
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne
From AOP to UML: Towards an Aspect-Oriented
Architectural Modeling Approach

Mohamed M. Kandé, Jörg Kienzle and Alfred Strohmeier
Software Engineering Laboratory

Swiss Federal Institute of Technology Lausanne
CH - 1015 Lausanne EPFL

Switzerland
email: {Mohamed.Kande, Joerg.Kienzle, Alfred.Strohmeier}@epfl.ch

Abstract. Capturing concerns that crosscut the boundaries of multiple compo-
nents in software architecture descriptions is problematic. Standard description
languages, such as UML, do not provide adequate means to understand and
modularize such concerns, but aspect-oriented programming techniques do.
This paper explores and analyzes the suitability of UML for aspect-oriented
architectural modeling. It takes a bottom-up approach, starting from the code
level to the level of software architecture description, via aspect-oriented design,
using standard UML.

1 Introduction

Aspect-oriented programming (AOP) is the name given to a set of techniques based on
the idea that software is better programmed by capturing different “things that happen
in a program” in different ways, and by encapsulating them into different modules [1].
This approach makes it possible to separately specify various kinds of concerns and
localize them into separate units of encapsulation. One can deal with both the concerns
and the modules that encapsulate them at different levels of abstraction, not only at the
code-level [2]. Examples of kinds of concerns in a software system include functional-
ity, emerging system-level properties, and other qualities. Representing certain kinds
of software concerns is well supported by modeling languages, like UML [3], if these
concerns can be localized on a single component of a system, such as a class. Model-
ing others kinds of concerns, e.g., logging, transactions and security, is more difficult,
as they typically cut across the boundaries of many components of a system. In this
work, we consider two issues that we believe need to be fundamentally addressed
when providing support for modeling crosscutting concerns:

• Understanding what concerns cut across which representational elements and
where they do so. Without this information, it becomes very hard to represent and
reason simultaneously about the crosscutting structure and the behavior in the sys-
tem.

• Provide a means to separate crosscutting from non-crosscutting concerns and
encapsulate the former into aspects.

To tackle these issues, we take a bottom-up approach that starts with the key concepts
used to represent crosscutting concerns in aspect-oriented programs. Based on this and
page 1

https://core.ac.uk/display/147902652?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

on our experience in modeling object-oriented software with UML, we analyze the
suitability of UML to support aspect-oriented software modeling.

One of the main elements of an aspect-oriented programming language is the join
point model. It describes the “hooks” where enhancements may be added, determining
thus the structure of crosscutting concerns. To support this model, AOP languages are
required to provide means to identify join points, specify behavior at join points,
define units that allow one to group join point specifications and behavior enhance-
ments together, as well as means for attaching such units to a program [1].

A second important element in AOP is the “weaving” capability support. When
using AOP languages, the programmer relies on the underlying AOP environment to
weave or compose separate concerns together into a coherent program. Separating the
representation of multiple kinds of concerns in programs in such a way promises
increased readability, simpler structure, adaptability, customizability and better reuse.

UML is a standard modeling language used to create and document software arti-
facts. It includes many useful ideas and concepts that have their roots in various indi-
vidual methods and theories. UML provides numerous modeling techniques, including
several types of diagrams, model elements, notation and guidelines. These techniques
can be used in various ways to model different characteristics of a software system.
Key features of UML comprise: support for model refinement, extension mechanisms
(stereotypes, tagged values, and constraints), and a language for expressing constraints
(known as the object constraint language, OCL). UML has established itself as a well-
accepted modeling language that provides adequate support for object-oriented and
component-based software development [4].

Basically, there are various possibilities of using UML to model crosscutting con-
cerns in a software system. For instance, join points can be represented in UML as
model elements, but their effect can also be shown in different diagram types of UML,
e.g., collaboration, sequence and statechart diagrams. Now, the question that remains
to be asked is how suitable is UML, in its current state, for modeling aspect-oriented
software systems?

To answer this question, this paper takes a bottom-up approach, establishing paral-
lels between AOP code and UML models. Section 2 introduces the key concepts of
AspectJ, the aspect-oriented programming language we used for our experiment. Sec-
tion 3 shows how some, but not all, AOP concepts can be modeled in standard UML.
Section 4 identifies extensions to UML that allow us to better capture the essence of
aspect-oriented modeling, and finally, in section 5 we draw some conclusions from this
experiment.

2 AspectJ

AspectJ [5] is an aspect-oriented programming environment for the Java language. It
has served as a basis for our experiment.

AspectJ defines the notion of join point as a well-defined point in the execution
flow of a Java program. Join points include method and constructor calls or execu-
tions, field accesses, object and class initialization, and others. A set of join points is
called a pointcut. To pick out a set of join points of a certain kind, a programmer uses a
pointcut designator of a certain kind and pattern matching techniques to specify the
page 2

method signature, classes, or packages of interest. Pointcuts can be further composed
with boolean operations to construct other pointcuts.

While pointcuts allow the programmer to identify join points, the advice constructs
define additional code to run at those join points. An advice contains a code-fragment
that executes either before, after or around a given pointcut. Finally, aspects are pro-
vided which, very much like a class, group together methods, fields, constructors, ini-
tializers, but also named pointcuts and advice. Aspects are intended to be used for
implementing a crosscutting concern.

3 Supporting Aspect-Oriented Modeling

This section addresses UML support for object-oriented modeling, and discusses the
appropriateness of current UML for modeling of aspect-oriented software systems.

3.1 Using UML for Object-Oriented Modeling

Modeling object-oriented concepts is well supported by UML. Consider, for example,
a simple banking system, which the following Java classes Account and Customer are
part of:

public class Account {

private int balance = 0;

public void withdraw (int amount) {...};
public void deposit (int amount) {...};
public int getBalance() {...};

}

public class Customer {

public String name;

// inside some method (a is an account)
a.withdraw(50);

}

To model the static and dynamic structure shown in the Java code, two types of UML
diagrams could be used, i.e., a collaboration diagram and a class diagram, each provid-
ing a different view. The collaboration diagram shown in Figure 1 illustrates a behav-
ioral view that focuses on the interaction between a Customer object c invoking a
method of an Account object a. Collaboration diagrams typically give you an idea
about how objects work together, showing both the participant objects (part of the
structural characteristics) and the interactions between them (the messages they
exchange). In our example, c calls the method withdraw of a, which is shown in the
figure by the arrow labeled with withdraw(50).

a:Accountc:Customer

1: withdraw(50)

Fig. 1: A UML Collaboration Diagram
page 3

As in this case no further information is given on how the customer c gets to know the
account a, we must assume that they are statically linked together. This results in an
association link between the two classes, as depicted by the class diagram in Figure 2.
Thus, Figure 2 shows a static structure view of (this part of) the system with a particu-
lar focus on how the classes relate to each other.

In Figure 1, each interacting object plays a different role. UML allows us to specify
this by attaching role names to both association ends, shown as owner and ownedAc-

count in Figure 2. Multiplicity constraints can also be attached to association ends in
order to express the possible number of occurrences of the association. Note that this
information is not shown in the Java code.

As the simple banking system evolves, the requirements change. Developers might
be asked to add the following new feature to the system: every access to an account
object should be logged, recording the name of the accessing customer and the type of
access on a log file. This logging feature is a typical example of a crosscutting concern,
which can not easily be represented in an object-oriented design. The concern will
inevitably be scattered throughout the model and / or entangled with other features
[6][7][8]. Adding such a feature is best supported by aspect-oriented software develop-
ment.

3.2 Using UML for Aspect-Oriented Modeling

The most intuitive join points defined by AspectJ are method calls (not including
super calls). The pointcut designator that allows a programmer to pick out a set of
method calls based on the static signature of a method has the form:

pointcut someName : call(Signature);

Using the pointcut construct, it becomes straightforward to write an aspect that inter-
cepts all calls to object instances of a certain class, performs some preprocessing, pro-
ceeds with the call, and finally does some postprocessing.

In the example below, the Logging aspect intercepts all method calls made by cus-
tomers on an account object and logs the access to a file:

public aspect Logging {

private Log Account.myLog;

public void Account.setLog(String fileName) {
myLog = new Log(fileName);
myLog.println

("This is the logfile for account " + this);
}

declare parents: Account implements Loggable;

Fig. 2: A UML Class Diagram

Customer

-name: String

Customer

-name: String

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

ownedAccount

0..*

1..*

owner
page 4

pointcut MethodCall(Customer c, Account a) :
call (public * Account.*(..))

&& this(c) && target(a);

after (Customer c, Account a) : MethodCall(c, a) {
a.myLog.println(c + " called " +

thisJoinPoint.getSignature().getName());
a.myLog.flush();

}

}

The Logging aspect introduces a new method, called setLog(), into the Account

class. This new method associates an account object with a log that writes the logging
information into a text file. The reference to the log is stored in the private attribute
named myLog. A UML class diagram that captures this change from the static structure
point of view is shown in Figure 3.

To capture the interaction going on during a method call with an aspect, we need to
modify the collaboration diagram presented in Figure 1 to explicitly show the method
call interception.

A typical way of modeling interception of method calls, when using UML, is to
add a new class, whose instance will be interposed between the interacting objects.
This technique is illustrated in Figure 4. An interceptor object i is placed between the
customer and the account objects. In addition to implementing the logging feature
itself, the object i must:

• Offer an interface that supports all methods of the account object that are invoked
by the customer object.

• Provide a mechanism to forward intercepted calls to the account object.

Instead of calling the account object directly, the customer object now actually calls
the interceptor object (1:withdraw(50)). In our example, the logging action is per-
formed in the after advice. Therefore, the message 1:withdraw(50) is first forwarded
to the account object as 1.1:withdraw(50), and upon return the call is logged by

Fig. 3: Class Diagram for Account Logging Aspect

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

Log

+println()
+flush()

Log

+println()
+flush()

0..1
myLog 1

Customer

-name: String

Customer

-name: String

ownedAccount

0..*

1..*

owner

<<interface>>
Loggable

+setLog(fileName:String)

<<interface>>
Loggable

+setLog(fileName:String)
page 5

sending the message 1.2:println(..) and 1.3:flush() to the log file associated
with the account object.

3.3 Discussion

UML, in its current state, allows us to capture the structure and interactions of our
aspect-oriented program. However, the resulting model presents some major draw-
backs:
• Crosscutting concerns can not be well modularized: The design of the logging

capability is scattered throughout the diagrams. It is partially modeled in both the
Loggable interface and the new association between the Account and the Log

class, as shown in the class diagram. In the collaboration diagram, it is represented
by the Interceptor object, and the messages it exchanges with the other objects.
Note also that the two diagrams are inconsistent, since the Interceptor class does
not appear in the class diagram.

• According to the diagrams, there is no difference between modularization by class
and by aspect. The basic concepts of AspectJ, such as pointcuts, introduction and
advice, are not explicitly modeled.

• The model does not capture the fact that the interception of the call is done trans-
parently. In Figure 4, the code of the Customer class must be modified to call the
interceptor object instead of calling the account object. As a consequence, any per-
manent attributes referencing account objects must be changed to reference inter-
ceptor objects.

• The model does not show that the logging aspect is a “pluggable” entity, i.e., that
the account can be used with or without logging, depending on the application
semantics. Both diagrams give the impression that aspects are static entities,
although, in reality, aspects are configured at weave-time, and triggering them can
be based on various kinds of execution flows or conditions.

These drawbacks actually come with no surprise. During design, the aim is to model a
specific solution for a given problem. As a result, the standard UML diagrams model
the static and dynamic structure of the Java code after the weaving process, since it is
only in its woven form that the code implements the logging capability.

Unfortunately, this leads to some form of abstraction inversion, since the nicely
separated logging code in the implementation is scattered throughout the design
model. The only solution to this problem, in our opinion, is to separate concerns also
during design, and to define a design-weaving process.

In summary, our intention in this section was to address two essential issues:

a:Accountc:Customer

1: withdraw(50)

Fig. 4: Collaboration Diagram With an Interceptor

i:Interceptor

1.1: withdraw(50)

myLog:Log

1.2: println(..)
1.3: flush(..)
page 6

1. explain how a code-driven design approach allows one to understand some key
characteristics of aspect-oriented modeling and compare them to object-oriented
modeling;

2. argue for the use of advanced separation of concerns (e.g., separating crosscutting
concerns from non-crosscutting concerns) as a technique to complement object-
oriented modeling with the notion of aspects.

4 Extending UML for AOSD

Code-driven design, as presented in the previous section, limits the ability to under-
stand various kinds of concerns, since it enables expressing the crosscutting nature of
software concerns from only one single perspective (a low-level, static and textual
view of the system). This makes it difficult to integrate aspects with other software
artifacts and to reason about modules of crosscutting concerns from different perspec-
tives or viewpoints. Indeed, developing aspect-oriented software requires thinking of
an aspect as an abstraction that defines a certain interaction context, and offers behav-
ior that can vary depending on certain conditions at run-time. Fulfilling such a require-
ment necessitates the ability to understand and describe the system from multiple
viewpoints.

To overcome the shortcomings of current modeling techniques, aspects need to be
treated as first-class citizens in advanced modeling languages. We propose to define an
aspect as a UML model element that modularizes crosscutting concerns at various lev-
els of abstraction, not only at the code-level.

Consider, for example, the logging aspect introduced previously. To capture the
logging aspect in a single module using UML, we need to introduce a representational
unit that encapsulates the role of the interceptor object as well as the interactions
between the participant objects of the classes Customer, Account and Log.

Let’s go back to our collaboration diagram. Figure 5 is similar to Figure 4, except that
the additional structure introduced by the logging aspect is highlighted in grey. We will
now proceed and make this grey part a first-class citizen, and determine what must be
part of this aspect, and what not.

Clearly, the participants c, a, and myLog are not part of the aspect, since they per-
form computation on the outside. It is the role of the interceptor object to mediate the
interactions between these objects, linking them together. The interceptor therefore
should be part of the aspect. The mediation itself happens at the connection points
highlighted in Figure 5 by CP 1, CP 2 and CP 3.

a:Accountc:Customer

1: withdraw(50)

Fig. 5: Identifying Connection Points

i:Interceptor

1.1: withdraw(50)

myLog:Log

1.2: println(..)

CP 1 CP 2

CP 3

1.3: flush(..)
page 7

The aspect is executed when reaching CP 1, that is when a call join point is
reached. From the interceptor point of view, CP 1 is an incoming (or passive) connec-
tion point. The control flow enters the aspect from the outside. CP 2 and CP 3 on the
other hand are outgoing (or active) connection points. The control flows from the
aspect to the outside. CP 2 has a special relationship with CP 1, since the calls that
enter through CP 1 can exit through CP 2. Therefore, they both present the same sig-
natures, with opposite flow directions. They are conjugated. To actually perform log-
ging, the aspect requires an instance of the Log class to be present, providing the
println and flush methods, which are called at execution time. This is done through
the connection point CP 3. The signature of CP 3 is completely independent from
CP 1 and CP 2.

By making the notion of connection points explicit, we are now able to define
stand-alone aspects and reason about them as a particular kind of UML collaboration.
They clearly separate crosscutting interaction concerns from computation as per-
formed by participant objects. The connection points being well-defined parts of the
aspect, it is possible to bind them to individual objects. In UML, a binding corresponds
to the concept of attaching a classifier role to an association role end. In our case, the
association role end corresponds to a connection point. However, in contrast to stan-
dard UML, our model focuses on explicit modeling of the association role end as part
of the aspect construct, allowing one to clearly separate modeling of interaction con-
cerns from the “dominant” structure of classifier roles.

We propose to define a new stereotype of UML collaboration to support aspect-ori-
ented modeling with UML. This enables us to instantiate the new aspect classifier to
model interaction concerns in an explicit and reusable way.

Figure 6 illustrates this idea. It consists of four types of elements: the aspect itself,
the associated connection points, normal UML classes, and the binding relationship.

The aspect itself, highlighted in the figure by a dotted oval, specifies the actions to
be performed at the connection points and along the interconnections, along with static
information that will be woven into the objects of the classes it binds to. For example,
in Figure 6, the first two compartments of the aspect represent two elements of the log-
ging feature, an attribute and a method, which need to be woven into the Account class
at binding time. The Advice compartment defines an action to be executed after return-
ing from a method call to an account object instance. This action encapsulates the
actual code calling the log.

LogCall

Call
public void a.myLog.println(“..”);
public void a.myLog.flush();

LogCall

Call
public void a.myLog.println(“..”);
public void a.myLog.flush();

Customer

-name: String

Customer

-name: String

Account

balance: int

+withdraw(amount:int)
+deposit(amount:int)

Account

balance: int

+withdraw(amount:int)
+deposit(amount:int)

-myAccount

0..*

<<binding>> <<binding>>

Log

+println(s: String)
+flush()

Log

+println(s: String)
+flush()

<<binding>>
<<pointcut>>
methodCall

a: Account
c: Customer

Call
call (public * Account.*(..)) && this(c) && target(a);

<<pointcut>>
methodCall

a: Account
c: Customer

Call
call (public * Account.*(..)) && this(c) && target(a);

<<aspect>>
AccountLogging

-Account::myLog: PrintWriter

+Account::setLog(fileName: String)

Advice
after(c:Customer, a: Account): methodCall (c, a)

<<aspect>>
AccountLogging

-Account::myLog: PrintWriter

+Account::setLog(fileName: String)

Advice
after(c:Customer, a: Account): methodCall (c, a)

Fig. 6: The Logging Aspect Model using a UML Collaboration Stereotype
page 8

The connection points are shown in Figure 6 using white and black circles. White
circles are incoming connection points. Black circles are outgoing connection points.
A white and a black circle connected by a line means that the connection points are
conjugated. A connection point is the construct designed to model pointcuts, but it is
general enough to cover also other kinds of points of interactions.

Connection points can be composed to build the interface of an aspect in the same
way multiple UML interfaces can be combined to form the interface of a class. How-
ever, there are two major differences between a connection point and a UML interface:
first, connection points can be instantiated, whereas UML interfaces cannot; second,
UML interfaces define signatures of operations, while connection points declaratively
specify invocations to these operations and the compositions thereof. Moreover, con-
nection points allow us to define attributes. These are typically used as parameters for
binding objects to the connection points of the aspect.

Examples of connection points shown in Figure 6 are logCall and methodCall.
The logCall connection point (CP 3 in Figure 5) is outgoing, meaning that the aspect
will make use of it during execution. It specifies what the aspect requires from its envi-
ronment during execution. In an implementation, it maps to a Java interface or abstract
class. Its properties, i.e., attributes and methods, are shown in the attribute and Call
compartment.

The methodCall connection point is a special form of connection point that groups
together two conjugated connection points (CP 1 and CP 2 shown in Figure 5). It
directly maps to a call pointcut in AspectJ. The pointcut definition can be shown in
the Call compartment.

At weave-time, objects bind to the connection points offered by aspects. The bind-
ing relationship specifies what class of objects an instance of the aspect can be bound
to. In our example, the aspect must be bound to instances of the classes Customer,
Account and Log. Therefore, our aspect could, at weave-time, interconnect customer c
with account a and the log object named mylog.

5 From Aspects to Connectors

So far, we have not addressed the weaving process as such from the modeling point of
view. In the previous models, the actual combining of the connection points with the
participant objects is not explicit. It is “hidden” in the binding concept, and as a conse-
quence we can not reason about it explicitly. For example in Figure 6, we can not see
that a customer actually interacts with an account. We therefore do not have sufficient
information about possible aspect configurations.

The situation is similar to the one found in component-based software develop-
ment, when bringing together heterogeneous, existing components. These components
are usually considered as black boxes. They are stand-alone elements that can be con-
figured in different ways to fit some specific interaction contexts. A component offers
features that are used by others components within a particular context of interactions.
The behavior that can be observed in various contexts of interactions (“who” does
“what” and “when”) can vary considerably, depending on a number of run-time condi-
tions. It is therefore the duty of the “composition environment” to provide mechanisms
for interconnecting the components and coordinating their interactions. Such mecha-
page 9

nisms have been addressed by the notion of software connector, as defined by architec-
ture description languages (ADLs) [12][13]§.

In this paper, we consider the following definition of connectors given by Shaw
and Garlan [11]:

“Software connectors … mediate interactions among components; that is, they
establish the rules that govern component interactions and auxiliary mechanisms
required.”

This definition induces a number of requirements that need to be fulfilled by formal-
isms supporting the modeling of software connectors. According to these authors, typ-
ical examples of requirements on connectors include, the ability to:

• give guarantees about delivery of packets in a communication system;
• describe restrictions on event ordering and procedure calls;
• describe incremental production and consumption rules about pipelines;
• distinguish between roles of interconnected components, such as clients and serv-

ers; and
• describe constraints on parameter matching and binding rules for conventional and

remote procedure calls.

These requirements, compared to those identified for aspects in the previous section,
reveals a deep similarity between a connector and an aspect. Like connectors, aspects
are stand-alone modularization units that mediate interactions among a set of compo-
nents that are crosscut by the concerns encapsulated by the aspect. Using software con-
nectors, interconnections among components can be initiated by different means. For
example, some communication services can be used by invoking some specific proce-
dures. Similarly, the actions of an aspect are triggered by an occurrence of one or more
join points.

However, the aspect might also require presence of some auxiliary mechanisms
that must be realized by additional objects, interfaces or communication services in
order to function properly. To coordinate activities among a set of interconnected com-
ponents, connectors provide sets of interaction protocols. Likewise, based on the
notion of advice, aspects declaratively specify sets of actions that can be performed
before, around or after join points are reached. Thus, the pointcut and advice con-
structs, as defined by aspects, can be valuably used to establish the rules that govern
the component interactions.

Just as the provider of a component can not anticipate the way it will be used in dif-
ferent interaction contexts, the programmer of the Customer and Account objects
can not anticipate the communications related to the logging feature. However, when
adding crosscutting features to a component-based system, a possible, but error-prone,
architectural solution could be to reverse engineer the components, analyze the struc-
ture of the code and decide where to add the new feature by hand. However, it
becomes difficult to make the components work together to support the realization of
the new feature. This is a typical example encountered when architectural decisions
are driven by the program code.
page 10

To surmount these limitations, we introduce the notion of ports on classes for rep-
resenting the interface elements of individual components. In a sense, we keep the
black-box view, but provide additional, externally visible, extension points. This solu-
tion is based on previous work presented in [14], inspired by the ROOM method [15]
and RM-ODP [16]. It consists of applying separation of concerns at the level of inter-
faces, allowing us to define different interaction points for different kinds of communi-
cations. At this stage, as the communication between the components is based on
sending and receiving messages in terms of UML, we focus on operational ports. To
understand various facets of this solution, we discuss the logging example in two dif-
ferent architectural models: a aspect design model and a configuration model.

5.1 Aspect Design Model

The aspect design model is based on one presented in section 4, but this time, each par-
ticipant object is treated as a separate black-box component.

Figure 7 shows the aspect design model of our Logging aspect. In addition to
Figure 6, it now contains three ports. They are named CustomerPort, AccountPort
and LogPort. Ports have strong similarities with UML Interfaces. However, like con-
nection points, ports may have attributes and can be instantiated. Also, each port
defines two compartments, specifying the services it provides to, but also the ones it
requires from the environment, unlike UML Interfaces.

5.2 Configuration Model

The configuration model shown in Figure 8 describes the system from the static struc-
ture point of view. In contrast to the aspect design model, it focuses on the representa-
tion of instances rather than types, modeling thus a particular system rather than a

Customer

-name: String

Customer

-name: String

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

Account

-balance: int

+withdraw(amount:int)
+deposit(amount:int)

-myAccount

0..*

<<binding>> <<binding>>

CustomerPort

Requires
+withdraw(amount:int)
+deposit(amount:int)

CustomerPort

Requires
+withdraw(amount:int)
+deposit(amount:int)

AccountPort

Provides
+withdraw(amount:int)
+deposit(amount:int)

Requires

AccountPort

Provides
+withdraw(amount:int)
+deposit(amount:int)

Requires

LogPort

Provides
+println(s: String)
+flush()

Requires

LogPort

Provides
+println(s: String)
+flush()

Requires

Log

+println(s: String)
+flush()

Log

+println(s: String)
+flush()

<<binding>>

LogCall

Call
public void a.myLog.println(“..”);
public void a.myLog.flush();

LogCall

Call
public void a.myLog.println(“..”);
public void a.myLog.flush();

LogCall

Call
public void a.myLog.println(“..”);
public void a.myLog.flush();

<<pointcut>>
methodCall

a: Account
c: Customer

Call
call (public * Account.*(..)) && this(c) && target(a);

<<pointcut>>
methodCall

a: Account
c: Customer

Call
call (public * Account.*(..)) && this(c) && target(a);

<<aspect>>
AccountLogging

-Account::myLog: PrintWriter

+Account::setLog(fileName: String)

Advice
after(c:Customer, a: Account): methodCall (c, a)

<<aspect>>
AccountLogging

-Account::myLog: PrintWriter

+Account::setLog(fileName: String)

Advice
after(c:Customer, a: Account): methodCall (c, a)

Fig. 7: Aspect Design Model
page 11

family of systems. To differentiate the instances from types, all the names of the ele-
ments in a configuration model need to be underlined.

Figure 8 illustrates a particular configuration of the system before the weaving pro-
cess. At this point, we show the explicit binding between connection points and ports.
It allows us to perform “type checking”, i.e., it is possible to verify that connection
points are bound to compatible ports only. The binding, however, is not instantiated
yet.

Finally, Figure 9 shows the resulting configuration after the weaving process. In
this view, the binding in not explicitly shown anymore. It has been instantiated by
plugging the connection points into the ports. We also show the established connec-
tions between the participant components.

Last, but not least, the model shows the realization of the introduction concept, as
defined by aspect-oriented programming languages. This is illustrated in Figure 9,
where the setLog capability has been plugged into the AccountPort.

5.3 Composition of Aspects

In the configuration model, we can also nicely show aspect composition. To illustrate
this idea, we assume that our system must provide the possibility to block access to
certain objects in certain situations. For instance, an account must be blocked in case
the balance drops below a certain threshold, or if the associated debit card has been
reported stolen. Such a crosscutting Blocking feature can easily be implemented as
an aspect intercepting all calls to an account, forwarding them only if the account has
not been blocked. In this simple example the model of the Blocking aspect has only
two conjugated connection points, with exactly the same signature as the conjugated
connection points of the Logging aspect. This makes it possible to compose both

:Account
ab cb

aport

:Customer

cport

:Log

logport

<<aspect>>
:AccountLogging

Outputbinding

Fig. 8: Configuration Model Before the Weaving Process

aport: AccountPort

cport:
CustomerPort

mylog:Log

logport: LogPort

AccountPort

myLog: Log

Provides
withdraw(amount:int)
deposit(amount:int)
setLog(fileName: String)

Requires

AccountPort

myLog: Log

Provides
withdraw(amount:int)
deposit(amount:int)
setLog(fileName: String)

Requires

a:Accounta:Account c:Customerc:Customer

Fig. 9: Configuration Model After the Weaving Process
page 12

aspects by “plugging” the passive Blocking connection point into the active Log-

ging connection point.

Figure 10 shows the composition of the two aspects. In this case, the composite aspect
first performs logging, and then blocking. This means that blocked calls will also be
logged. If blocked calls should be omitted from the log, then the composition can be
done in the opposite order. From the outside, the composition can be seen as a new
aspect. The intermediate connection points, shown in grey in Figure 10, are hidden.

6 Conclusion

In this paper we have analyzed the suitability of UML for modeling aspect-oriented
software. We have taken a bottom-up approach, starting from a small piece of code as
found in aspect-oriented programming languages, and then tried to model the design of
this code using standard UML.

Since UML does not define the idea of weaving, the nicely separated concerns in
the aspect-oriented program ended up scattered throughout the design model. In addi-
tion, we showed that by making aspects first-class citizens, we can nicely separate
crosscutting concerns. To capture different facets of an aspect, we proposed two archi-
tectural models: the aspect design model and the configuration model.

The Aspect Design Model shows the static structure of the aspect at type level. It
specifies well-defined connection points, which are the basis for pluggability, since
they specify the aspect interface. Likewise, ports are added to participant components,
stating both provided and required services, and exposing possible extension points.
Connection points and ports together determine what components the aspect can con-
nect.

The Configuration Model describes a particular way to combine instances of the
aspect with the components it interconnects. The combination is shown before and
after the weaving process, as both are significant. Before the actual weaving, the bind-
ing construct allows us to perform “type checking”, insuring adherence to the plugga-
bility rules. After the weaving, we are able to show the established connections and the
additional features introduced into the components by the aspect.

We discovered a strong similarity between aspects and software connectors as
found in architectural description languages. However, existing connector models do
not explicitly support modeling of crosscutting concerns. We believe that further
investigations in this direction will allow us to consolidate the relationship between

:Customer :Account

:Log

<<aspect>>
:Logging

Fig. 10: Composing Aspects in the Configuration Model

<<aspect>>
:Blocking
page 13

aspects and connectors. Our ultimate goal is to produce extensions to UML that make
it suitable for aspect-oriented architectural descriptions.

References

[1] T. Elrad, M. Aksits, G. Kiczales, K. Lieberherr, and H. Ossher: “Discussing
Aspects of AOP”. Communications of the ACM 44(10), pp. 33–38, October
2001.

[2] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton, Jr.: “N Degrees of Separa-
tion: Multi-Dimensional Separation of Concerns”. In Proceedings of the 1999
International Conference on Software Engineering, pp. 107 – 119, Los Ange-
les, CA, USA, 1999, IEEE Computer Society Press.

[3] J. Rumbaugh, I. Jacobson, and G. Booch: The Unified Modeling Language Ref-
erence Manual. Object Technology Series, Addison Wesley Longman, Read-
ing, MA, USA, 1999.

[4] G. Booch, J. Rumbaugh, and I. Jacobson: The Unified Modeling Language
User Guide. Addison–Wesley, Reading, Massachusetts, USA, 1 ed., 1999.

[5] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and W. G. Griswold:
“An Overview of AspectJ”. In 15th European Conference on Object–Oriented
Programming (ECOOP 2001), pp. 327 – 357, June 18–22, 2001, Budapest,
Hungary, 2001.

[6] M. Aksit, L. Bergmans, and S. Vural: “An Object-Oriented Language-Database
Integration Model: The Composition-Filters Approach”. In O. L. Madsen (Ed.),
6th European Conference on Object–Oriented Programming (ECOOP ’92),
pp. 372 – 395, Utrecht, The Netherlands, June 1992, Lecture Notes in Com-
puter Science 615, Springer Verlag.

[7] S. Clarke, W. Harrison, H. Ossher, and P. Tarr: “Subject-Oriented Design:
Towards Improved Alignment of Requirements, Design and Code”. In Pro-
ceedings of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pp. 325 – 339, Addison–Wesley, 1999.

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier,
and J. Irwin: “Aspect-Oriented Programming”. In M. Aksit and S. Matsuoka
(Eds.), 11th European Conference on Object–Oriented Programming
(ECOOP ’97), pp. 220 – 242, Jyváskylá, Finland, 1997, Lecture Notes in Com-
puter Science 1241, Springer Verlag.

[9] OMG Unified Modeling Language: “UML with Action Semantics, Final
Adopted Specification”, January 2002. http://www.uml.org/

[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and
J. Irwin: “Aspect-Oriented Programming.” In Proceedings ECOOP’97,
Springer-Verlag, June 1997.
page 14

[11] M. Shaw and D. Garlan: Software Architecture - Perspectives on an Emerging
Discipline. Prentice- Hall, New Jersey (1996).

[12] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework
for Software Architecture Description Languages. IEEE Transactions on Soft-
ware Engineering, Vol. 26, No.1, January 2000.

[13] Mehta N., Medvidovic N., and Phadke S. Towards a Taxonomy of Software
Connectors. Proceedings of the International Conference on Software Engi-
neering - ICSE'00 (2000).

[14] M. Kande, A. Strohmeier: “Towards an UML Profile for Software Architecture
Descriptions”. UML'2000 - The Unified Modeling Language: Advancing the
Standard, Third International Conference, York, UK, October 2-6, 2000, Kent,
S., Evans, A., Selic, B. (Ed.), LNCS (Lecture Notes in Computer Science)

[15] B. Selic, G. Gullekson, and P. Ward: “Real-Time Object-Oriented Modeling”.
Wiley, 1994.

[16] ISO/IEC 10746-1/2/3: “Reference Model for Open Distributed Processing -
Part 1: Overview/Part2: Foundations/Part3: Archictecture”. ISO/IEC (1995).
page 15

	From AOP to UML: Towards an Aspect-Oriented Architectural Modeling Approach
	Mohamed M. Kandé, Jörg Kienzle and Alfred Strohmeier
	Software Engineering Laboratory Swiss Federal Institute of Technology Lausanne CH - 1015 Lausanne...
	email: {Mohamed.Kande, Joerg.Kienzle, Alfred.Strohmeier}@epfl.ch
	1 Introduction
	2 AspectJ
	3 Supporting Aspect-Oriented Modeling
	3.1 Using UML for Object-Oriented Modeling
	Fig. 1: A UML Collaboration Diagram
	Fig. 2: A UML Class Diagram

	3.2 Using UML for Aspect-Oriented Modeling
	Fig. 3: Class Diagram for Account Logging Aspect
	Fig. 4: Collaboration Diagram With an Interceptor

	3.3 Discussion
	1. explain how a code-driven design approach allows one to understand some key characteristics of...
	2. argue for the use of advanced separation of concerns (e.g., separating crosscutting concerns f...

	4 Extending UML for AOSD
	Fig. 5: Identifying Connection Points
	Fig. 6: The Logging Aspect Model using a UML Collaboration Stereotype

	5 From Aspects to Connectors
	5.1 Aspect Design Model
	Fig. 7: Aspect Design Model

	5.2 Configuration Model
	Fig. 8: Configuration Model Before the Weaving Process
	Fig. 9: Configuration Model After the Weaving Process

	5.3 Composition of Aspects
	Fig. 10: Composing Aspects in the Configuration Model

	6 Conclusion
	References
	[1] T.�Elrad, M.�Aksits, G.�Kiczales, K.�Lieberherr, and H.�Ossher: “Discussing Aspects of AOP”. ...
	[2] P.�Tarr, H.�Ossher, W.�Harrison, and S.�M. Sutton, Jr.: “N Degrees of Separation: Multi-Dimen...
	[3] J.�Rumbaugh, I.�Jacobson, and G.�Booch: The Unified Modeling Language Reference Manual. Objec...
	[4] G.�Booch, J.�Rumbaugh, and I.�Jacobson: The Unified Modeling Language User Guide. Addison–Wes...
	[5] G.�Kiczales, E.�Hilsdale, J.�Hugunin, M.�Kersen, J.�Palm, and W.�G. Griswold: “An Overview of...
	[6] M.�Aksit, L.�Bergmans, and S.�Vural: “An Object-Oriented Language-Database Integration Model:...
	[7] S.�Clarke, W.�Harrison, H.�Ossher, and P.�Tarr: “Subject-Oriented Design: Towards Improved Al...
	[8] G.�Kiczales, J.�Lamping, A.�Mendhekar, C.�Maeda, C.�Lopes, J.-M. Loingtier, and J.�Irwin: “As...
	[9] OMG Unified Modeling Language: “UML with Action Semantics, Final Adopted Specification”, Janu...
	[10] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J. Irwin: “Aspec...
	[11] M. Shaw and D. Garlan: Software Architecture - Perspectives on an Emerging Discipline. Prent...
	[12] N. Medvidovic and R. N. Taylor. A Classification and Comparison Framework for Software Archi...
	[13] Mehta N., Medvidovic N., and Phadke S. Towards a Taxonomy of Software Connectors. Proceeding...
	[14] M. Kande, A. Strohmeier: “Towards an UML Profile for Software Architecture Descriptions”. UM...
	[15] B. Selic, G. Gullekson, and P. Ward: “Real-Time Object-Oriented Modeling”. Wiley, 1994.
	[16] ISO/IEC 10746-1/2/3: “Reference Model for Open Distributed Processing - Part 1: Overview/Par...

