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Abstract. The security of several elliptic curve cryptosystems is based
on the difficulty to compute the discrete logarithm problem. The moti-
vation of using elliptic curves in cryptography is that there is no known
sub-exponential algorithm which solves the Elliptic Curve Discrete Log-
arithm Problem (ECDLP) in general. However, it has been shown that
some special curves do not possess a difficult ECDLP. In 1999, an article
of Nigel Smart provides a very efficient method for solving the ECDLP
when the underlying elliptic curve is of trace one. In this note, we describe
this method in more details and recall the mathematical background in
order to understand it.

1 The elliptic curves

We recall here the definition of an elliptic curve and its group law.
In order to do this, we introduce the projective space.

Definition 1. Let K be a field. The projective n-space Pn(K) over
K is the set of equivalence classes(

Kn+1\{(0, . . . , 0)}
)
/ ∼,

where

(x0, . . . , xn) ∼ (y0, . . . , yn)

if and only if there exists a λ ∈ K∗ such that yi = λxi for all
0 ≤ i ≤ n.
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Notation An equivalence class containing (x0, x1 . . . , xn) is denoted
by (x0 : x1 : . . . : xn).

Definition 2. Let K be the algebraic closure of the field K. A Weier-
strass equation is a homogeneous equation of degree 3 of the form

Y 2Z + a1XY Z + a2Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3,

where a1, a2, a3, a4, a6 are elements of K. Moreover, the Weierstrass
equation is said to be non-singular if for all projective points P =
(X : Y : Z) ∈ P2(K) satisfying

F (X,Y, Z) := Y 2Z+a1XY Z+a2Y Z
2−X3−a2X

2Z−a4XZ
2−a6Z

3 = 0,

at least one of the three partial derivatives ∂F
∂X

, ∂F
∂Y

, ∂F
∂Z

is non-zero
at P . If it is not the case for a point P , the Weierstrass equation is
said to be singular and P is called a singular point.

Definition 3. An elliptic curve E is the set of all solutions in P2(K̄)
of a Weierstrass equation.

We see that, there is exactly one point in E whose Z-coordinate is
equal to 0, namely (0 : 1 : 0). This point is called the point at infinity
and is denoted by O.

Definition 4. Let K̂ be a field satisfying K ⊂ K̂ ⊂ K. A point
(X, Y, Z) is K̂-rational if there exist λ ∈ K and (X̂, Ŷ , Ẑ) ∈ K̂3

such that
(X, Y, Z) = λ(X̂, Ŷ , Ẑ).

The set of the K̂ -rational points of an elliptic curve E is denoted
by E(K̂).

By using the non homogeneous coordinates x = X/Z, y = Y/Z, the
Weierstrass equation has the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1)

We notice that an elliptic curve E is then the set of all solutions of
the equation (1) in the affine plane K ×K together with O. If the
coefficients a1, a2, a3, a4, a6 lie in K, we say that E is defined over K
and we write E/K. We remark too that the set E(K̂) is composed

of the solutions of (1) in K̂2 and the infinity point O.
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Definition 5. Let E be an elliptic curve defined over the finite field
Fq. The trace of Frobenius t at q is defined by

#E(Fq) = q + 1− t,

where the symbol # denotes the cardinality of a set.

Remark A trace equal to one corresponds to the case where the
number of rational points is the order of the finite field.

We consider now an elliptic curve E defined over a field K with
char(K) 6= 2, 3 and given by the Weierstrass equation (1). Since
char(K) 6= 2, the change of variables

(x, y) −→
(
x, y − a1

2
− a3

2

)
is allowed and transforms E/K to the curve

E ′/K : y2 = x3 + a′2x
2 + a′4x+ a′6.

Since char(K) 6= 3 , the admissible change of variables

(x, y) −→
(
x− 3a′2

36
,
y

216

)
transforms E ′ to the curve

E ′′/K : y2 = x3 + ax+ b,

where a, b ∈ K.
Hence, we can always assume that E/K has the above form, if
char(K) 6= 2, 3.

2 The goup law

In this section, we introduce a certain addition law under which the
points on an elliptic curve E form an abelian group. We present here
a formula which holds on every elliptic curve given by the Weierstrass
equation (1).
We define this addition law as following:
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1. P +O = O + P = P for all P ∈ E.
2. If P = (x1, y1), then its inverse element is defined by −P :=

(x1,−y1−a1x1−a3), i.e. P +(−P ) := P −P := O . (We remark
that P and −P are the only points on E with x-coordinate equal
to x1.)

3. Let P1 = (x1, y1), P2 = (x2, y2) such that P1 6= O, P2 6= O,
P1 6= −P2. Define

λ :=
y2 − y1

x2 − x1

, µ :=
y1x2 − y2x1

x2 − x1

when x1 6= x2, and set

λ =
3x2

1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3

, µ =
−x3

1 + a4x1 + 2a6 − a3y1

2y1 + a1x1 + a3

when x1 = x2. If we set P3 = (x3, y3) = P1 + P2, then P3 is given
by

x3 = λ2 + a1λ− a2 − x1 − x2,
y3 =−(λ+ a1)x3 − µ− a3.

Remark If E is defined on a field K, the set E(K) with this addi-
tion law form a subgroup of (E,+).

If we consider an elliptic curve E/K with char(K) 6= 2, 3 given by

y2 = x3 + a4x+ a6, (2)

we obtain an addition law that is easier to compute. Namely, if P =
(x, y), then −P = (x,−y) and P1 + P2 = P3 = (x3, y3) is given by
the following computations

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1,

where

λ =


y2−y1

x2−x1
, if x1 6= x2

3x2
1+a4

2y1
, if x1 = x2.
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Notation For a positive integer n, we let [n] denote the multiplica-
tion by n map

[n]P := P + P + P + · · · (n times),

for any P ∈ E.

3 Introduction to the p-adic numbers

We introduce here the p-adic numbers and their basic properties.

Definition 6. Let p be a prime number and a a rational number. a
can be expressed as

a = prm

n

where r ∈ N and m, n ∈ Z are not divisible by p. We then define

ordp(a) := r and |a|p :=

{
p−r if a 6= 0

0 if a = 0.

Proposition 7. The function |.|p : Q → [0 ,∞) is a norm on Q,
i.e.
(i) |a|p = 0 ⇐⇒ a = 0
(ii) |ab|p = |a|p|b|p
(iii) |a+ b|p ≤ |a|p + |b|p.

Remark
i) |.|p satisfies a still stronger condition than (iii), namely |a+ b|p ≤
max{|a|p, |b|p}.
ii) This norm induces a metric dp(., .) on Q defined by

dp(a, b) = |a− b|p

.

Definition 8. The field Qp of p-adic numbers is the completion of
Q for the metric dp, i.e. a ∈ Qp if and only if there exists a sequence
(an)n∈N such that

|an − a|p −→ 0 as n→∞.
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We provided above an abstract definition of the p-adic numbers, but
we have not still showed how such numbers may look like. We give
here their natural representation. As the real numbers can be rep-
resented by decimals, p-adic numbers can be represented by infinite
series of the form

c−np
−n + . . .+ c0 + c1p+ . . .+ cmp

m + . . . ,

where the ci’s are integers such that 0 ≤ ci ≤ p − 1. By definition
of dp, we easily remark that this serie converges with respect to this
metric.

Definition 9. An element a ∈ Qp is called a p-adic integer, if
ordp(a) ≥ 0. The set of the p-adic integers is denoted as Zp.

Remark Do not confound Zp with the field of the residue classes of
the integers modulo p, i.e, Z/pZ !

Computing with p-adic numbers works similar as with rational num-
bers. Instead to use the decimal expansion, we work with the coeffi-
cients of the powers of p. The difference is that the elementar oper-
ations (addition, multiplication, ...) go from left to right rather than
right to left.

Example

4 + 3 · 5 + 2 · 52 + 1 · 53 + . . .
−(3 + 4 · 5 + 4 · 52 + 2 · 53 + . . .)
= 1 + 4 · 5 + 2 · 52 + 3 · 53 + . . .

An other possibility to calculate with p-adic numbers is to consider
the partial sums of the p-adic expansion until the nth power and
compute modulo pn. For example, the first terms of the 5-adic ex-
pansion of 3/2 are obtained by computing 3/2 mod 54 = 314 =
4 + 2 · 5 + 2 · 52 + 2 · 53.
For more details on p-adic numbers, see [2].
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4 Expansion around O of an elliptic curve

We consider an elliptic curve E/K given by a Weierstrass equation
like in (1). We would like to represent the rational points of E with
one parameter in K. In order to do this, we make the change of
variables

z = −x
y

and w = −1

y
.

We notice that this coordinate z has no connection with the pro-
jective coordinate Z. The point O is now represented as the pair
(0, 0) in the (z, w)-plane. The Weierstrass equation (1) for E takes
the form

w = z3 + a1zw + a2z
2w + a3w

2 + a4zw
2 + a6w

3 (:= f(z, w)) (3)

We substitute the equation into itself recursively and obtain w as a
power series in z. Hence,

w = z3 + (a1z + a2z
2)w + (a3 + a4z)w

2 + a6w
3

= z3 + (a1z + a2z
2)

(
z3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3
)

+ (a3 + a4z)
(
z3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3
)

+ a6

(
z3 + (a1z + a2z

2)w + (a3 + a4z)w
2 + a6w

3
)

+ · · ·

= z3 + a1z
4 + (a2

1 + a2)z
5 + (a3

1 + 2a1a2 + a3)z
6

+ (a4
1 + 3a2

1a2 + 3a1a3 + a2
2 + a4)z

7 + · · ·

In fact, we should still show that a such recursion converges to a
power series. For a proof of this, we refer to the chapter IV of [4].
Using the power series w(z), we find the Laurent series for x and y,

x(z) =
z

w(z)
=

1

z2
− a1

z
− a2 − a3z − (a4 + a1a3)z

2 − · · · (4)

y(z) = − 1

w(z)
= − 1

z3
+
a1

z2
+
a2

z
+ a3 + (a4 + a1a3)z + · · · (5)

Thus, we see that the pair (x(z), y(z)) yields a solution in the sense
of formal power series, i.e., if we substitute the formal power series
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x(z), y(z) in the two sides of equality (1), we get the same for-
mal power series on each side. Then, if we want to produce some
points of E(K) using z-coordinate, we have to verify that the series
x(z), y(z) converge in the field K. In the field Qp, it is the case if
ordp(z) ≥ 1 (i.e. z ∈ pZp ) and if the coefficients a1, a2, a3, a4, a6 lie
in Zp. This gives an injection pZp −→ E(Qp) whose the inverse is
given by z = −x(z)/y(z).

Now, we can look for an addition law on the formal power series that
corresponds to the addition law on E(K). This is given by a formal
power series. Let (z1, w1), (z2, w2) two points of E in the (z, w)-plane,
then the z-coordinate of the sum of these points z3 is obtained by

z3 = F (z1, z2) = z1 + z2 − a1z1z2 − a2(z
2
1z2 + z1z

2
2)

− (2a3z
3
1z2 − (a1a2 − 3a3)z

2
1z

2
2 + 2a3z1z

3
2) + · · ·

(6)

The used development to find this function F is explained in [4]
chapter IV.

Definition 10. Let E be an elliptic curve defined over Qp. The

group Ê(pZp) is the set pZp with the addition law

x⊕ y := F (x, y) for all x, y ∈ pZp,

where F is the formal power series defined in (6).

5 The reduction modulo p

In this section, we shall introduce the reduction of an elliptic curve
E/Qp modulo p and provide some results about this.

Definition 11. Let π the function that reduces p-adic integers mod-
ulo p, i.e.

π : Zp −→ Fp

a0 + a1p+ · · · 7−→ a0,

E an elliptic curve defined over Qp given by a Weierstrass equation
(1) and P be a point of E(Qp). The reduction of E modulo p is
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the elliptic curve Ẽ/Fp obtained after reducing the coefficients of E
modulo p, namely

Ẽ : y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6,

where ãi := π(ai). The point P can be represented as (x1 : y1 : z1)
with x1, y1, z1 ∈ Zp and at least one of x1, y1, z1 in Zp\pZp. The re-

duced point P̃ of P is obtained by reducing every projective coordinate
of P modulo p, namely

P̃ = (π(x1) : π(y1) : π(z1)) := (x̃1 : ỹ1 : z̃1).

We finally get a reduction map

E(Qp)−→ Ẽ(Fp)

P 7−→ P̃ .

Remark From now, we will always suppose that the reduce curve
Ẽ/Fp is non-singular.

Definition 12. The set E1(Qp) is defined as follows

E1(Qp) =
{
P ∈ E(Qp)

∣∣∣P̃ = O
}

Example We give here an example of reduction. Let

E : y2 = x3 + 39x2 + x+ 39

be an elliptic curve defined over Q43 and P = (10 · 43−2 +10 · 43−1 +
· · · , 21 · 43−3 + 40 · 43−2 + · · · ) a point on this curve. We see that its
reduced curve modulo 43 has the same Weierstrass equation, because
every coefficients lie already in F43. Since (x : y : 1) = (X

Z
: Y

Z
: 1)

holds for any point on an elliptic curve, we have

P = (10 ·43−2+ · · · : 21 ·43−3+ · · · : 1) = (10 ·43+ · · · : 21+ · · · : 433).

Hence, we have P̃ = O, because

P̃ = (0 : 21 : 0) = (0 : 1 : 0).
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Proposition 13. Let E be an elliptic curve defined over Qp and

Ê(pZp) like above. Then the map

ϑp : Ê(pZp)−→ E1(Qp)

z 7−→
(

z
w(z)

,− 1
w(z)

)
is a group isomorphism.

Remark Using the formulas (4) and (5) we see that ordp(x(z)) = −2
and ordp(y(z)) = −3 for z ∈ pZp. Moreover, this point P takes the
form

P = (a−2p
−2 + · · · : b−3p

−3 + · · · : 1) ∼ (a−2p+ · · · : b−3 + · · · : p3)

in projective coordinates. Thus, we deduce that P reduces to O
modulo p i.e., P ∈ E1(Qp).
For an exhaustive proof of Proposition 13, we refer to [4] p.175.

Proposition 14. Let E be an elliptic curve defined over Qp, Ẽ(Fp)
be its reduction curve modulo p and E1(Qp) defined like before. Then

E(Qp)/E1(Qp) ' Ẽ(Fp). (7)

Proof. It suffices to consider the reduction map modulo p

π : E(Qp) −→ Ẽ(Fp).

This function is an homomorphism. By definition, we see that

ker(π) = E1(Qp).

Applying the first isomorphism Theorem of the group theory on π
shows that (7) holds. ut

6 The formal logarithm

In this section, we provide a group isomorphism

logF : Ê(pZp) −→ pZp,
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where pZp is equipped with the usual addition law. We notice that
a such function have to satisfy the condition

logFF (z1, z2) = logF(z1) + logF(z2) z1, z2 ∈ pZp, (8)

where F is the formal power series defined in (6). In order to produce
this logarithm function, we first look for a power series P , such that

P (F (T, S))FX(T, S) = P (T ) (9)

holds, where FX denotes the partial derivative of F with respect to
the first variable. Since F (0, S) = S, we get

P (S)FX(0, S) = P (0).

Hence, every P satisfying (9) has the form

P (T ) = aFX(0, T )−1

for an a ∈ Qp. We choose here a = 1 and P has then the form

P (T ) = 1 + d1T + d2T
2 + d3T

3 + · · · . (10)

We are now in position to define the logarithm map. It is the power
series

logF(T ) =

∫
P (T )dT = T +

d1

2
T 2 +

d2

3
T 3 + · · · (11)

We verify that it is an homomorphism by integrating the equation
(9) with respect to T . We have

logFF (T, S) = logF(T ) + C(S),

where C(S)is a constant depending on S. Choosing T = 0 shows
that

C(S) = logF(S).

To show that logF produces an isomorphism from Ê(pZp) to pZp , it
suffices to find an inverse power series that converges on pZp. This
inverse is provided by a classical result on the formal power series
and the convergence is due to the definition of the p-adic metric dp.

Remark logF induces an isomorphism from Ê(pnZp) to pnZp. (see
[4] p.126)

For more details, we refer to the book of Silverman [4] chapter IV.
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7 Some other results

We give here some results needed for the comprehension of the com-
putation of the discrete logarithm on elliptic curve of trace one.

Definition 15. Let E be an elliptic curve defined over Qp. For an
integer n > 0, we define the subgroup

En(Qp) = {P ∈ E(Qp) |ordp(x(P )) ≤ −2n} ∪ {O} ,

where x(P ) denotes the x-coordinate of the point P .

Remark According to Proposition 13, we remark that the set E1(Qp)
defined before corresponds to the one defined here.
The group En(Qp) is isomorph to Ê(pnZp), indeed by Proposition
13, we see that

ϑp

(
Ê(pnZp)

)
= En(Qp).

Hence, by the results of the section 6, we have then En(Qp) ' pnZp.
Thus

En(Qp)/En+1(Qp) ' pnZp/p
n+1Zp ' F+

p , (12)

where F+
p denotes the additive group of Fp i.e., (Z/pZ,+).

Computation of a lift

We consider here a point P̃ of a non-singular elliptic curve Ẽ defined
over Fp and given by

Ẽ : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where a1, a2, a3, a4, a6 ∈ Fp. E denotes the elliptic curve defined over

Qp given by the same Weierstrass equation as Ẽ.

Definition 16. Let P̃ be a point of Ẽ(Fp). A point P ∈ E(Qp) is

said to be the lift of P̃ if it reduces to P̃ modulo p.

We provide here a method to compute a lift of P̃ = (x̃, ỹ) ∈ Fp×Fp,
i.e. to find a pair (x, y) ∈ Zp × Zp such that f(x, y) = 0, where

f(x, y) = y2 + a1xy + a3y − x3 − a2x
2 − a4x− a6.

First, we choose x = x̃. We compute then the p-adic expansion of
y = ỹ + h1p+ h2p

2 + h3p
3 + · · · as follows :
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1. Computation of h1

We have to find 0 ≤ h1 ≤ p − 1 such that f(x̃, ỹ + h1p) ≡ 0
(mod p2). In order to do that, we consider the following Taylor
expansion of f :

f(x̃, ỹ + h1p) = f(x̃, ỹ) +
∂f(x̃, ỹ)

∂y
h1p+ terms divisible by p2

We have then

f(x̃, ỹ) + (2ỹ + a1x̃+ a3)h1p ≡ 0 (mod p2)

By definition of x̃ and ỹ, we know that f(x̃, ỹ) is divisible by p.
Hence,

f(x̃, ỹ)

p
+ h1(2ỹ + a1x̃+ a3) ≡ 0 (mod p)

and thus

h1 = − f(x̃, ỹ)

p(2ỹ + a1x̃+ a3)
mod p

2. (hj)1≤j≤i → hi+1

We suppose the p-adic expansion known to the term hi and we
show how to find hi+1 such that f(x̃, ỹ+h1p+ · · ·+hi+1p

i+1) ≡ 0
(mod pi+2). Again, we consider the Taylor expansion

f(x̃, ỹ + h1p+ · · ·+ hip
i + hi+1p

i+1) = f(x̃, ỹ + h1p+ · · ·hip
i)

+
∂f(x̃, ỹ + · · ·hip

i)

∂y
hi+1p

i+1 + terms divisible by pi.

Since f(x̃, ỹ + h1p+ · · ·+ hip
i) is divisible by pi+1, we have

f(x̃, ỹ + · · ·+ hip
i)

pi+1
+hi+1(2(ỹ+h1p+· · ·+hip

i)+a1x̃+a3)) ≡ 0 (mod p).

Thus,

hi+1 = − f(x̃, ỹ + · · ·+ hip
i)

pi+1(2(ỹ + h1p+ · · ·+ hipi) + a1x̃+ a3)
mod p.

We then have a method to approximate the p-adic expansion of a
lift.
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8 Computation of the discrete logarithm

Let Ẽ be a non-singular elliptic curve of trace one defined over a
finite field Fp with p prime, i.e.,

#Ẽ(Fp) = p (13)

Moreover, since p is prime, Ẽ(Fp) is a cyclic group and therefore

Ẽ(Fp) ' F+
p .

We provide now the algorithm proposed by Nigel Smart (see [5])
which allows to solve the discrete logarithm problem on such curves
very rapidly. This problem can be described as following, given two
points P̃ , Q̃ ∈ Ẽ(Fp) with Q̃ ∈ { [k] P̃ | k ∈ N} find m such that

Q̃ = [m] P̃ . (14)

At first, we compute the lifts P , Q ∈ E(Qp) of the points P̃ , Q̃, using
the method explained in Section 7. Since the reduction modulo p is
an homomorphism and from (14), we have

Q− [m]P = R ∈ E1(Qp). (15)

According to Proposition 14, we have

Ẽ(Fp) ' E(Qp)/E1(Qp) (16)

and by (12) we notice that

E1(Qp)/E2(Qp) ' F+
p . (17)

Claim 17. The multiplication by [p] maps the elements of E(Qp) to
E1(Qp) respectively the elements of E1(Qp) to E2(Qp).

Proof. Let S an element of E(Qp). By (13), the two quotient groups
E(Qp)/E1(Qp), E1(Qp)/E2(Qp) have order p. Then, if we multiply
an element of one of these quotient groups by p, we obtain the neutral
element. In particular,

E1(Qp) = [p] (S + E1(Qp)) = [p]S + E1(Qp).

From this, we conclude that [p]S ∈ E1(Qp). A similar argument
works for an element of E1(Qp). ut
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Hence, multiplying (15) by p gives

[p]Q− [m] ([p]P ) = [p]R ∈ E2(Qp). (18)

Since [p]P and [p]Q lie in E1(Qp), we can apply the isomorphism

ψp : E1(Qp)−→ pZp

P 7−→ logF ◦ ϑ−1
p (P )

on (18) and we get

ψp ([p]Q)−mψp ([p]P ) ∈ p2Zp. (19)

So, this expression can be written in the form

c1 · p+ c2 · p2 + · · · −m(d1 · p+ d2 · p2 + · · · ) = b2 · p2 + · · · ,

where ci’s are the coefficients of the p-adic expansion of ψp ([p]Q)
and di’s are the coefficients of the p-adic expansion of ψp ([p]P ).
Thus, we finally obtain

m =
ψp ([p]Q)

ψp ([p]P )
mod p =

c1
d1

mod p.

It suffices now to show how ψp(P ) can be computed for a point
P ∈ E1(Qp). In order to find m, we only have to compute this
modulo p2. According to the definition of ϑp, we have

ϑ−1
p (P ) = −x(P )

y(P )
∈ pZp,

where x(P ), y(P ) denote the x-, y-coordinates of P . Hence, by (11)
and the definition of ψp, we get

ψp(P ) ≡ −x(P )

y(P )
(mod p2). (20)

As conclusion, we notice that the composition of the calculations
performed above corresponds in fact to a group homomorphism φp

that sends elements of Ẽ(Fp) to Z/pZ,

φp : Ẽ(Fp)
lift−→ E(Qp)

[p]−→ E1(Qp)
ϑ−1

p−−→ Ê(pZp)
logF−−→ pZp

mod p2

−−−−→ Z/pZ
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and in particular

φp : O lift−→ E1(Qp)
[p]−→ E2(Qp)

ϑ−1
p−−→ Ê(p2Zp)

logF−−→ p2Zp
mod p2

−−−−→ 0.

Finally, we notice that c1 = φp(Q) and d1 = φp(P ).

Remark
i) This algorithm requires only O(log p) group operations on E(Qp)
because the more difficult step in terms of computation is the mul-
tiplication with p in (18) that we compute thanks to a square and
multiply algorithm.
ii)If ψp([p]P ) ≡ 0 (mod p2), the above calculation fails. In this case,

we have to choose an other elliptic curve which reduces to Ẽ(Fp)
modulo p. Fortunately, this occurs only with probability 1

p
.

Example To illustrate the above method, we give here an example
over a small field, namely F1019. We consider the curve

Ẽ : y2 = x3 + 373x+ 837

and the points P̃ = (293, 914), Q̃ = (794, 329). The lifts are com-
puted with the method given in Section 7.

P = (293, 914 + 308 · 1019 + 857 · 10192 + · · · )

Q = (794, 329 + 561 · 1019 + 465 · 10192 + · · · )

Using the square and multiply algorithm, we obtain

[1019]P = (867 · 1019−2 + 309 · 1019−1 + · · · , 950 · 1019−3 + 16 · 1019−2 + · · · )
[1019]Q = (210 · 1019−2 + 952 · 1019−1 + · · · , 300 · 1019−3 + 17 · 1019−2 + · · · ).

By (20), we then get

ψ1019 ([1019]P ) = 367 · 1019 + 257 · 10192 + · · ·
ψ1019 ([1019]Q) = 305 · 1019 + 431 · 10192 + · · · ,

and so

m =
305

367
mod 1019 = 123.
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