
The LEAF Platform: Incremental Enhancements for the J2EE

Philipp H. Oser1, Christian Gasser1, Daniel Gorostidi1, Rachid Guerraoui2

1ELCA, Av. de la Harpe 22-24, 1000 Lausanne, Switzerland
{pos, cga, dgo}@elca.ch

2Swiss Federal Institute of Technology (EPFL), 1015 Lausanne, Switzerland
Rachid.Guerraoui@epfl.ch

Abstract

LEAF, the Lean and Extensible Architectural
Framework, is an enhancement wrapper for J2EE
implementations. Basically, LEAF fixes some identified
J2EE issues and extends, as well as simplifies, the use of
the J2EE by providing several incremental
improvements. These improvements are seamlessly
integrated, include an additional component type, allow
the same interfaces for local and remote service
implementations, offer better J2EE implementation
compatibility and ORB interceptors, and encompass
several new technical services.
This paper explains the need for LEAF through a
diagnosis of the J2EE, presents the fundamental concepts
underlying LEAF, overviews its implementation, reports
on field experiences from using it in a number of
commercial projects, and points out some interesting
tradeoffs in using the J2EE with and without LEAF.

Keywords

J2EE, Enterprise Computing Platform, Distributed
Components, IT Architecture, EJB, Service Location

Transparency

1. Introduction

Development platforms are a big help in building
enterprise information systems. They encapsulate and
abstract away many technical details related to data
storage and communication, allowing the developer to
focus more on business logic. The Java 2 Enterprise
Edition (J2EE) [1] is such a platform. It is oriented
towards enterprise computing and has gained a lot of
industry momentum due to its technical qualities and its
operating system independence.
As an IT services company, we are naturally interested in
a sound enterprise platform that can provide a competitive
advantage through increased productivity, simplified
reuse of components across projects, and increased

quality of the resulting software. Because our customers
each have their own vendor choices and sourcing
strategies, we are particularly attached to the platform
vendor independence promises of the J2EE.
Unfortunately such promises are in general relative, and it
is usually impossible to rebuild an existing J2EE
application for a different J2EE implementation without
changes. The recent EJB specifications [2] lead to
improved J2EE implementation compatibility, but a
migration between different J2EE implementations is still
not automatic. In addition, as J2EE implementation
vendors try to differentiate and extend the J2EE, these
incompatibility issues are unlikely to be resolved. While
the initial reasons for these incompatibilities were a lack
of standardization and a quickly evolving specification,
they have now become mostly inherent to the various
extensions of the J2EE implementations. Besides these
J2EE implementation incompatibilities, we identified
other limitations: the lack of support for daemons,
singleton services and batch jobs, the limited service
location transparency of services, and lack of flexibility of
J2EE services.
After giving a comprehensive diagnosis of the J2EE, this
paper presents LEAF1, the Lean and Extensible
Architectural Framework, our thin enterprise platform
based on the J2EE. LEAF wraps a J2EE implementation
and seamlessly adds several incremental improvements. It
adds a thin abstraction layer on top of the J2EE ORB, a
new component type with its runtime environment, and
several useful technical services that either enhance
existing J2EE services or provide complementary
functionality. LEAF has been fully implemented (70’000
lines of code) and put to use in several practical settings.
Our experiences were positive, and we argue that leanly
wrapping an emerging enterprise platform is valuable, as
our experiences unanimously indicate.

The paper is structured as follows. We present some
problematic issues underlying the J2EE in Section 2. In
Section 3, we show how LEAF resolves these issues and
further extends the J2EE. In Section 4, we overview our

1 LEAF is only our internal name, no trademark.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902651?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

implementation of LEAF. Section 5 explains how LEAF
was successfully used in several commercial projects
within and outside our company. Section 6 discusses
related work. Section 7 summarizes the paper and looks at
the future of LEAF’s evolution.

2. J2EE limitations

The Java 2 Enterprise Edition (J2EE) platform provides a
simplified approach to developing highly scalable and
high-availability Internet- or intranet- based applications.
It extends the Java 2 Standard Edition (J2SE) with many
enterprise-related APIs, the Web and the EJB component
model, and runtime containers to host Web- and EJB
components. The Enterprise JavaBeans (EJB) component
model, a significant part of the J2EE, is a component
architecture for the development and deployment of
component-based distributed business applications.
Applications written using the Enterprise JavaBeans
architecture can be made scalable, transactionally safe and
multi-user secure.

Applet
container

J2SE

EJB container

J2SE

EIS resources
(databases,

legacy systems,
abstracted systems)EJB

bean
EJB
bean

EJB
bean

JM
S

JA
A

S

JT
A

Java M
ail

JA
X

P

JD
B

C

C
onnectors

AppletApplet

Application
Client Container

J2SE

JM
S

JA
A

S

JA
X

P

JD
B

C

Standalone
Client

Web container

J2SE

JM
S

JA
A

S

JT
A

Java M
ail

JA
X

P

JD
B

C

JSP ServletServletJSP
HTTP(S)

JDBC

RMI/
IIOP

?

Figure 1: J2EE Architectural Diagram

J2EE is indeed a very powerful platform (which is why
we have based LEAF entirely on it!). However, there are
limitations and, hence, room for incremental
enhancements.
We have identified the following limitations in the J2EE:
(1) the limited location transparency of services, (2) the
lack of support for daemons, singleton services and batch
jobs, (3) missing flexibility of some J2EE services, and
(4) J2EE incompatibility issues. We will discuss these
limitations in the following section. Note that we refer to
the most recent J2EE platform version (1.3) unless
mentioned otherwise.

2.1. Potential remote use of a service implies a
particular interface

Services in the J2EE that may be used remotely (i.e., EJB
beans and RMI services) need particular remote

interfaces, which must extend java.rmi.Remote. All
methods that can be invoked remotely need to throw a
checked java.rmi.RemoteException. A rationale
for this separation of local and remote interfaces is
discussed in [5]. We believe this separation is often too
strong. It makes it inconvenient to use the same interface
for a service that may either be used locally or remotely.
It also prevents the design of the logical component with
its service interfaces before mapping the service
implementations to their execution environment.
Sometimes, even different mappings of service
implementations are useful when applications are
deployed differently, e.g., for performance improvements
or security reasons. As Java requires catching checked
RemoteExceptions where they occur unless they are
rethrown, it furthermore requires the handling of
communication-related problems1 local to the method
calls where they occur. However, a sensible treatment of
this exception is rarely possible locally because
communication problems are usually fatal for the
application. The Business Delegate pattern [8], therefore,
proposes that any network- or infrastructure-related
exceptions be translated into business exceptions to shield
clients from knowledge of the implementation specifics of
business services.

2.2. Missing component types

The J2EE lacks three types of components that we tend to
use often in our enterprise applications: (1) long-running
batch jobs, (2) services that act as global singletons, and
(3) daemons. These components do not fit into the EJB
component model because EJB components may not run
for a “long time”2, they may never act as a singleton, and
they have to respect several limitations, e.g., they must
not use threading, listen on a server socket, use static
variables changing during runtime, or use native code. An
example of a daemon is an SMS gateway that allows
forwarding SMS messages to a telecom provider and
invokes a service whenever an SMS message arrives.
User session management requires the global singleton
characteristics.
Some EJB experts discourage the use of EJB when “you
can’t deal with the limitations of EJB” [2]. However, we
are convinced of the advantages of the EJB model and,
therefore, would like to use EJB even though some of our
components do not fit in the model because it is beneficial

1 RemoteException is thrown in case of problems related
to communication (problems with connection
establishment, marshalling, or the remote server).
2 EJB components are designed for short requests only.
Long calculations result in transaction timeouts and are
interrupted by the EJB container.

to have a platform supporting EJB and non-EJB in a
homogeneous way. There are other ways to implement
such components outside the EJB container, but they
require more manual infrastructure work, and they usually
do not provide container support for the components.
With most of these alternative solutions, components
developed for one project are not easily reusable in other
projects because the infrastructure tends to be interwoven
with the component’s implementation, and different
assumptions about the infrastructures make the mixing of
components from different projects difficult.

2.3. Inappropriate J2EE services

We believe that the combined naming and configuration
service of the J2EE, the Java Naming and Directory
Interface (JNDI), should be split in two separate services,
a naming service and a configuration service, because
they are fundamentally different and because they are
used differently. Splitting them would cleanly separate the
two concerns [6]. Both services allow basically retrieving
entries under a given name, but the similarity ends there.
The organization of the entries in the naming service is
usually simpler (usually not hierarchical), and in the case
of replicated services the stubs in the naming service
might have to change after failures, unless the stubs
themselves are intelligent. The entries of the naming
service are usually not modified by the programmer while
configuration entries can be adapted during runtime, and,
finally, the semantic of an element returned by the naming
service is usually a newly created stub, while a
configuration service will most likely return the same
value object each time it is called. The J2EE, therefore,
splits the acquisition of a stub into two phases (Listing 1):
retrieving a home interface and invoking the create
method on that interface (for EJB beans).

Listing 1: What the J2EE requires to retrieve a stub for
an EJB bean.

A common design is to wrap this two-step process when
using JNDI as a naming service. [8] calls this pattern
Service Locator, “to abstract all JNDI usage, ... EJB home
object lookup, and EJB object re-creation …”.

It is an unnecessary source of complexity if an avoidable
layer of patterns is recommended on top of a platform to
make it more usable.

In the security framework of the EJB model, we identified
three gaps in the standardization: before EJB 2.0, client
authentication was not standardized and, even in EJB 2.0,
there is no standard way for the server to verify a client’s
authentication credentials. The attachment of the EJB
authorization to the underlying security infrastructure is
also not standardized.
Only the EJB 2.0 specification defined JAAS (Java
Authentication and Authorization Service, [3]) as the
client authentication mechanism. JAAS delegates the
actual authentication to Pluggable Authentication
Modules (PAMs) and, therefore, supports any
authentication infrastructure. Unfortunately, this only
happens in the client, from where the identity of the
authenticated principal is then transferred to the server. If
an attacker can tamper with the code in the client, he/she
can pretend to be another user, because there is no way of
verifying client authentication credentials on the server
(i.e., the attachment of the authentication infrastructure in
the server is not standardized). Moving the PAMs to the
EJB container and performing the JAAS authentication
there fails also because the PAMs potentially call back to
receive user authentication information, which would
require threading support in the EJB container. A final
limitation of the EJB security framework is the lack of
standardization for the attachment to the authorization
infrastructure in case the default static authorizations are
not sufficient. // Set up the JNDI context, here for JBoss:

Hashtable prop = new Hashtable();
prop.setProperty("java.naming.factory.initial",
 "org.jnp.interfaces.NamingContextFactory");
prop.setProperty("java.naming.provider.url",
 "localhost:1099");
try {
 InitialContext ctxt = new InitialContext(prop);
 // Get a reference to the bean's home interface
 Object ref=ctxt.lookup("interest/Interest");
 InterestHome home = (InterestHome)
 PortableRemoteObject.narrow(ref,
InterestHome.class);
 // Create an Interest object from the home
 // interface
 Interest interest = home.create();
 // use the bean
}
catch (CreateException ce) { … }
catch (RemoteException re) { … }

2.4. J2EE evolution and implementation
incompatibilities

There are two natural limitations of a complex enterprise
platform such as the J2EE, where the same specification
is implemented by different software vendors: (1) the
platform will be in an emerging state for some time, and
(2) platform vendors try to differentiate themselves
through proprietary extensions.
These limitations cause a problem for those writing
enterprise applications: at some point, one needs to
commit to both a platform version and a platform
implementation. From then on, platform evolutions
usually require adaptations to the application, which
often depends on particular implementation features. To
make things worse, adoption of a new platform version is

often an all-or-nothing proposition: there is little room
for incremental adaptations and gradual deployment.
Platform dependencies also make cross-project reuse and
know-how transfer more difficult, which can be a major
challenge for IT services companies serving many
customers or large organizations with extensive
heterogeneous IT infrastructure.
Platform changes that lead to incompatibilities are
documented in [16] and the EJB 2.0 specification has to
lists for example two different deployment descriptor
definitions for the EJB versions 1.1 and 2.0.
Functionality that completes the J2EE platform is, for
example, the message-driven bean support (introduced in
EJB 2.0), timers for EJB (upcoming EJB 2.1 [11]),
management of J2EE (only specified in JSR-77 [14]), or
standard deployment for J2EE applications (specified in
JSR-88 [12]).

J2EE implementations vary due to missing
standardization of important features (e.g., user login
(defined only in EJB 2.0), deployment descriptors (only
standardized in EJB 1.1, extended in EJB 2.0), or the
management of the J2EE) and due to J2EE
implementation vendor differentiation. While the
situation with respect to the missing standardization is
improving, vendors increasingly differentiate their
products.
For example, [16] discusses many differences between
successive EJB versions, in addition, the specification of
JNDI names in deployment descriptors and the build and
deployment processes are not standardized. Moreover,
most J2EE implementations extend their containers with
proprietary security services or management support.

3. The LEAF enhancements

LEAF enhances J2EE implementations. It resolves the
issues raised in the previous section, thereby increasing
the flexibility of the J2EE, and enriching it in several
other respects.
LEAF augments the J2EE with basically 3 elements: (1)
a thin abstraction layer on top of the J2EE ORB, (2) a
new component type and its runtime environment, and
(3) technical services that either enhance existing J2EE
services or provide complementary functionalities. Figure
2 gives an overview of LEAF.

3.1. The LEAF layer

We wrap the EJB ORB with a thin layer, written as an
additional, LEAF-generated stub that delegates calls to
the underlying EJB stub (Figure 3). This layer provides
the following functionality:

• it passes control to the LEAF invokers,
• it adds implicit caller context to remote invocations,

and
• it implements service location transparency.
LEAF invokers are pieces of code that can modify the
behavior of method invocations [26]. Whenever a
method is invoked, the LEAF ORB first passes the
control to an invoker. The invoker then either invokes the
method, performs pre- or post-processing for the
invocation, or aborts the invocation altogether. Invokers
make the ORB more flexible and help keep it lean by
relieving the ORB of all but its core functionality. All
other functionality is provided (if required) by invokers.
We use invokers for security, logging, runtime exception
logging, performance and usage statistics, audits, load
balancing, and fault-tolerance. To combine the
functionality of multiple invokers, they are chained.
There is a global default invoker chain, which can be
adapted for each LEAF service. Invokers can be installed
both in the stub (on the side of the caller) and in the
skeleton (on the side of the implemented service). The
overhead of each invoker is small, as it is only a local
method call, and we often only set them up for façade
beans.

LEAF container (conceptual)

LEAF container extension

���
���
���
���
���
���
���
���
���

Client JVM

��
��
��
��
��
��
��
��
��
��

EJB container

RMI/IIOP

��������
J2EE�������

������� LEAF code

Specific development

������������������������������������
������������������������������������
������������������������������������

Presentation components

LEAF layer

�����������������
�����������������

Singleton bean

����������������
����������������

Singleton bean
Singleton bean

�����������
�����������
�����������

EJB
EJB

�����������
�����������
�����������EJB

LEAF layer

�����������������
�����������������

Singleton bean

�����������������
�����������������

Singleton bean
Singleton bean

LEAF layer

����������������
����������������

Singleton bean

�����������������
�����������������

Singleton bean
Singleton bean

TCP/IP

Figure 2: LEAF overview: A LEAF client with the
LEAF extended container. LEAF occupies each JVM in
the form of the LEAF layer. The additional LEAF
services are not shown here because they are provided
like normal EJBs and singleton beans in the same way
an application would write its own beans.

Many RPC infrastructures allow passing implicit context
with invocations, i.e., data that is not part of the explicit
formal parameters of methods but passed nevertheless

with invocations. The advantage of such implicitly passed
context is that this information becomes optional: e.g., a
principal is only passed once the user is authenticated, or
a transactional context is only passed when a transaction
is active. We use implicitly passed context to exchange
data between invokers. For example, the performance
statistics invoker adds a unique identifier to an invocation
to track graphs of invocations. LEAF allows adding
information to the implicitly passed context of the ORB,
extending the EJB model’s basic implicit context passing.
The implementation of the implicit context passing can
either be made by using, e.g., the underlying IIOP
facilities for context passing or by adding a context
argument (hidden in the LEAF layer) to each method
signature. In the current version, we pass the implicit
context as a hidden additional method parameter.

LEAF container extension

TCP/IP

���
���
���
���
���
���
���
���
���
���

Client JVM

���
���
���
���
���
���
���
���
���
���
���

EJB container

S
er

vi
ce

 m
an

ag
er

+
 c

or
e

se
rv

ic
es

�����
�����
�����

�����
�����
�����

����
����

�����
�����

�����
�����

S
in

g
l.

 b
ea

ns

�����
�����

������������
������������
������������

EJB

S
in

g
l.

 b
ea

ns

������������
������������
������������

EJB

������������
������������
������������

local
service
adapter

������������
������������
������������

exten-
sion

adapter

�����
�����
�����

RMI/IIOP

���������
���������

J2EE

���������
������������������
���������

LEAF code

Generated by LEAF

Specific development

������������
������������

skeleton

invokers

������������
������������

skeleton

invokersinvokers

invokers

����������������
proxies

��
��
��

Presentation components

invokers

�����������������������
proxies

S
er

vi
ce

 m
an

ag
er

+
 c

or
e

se
rv

ic
es

����������������
stubs

����������������
stubs

������������������
�����
�����
�����
�����

����
����
����
����

invokers

�����������������������
�����������������������

proxies

S
er

vi
ce

 m
an

ag
er

+
 c

or
e

se
rv

ic
es

����������������
����������������

stubs

�������������������

S
in

g
le

to
n

 b
e

an
s

�����
�����
�����
�����

Cext
mgr

Figure 3: The internal structure of LEAF. The picture
shows three JVMs: a client, an EJB container and the
container extension. In each JVM there is a service
manager that activates and supervises the services.
Examples: and show an invocation of a bean
running in the EJB container; , and show an
invocation of a singleton bean running in the container
extension.

In LEAF, there are no remote interfaces as in the J2EE.
We avoid them through three means:
• We replace the checked RemoteException in

remote interfaces with an unchecked
RemoteRTException that is only thrown by
service implementations running remotely. It does
not need to be caught in the block it occurs.

• We provide guidelines on service interface design for
services that are planned to be used both locally and
remotely. For example, we discourage modifying
service parameters in the service implementation.

• We provide metadata about services in order to know
at runtime where a service runs.

Hence, we can move the implementation of a service
more flexibly between containers, and map service
implementations lately to their execution environment.
We do not need to treat the RemoteExceptions
immediately where they occur, and we can have the same
interfaces for services that may be implemented locally or
remotely. Note that we do not claim that service interfaces
and their uses never change according to whether they are
run locally or remotely; but we prefer an infrastructure
that does not force them to look different.
Figure 3 shows the internal structure of the LEAF layer:
invocations first go through the stubs (proxies for local
services), then through the invoker chain, and are then
forwarded via the default invocation mechanism to their
destination. In the EJB container, invocations arrive in the
LEAF skeleton, and pass the invoker chain again before
they arrive at their EJB bean. An example illustrates a
client call to an EJB bean: the client invokes the LEAF
stub . The stub then forwards the call to the client-side
invoker chain. The last invoker on the invoker chain
forwards the call to the stub of the EJB container, which
itself forwards the call (usually via RMI/IIOP) to the EJB
container . There, the LEAF skeleton intercepts the
call, and forwards it to the server-side invoker chain,
whose last element then finally invokes the EJB bean.
Invocations on singleton beans running in the container
extension start similar up to the EJB container (). In
the EJB container, the extension adapter is used to
forward the call to the container extension , where a
local invoker chain is consulted and the invocation is
forwarded to the implementation of the singleton bean.

The LEAF layer does not compromise the interoperability
between pure EJB beans and beans that profit from the
LEAF layer. Calling an EJB from LEAF is not a problem,
as all it requires is pure Java code. Calling a LEAF bean
from EJB is also trivial: all the EJB bean needs to do is to
get the stub to work on the LEAF bean from the LEAF
naming service.
Sometimes people unfamiliar with LEAF think at first
that the LEAF layer makes applications non-J2EE
compliant. However, the LEAF layer is only a thin and
syntactic wrapper. The semantics, i.e., the component
model and semantics of EJB interactions, are unchanged
by the LEAF layer. The LEAF layer can even be applied
to existing EJB applications, allowing developing an
application without the LEAF layer first and then adding
the layer only when needed!

3.2. Singleton beans and their runtime
environment

LEAF adds one new component type to the J2EE: the
(non-EJB) singleton bean. A singleton bean exists either
as a global singleton within a LEAF application or as a
local singleton in one or several JVMs. It is similar to
EJB beans: it can be deployed independently, it can
expose methods that are invokable remotely, and it
indicates other parts it depends upon. Its container is
responsible for its activation and re-launch after a crash
(of either the service itself or of the JVM it runs in).
Singleton beans support the three missing component
types identified in the previous section: Daemons and
global singleton services may be directly implemented as
LEAF singleton beans, and a particular singleton bean,
the batch service, can host batch jobs.

There are two runtime environments for singleton beans:
they can either run in the JVM of their user, provided that
the environment does not forbid any of its functionality
(e.g., the limitations of the EJB container), or they can be
hosted in a separate container, called the LEAF container
extension. Conceptually, the EJB container and the LEAF
container extension together form an extended container,
in which singleton beans run alongside traditional beans
(Figure 2).
Both runtime environments for singleton beans provide
independent deployment, activation, and access to
configuration. In addition, the container extension
provides fault-tolerance, remote access, and support for
load balancing and partitioning of singleton beans.

We do not use an existing ORB as base for the container
extension. The reason for this decision was that we found
no lightweight fault-tolerant ORB available that could
satisfy our flexibility requirements, e.g., for implicit
context passing or invokers, and for other
implementations of the container extension (e.g., to be
able to put the container extension as BEA Weblogic
startup class [22] within the JVM of the EJB container).
We chose to implement the container extension as a
federated set of JVMs that supervise each other. On each
machine, there is one node (a JVM), with only a minimal
installation of LEAF, so as to be as reliable as possible.
The node supervises the nodes on other machines. The
singleton beans run in sites (separate JVMs), which are
launched and then supervised by the nodes. The
implementation of the inter-JVM communication, the
fault-detection, the node/site topology, and the fault-
tolerance have been realized as layered LEAF services. In
case a node detects a site failure, it coordinates with the
other nodes to launch a new instance of the site with the
singleton beans that were running at the site. In case a

node (i.e., we assume its machine) fails, the remaining
nodes use a consensus algorithm to decide where the
failed sites will be recreated. It is the responsibility of
each singleton bean to keep its important state persistent
and to restore it after failovers.

Not surprisingly, singleton beans are not automatically as
scalable as regular EJB beans (as the latter make the
assumption that they do not run as singletons). We use
different strategies to deal with this problem: our
guidelines propose avoiding unnecessary singleton beans
or structuring them so that they avoid becoming
bottlenecks and that some singleton beans (e.g., the batch
service) use the container extension’s infrastructure to
distribute load themselves. Singleton beans can be
assigned to run on a particular machine, and we are
adding support for partitioned singleton beans: a
partitioned singleton bean can run on multiple machines,
and each one serves a subset of all requests in function of
the request’s arguments.

3.3. Technical LEAF services

We discuss here how LEAF services are implemented,
and we present a subset of the technical LEAF services
(see [6] for a more complete list of services): the naming,
the configuration and the security services, which we use
instead of their normal J2EE counterparts (see Section
2.3).
LEAF services are implemented in different ways: as
singleton beans (running either JVM-local or in the
container extension) or as EJB beans. It is also possible to
access services that run in other service infrastructures
(e.g., SOAP, CORBA [19] or COM services). The use of
a service is independent from the service’s
implementation: the configuration specifies where a
service is located, and then the service stub may be
retrieved from the LEAF naming service.
The LEAF naming service wraps the JNDI and, possibly,
other naming services: it is the factory for LEAF service
stubs. It uses configuration information to determine how
to construct the naming service’s access context, where a
service is implemented, and how service stubs are
retrieved.
The LEAF configuration service replaces the (weak)
configuration service role of the JNDI. It provides a
functionality that is similar to that of the recent Java 1.4
preference package, including support for storing
configuration information in files, storing it in databases,
or retrieving it from the command line, and a powerful
mechanism for determining default values. It also
provides support for configuration information that can
vary according to different contexts, e.g., to different

users, locales, or the architecture of the underlying
machine.
We split the LEAF security service into two parts, both
based on the JAAS model: the authentication service and
the authorization service. The authentication is delegated
to LEAF-PAM plugins; but contrary to the J2EE within
the EJB container, avoiding the security problem when
one can tamper with the client’s code. This solution also
works for pre-EJB 2.0 J2EE implementations, where the
J2EE client authentication was not standardized. The
LEAF PAM’s interface departs from the JAAS PAM’s
(the LoginModule) so that the PAM does not have to
issue callbacks to the authentication service. Instead, the
authentication service repetitively invokes the PAM until
the authentication has failed or the user is authenticated.
The PAM returns an array of JAAS callbacks to be
populated by the client, or returns either a security token
or an exception to indicate that the authentication
procedure has succeeded or failed. After a successful
login, the security token is stored, together with the JAAS
login subject, in order to verify the access rights at each
subsequent invocation and to run the server-side code
under the identity of the authenticated principal. Storing
all valid tokens in the server unfortunately makes the
container stateful; however, implementing the system
without sharing this secret between the client and the
container is impractical for performance reasons.

3.4. Resolving the compatibility issues

An important goal for us was to be able to leverage
leading-edge features and technologies while protecting
our applications from the instability of emerging
implementations and specifications. Several LEAF
features help solve such incompatibility issues. Basically,
we must either abstract the functionality of the J2EE or
provide missing parts of the J2EE where most J2EE
implementations provide their proprietary extensions.
LEAF is clearly proprietary as well, but it is lean and
accessible for projects using it. By providing our own
abstractions for functionality like security or
management, we avoid LEAF components becoming
dependent on particular J2EE extensions.
On several occasions, we also provided our own
abstractions for emerging J2EE features. Our preliminary
support for message-driven beans (MDBs) can serve here
as an example (MDBs were only introduced in the latest
EJB 2.0 specification, which is part of the J2EE 1.3). We
let MDBs run as singleton beans in the container
extension with only a trivial wrapper to make them look
like MDBs (at first without load balancing). We can then
easily move them to the EJB container's "MDB
compartment" when it becomes available or at any time
thereafter. Other features we adopted in this way are the

EJB timers (planned for EJB 2.1 [11]), JAAS
authentication integration (part of EJB 2.0), or standard
application deployment for J2EE [12].

3.5. Modularity and infrastructure support for
component reuse

We wanted LEAF to remain as lean as its name suggests.
Extensibility is not enough: it must also be trivial to
remove features as they become unnecessary (e.g.,
because they make it into the standard J2EE feature set).
As the many ideas and demands for extensions [6]
threatened its leanness, we built the LEAF core to be
extensible and introduced a module concept into the
framework’s build system. The extensibility facilities of
the LEAF core are based on enabling developers to
replace any LEAF service implementation through
configuration and on invokers (as already discussed in
Section 3.1). A LEAF module is a collection of code with
default configuration information that explicitly states its
dependencies on other modules. Only two modules are
mandatory, the leaftools (low-level coding support)
and the leafcore modules. Other modules provide
additional functionality, such as the container extension,
the batch service, the security features, and the SOAP and
CORBA interoperability.
To activate a module, one only needs to place it in the
Java execution CLASSPATH, and its default
configuration will be merged with the configuration of the
rest of LEAF. Because each of the new services and
invokers present in the module are listed in its
configuration, they are automatically available for use by
an application. As within the EJB container one should
not tamper with the Java execution CLASSPATH, we
merge the required modules into the EJB .jar file of the
application.

In [7], a list of conflicting assumptions that hinder
interoperability of components is presented. The LEAF
framework enforces architectural patterns and decisions
about the infrastructure that therefore also simplify inter-
project component reuse significantly further than the
J2EE alone. For example, the singleton bean
infrastructure imposes the singleton bean’s activation,
RPC mechanism, the supervision and management, the
placement of service implementations, and the use of the
configuration information on the developer. This permits
singleton beans from different projects to cohabit and
interoperate among themselves more easily.

4. Implementation

The first implementation of LEAF used in production
consisted of 40’000 lines of source code (including tests
and demos, but without comments). However, the
extensible core of LEAF requires only 15’000 lines of
code, which indicates the leanness of the framework. Due
to the fact that there are many extension ideas and
requests, LEAF is still undergoing active development,
even though it has already been used successfully. The
current full release consists of 70’000 lines of source
code. Once the extensible core was finished, most other
extensions were independent of each other, which
permitted us to efficiently split up the work on further
extensions.

5. Experience report

Our experience with LEAF has been extremely positive.
All costs and overhead of using and developing the LEAF
framework and components have been largely offset by
its benefits, and LEAF has been eagerly adopted by our
architects and developers.
In this section, we first report on field experiences of
using LEAF in commercial projects, present the
simplicity LEAF brings to a project, and then compare
using the J2EE with LEAF and without.

5.1. LEAF benefits in concrete commercial
projects

In this section, we will describe the adoption of LEAF in
two concrete commercial projects: an e-business server
and an enterprise application integration (EAI) platform.
The former project integrates a range of new J2EE-based
e-commerce services and host-based back-end
functionality, such as product information, customer
information, and routing and pricing algorithms. These
services are made available via a number of different
channels: a Swing GUI channel for the internal
administration and towards the Internet via email, SMS,
and a content management system (CMS) channels. The
system requires high availability (24x7) and supports up
to 60’000 requests per hour. The application was
completed within 8 months and represents an effort of
more than 15 person-years.
The goal of the second project was to design and
implement a standardized interface layer between new
business applications written for the J2EE and legacy data
and transaction on an OS/390 host and DB/2 databases.
The integration layer also had to offer a set of technical
services (90% of which were provided by LEAF in the

first iteration), as well as data access services based on the
DAO (Data Access Object, [8]) pattern.
Both applications used the LEAF core and many
additional modules, including the container extension, the
batch service, and the security module. The code of LEAF
is considered part of the application.
In these two projects, LEAF proved invaluable, as
illustrated by the following examples:
• The EJB container selected by one of the customers

did not yet fully support the EJB 1.1 specification,
was resource-intensive, and imposed time-consuming
build-deploy-run cycles (up to 1.5 hours in our case).
LEAF allowed us to develop the application with the
lightweight JBoss J2EE implementation (where a
development cycle was only 20 minutes), and deploy
it, unchanged, on the integration and production
platforms. Each developer could run its own (free)
copy of JBoss on his machine, which had the
additional benefit of reducing development license
costs. Even taking additional non-regression and
integration testing into account, the time and
productivity savings were considerable, since most
developers could focus on business code, while
technical problems were handled by a small,
specialized team.

• Due to a limitation of the CMS system used in the e-
commerce application, two clicks on the submit
button of a form would initiate two EJB requests. A
simple invoker fixed this problem for all critical
method calls.

• Because the CMS system did not support server
affinity for user sessions, we set up a second invoker
that would load user state before each request by
using a token ID stored in the attributes of the Web
request which was then passed via implicit context
passing (the state was stored in a read-cached
singleton bean).

• A notification invoker was used to log unexpected
RuntimeExceptions that occurred in the EJB
container. Another invoker passed more explicit
exception information (stack trace and original
exception, potentially as string when the exception
class was absent on the client side) back to the client
after a RuntimeException.

• A release-switching invoker enabled atomic
switching between different versions of an
application.

• To tune the performance of the application, we used
LEAF's location transparency to move service
implementations between the EJB container and the
container extension in order to avoid unnecessary
inter-process communication.

5.2. Gains in programmer efficiency

LEAF simplified the work of architects and developers in
several respects: (1) by providing crucial additional
architectural abstractions, (2) through direct support for
recommended architectural and design patterns and best
practices, and (3) by handling a number of the technical
details related to J2EE for the developer.
One crucial architectural abstraction LEAF adds is the
singleton bean abstraction. It is so valuable for us that we
use it in practically every J2EE enterprise application.
The abstraction is backed by infrastructure support for
running and supervisioning singleton beans. When
designing an application, this abstraction significantly
simplifies the architect’s job. Other useful abstractions
are batch jobs or invokers. Best practices are often
collected in the form of patterns. LEAF eliminates the
need for many patterns for EJB development, such as the
Service Locator, Service Activator, and the Business
Delegate Pattern [8]. LEAF hides many elements of the
J2EE, including, Home Interfaces, Deployment
Descriptors, the complicated method of locating an EJB
stub (see Listing 1), and details like the JNDI API
distinction between the javax.naming.Name
interface and the name as a String. The different
service types of LEAF can all be located and used in the
same way, which is a particularly valuable benefit when
client code is also prepared for remote service types (i.e.,
catches RemoteRTException).

5.3. Evaluating LEAF for general J2EE
applications

In the following section, we will discuss the tradeoffs of
using the J2EE both with and without LEAF. Licensing
and training make up most of the costs of using LEAF.
Because we have deliberately adopted a tool-neutral
approach, LEAF is not tightly integrated in the current
IDEs. While this decision may somewhat reduce comfort
and speed in the coding phase, it turns out to be a distinct
advantage in integration and production phases, where the
deployment process is not bound to a particular
development tool. It also facilitates reuse across projects
and environments and allows each developer to use
his/her preferred IDE, an additional advantage in multi-
cultural teams. The performance overhead of the LEAF
layer has been negligible in the projects we have carried
out to date.

Of LEAF’s many benefits, we have already discussed the
improved J2EE implementation compatibility and
programmer efficiency gain of LEAF in Sections 3.4 and
9. The availability of reusable technical components saves
development time. We showed in Section 5.1 how the

flexibility of LEAF helped to easily resolve many issues
in real-world projects. We believe that the benefits of
invokers can be generalized to the benefit when one has
access to the source code of a component: very often
access to the source code enables problem resolutions or
extending functionality. It is also one reason for the
increasing popularity of open source software in
commercial contexts [27].
The flexible exchange of a service implementation
between sites and the role of LEAF as a repository for
reusable components are also useful. Through the
enforcement of best practices, reuse of proven
infrastructure components, and the flexibility gained due
to low-level instrumentation capabilities, LEAF also
improves the quality and stability of applications while
reducing project risks.

Clearly, the benefits of LEAF greatly outweigh its
liabilities. Some of the listed LEAF benefits are easy to
quantify in terms of savings potential. For example, when
components that would otherwise need to be developed
already exist in LEAF, or when more flexible deployment
scenarios are required than possible in the J2EE
(requiring different J2EE implementations or service
implementations in different execution environments).
The effects of other “soft” or more long-term benefits are
difficult to quantify, be they improved flexibility or
simplicity, better overall quality, risk reduction, inter-
project component reuse, or the benefit of LEAF as a
collection of expertise.

6. Related work

Currently there are over 20 certified and uncertified J2EE
implementations available [13]. As most J2EE
implementations extend the basic feature set, they are
somehow all related to LEAF. Extensively comparing
these different J2EE extensions is beyond the scope of
this paper. Therefore we will limit our discussion to some
example extensions.
In the following section, we first discuss alternative
solutions to each of the three primary LEAF features (the
LEAF layer, the additional component type, and the
extended services) and then we discuss more general
related work.

6.1. Primary LEAF features

LEAF layer. Aspect/J [24] could be used to provide
some functionality of the LEAF layer, such as the
interceptor functionality or the replacement of the
RemoteException via a “Softened Exception” (both are
only possible at compile time). However, Aspect/J cannot

generate a LEAF stub wrapping around the original EJB
stub. It can only modify the code of the generated stubs.
Alternatively, one could weave the whole EJB container
with this aspect, but changing the container in such a way
is usually impossible due to licensing agreements.
Aspect/J currently provides no support for the “aspect” of
context passing between remote JVMs.
LEAF uses the service abstraction layer pattern of [18].
Composition filters introduced in [9] are similar to our
invoker chains. JBoss [21] has server-side interceptor
support similar to the invokers (actually, the whole EJB
container is built as a collection of interceptors), but this
solution only works with the JBoss J2EE implementation.

Additional component type. It is possible to use an
external ORB to host additional component types. The
disadvantages of this solution were already discussed in
Section 2.2.
BEA’s Weblogic startup classes allow Java classes to run
outside of the EJB container, but within the JVM of the
container. A drawback of this kind of solution is that
these startup classes lack the quality of service support we
provide; however, it may be interesting to adapt our
container extension to run as a Weblogic startup class.
The emerging version of JBoss (3.0) includes a light
fault-tolerant ORB based on RMI that could be used to
host singleton beans in a manner similar to how our
container extension does.

LEAF services. As mentioned in the previous section,
common J2EE patterns [8] provide functionality similar
to many of our enhanced J2EE services, such as our
Service Locator and Business Delegate. The disadvantage
of using them is that they need to be coded again for each
situation, while LEAF’s abstractions are available
automatically.
JBoss provides an EJB-JAAS integration [26]. The BEA
Weblogic [22] server supports proprietary extensions for
the attachment of an authorization infrastructure to the
EJB container, which solves parts of the issues LEAF has
with the J2EE, but is still not complete and proprietary.

6.2. General J2EE enhancements

In this section we discuss (1) J2EE Integrated
Development Environments (IDEs), (2) J2EE
implementations (examples only), (3) patterns, and (4)
other J2EE extension frameworks. We exclude other
enterprise platforms, because comparing them with LEAF
or the J2EE goes beyond the scope of this paper. J2EE
IDEs often simplify the J2EE similar to how LEAF does
by hiding certain details (e.g., home interfaces,
deployment descriptors, and proprietary build and
deployment processes). They can therefore provide some

J2EE implementation isolation, but their features are less
rich when compared to LEAF. Most J2EE
implementations have interesting extensions that often
complement the J2EE. For example, BEA’s Weblogic
Server, IBM’s WebSphere [23], and the open-source
implementation JBoss all extend the J2EE in non-standard
ways with improved management support, a more flexible
security infrastructure, and Web-services support.
However, given our requirement not to depend on J2EE
implementation vendors, we could not choose this
proprietary route. J2EE design patterns are a viable way
to solve design problems, and LEAF proposes and uses
many patterns. However, we believe that it is burdensome
to request each developer to re-implement patterns simply
to compensate for the unnecessary platform complexity.
Giving a complete overview of other J2EE extension
frameworks is difficult because of lack of information
from vendors. There are different types: lightweight
frameworks, collections of business-generic components,
and frameworks that change the EJB component model.
[25] presents a small Java framework to wrap around
some of the complexities of the J2EE. Similarly, [16]
shows how to isolate an application from the differences
of EJB versions. AbaXX [20] is an example of a
collection of business-generic EJB components.
Extension frameworks such as JWelder [17] extend the
EJB component model.

7. Conclusion

This paper gives a practitioner’s opinion of the J2EE and
proposes some improvements. We then discussed our
experiences, which have been very positive compel us to
continue using LEAF. In short, we believe that we can
draw two conclusions from our experience with LEAF:
• The additional component type, support for invokers

and implicit context passing, and J2EE
implementation compatibility improvements have
proven very useful. We think that the J2EE
specification would greatly benefit from these
features. It is also interesting to note that Microsoft’s
emerging .NET platform [24] already contains some
of these features, such as components running as
singletons with different semantics, invokers for
remote service invocations, and service location
transparency.

• We believe that LEAF has proven worthwhile the
approach of leanly wrapping an emerging platform
like J2EE. The interceptor and implicit context
passing simplified the resolution of many problems
and ownership of the source code of the wrapper
provides much flexibility that is useful when solving
problems. The isolation from changes in the J2EE
specification and J2EE implementations allowed the

creation of reusable J2EE components and simplified
inter-project component and know-how reuse.

LEAF will have to evolve in the future. Some of its
features will become part of the J2EE, and we will be able
to discontinue them in LEAF. We will also add business-
generic functionality (such as simple workflow support or
support for user management) that is often required in
applications. We are currently extending the scope of the
platform to support mobile devices. Finally, we are
already beginning to bring the principles and concepts of
LEAF onto the .NET platform.

8. Acknowledgements

We would like to thank the LEAF core developers Alain
Borlet-Hote, Eric Castan, Olivier Cathala, Yves Martin
and Paul Ersin Sevinç as well as the other LEAF
contributors: Thomas Andrieu, Daniel Balmer, Laurent
Bovet, Andrea Branca, Daniel Girardeau-Montaut, Felix
Jäger, Stéphane Kay, Sylvain Laurent, Viet Anh Nguyen,
Vincent Niederhauser, Jean-Baptiste Ranson, Silvan
Saxer, Christoph Schwitter, Martin Sijka, and Bernhard
Seybold. In addition we are grateful to the LEAF pilot
projects, in particular to Vincent Messerli, the LEAF
forerunner projects, in particular, Hans Burger and
Bernhard Rytz, and the paper reviewers.

9. References

[1] B. Shannon, Java™ 2 Platform Enterprise Edition
Specification, v1.3 and v1.2, Sun Microsystems,
http://java.sun.com/j2ee.

[2] Enterprise JavaBeans specifications, Versions 1.0, 1.1, and
2.0, http://java.sun.com/products/ejb/docs.html.

[3] JAAS web site, http://java.sun.com/products/jaas/.
[4] E. Roman, et al., Mastering EJB, 2nd Edition, John Wiley &

Sons, 2002.
[5] J. Waldo, S. C. Kendall, A. Wollrath and G. Wyant, “A

Note on Distributed Computing”, Sun Microsystem
Research, http://research.sun.com/techrep/1994/abstract-
29.html.

[6] F. Buschmann, et al., Patterns of Sofware Architecture,
Wiley, 1996.

[7] D. Garlan, et al., “Architectural Mismatch or Why it’s hard
to build systems out of existing parts”, Proc. 7th
International Conference on Software Engineering, Seattle
WA, April 1995.

[8] D. Allur, et al., core J2EE patterns, Java 2 Platform,
Enterprise Edition Series, Sun Microsystem Press (Prentice
Hall), 2001.

[9] M. Aksit et al., “Abstracting Object Interactions Using

Composition Filters”, Proc. of the ECOOP'93 Workshop on
Object-Based Distributed Programming, Springer-Verlag,
1994.

[10] Wiki Web, “What is wrong with EJB?”,
http://c2.com/cgi/wiki?WhatsWrongWithEjb.

[11] Enterprise JavaBeans v2.1, JSR-153,
http://jcp.org/jsr/detail/153.jsp.

[12] J2EE Application Deployment, JSR-88,
http://jcp.org/jsr/detail/88.jsp.

[13] EJB server directory, http://www.mgm-
edv.de/ejbsig/ejbservers.html.

[14] J2EE Management, JSR-77, http://jcp.org/jsr/detail/77.jsp.
[15] H. Sheil, “Frameworks save the day”, Javaworld September

2000, http://www.javaworld.com/javaworld/jw-09-
2000/jw-0929-ejbframe.html.

[16] R. Monson-Haefel, “Create forward-compatible beans in
EJB”, Parts I and II, Javaworld 12/99 and 1/00,
http://www.javaworld.com/javaworld/jw-01-2000/jw-01-
ssj-ejb2.html.

[17] Th. Neumann, U. Schreier, M. Fabini, “Auf dem Weg von
EJB zu Fachkomponenten”, OBJEKTspektrum, 1/2001.

[18] O. Vogel, “Designing a Three-Tier Architecture Pattern
Language”, EuroPLoP 2001 Design Fest,
http://www.cs.wustl.edu/~mk1/ThreeTierPatterns/submissi
ons/OliverVogel.pdf.

[19] CORBA web site, http://www.omg.org.
[20] AbaXX web site, http://www.abaxx.com/.
[21] JBoss web site, http://www.jboss.org.
[22] Weblogic web site,

http://www.bea.com/products/weblogic/server/index.shtml.
[23] Websphere web site, http://www-

3.ibm.com/software/info1/websphere/index.jsp?tab=highlig
hts.

[24] Aspect/J web site, www.aspectj.org.
[25] J. P. Choi, “Aspect-Oriented Programming with Enterprise

JavaBeans”, Proceedings of the 4th International Enterprise
Distributed Object Computing Conference, Makuhari,
Japan, 2000.

[26] L. Taylor, “Customized EJB security in Jboss”,
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-
ejbsecurity.html.

[27] T. Yager, “Open source takes hold”, InfoWorld, 2001,
http://www.infoworld.com/articles/tc/xml/01/08/27/010827
tcintro.xml.

[28] .NET platform, http://www.microsoft.com/net/.
[29] C. Gasser, LEAF Datasheet, http://www.elca.ch .

http://java.sun.com/j2ee
http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/jaas/
http://research.sun.com/techrep/1994/abstract-29.html
http://research.sun.com/techrep/1994/abstract-29.html
http://c2.com/cgi/wiki?WhatsWrongWithEjb
http://jcp.org/jsr/detail/153.jsp
http://jcp.org/jsr/detail/88.jsp
http://www.mgm-edv.de/ejbsig/ejbservers.html
http://www.mgm-edv.de/ejbsig/ejbservers.html
http://jcp.org/jsr/detail/77.jsp
http://www.javaworld.com/javaworld/jw-09-2000/jw-0929-ejbframe.html
http://www.javaworld.com/javaworld/jw-09-2000/jw-0929-ejbframe.html
http://www.javaworld.com/javaworld/jw-01-2000/jw-01-ssj-ejb2.html
http://www.javaworld.com/javaworld/jw-01-2000/jw-01-ssj-ejb2.html
http://www.cs.wustl.edu/~mk1/ThreeTierPatterns/submissions/OliverVogel.pdf
http://www.cs.wustl.edu/~mk1/ThreeTierPatterns/submissions/OliverVogel.pdf
http://www.omg.org/
http://www.abaxx.com/
http://www.jboss.org/
http://www.bea.com/products/weblogic/server/index.shtml
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=highlights
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=highlights
http://www-3.ibm.com/software/info1/websphere/index.jsp?tab=highlights
http://www.aspectj.org/
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity.html
http://www.javaworld.com/javaworld/jw-02-2002/jw-0215-ejbsecurity.html
http://www.infoworld.com/articles/tc/xml/01/08/27/010827tcintro.xml
http://www.infoworld.com/articles/tc/xml/01/08/27/010827tcintro.xml
http://www.microsoft.com/net
http://www.elca.ch/

	J2EE limitations
	Potential remote use of a service implies a particular interface
	Missing component types
	Inappropriate J2EE services
	J2EE evolution and implementation incompatibilities

	The LEAF enhancements
	The LEAF layer
	Singleton beans and their runtime environment
	Technical LEAF services
	Resolving the compatibility issues
	Modularity and infrastructure support for component reuse

	Implementation
	Experience report
	LEAF benefits in concrete commercial projects
	Gains in programmer efficiency
	Evaluating LEAF for general J2EE applications

	Related work
	Primary LEAF features
	BEA’s Weblogic startup classes allow Java classes
	The emerging version of JBoss (3.0) includes a light fault-tolerant ORB based on RMI that could be used to host singleton beans in a manner similar to how our container extension does.

	General J2EE enhancements

	Conclusion
	Acknowledgements
	References

