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Abstract

We present a theory of fast and perfect detector components that extends the theory of detectors
and correctors of Arora and Kulkarni, and based on which, we develop an algorithm that automatically
transforms a fault-intolerant program into a fail-safe fault-tolerant program. Apart from presenting
novel insights into the working principles of detectors, the theory also allows the definition of a detection
latency efficiency metric for a fail-safe fault-tolerant program. We prove that in contrast to an earlier
algorithm by Kulkarni and Arora, our algorithm produces fail-safe fault-tolerant programs with optimal
detection latency. The application area of our results is in the domain of distributed embedded
applications.
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1 Introduction

Safety-critical applications need to satisfy stringent dependability requirements in their provision of
services. To reduce the complexity of designing such applications, Arora and Kulkarni [2] proposed a
transformational approach, whereby an initially fault-intolerant program is systematically transformed
into a fault-tolerant one. The main step involved in designing a fault-tolerant program is composing the
corresponding fault-intolerant program with components that (i) detect and/or (ii) correct errors that
arise as a result of faults, depending on the level of fault-tolerance to be achieved. The class of programs
that achieves the first goal is termed detectors while the class of programs that achieves the second goal
is called correctors [4].

In this paper we restrict our attention to designing fail-safe fault-tolerance. Intuitively this means
that it is acceptable that the program “halts” if faults occur as long as it always remains in a “safe”
state. This type of fault-tolerance is often used in (nuclear) power plants or train control systems where
safety (avoidance of catastrophic events) is more important that continuous provision of service. In the
context of the Arora/Kulkarni approach, fail-safe fault-tolerance can be achieved by merely employing
detectors.

Detectors can be regarded as an abstraction of many different existing fault-tolerance mechanisms.
For example, a common way to achieve fault-tolerance is to replicate a critical task and schedule it
on different processors. The outputs of these tasks are brought together in a voter which outputs a
consistent value. The voter contains a comparator which is an instance of a detector. Another (maybe
more obvious) example of a detector is the use of error detecting codes. Other error handling mechanisms
like acceptance tests or executable assertions can also be formulated as detectors in the sense of Arora
and Kulkarni [4]. Hence, reasoning on the level of detectors makes an approach applicable to many
different practical settings.

In an earlier work, Kulkarni and Arora [11] presented an algorithm which automates the addition of
fail-safe fault tolerance to an initially fault-intolerant program. This algorithm is based on an analysis
of the state transition representation of the program in the presence of faults. The algorithm is sound
and complete meaning that (i) the transformed program is in fact a fail-safe fault-tolerant version of the
original program, and (ii) if a fail-safe fault-tolerant version of the program exists, then the algorithm will
find it. In this paper, we also present a sound and complete algorithm that automates addition of fail-safe
fault-tolerance, but the resulting program is more efficient than that from the Kulkarni/Arora algorithm
[11]. More efficient means that the fail-safe fault-tolerant program has a lower detection latency and
hence detect faults faster (in this respect, we will also say that the program contains fast detectors). In
fact, we show that our algorithm generates fail-safe fault-tolerant programs where the detection latency
is optimal. A low detection latency means that the effects of faults are contained, i.e., errors do not
propagate and contaminate the system state more than necessary.

Our algorithm is derived out of a refined theory of detectors. This theory develops a terminology
which we believe captures and explains the working principles of detectors better than before. The basic
building block of the theory is the notion of a transition which is inconsistent with respect to a safety
[13] specification. This can be understood as follows: Executing a transition inconsistent w.r.t. the safety
specification will lead to a violation of the safety specification if no countermeasures are taken. Building
upon this concept, we develop a theory of accurate, complete, perfect and fast detectors together with
the necessary correctness theorems. Intuitively, a detector is accurate if it “preserves” correct behaviors
of the system in the presence of faults. A detector is complete if it “rejects” incorrect behaviors. A
detector is perfect if it is accurate and complete. Finally, a set of detectors is fast if one of the detectors
“halts” the program as soon as possible after the occurrence of faults.

Overall, in this paper, we make the following contributions:
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• We present a novel theory of fast and perfect detectors which improves on the understanding of
the basic working principles of detectors in the context of the Arora/Kulkarni theory [4].

• Based on this theory, we provide an algorithm that systematically transforms a fault-intolerant
program into a fail-safe fault-tolerant program with optimal detection latency.

Some of the notions which underlie the theory of perfect detectors have been studied by Gärtner and
Völzer [7]. However, we are not aware of any other work which employs these concepts in an automatic
transformation.

The paper is structured as follows: Section 2 recalls the basic system model of the Arora/Kulkarni
theory. Section 3 provides an overview of detectors and their role in establishing fail-safe fault tolerance.
Section 4 defines the problem of adding fail-safe fault-tolerance using detectors. Section 5 develops the
theory of perfect and fast detectors. In Section 6 we present the algorithm that automatically generates
a fail-safe fault-tolerant program from the corresponding fault-intolerant program with perfect and fast
error detection capabilities. We conclude the paper in Section 7.

2 Preliminaries

In this section, we recall the standard formal definitions of programs, faults, fault tolerance (in particular,
fail-safe fault-tolerance), and of specifications [4].

2.1 Programs

A program p consists of a set of variables Vp and a finite set of actions. Each variable stores a value of a
predefined nonempty domain and is associated with a predefined set of initial values. An action has the
form

〈guard〉 → 〈statement〉

in which the guard is a boolean expression over the program variables and the statement is either the
empty statement or an instantaneous assignment to one or more variables.

We define the state space Sp of a program p as the set of all possible assignments of values to variables.
A state predicate of p is a boolean expression over the state space of p. The set of initial states Ip is
defined by the set of all possible assignments of initial values to variables.

An action ac of p is enabled in a state s if the guard of ac evaluates to “true” in s. An action ac
is represent by a set of state pairs. We assume that actions are deterministic, i.e., ∀s, s′, s′′ : (s, s′) ∈
ac ∧ (s, s′′) ∈ ac ⇒ s′ = s′′. Note that programs are permitted to be non-deterministic since multiple
actions can be enabled in the same state. In particular, each non-deterministic action can be converted
into a set of deterministic actions with an identical state transition relation.

A computation of p is a weakly fair (finite or infinite) sequence of states s0, s1, . . . such that s0 ∈ Ip

and for each j ≥ 0, sj+1 results from sj by executing the assignment of a single action which is enabled
in sj . We require that weak fairness implies that if a program action ac is continuously enabled, ac is
eventually chosen to be executed. Weak fairness implies that a computation is maximal with respect to
program actions, i.e., if the computation is finite then no program action is enabled in the final state.

If α is a finite computation and β is a computation, we denote with α · β the concatenation of both
computations. A state s occurs in a computation s0, s1, . . . iff there exists an i such that s = si. Similarly,
a transition (s, s′) occurs in a computation s0, s1, . . . iff there exists an i such that s = si and s′ = si+1.

In the context of this paper, programs are equivalently represented as state machines, i.e., a program
is a tuple p = (Sp, Ip, δp) where Sp is the state space and Ip ⊆ Sp is the set of initial states. The state
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transition relation δp ⊆ Sp × Sp is defined by the set of actions as follows: Every action ac implicitly
defines a set of transitions which is added to δp. Transition (s, s′) ∈ δp iff ac is enabled in state s and
computation of the statement results in state s′. We say that ac induces these transitions. State s is
called the start state and s′ is called the end state of the transition.

2.2 Specifications

A specification for a program p is a set of computations which is fusion-closed. A specification S is
fusion-closed iff the following holds for finite computations α, γ, a state s and computations β, δ: If
α ·s ·β and γ ·s ·δ are in S, then so are α ·s ·δ and γ ·s ·β. We will discuss the consequences of demanding
fusion-closed specifications in Section 3.

A computation cp of p satisfies a specification S iff cp ∈ S, otherwise cp violates S. A program p
satisfies a specification S iff all possible computations of p satisfy S.

Definition 1 (Maintains) Let p be a program, S be a specification and α be a finite computation of p.
We say that α maintains S iff there exists a sequence of states β such that α · β ∈ S.

Definition 2 (Safety specification) A specification S of a program p is a safety specification iff the
following condition holds: For every computation σ that violates S, there exists a prefix α of σ such that
for all computations β, α · β violates S.

Proposition 1 A specification S is a safety specification iff for all σ 6∈ S there exists a prefix α of σ
such that α does not maintain S.

Proof. Follows from the Definitions 1 and 2. �
Informally, the safety specification of a program states that “something bad never happens”. More

formally, it defines a set of “bad” finite computation prefixes that should not be found in any computation.
Alpern and Schneider [1] have shown that every specification can be written as the intersection of a safety
specification and a liveness specification. Informally, a liveness specification determines what types of
events must eventually happen. Since we are mainly interested here in safety specifications we omit the
formal definition of liveness. However, liveness issues are important since any safety specification can be
satisfied by the empty program, i.e., the program that does nothing.

Multiple initial states reflect the fact that a program may initially read external inputs before executing.
We additionally assume a set of special variables called the output variables in which the program should
finally write the results of a computation. This model is suitable for the domain of embedded applications
(like sensors and actuators) which we aim at in this paper. Program actions that write output variables
are referred to as critical actions.

2.3 Fault Models and Fault Tolerance

All standard fault models from practice which endanger a safety specification (transient or permanent
faults) can be modeled as a set of added transitions. We focus on the subset of these fault models which
can potentially be tolerated: We disallow faults to violate the safety specification directly. For example,
if a safety specification constrains the output variables of a program, the fault model prevents the fault
actions of F to modify the output variables in such way that the fault itself results in a safety violation.
However, fault actions can change the program state such that subsequent program actions violate the
safety specification.
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Definition 3 (Fault model) A fault model F for program p and safety specification SS is a set of
actions over the variables of p that do not violate the SS, i.e., if transition (sj , sj+1) is in F and
s0, s1, . . . , sj is in SS, then s0, s1, . . . , sj , sj+1 is in SS.

Definition 4 (Computation in the presence of faults) A computation of p in the presence of F
is a weakly p-fair sequence of states s0, s1, . . . such that s0 is an initial state of p and for each j ≥ 0,
sj+1 results from sj by executing a program action from p or a fault action from F and there exists
no program action ac such that ac is permanently enabled but never executed, i.e., ∀j : (∀k ≥ j,∃s′ :
(sj , s

′) ∈ ac) ⇒ (∃k ≥ j : (sk, sk+1) ∈ ac).

Weakly p-fair means that only the actions of p are treated weakly fair (fault actions must not eventually
occur if they are continuously enabled). We say that a fault occurs if a fault action is executed.

Rephrased in the transition system view, a fault model adds a set of transitions to the transition
relation of p. We denote the modified transition relation by δF

p . Since fault actions are not treated fairly,
their occurrence is not mandatory. Note that we do not rule out faults that occur infinitely often (as
long as they do not directly violate the safety property).

Definition 5 (Fail-safe fault-tolerance) Let S be a specification and SS be the smallest safety speci-
fication including S. A program p is said to be fail-safe F -tolerant for specification S iff all computations
of p in the presence of faults satisfy SS.

If F is a fault model and SS is a safety specification, we say that a program p is F -intolerant for SS
iff p satisfies SS in the absence of faults F but violates SS in the presence of faults F . For brevity, we
will write fault-intolerant instead of F -intolerant for SS if F and SS are clear from the context.

3 Detectors and their Role in Constructing Fail-Safe Fault-Tolerant
Programs

We adopt the view of Arora and Kulkarni [4] that a fault-tolerant program is the composition of a fault-
intolerant program with fault-tolerance components. Using the same system model as in this paper, Arora
and Kulkarni proved that a class of program components called detectors are necessary and sufficient
to establish fail-safe fault-tolerance. Intuitively, a detector is a program module that detects whether a
given state predicate is satisfied in a given state. Instances of detectors can be executable assertions [9],
error detection codes, or comparators. In this paper we are mainly interested in adding fail-safe fault-
tolerance, thus we review the result stating that detectors are sufficient to build fail-safe fault-tolerant
applications. The main idea of the result is to use detectors to simply “halt” the program in a state
where it is about to violate the safety specification.

An important prerequisite for the Arora/Kulkarni sufficiency result is that specifications are fusion-
closed. Fusion-closed specifications allow to characterize a safety specification as a set of disallowed “bad”
transitions (instead of a set of disallowed computation prefixes).

Proposition 2 Let SS be a safety specification, p an F -intolerant program for SS. If p violates SS then
there exists a transition t ∈ δp such that for all computations σ of p holds: If t occurs in σ then σ 6∈ SS.

Proof. Since p violates SS , there exists a computation σ which is not in SS . The fact that SS is a
safety property implies that σ contains a minimal prefix, written α · s · s′, which does not maintain SS
(i.e., which prevents the computation from being in SS ). This prefix has at least length 2 because all
initial states of p maintain SS . We must now show that if (s, s′) occurs in any other computation ρ of p,
then ρ 6∈ SS :
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1. For a contradiction, assume ρ = α̂ · s · s′ · β̂ ∈ SS . We will show that α · s · s′ maintains SS .
2. Since SS is a safety property and ρ ∈ SS (step 1), all prefixes of ρ maintain SS .
3. From step 2 and because it is a prefix of ρ, computation α̂ · s · s′ maintains SS .
4. From step 3 and definition of maintains: ∃δ̂ : α̂ · s · s′ · δ̂ ∈ SS .
5. From assumption α · s maintains SS , so from definition of maintains we have: ∃δ : α · s · δ ∈ SS .
6. Because of fusion-closure of SS and the steps 4 and 5 construct: α · s · s′ · δ̂ ∈ SS .
7. Step 6 means that α · s · s′ maintains SS , which is a contradiction to the fact that α · s · s′ does not

maintain SS .

�
We call the transitions identified in Proposition 2 bad transitions. Intuitively, to maintain a safety

specification now requires to keep track of the current computation and take precautions not to run into
one of the bad transitions which are disallowed by the safety specification. From our restrictions of the
fault model we know that bad transitions must be program transitions. A detector refines the guard
of the corresponding action in such a way that the action is never executed whenever the computation
could result in taking a bad transition. Formally, a detector for an action implements a state predicate d
which is “true” iff execution of the action starting in d maintains the specification. In the programming
notation, given an action g → st , a detector for this action refines the guard to g∧d. Arora and Kulkarni
formulate this fact in their original work as follows [2, Theorem 4.3]:

Theorem 1 (Sufficiency of detectors) For each action ac of p there exists a predicate d such that
execution of ac in a state where d holds maintains SS.

Definition 6 (Detector for an action) Let SS be a safety specification. An SS -detector d monitoring
program action ac of p is a state predicate of p which is guaranteed to exist according to Theorem 1.

We will simply talk about detectors instead of SS-detectors if the relevant safety specification is clear
from the context.

Consider the transition system view of a program p again. We say that a state s is reachable by p
iff starting from an initial state of p it is possible to construct a computation which contains s using
only transitions from δp. Otherwise s is unreachable. A transition of p is reachable iff its start state is
reachable. Otherwise it is unreachable. Similarly the notions of a state or transition being reachable in
the presence of faults can be defined by referring to δF

p .
Using the above terminology, detectors remove program transitions which were unreachable by p but

become reachable in the presence of faults. In a sense, composing a program with detectors means to
refine the original transition relation and eliminate certain program transitions to make bad transitions
unreachable.

Designing detectors is not an easy task in distributed systems and has its inherent complexities [12, 10].
Kulkarni and Arora [11] have presented an algorithm to automatically add detectors to a given program
in the transition system representation. Basically, this algorithm simply refines the guards of critical
actions to maintain the safety specification in the presence of faults. We will revisit and improve this
method later in Section 5.

We close this section with a final remark regarding the assumption that specifications be fusion-closed.
Informally spoken, fusion-closure guarantees that the entire history of a computation “is available” in the
current state of the system, i.e., it is sufficient to observe the current system state to know whether the
next step will result in a disallowed prefix. It has been observed [8, 2] that specifications in the popular
Unity logic [6] are fusion-closed, as are low-level specifications like C programs or transition systems.
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In general a specification that is not fusion-closed can be converted into a fusion-closed specification
through the addition of history variables. How this can be done in a way that minimizes the number of
additional states remains a topic for further research.

4 The Transformation Problem

We now formally state the problem of transforming a fault-intolerant program p into a fail-safe fault-
tolerant version p′ for a given safety specification SS and fault model F [11].

When deriving p′ from p, only fault tolerance should be added, i.e., p′ should not satisfy SS in new
ways in the absence of faults. Specifically, there are two conditions to be satisfied in the transformation
problem:

• If there exists a transition (s, t) in p′ that is not used by p to satisfy SS , then (s, t) cannot be used
by p′, since this means that there are other ways p′ can satisfy SS in the absence of faults. Thus,
the set of transitions of p′ should be a subset of the set of transitions of p.

• Also, if there exists a state s reachable by p′ in the absence of faults that is not reached by p in
the absence of faults, then this means that p′ can satisfy SS differently from p in the absence of
faults, and such a state s should not be reached by p′ in the absence of faults. Thus, the set of
states reachable by p′ should be a subset of the set of states reachable by p.

In general, these conditions result in the requirement that both programs should have the same set of
fault-free computations. Formally, we define the transformation problem as follows:

Definition 7 (Transformation for fail-safe fault tolerance) Let SS be a safety specification, F a
fault model F , and p an F -intolerant program for SS. Identify a program p′ such that the following three
conditions hold:

1. p′ satisfies SS in presence of F .
2. In the absence of faults, every computation of p′ is a computation of p.
3. In the absence of faults, every computation of p is a computation of p′.

Later in Section 6 we present an algorithm which solves the above transformation problem, i.e., we
present an algorithm that systematically transforms a fault-intolerant program into a program that
satisfies the above three conditions. The algorithm is based on a theory for fast and perfect detectors
which we introduce in the following section.

5 A Theory of Fast and Perfect Detectors

This section, which can be regarded as the heart of the paper, presents a theory of detector components
which helps in the design of fail-safe applications. The theory is centered around the notion of an SS -
inconsistent transition which is introduced in Section 5.1. Using this notion, we identify correctness
criteria for programs composed with so-called perfect detectors in Section 5.2. Finally, we formulate a
metric of detection latency for the efficiency of detectors in Section 5.3 to compare different transformation
algorithms. Our algorithm to add fail-safe fault tolerance presented in Section 6 directly follows from
the theory presented now.
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5.1 Transition Consistency in the Context of Safety Specifications

The intuition behind the definition of inconsistency is that if a given computation violates the safety
specification, then some “errorneous” transition occurred in the computation.

Definition 8 (SS-inconsistent transitions) Given a fault-intolerant program p with safety specifica-
tion SS, and a computation α. A transition (s, s′) is SS -inconsistent for p w.r.t. α iff

• α is a finite computation of p in the presence of faults,

• (s, s′) occurs in α, i.e., α = σ · s · s′ · β,

• all transitions in s · s′ · β are in δp,

• α violates SS, and

• σ · s maintains SS.

Program P1
var x init 1, y init 1, z init 10, c init 1 : int

c = 1 → x := read(); c := c + 1; // value between 5 and 10

c = 2 → y := read(); c := c + 1; // value between 5 and 15
c = 3 → z := x + y; c := c + 1
c = 4 → output(z); c := 1 // loop forever

F (faults):

true → x := random [0 . . . 25]

true → y := random [0 . . . 50]

Figure 1: Program to illustrate Definition 8.

We now illustrate this definition: Consider the program P1 in Figure 1 which reads two sensors, and
then outputs the sum of the two readings. The safety specification SS requires the output to be always
between 10 and 25. The fault transitions state that, from each state, the value of variable x (respectively,
y) can be arbitrarily changed to a value in the range of [0 . . . 25](respectively, [0 . . . 50]). Consider now
computation α (states are given as triples 〈x, y, z〉, i.e., the program counter c is not explicitly given):

α : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈10, 5, 10〉 · 〈10, 5, 15〉

Obviously, α satisfies SS and so no program transition is SS -inconsistent. Now consider computation β
which violates SS :

β : 〈1, 1, 10〉 · 〈10, 1, 10〉 · 〈25, 1, 10〉 · 〈25, 5, 10〉 · 〈25, 5, 30〉

In β, a fault transition occurs after the second state, i.e., state 〈10, 1, 10〉, changing the value of x to 25.
The subsequent program transition from 〈25, 1, 10〉 to 〈25, 5, 10〉 is SS -inconsistent, since the execution
of the following program transition to state 〈25, 5, 30〉 causes a violation of the safety specification. The
program transition from 〈25, 5, 10〉 to 〈25, 5, 30〉 is also SS -inconsistent. The first program transition and
the fault transition are not SS -inconsistent.

Intuitively, an SS -inconsistent transition for a given program computation is a program transition
where the subsequent execution of a sequence of program actions causes the computation to violate the
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safety specification. In a sense, SS -inconsistent transitions lead the program computation on the “wrong
path”.

Now we define SS -inconsistency independent of a particular computation.

Definition 9 (SS-inconsistent transition for p) Given a program p with safety specification SS. A
transition (s, s′) is SS -inconsistent for p iff there exists a computation α of p in the presence of faults
such that (s, s′) is SS-inconsistent for p w.r.t. α.

In general, a transition can be SS -inconsistent w.r.t. a computation α1, and not be SS -inconsistent
w.r.t. α2. This can be due to nondeterminism in program execution. To see this consider the program P2
in Figure 2. The safety specification SS mandates that always 10 ≤ d ≤ 50. Consider now the following
computation α1 of P2 (a state is given as 〈w, x, y, z〉):

α1 = 〈1, 5, 1, 10〉 · 〈1, 10, 1, 10〉 · 〈1, 45, 1, 10〉 · 〈15, 45, 1, 10〉 · 〈15, 45, 15, 10〉 · 〈15, 45, 15, 60〉

In the second state a fault occurs setting x to 45 and effectively causing α1 to violate SS after execution
of a sequence of program transitions. Notice that the transition t = (〈1, 45, 1, 10〉, 〈15, 45, 1, 10〉) is SS -
inconsistent for p w.r.t. α1.

Now consider computation α2 of p:

α2 = 〈1, 5, 1, 10〉 · 〈1, 10, 1, 10〉 · 〈1, 45, 1, 10〉 · 〈15, 45, 1, 10〉 · 〈0, 45, 1, 10〉 · 〈0, 45, 0, 10〉 · 〈0, 45, 0, 45〉

Here again a fault happens in the second state but due to a lucky interleaving of program actions α2

maintains SS . Hence, the same program transition t as above is not SS -inconsistent for p w.r.t. α2.

Program P2
var w init 1, c1 init 1 : int // process a

var x init 5, y init 1, z init 10, c2 init 1 : int // process b

process a:
c1 = 1 → w := read(); c1 := c1 + 1; // value between 15 and 25

c1 = 2 ∧ x ≤ 15 → w := w + 5; c1 := 1; // loop

c1 = 2 ∧ x > 15 → w := w − 15; c1 := 1; // loop

process b:
c2 = 1 → x := read(); c2 := c2 + 1; // value between 0 and 20
c2 = 2 → y := w; c2 := c2 + 1;
c2 = 3 → z := y + x; c2 := c2 + 1;
c2 = 4 → output(z); c2 := 1; // loop

F (faults):

true → x := random [10 . . . 45]

true → w := random [1 . . . 50]

Figure 2: Program containing two concurrent processes with a transition that is both SS -inconsistent
and not SS -inconsistent w.r.t. two different computations.

If we cannot find a computation in the presence of faults for which a particular transition is SS -
inconsistent then we say that this transition is SS -consistent.

Definition 10 (SS-consistent transition for p) Given a program p with safety specification SS. A
transition (s, s′) is SS -consistent for p iff (s, s′) is not SS-inconsistent for p.
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The notion of SS -inconsistency is a characteristic for a computation which violates SS .

Proposition 3 Given an fault-intolerant program p for a safety specification SS. Every computation α
of p in the presence of faults that violates SS contains an SS-inconsistent transition for p w.r.t. α.

Proof.

1. Because p is F -intolerant, there exists a computation α of p in the presence of faults such that
α 6∈ SS .

2. From step 1 and Proposition 2 there exists a bad transition (s, s′) in α.
3. From step 2 and the restriction of F follows that (s, s′) ∈ δp.
4. From step 3 and Definition 8, (s, s′) is SS -inconsistent for p w.r.t. α.

�
Inconsistent transitions can also be characterized through the reachability of bad transitions.

Proposition 4 Given a fault-intolerant program p for a safety specification SS. If (s, s′) is an SS-
inconsistent transition for p then a bad transition is reachable starting from s using only program tran-
sitions from δp.

Proof. The proof follows directly from the definition of SS -inconsistent transitions and Proposition 2.
�

Reachability of bad transitions in δp leads to the following observation.

Proposition 5 Given a fault-intolerant program p for safety specification SS. Every SS-inconsistent
transition for p is not reachable in the absence of faults.

Proof.

1. For a contradiction, assume the start state s of an SS -inconsistent transition (s, s′) is reachable in
the absence of faults.

2. Step 1 implies that there exists a computation α · s · s′ of p in the absence of faults.
3. From the fact that (s, s′) is inconsistent, and Proposition 4 there exists a computation s · s′ · β of

p in the absence of faults in which a bad transition occurs.
4. From steps 2 and 3 follows that there exists a computation σ = α · s · s′ · β of p in the absence of

faults containing a bad transition.
5. From step 4 and Proposition 2 there exists a computation of p in the absence of faults which violates

SS .
6. From step 5 p violates SS in the absence of faults, a contradiction.

�
Note that the previous observation cannot be strengthened to an equivalence (a non-reachable tran-

sition in the absence of faults must not be SS -inconsistent). But it can be reformulated to characterize
reachable transitions in the absence of faults as SS -consistent.

Corollary 1 Given a fault-intolerant program p for a safety specification SS. Every reachable transition
(s, s′) ∈ δp in the absence of faults is SS-consistent for p

In the next section, we introduce the notion of perfect detectors using the terminology of SS -consistency.
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5.2 Perfect Detectors

From the previous section, we observed that SS -inconsistent transitions are those transitions that can
lead a program to violate its safety specification in the presence of faults if no precautions are taken.
Perfect detectors are a means to implement these precautions. The definition of perfect detectors follows
two guidelines: A detector d monitoring a given action ac of program p needs to (1) “reject” the starting
states of all transitions induced by ac that are SS -inconsistent for p, and (2) “keep” the starting states of
all induced transitions that are SS -consistent for p. These two properties are captured in the definition
of accuracy and completeness of detectors (the notions are defined in analogy to Chandra and Toueg [5]).

Definition 11 (Detector accuracy) Given a program p with safety specification SS, and a program
action ac of p. A detector d monitoring ac is SS -accurate for ac in p iff for all transitions (s, s′) induced
by ac holds: if (s, s′) is SS-consistent for p, then s ∈ d.

Definition 12 (Detector completeness) Given a program p with safety specification SS, and a pro-
gram action ac of p. A detector d monitoring action ac is SS -complete for ac in p iff for all transitions
(s, s′) induced by ac holds: if (s, s′) is SS-inconsistent for p, then s 6∈ d.

Definition 13 (Perfect detector) Given a program p with safety specification SS, and a program ac-
tion ac of p. A detector d monitoring ac is SS -perfect for ac in p iff d is both SS-complete and SS-accurate
for ac in p.

Where the specification is clear from the context we will write accuracy instead of SS-accuracy (the
same holds for completeness and perfection).

Intuitively, the completeness property of a detector is related to the safety property of the program p
in the sense that the detector should filter out all SS -inconsistent transitions for p, whereas the accuracy
property relates to the liveness specification of p in the sense that the detector should not rule out SS -
consistent transitions. This intuition is captured by the following lemmas. The first one (Lemma 1) uses
the accuracy property to show that the fault free behavior of a program is not affected by adding perfect
detectors. The next one (Lemma 2) uses the completeness property to show that perfect detectors indeed
establish fault-tolerance.

Lemma 1 (Perfect detectors and fault-free behavior) Given a fault-intolerant program p and a
set D of perfect detectors. Consider program p′ resulting from the composition of p and D. Then the
following statements hold:

1. In the absence of faults, every computation of p′ is a computation of p.
2. In the absence of faults, every computation of p is a computation of p′ .

Proof.

1. From Corollary 1, every program transition which is reachable in p is SS -consistent.

2. From construction, p′ results from adding perfect detectors to p. Because they are perfect (Defini-
tion 13), they are accurate.

3. From steps 1, 2 and the definition of accuracy, all SS -consistent transitions of p are also transitions
of p′.

4. Steps 1 and 3 imply that every reachable transition in p is also reachable in p′.

11



5. Step 4 implies that every computation of p is also a computation of p′, proving the first claim of
the lemma.

6. From the definition of a detector (Definition 6) follows that composition with detectors does not
introduce new state transitions.

7. Step 6 implies that δp′ ⊆ δp.

8. Step 7 implies that every computation of p′ is also a computation of p, proving the second claim of
the lemma.

�

Lemma 2 (Perfect detectors and behavior in the presence of faults) Given a fault-intolerant pro-
gram p for a safety specification SS. Given also a program p′ by composing the critical actions of p with
perfect detectors. Then, p′ satisfies SS in presence of faults.

Proof.

1. For a contradiction assume that p′ violates SS . From definition of violates follows that there exists
a computation σ of p′ which is not in SS .

2. Step 1 and Proposition 2 imply that there a bad transition (s, s′) occurs in σ.

3. Because of the restrictions on the fault model (critical variables are not affected), the transition
(s, s′) from step 2 must be a program transition (i.e., (s, s′) ∈ δp′) induced by some critical action
ac.

4. From Definition 8 and step 3 the transition (s, s′) is SS -inconsistent.

5. Consider the critical program action ac (from step 3) causing the bad transition. From construction
of p′, ac is composed with a perfect detector d.

6. From step 5 and because d is perfect, it is also complete.

7. Because d is complete (step 6), d monitors ac (step 5) and transition (s, s′) induced by ac is
SS -inconsistent (step 4), the definition of completeness implies that s 6∈ d.

8. Step 7 implies that (s, s′) 6∈ δp′ which contradicts step 3.

�

5.3 Fast Detectors

Perfect detectors ensure correctness of the transformation. We now turn to a different aspect, namely
the efficiency of perfect detectors. Intuitively, we would like a fault to be detected as early as possible to
prevent further contamination of the system state. In this section, we focus on explaining the relationship
between fast detection and SS -inconsistent transitions.

Informally, a detector is perfect if it removes an arbitrary SS -inconsistent transition for every violating
execution. A fast detector should remove the “first” SS -inconsistent transition.
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Definition 14 (Earliest SS-inconsistent transition) Given an F -intolerant program p with safety
specification SS, and a computation α = s0 ·s1 · · · si ·si+1 · · · sm of p in the presence of faults that violates
SS. The transition (si, si+1) is the earliest SS -inconsistent transition for p w.r.t. α iff the following two
properties hold:

1. (si, si+1) is SS-inconsistent for p w.r.t. α.
2. (si−1, si) is a transition induced by a fault action.

Intuitively, when a computation α of a program p in the presence of faults violates the safety specifi-
cation SS of p, there exists a suffix that contains a maximal partial computation which starts with an
SS -inconsistent transition and ends in a bad transition. The earliest SS -inconsistent transition is the
first SS -inconsistent transition in this suffix.

Define the set EITF
p (SS ) of earliest SS -inconsistent transitions of a program p as the union of the

earliest SS -inconsistent transitions over all computations of p violating SS . Define p \ EITF
p (SS ) as the

program p′ which is the same as p except that all transitions from EITF
p (SS ) have been removed from

δp.

Definition 15 (Fast detectors) Let p be a fault-intolerant program. A set of perfect detectors D for
program p is fast iff p composed with D results in p \ EITF

p (SS).

Lemma 3 (Fast perfect detectors and behavior in the presence of faults) Let p be a fault-intolerant
program for a safety specification SS. Then p composed with a set of fast perfect detectors satisfies SS in
the presence of faults.

Proof. This is a generalization of the proof of Lemma 2.

1. For a contradiction, it is again assumed that p′ violates SS , i.e., that there exists a computation σ
of p′ which is not in SS .

2. From Definition 14 it is possible to generalize Proposition 3 to state that in every violating execution
there exists an earliest SS -inconsistent transition in every violating computation. Denote this
transition in σ as (s, s′).

3. The fact that detectors are fast and from Definintion 15 we have that all earliest inconsistent
transitions are removed from p while constructing p′, which is a contradiction to the occurrence of
(s, s′) in a computation of p′.

�
We now define a metric to measure the “fastness” of detectors. Intuitively, the detection latency defines

the number of program transitions executed until the program “halts” at a detector, after a “harmful”
fault has occurred.

Definition 16 (Detection latency) Let SS be a safety specification and p′ be a program which has been
made fault-tolerant for SS by composing a fault-intolerant program p with a set of detectors. Consider a
finite computation α = s0 · · · si · si+1 · · · sm of p′ in the presence of faults, such that:

1. (si−1, si) is a transition induced by a fault action,
2. all transitions in si . . . sm are in δp′, and
3. starting from sm a bad transition in SS is reachable by using only one program action of p.
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Then, the detection latency Lp(α) of p′ w.r.t. α is the number of transitions executed in si . . . sm.

Definition 17 (Maximum detection latency) Let F be a fault model, SS be a safety specification
and p be a fail-safe F -tolerant program for SS. The maximum detection latency LM p of p is defined as
the maximum of Lp(α) for all computations α of p in the presence of faults.

Lemma 4 (Latency of fast detectors) Given a fault-tolerant program p′ which is the result of the
composition of a fault-intolerant program p with a set of fast perfect detectors. Then p′ has maximum
detection latency 0.

Proof. Consider any computation α = s0 · · · si · · · sm of p′ which satisfies Definition 16. We need to
show that si = sm.

1. Definition 16 implies that there exists a computation σ of p which can be written as σ = α ·β (i.e.,
a continuation of α) which violates SS .

2. Step 1 and Definition 14 imply that (si, si+1) is the earliest SS -inconsistent transition of p w.r.t. σ.

3. Step 2 and the definition of fast detectors imply that p′ evolved from p by removing (among other
transitions) also (si, si+1).

4. Step 3 implies that si = sm, which in effect means that Lp′(α) = 0.

Since we have not restricted the choice of α, the statement holds for all α. This implies that LM p′ = 0.
�

Since the maximum detection latency of a fail-safe fault-tolerant program p′ must be at least 0,
composition of a fault-intolerant program p with fast perfect detectors results in a fail-safe fault-tolerant
program p′ with optimal detection latency. It remains to be shown that this composition preserves the
correctness.

Lemma 5 (Fast perfect detectors and fault-free behavior) Given a program p′ that is the com-
position of a fault-intolerant program p and a set of fast perfect detectors. For p and p′ holds:

1. In the absence of faults every computation of p′ is a computation of p.
2. In the absence of faults every computation of p is a computation of p′.

Proof. The proof is the same as that of Lemma 1. �
Lemmas 3 (behavior in the absence of faults), 5 (behavior in the presence of faults), and 4 (optimal

detection latency) will form the basis for deriving the transformation algorithm for adding fast, perfect
detectors in Section 6.

5.4 Summary

In this section, we have presented two main themes, namely (i) a theory for design of perfect detectors,
and (ii) a theory for design of fast detectors. With Proposition 3 we have shown that when a program
p violates its safety specification SS, this is due to so-called SS -inconsistent transitions. Given that we
want the fail-safe fault-tolerant program p′ to behave as the corresponding fault-intolerant program p in
the absence of faults, we have shown that composing p with perfect detectors in a certain way achieves
this. Perfect detectors are defined directly using the notion of SS -inconsistent transitions. Further, we
developed the concept of an earliest SS -inconsistent transition that underpins fast error detection and
allows to prove optimal detection latency in our case (Lemma 4).
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We close this section with a final remark concerning an observation made by Arora and Kulkarni [3,
Sect. 3]. The authors observed that “based on their experience”, when designing fail-safe fault-tolerant
programs, the detectors for non-critical actions are trivial, i.e., “true”, whereas the detectors for critical
actions are non-trivial. Lemma 3 formally justifies the validity of Arora and Kulkarni’s observation since
it shows that it is sufficient to compose critical actions with perfect detectors to ensure fail-safe fault-
tolerance. Proving this statement was made possible by our notions of accuracy and completeness of
detectors. In this sense these properties can be regarded as a concretization of “non-trivial”.

In the next section, based on the results developed in this section, we provide an algorithm that auto-
mates synthesis of a fail-safe fault-tolerant algorithm with perfect and fast error detection capabilities.

6 Adding Efficient Fail-Safe Fault Tolerance

In this section we give an algorithm to solve the transformation problem of Definition 7 which follows
from the theory presented in Section 5

The basic idea of the algorithm is to remove the set of earliest inconsistent transitions from the
input program p. Intuitively, the algorithm works as follows: It takes as parameters the fault-intolerant
program p (in the form of its transition relation δp) and the fault model F (in the form of the set of
fault transitions). The safety specification SS is encoded as the set of bad transitions and passed to the
algorithm in variable ss.

Starting from the set of bad transitions in ss, the algorithm constructs the set it of all inconsistent
transitions. From this set, it constructs the set eit of earliest inconsistent transitions. This set of
transitions is removed from δp yielding the transition relation of the transformed program. The algorithm
is presented in Figure 3.

add-efficient-fail-safe(δp, δF , ss: set of transitions):
it := {(s0, s1) | ∃α = s0 · s1 · s2 · · · of program transitions:

∃(s, s′) ∈ ss : (s, s′) occurs in α }
eit := {(s0, s1) | (s0, s1) ∈ it ∧ ∃s ∈ Sp : (s, s0) ∈ δF }

return (p′ = p where transition relation is δp \ eit)

Figure 3: Algorithm to add efficient fail-safe fault-tolerance.

Theorem 2 (Correctness the of transformation algorithm) The algorithm in Figure 3 solves the
transformation problem of Definition 7. Furthermore, the resulting program has optimal detection latency.

Proof. Since the algorithm constructs p′ by removing the set of all earliest inconsistent transitions, we
can apply the lemmas from Section 5. Lemma 5 ensures that p and p′ have the same fault-free behavior
which proves the second and third requirements of Definition 7. Lemma 3 ensures that p′ satisfies the
specification in the presence of faults, which proves the first requirement of Definition 7. Lemma 4 ensures
that the maximum detection latency is 0, meaning that it is trivially optimal. �

In contrast, the algorithm of Kulkarni and Arora [11] generates programs with detection latency equal
to the maximum length over all partial computations considered when computing set it , since they
remove only bad transitions, i.e., the last transition in the partial execution, whereas we remove the first
one.

We now provide a brief analysis of the complexity of our algorithm:
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1. Assume that the number of bad transitions specified by ss be m. Thus, to compute set it , the
number of partial computations visited is O(m).

2. Assume that the maximum number of transitions visited in any partial computation when com-
puting set it is n. Then, the number of states visited is O(n).

3. Therefore, maximum number of states visited when computing set it is O(mn).
4. Computing set eit means going through set it , thus this step has complexity O(mn).
5. Overall, the algorithm in Figure 3 has complexity O(mn + mn) = O(mn), where m is the number

of bad transitions specified by ss, and n is the maximum number of transitions considered in any
partial computation.

The complexity of our algorithm is no more than the complexity of the algorithm presented by Kulkarni,
and Arora [11], which has polynomial complexity in the state space of the program.

7 Discussion and Conclusions

In this paper, we have presented a novel theory of fast and perfect detector components for the de-
sign of fail-safe fault-tolerant programs. This theory allows to derive a transformation algorithm which
automatically adds fault-tolerance abilities with optimal detection latency. This theory also solves the
previously open problem of systematic design of fast and perfect error detection [14].

Our algorithm is intended mainly for a certain class of programs, termed as bounded programs. In
bounded programs, the length of the partial executions to be considered when calculating the set it is
finite. This means that in the program, there are no infinite loops, rather all loops are bounded. An
instance of bounded programs can be found in the domain of embedded applications, more specifically
applications where the output is to be written within a bounded number of steps.

The motivation for perfect error detection is obvious in adaptive systems. In adaptive systems, usually
(in periods of non-perturbation) a fault-intolerant program p executes. During periods of perturbation, a
fault-tolerant version p′ of p (with possibly lower efficiency) is switched in. If a detector is not accurate,
then p′ may be switched in, even when there is no perturbation, lowering the efficiency of the system. If
the detector is not complete, it might fail to detect an error entirely. Hence, perfect detection is necessary
if the system is to be correct and efficient.

The motivation of optimal detection latency is for fault containment. The earlier an error is detected,
the higher is the error containment. If an error is not contained, more sophisticated error recovery
mechanisms may be required to correct the fault than if the error is contained. Specifically, if an error is
contained, a local recovery procedure may be initiated, but if the error is not contained and the state of
several processes is corrupted, local recovery mechanisms may not be adequate.
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