact instructions found in the deployment de-
scriptor for the invoked method, i.e., it will execute method m1 within the client trans-
action context T1 (see Table 1). When method m2 is called from within m1, the con-
tainer C1 passes the transaction context with the invocation. Receiving the call to m2
together with the transaction context T1, it is the turn of the container C2 to follow the

Client
Container C1
Entity Bean 1

Container C2
Entity Bean 2

m1

T1 ...

...

m2

T1

T1

T2

TX_REQUIRED TX_REQUIRES_NEW

Fig. 3. Changing Transaction Contexts according to the Transaction Attribute
- 7 / 16 -

instructions found in the deployment descriptor for the invoked method, i.e., it will ex-
ecute method m2 within a new transaction context. First of all, however, container C2
suspends the association of the transaction context T1 with the current thread, and only
then, it will start a new top-level transaction T2 and it will invoke the business method
m2. The container will resume the suspended transaction association after the business
method m2 and the new transaction T2 have been completed.

In our example, performing certain operations in the new top-level transaction T2
will not guarantee the all-or-nothing property for T1. Why? Because once transaction
T2 commits, there is no way to roll it back if later on transaction T1 aborts. The changes
made on behalf of T2 will persist even if T1 rolls back. As a conclusion, all the opera-
tions that must be performed in a transaction context should not cross the boundaries of
other transactions, not even if those transactions were created from within the main
transaction. However, other operations that do not interfere with the main transaction
could be invoked in separate transactions, e.g., garbage collection is independent of
whether we commit or roll back our main transaction.

3 Case Study Description

The auction system is an example of an inherently dynamic, distributed, and concurrent
application, with multiple auctions going on and with clients participating in several
auctions at the same time. As a consequence, the auction system becomes an excellent
case study for testing the performance of new transaction models, in our case the EJB
Transaction Model.

The informal description of the auction system presented in this section is inspired
by the auction service example presented in [6], which in turn is based on auction sys-
tems found on various internet sites, e.g. www.ebay.com or www.ubid.com.

The auction system runs on a set of computers connected via a network. Clients ac-
cess the auction system from one of these computers. The system allows the clients to
buy and sell items by means of auctions. Different types of auctions may be imagined,
like English, Dutch, 1st Price, 2nd Price. In the English auction, the item for sale is put
up for auction starting at a relatively low minimum price. Bidders are then allowed to
place their bids until the auction closes. Sometimes, the duration of the auction is fixed
in advance, e.g., 30 days, or, alternatively, a time-out value, which resets with every
new bid, can be associated with the auction.

Any client interested in using the auction system services must first register with
the system by filling out a registration form. All registered users must deposit a certain
amount of money or some other security with the auction system at registration time.
The money is transferred to an account under control of the auction system.

Once the registration process is completed, the client becomes a member of the auc-
tion system. Whenever a member wants to make use of the services provided s/he must
first login to the system using his or her username and password, provided at registra-
tion time. Once logged, the member may choose from one of the following possibilities:
start a new auction, browse the current auctions, participate in one or several ongoing
auctions by placing bids, or deposit or withdraw money from his or her account. To bid
- 8 / 16 -

on an item the participant simply has to enter the amount of the bid. A valid bid must
fulfill all the following requirements:

• The bidder has sufficient funds on his or her account.

• The member placing the bid is not the member having started the auction.

• The auction has not expired.

• The new bid is higher than the current highest bid. If nobody has placed a bid yet,
then the bid must be at least as high as the minimum price requested by the seller.

If the auction closes and at least one valid bid has been made, then the auction ends suc-
cessfully and the participant having placed the highest bid wins the auction. The money
is withdrawn from the account of the winning participant and deposited on the account
of the seller, minus a commission, which is deposited on the account of the auction sys-
tem for the provided services.

If an auction closes, and no participant has placed a valid bid, then the auction was
unsuccessful and no charge is required for the provided services.

The auction system must be able to tolerate failures. Crashes of any of the host com-
puters must not corrupt the state of the auction system, e.g., money transfer from one
account to the other should not be executed partially.

4 The EJB Solution for the Auction System

In this section, we will present how the auction system was implemented on top of
EJBs. Certain design decisions will be motivated by pointing out limitations that were
encountered in the EJB Transaction Model. A deadlock situation that can arise in the
EJB Solution will be presented and some possible work-arounds will be proposed.

Maybe the most important requirement for auctions is that they must be fault-toler-
ant. All-or-nothing semantics must be strictly adhered to. Either there is a winner, and
the money has been transferred from the account of the winning bidder to the seller’s
account and the commission has been deposited on the auction system account, or the
auction was unsuccessful, in which case the balances of the involved accounts remain
untouched. Allowing the possibility of a total rollback while an auction is active and
participants are placing their bids, would mean to place everything in a long-living
transaction that would commit when there is a winner, or abort if something goes wrong
during the lifespan of the auction. This idea is not at all in the spirit of the EJB Trans-
action Model, where transactions are supposed to last small time units; in this way, they
do not block access to transactional objects from other ongoing concurrent transactions
for a long time period. Since the auction system is inherently concurrent and very dy-
namic, with multiple auctions going on and with clients placing bids in several auctions,
a long-living transaction acting on behalf of an auction would block the access to the
accounts of several participants, thus blocking the other ongoing concurrent auctions
from advancing.

Following the EJB specification and having in mind all the considerations present-
ed in section 2.2, the solution that we came up with for implementing the auction system
is to break the whole lifespan of an auction into small operations and execute them with-
in separate transactions when their time comes.
- 9 / 16 -

Fig. 4 presents the entity beans used to model the auction system. Each entity bean
represents an object view of data in different tables in the same or different databases:
MemberBean handles the personal information of the members, AccountBean
keeps the evidence of the accounts in the system, and AuctionBean manages the auc-
tions in the system.

In most of the cases, deposit and withdraw operations can very well be executed
in two different transactions. A member would like to deposit some money in his or
her account and the system will perform this operation within a transaction. Later on, s/
he would like to withdraw some money from his or her account and the system will
perform this new operation within a new transaction. In this case, a new transaction is
needed because the two operations are not at all related and there is no reason of undo-
ing the deposit operation if the withdraw operation fails.

However, when several operations are somehow inter-connected for achieving a
certain goal, they can no longer be executed in separate transactions. They have to be
executed in the same transaction for the sake of preserving the ACID properties. This
is the case of the placeBid method which encapsulates small operations that have all
to be executed in the same transaction context for preserving a consistent state of the
auctions. When a participant places a bid in an auction we have to withdraw from his or
her account the corresponding amount of money, protecting in this way the system from
participants that would overdraw their accounts by placing bids in several auctions
without actually having all that money. However, when s/he gets overbidden in the
same auction, we are required to give the money back and make a new withdraw from
the new bidder’s account corresponding to the amount of the new bid. One possible so-
lution to achieve this behavior is sketched in Fig. 5.

In the placeBid method, we withdraw first from the new bidder’s account the
amount of money s/he wanted to bid, we give the money back to the previous highest
bidder, and then we update the information in the current AuctionBean object, i.e.,
the new highest bidder and the new highest bid. If something goes wrong somewhere
within this method, the new bid should not be considered valid and the state of all im-
plicated transactional objects (here the AuctionBean object and the two Account-

Fig. 4. The Entity Beans in the EJB Solution

MemberBean

AccountBean

AuctionBean

-FirstName:String
-LastName:String
-Address:String
-Email:String

-Username:String
-Password:String

-Owner:String
-Balance:float
+withdraw(amount:float):void
+deposit(amount:float):void

-ID:int
-Name:String
-Description:String

-ExpirationDate:Date
-Owner:String
-CurrentHighestBid:float
-CurrentHighestBidder:float
+placeBid(bidder:String, bid:float):void
+setHighestBidder(bidder:String):void
+setHighestBid(bid:float):void

-OpeningBid:float

...

...
...
- 10 / 16 -

Bean objects) should be restored. In order to have the Container execute the whole
placeBid method within the same transaction context, the transaction attribute of all
the involved enterprise beans must be configured accordingly. For this particular exam-
ple we should have:

• TX_REQUIRED for the placeBid method of the AuctionBean,

• TX_REQUIRED for the withdraw method of the AccountBean,

• TX_REQUIRED for the deposit method of the AccountBean,

• TX_REQUIRED for the setHighestBidder method of the AuctionBean,

• TX_REQUIRED for the setHighestBid method of the AuctionBean.

In this way, when the placeBid method is first invoked, a new transaction context
will be created (supposing that it is not already called from within a transaction context),
and it will be passed around to all the other method invocations that are made within
placeBid. If one of the invoked methods calls at its turn other methods of other en-
terprise beans, then those methods should also be configured with the transaction at-
tribute set to TX_REQUIRED in the deployment descriptors of those beans.

Based on these considerations, the English Auction, as implemented on top of EJBs,
is graphically presented in Fig. 6. We identified three main operations that must be ex-
ecuted in a transactional way: the creation of a new auction, placing a bid in an auction,
and ending an auction.

By simply filling an item form, Member 1 will create a new AuctionBean object
within a transaction T1, and, automatically, a new row will be added in the table of all
auctions. In a few seconds the displays of all the logged members will be refreshed, and
thus, they will see the new proposed auction. Member 2 decides to participate, and plac-
es his bid. Once the method placeBid has been invoked on the AuctionBean ob-
ject, four operations will be executed within the same transaction context (T2) on dif-
ferent beans. First we will withdraw the new bid from the account of member 2. Then
some money will be returned to the previous highest bidder (this is not the case here
since member 2 is the first bidder). Finally, the information concerning the current high-
est bidder and current highest bid will be updated in the AuctionBean object. Later
on, Member 3 decides to overbid member 2 in the same auction, thus it will invoke the

Fig. 5. The PlaceBid Method of the AuctionBean

void AuctionBean::placeBid(bidder:String, bid:float) {
...
//Withdraw the bidded amount of money
getAccount(bidder).withdraw(bid);

//Give back the money to the previous highest bidder
getAccount(getHighestBidder()).deposit(getHighestBid());

//Update the information in the AuctionBean entity bean
setHighestBidder(bidder);
setHighestBid(bid);
...

}

- 11 / 16 -

placeBid method on the same AuctionBean object. Within the same transaction
context (T3) we will: withdraw the new bid from the member 3’s account, give back
the money that member 2 has previously paid, and update the information in the Auc-
tionBean object. In our example we considered that no other member overbids mem-
ber 3. Once the auction closes, the endAuction method is invoked on the Auction-
Bean object. Here we considered that the member that created the auction closes it by
invoking endAuction. If the auction terminates due to time limit, then it will be a
separate auction system thread that will call the endAuction method. At least two op-
erations must be executed within the same transaction context (here T4) when closing
an auction: deposit a certain percentage of the amount of the final bid on the system
account as a commission, and deposit the rest of the amount of the final bid on the
seller’s account (here member 1’s account). Another operation that might also be per-
formed when an auction finishes is to mark it as closed, so no other bids can be made.

4.1 A Possible Deadlock in the EJB Solution
Due to all these withdraw-deposit operations that have to be done on several ac-
counts, a deadlock situation might appear in the EJB Solution.

Consider for instance two auctions and two participants in both auctions. Suppose
now that participant A is the current highest bidder in Auction 2, and that participant B
is the current highest bidder in Auction 1, and that both overbid each other, i.e., partic-
ipant A overbids participant B in Auction 1, and participant B overbids participant A in
Auction 2. As already presented in the previous section, the placeBid method, to-
gether with all the four operations that are chained inside it, will be executed within the
same transaction context. Fig. 7 presents the scenario where the placeBid method in-
voked by participant A is executed in the transaction context T1, and the placeBid
method invoked by participant B is executed in the transaction context T2. We repre-

setHighestBidderplaceBid setHighestBid withdraw deposit

withdraw depositwithdraw deposit

Member 1

Member 2

Member 3

AuctionBean Object

Member 1Member 2 Member 3

create

withdraw

System Account

deposit

Account Account Account

Fig. 6. The English Auction with EJBs

endAuction

...

T1

T2

T3

T4
- 12 / 16 -

sented the last two operations inside the placeBid method, i.e., setHighestBid-
der and setHighestBid, under the name of update.

Due to the isolation between transactions (see section 2.2), when the withdraw oper-
ation will be performed on account A (Fig. 7) from within transaction T1, access to
this account will be locked until the transaction T1 finishes. The same happens with the
withdraw operation on account B (Fig. 7), which locks access to account B until
the transaction T2 finishes. This situation ends in a deadlock since the two deposit
operations (Fig. 7 ,) will wait for their target accounts to be unlocked, which will
never happen since neither one of the two transactions can finish.

4.2 Proposed Work-Arounds for Avoiding the Deadlock Situation
One solution to avoid the deadlock situation would be to have a certain random timeout
after which we abort a transaction. In our example, once transaction T1 aborts, transac-
tion T2 can continue and commit. In this case, the participant A will have to re-issue a
call to the placeBid method and hope that this time it would work.

Another solution is to have ordered access to the involved accounts. The order is
dictated by the account numbers that are involved in the same placeBid method. We
will introduce a new operation, called dummy, that will be the first operation executed
inside a placeBid method. The dummy operation will target the account with the
smallest number with the only purpose of getting its lock. If, for example, we have to
withdraw from Account 2 and deposit in Account 1, then a dummy operation will
be performed first on the account that has the smallest number (see Fig. 8).

In this way, if two placeBid methods are dealing with the same two accounts, like in
the deadlock situation, they will both try to perform first the dummy operation on the
same account, i.e., the one with the smallest number, trying to get its lock until the end
of the enclosing transaction. One of the transactions will get the lock first. The other one

Fig. 7. Deadlock Situation in the EJB Solution

4 231

Account A Account B

withdraw deposit update... ...Auction 1

Auction 2

T1

T2withdraw deposit update... ...

1

2

3 4

Fig. 8. Proposed Work-around for the Deadlock Situation

8

75 6

4

2 31

Account 1 Account 2

withdraw deposit updatedummy ...Auction 1

Auction 2

T1

T2withdraw deposit updatedummy ...
- 13 / 16 -

will have to wait, thus not performing other operations on other accounts and not block-
ing other transactional objects. The battle is done once, at the beginning, and after that
everything should go on smoothly without other blockings.

The order in which the operations inside the two placeBid methods will be exe-
cuted changes due to the anticipated blocking behavior introduced by the dummy oper-
ation. In Fig. 8 we used encircled numbers to show the exact order in which those op-
erations are going to be executed.

5 Discussion

In this section, we will discuss the drawbacks of the EJB Solution for the auction sys-
tem, highlighting those limitations in the EJB Transaction Model that led to these draw-
backs. We will also point out certain features that would enhance the current EJB Trans-
action Model.

First of all, the proposed EJB Solution for the auction system does not provide the
desired all-or-nothing semantics of transactions. In an ideal case, we can imagine hav-
ing one long-living transaction for each auction, which can be rolled back at any time
while the auction is still open, returning the system in the previous consistent state. Such
a solution is proposed by [7], where the same auction system is modeled on top of open
multithreaded transactions (OMTTs) [8] in a very natural way. In the EJB Solution, we
can roll back only small increments. For example, once a new AuctionBean object
is created, there is no possibility to undo it, only by explicitly removing it from the table
in the database. The same thing happens with the placeBid method. We can roll it
back if something happens while inside, but once it finishes, there is no way to come
back to the previous state. With this approach, the system is always in a consistent in-
termediate state and it will even persist to system crashes, which is not the case for the
OMTT Solution, where everything is lost and has to be restarted from the beginning. In
the EJB Solution, after a system crash, all the information about the created auctions,
about the current highest bidders and bids in all auctions, about the balances of all ac-
counts, will simply be restored from the corresponding tables in the database(s). In this
way, all bids made by a member are remembered and s/he can continue exactly from
the same state where the system crashed. So, we could say that fault tolerance is pro-
vided by the persistency of the underlying database, while in the OMTT Solution, fault
tolerance is provided automatically by the underlying transaction support.

Due to the isolation between transactions, bean objects are locked until the transac-
tion that has locked them commits or aborts. From this perspective, we can understand
why the EJB Transaction Model does not encourage the usage of long-living transac-
tions. A lot of bean objects can be involved in a long-living transaction, which can re-
duce system efficiency and throughput, as there is no support for partial rollbacks, ear-
ly-release locks, savepoints, or compensating actions, like in Sagas [9]. It should be pos-
sible to release bean objects during a long-lasting transaction execution. Or, a method-
commutativity table should be created for each bean, marking some methods as non-
conflicting. This would increase the Container’s knowledge about the bean, and, con-
sequently, increase the potential for sharing a particular bean object with other transac-
tions.
- 14 / 16 -

Another feature that is offered by OMTTs are nested transactions, which give the
developer the possibility to make partial undos by rolling back a subtransaction and all
its children, without causing abortion of the whole open multithreaded transaction. In
the auction system, such partial undos are related to returning the money to a bidder
once s/he gets overbidden. In the EJB Solution, we handle this by having compensation
operations in the upcoming transaction. In the OMTT Solution, it is achieved using
nested transactions. When a user places a bid, the money is withdrawn from his or her
account inside a nested transaction. Later on, if someone places a higher bid, the money
is returned to the account by simply aborting the nested transaction.

One step forward towards providing nested transactions in the EJB Transaction
Model, would be to support abort-dependent and commit-dependent transactions. In
this way, transactions would be able to change their behavior based on the state of an-
other transaction. Once a transaction aborts, the corresponding abort-dependent trans-
actions will also abort. A transaction commits if all its corresponding commit-depen-
dent transactions have already committed. If applications are mostly based on transac-
tions, it is desirable to express bindings and dependencies between them [10], [11].

The EJB specification is not clear regarding multithreaded transactions, contrary to
the full support of multithreading in OMTTs. In the Java Transaction API (JTA) [12],
however, it is mentioned that each thread has associated a transaction context, which is
either null or refers to a specific global transaction. The transaction-to-thread associa-
tion is managed transparently by the Transaction Manager. Multiple threads may con-
currently be associated with the same global transaction. This can be achieved by cre-
ating or spawning threads from within an already existing transaction context. Howev-
er, it is not clear how a newly created thread can be associated with a previously started
transaction, i.e., how threads can join already existing transactions.

Some other limitations of the EJB Transaction Model that we will not enter into de-
tails in this paper are: transactions cannot manage their locks according to the applica-
tion’s requirements, the set of values for the transaction attribute is very limiting, bean
methods cannot be associated with several transaction attributes, bean methods cannot
be dynamically associated with a particular transaction attribute, no support for asyn-
chronous operations, and no constraint for distributed diamond support.

6 Conclusions

Even if the EJB specification does not require the Bean Provider to have any program-
ming knowledge for concurrency, transactions, and other services, s/he must first ac-
complish a detailed analysis of all the enterprise beans’ methods before starting the con-
figuration of all deployment descriptors. Any misuse of the values of the transaction and
isolation level attributes might lead to incorrect applications. Changing the values de-
fined by the Bean Provider for these two attributes is highly error-prone. Only the im-
plementor of the bean knows exactly the semantics of the methods, and is qualified to
select the appropriate policies.

By implementing the auction system on top of EJBs, a certain rigidity of the EJB
Transaction Model was sensed. We discovered several limitations of the EJB Transac-
tion Model and we proposed work-arounds when possible. A deadlock situation was
- 15 / 16 -

identified in the EJB implementation, and some solutions to avoid it were proposed. We
also presented certain features that are missing in the EJB Transaction Model and that,
we believe, would enhance the current model and would make it more open and flexi-
ble.

References

[1] Gray, J.; Reuter, A.: Transaction Processing: Concepts and Techniques. Morgan Kauf-
mann Publishers, San Mateo, California, 1993.

[2] Moss, J. E. B.: Nested Transactions, An Approach to Reliable Computing. Ph.D. Thesis,
MIT, Cambridge, April 1981.

[3] Sun Microsystems: Enterprise JavaBeansTM Specification, v2.0, August 2001.

[4] Sun Microsystems: JavaTM 2 Platform, Enterprise Edition Specification, v1.4, Proposed
Final Draft, August 2002.

[5] IBM: WebSphere Application Server. http://www.ibm.com/websphere/

[6] Vachon, J.: COALA: A Design Language for Reliable Distributed Systems. Ph.D. Thesis
#2302, Swiss Federal Institute of Technology, Lausanne, Switzerland, December 2000.

[7] Kienzle, J.; Romanovsky, A.; Strohmeier, A.: Auction System Design Using Open Multi-
threaded Transactions. Proceedings of the 7th International Workshop on Object-Oriented
Real-Time Dependable Systems, San Diego, California, USA, January 2002. IEEE Com-
puter Society Press, Los Alamitos, CA, 2002, pp. 95 – 104.

[8] Kienzle, J.: Open Multithreaded Transactions: A Transaction Model for Concurrent Ob-
ject-Oriented Programming. Ph.D. Thesis #2393, Swiss Federal Institute of Technology,
Lausanne, Switzerland, April 2001.

[9] Garcia-Molina, H.; Salem, K.: Sagas. Proceedings of the SIGMod Annual Conference,
San Francisco, California, USA, May 1987. ACM Press, pp. 249 – 259.

[10] Elmagarmid, A. K.: Database Transaction Models for Advanced Applications. Morgan
Kaufmann Publishers, 1992.

[11] Jajodia, S.; Kerschberg, L.: Advanced Transaction Models and Architectures. Kluwer Ac-
ademic Publishers, 1997.

[12] Sun Microsystems: JavaTM Transaction API (JTA) Specification, v1.0.1, April 1999.

[13] Sun Microsystems: JavaTM Transaction Service (JTS) Specification, v1.0, December
1999.

[14] Software Engineering Laboratory: Open Multithreaded Transactions - The Auction System
Case Study. http://lglwww.epfl.ch/research/omtt/auction.html

[15] Weikum, G.; Vossen, G.: Transactional Information Systems: Theory, Algorithms, and the
Practice of Concurrency Control and Recovery. Morgan Kaufmann Publishers, 2002.
- 16 / 16 -

	Critical Evaluation of the EJB Transaction Model
	1 Introduction
	2 Enterprise JavaBeans Transactions
	2.1 Setting Transactional Attributes in the Deployment Descriptor
	2.2 Issues in Using the EJB Transaction Model

	3 Case Study Description
	4 The EJB Solution for the Auction System
	4.1 A Possible Deadlock in the EJB Solution
	4.2 Proposed Work-Arounds for Avoiding the Deadlock Situation

	5 Discussion
	6 Conclusions

