Enterprise Java Beans, Distributed Artificial
Intelligence and Group Communication
Technical Report No IC/2002/46

Ton Constantinescu, Steven Willmott, Monique Calisti

Laboratoire d’Intelligence Artificielle, Department Informatique,
Swiss Federal Institute of Technology, IN (Ecublens), CH-1015 Lausanne, Switzerland.
{ion.constantinescu,steven.willmott,monique.calisti}@epfl.ch

Abstract. Today’s Middleware is facing increasing pressures to operate
in more open, loosely coupled and complex environments. E-business
systems require seamless transactions between multiple enterprises and
software components are becoming more opaque in an effort to hide their
complexity. In parallel, interactions between components are becoming
increasingly sophisticated. This paper describes:

— The integration of a well known standards compliant agent platform
with a transactional J2EE application server to create a hybrid mid-
dleware able to make use of high level agent communication and
other features.

— An solution for Group Communication (GC) (a known Distributed
Systems problem) using the hybrid middleware.

— The extension of GC to illustrate how new challenges in distributed
applications might be dealt with by a convergence of Distributed
Systems theory, Distributed Artificial Intelligence and Middleware
solutions.

The purpose of the paper is not to eulogise any particular technology
but to highlight the relevance of research in the areas of Distributed
Systems, Distributed Artificial Intelligence and Middleware and illustrate
how they might co-evolve.

Keywords: middleware, distributed systems, distributed artificial in-
telligence, multiagent systems, group membership

1 Introduction

Today’s middleware solutions serve a wide variety of needs and are fast devel-
oping to meet new challenges. There is a general shift towards more loosely
coupled, flexible and dynamic systems and the definition of middleware is evolv-
ing from systems which operate only in closed intranet environments to include
inter-enterprise scenarios. Increasingly, users are requiring their middleware to
support interactions with third parties (in business to business e-commerce, for
example [18]), to support increasingly complex interactions (such as market in-
teractions for example [60]) and provide more sophisticated tools to manage
complex systems. There appear to be three major domains which are needed to
develop robust, flexible solutions required in the future:



https://core.ac.uk/display/147902643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

— Evolving Existing Middleware: Middleware is already evolving rapidly
with increased moves toward message oriented [49,32], asynchronous [11]
and dynamic [31] frameworks. (See Section 2.1.)

— Distributed Systems (DS): Concerned with the formal analysis of prob-
lems arising in distributed applications. Developing understanding and en-
suring predictable behaviour is likely to become ever more important as we
rely more heavily on complex distributed systems. (See Section 2.2.)

— Distributed Artificial Intelligence (DAI): which has developed a sig-
nificant body of work on complex system-system interactions (such as nego-
tiation [45], [62] and markets [8]), complex reasoning (distributed planning
[9] and distributed constraint satisfaction [61]) and modelling systems with
highly autonomous components [29]. (See Section 2.3.)

There is increasing cross-fertilisation between these areas with work on Agent
Oriented Software Engineering [30], agent architectures using standard middle-
ware (see the FIPA [22] standards, for example) and the clear links between
middleware solutions and DS theory. This paper’s main objective is to highlight
the potential for increasing convergence between these three fields and illustrate
how this convergence might come about. This is achieved by:

— Describing a prototype integration of a standards compliant agent platform
Jade [54] with the Enterprise Java Beans (EJB) based middleware system
application server JBoss [55]. (Section 3.)

— Using the Group Communication (GC) problem to illustrate how standard
distributed systems applications can be implemented in such a hybrid mid-
dleware. (Section 4.)

— Showing how extensions of the GC directly relevant to the changing needs
of distributed applications might form a paradigm which integrates today’s
middleware and standard Distributed Artificial Intelligence approaches. (Sec-
tion 5.)

Section 2 begins the paper with brief reviews of emerging application require-
ments and the technology areas which might contribute to solutions. Section 6
concludes the paper.

2 The Evolution of Distributed Applications

There is no doubt that the transition from single machines, to LAN based envi-
ronments, to corporate intranet and finally to Internet environments is dramat-
ically changing the needs of distributed applications. Although there are many
individual trends in application requirements there are three groups of particular
interest with respect to the context of this paper:

1. Increasing Openness: with increasing business to business integration
(ebXML [18], BizTalk [5] for example), electronic commerce, automated mar-
ket places [47] and the like, the boundaries between systems belonging to



different organisations are becoming increasingly blurred. This leads to the
need for solutions which work in environments were components may be
under the control of different organisations. Good example of such openness
are frameworks such as GNUTELLA [51] and JXTA [33], which are designed
to provide a uniform environment across thousands or millions of network
nodes - each of which may be controlled by a separate individual.

2. Increasing Autonomy: distributed applications are becoming more com-
plex, multi-layered and of larger scale, making them difficult to design and
manage. This promotes a strong trend towards increasing delegation of
control to individual processes (often into hierarchical structures [52]) and
greater use of abstraction ([2,7]) to hide complexity in the system. These
developments mirror the trend toward asynchronous middleware [49, 32, 11].

3. More Complex Coordination: the primary consequence of both of the
previous trends is an increase in the complexity of both intra-organisational
(multiple departments) and inter-organisational (multiple companies) inter-
actions required to build applications. Components are likely to be more
autonomous and opaque (hiding internal processing and structure), hetero-
geneous (designed and operated by different organisations) and require dy-
namic discovery (see UDDI [16] and JINI [31] for example).

The first point raises issues with the assumptions underlying much of dis-
tributed systems theory and current middleware: that processes in the system
are benevolent (do not have malicious intentions) and have been designed to be
part of the organisation (that their interfaces are likely to be compatible). The
second point suggests that individual processes are likely to exhibit more com-
plex behaviour (since they may be composed of many other systems or take into
account complex factors before taking decisions). The third point raises issues
in proving different properties (e.g. processes termination), work in all circum-
stances and have predictable (or optimal) outcomes as well as questions in how
to design such complex interactions.

Sections 2.1 to 2.3 briefly covers developments in the three technology areas
which relate to these requirements.

2.1 Middleware

Interesting trends in middleware include the following:

— Message Oriented Middleware (MOM): MOM systems are becoming
increasingly popular (with systems such as IBM MQ Series [49] or Microsoft
Message Queuing [42]), and standardisation initiatives such as the Java Mes-
sage Service [32] or CORBA event services [11] are broadening usage.

— Synchronous and asynchronous operations: many implementations pro-
vide different service qualities for both method invocations and message de-
liveries, including supporting different levels of synchronicity (e.g usage of
tupples in JavaSpaces [31] or asynchronous message deliveries with or with-
out acknowledgement timeouts for COSEvent or JMS).



— Dynamic discovery of interfaces, protocols and data types: Interfaces
to different services are increasingly defined in an reflective manner so that
objects can be easily inspected and reconfigured at runtime (see OMG CWM
[14] and Jini [31]).

— Dynamic federation and composition of resources: As the number
and availability of data sources for a particular purpose increases, distributed
applications need to leverage them by using resources in a more decoupled
way (e.g. being able to create new services by composing exiting ones or to
search and negotiate for a given service). Examples of this can be seen in
the CORBA trading service [12] and initiatives such as UDDI [16].

Middleware Systems are therefore already being extended to deal with some
of the challengers identified in Section 2. The infrastructural support for notions
such as service negotiation, dynamic discovery and service composition is gen-
erally very basic, however, and each of these areas hides complex computational
problems in their own right.

2.2 Distributed Systems

Distributed Systems research is also undergoing considerable change, some rel-
evant trends include:

— Group processing [1,57]: provides a useful abstraction for the design of
redundant and fault tolerant systems by grouping a number of processes to
provide a single logical function or service.

— Distributed Transactions and Atomic Multicast: Distributed transac-
tions are a proven concept mostly used for method invocation middleware
[10]. Another concept used in distributed systems is atomic multicast. Equiv-
alences between the two were proven in [35], [48], [27]. Atomic multicast has
particular relevance for MOMs which makes it an interesting candidate for
future developments.

DS developments therefore mirror middleware developments to an extent.

2.3 Distributed Artificial Intelligence

Distributed Artificial Intelligence (DAI) work tackles a broad range of prob-
lems. The key abstraction used in most of this work is the notion of an “agent”
as an autonomous process, with research problems related to the interactions
between such agents. The precise definition of “agent” used often varies accord-
ing to the problem being solved (formal definitions of agenthood can be found
in [46], [38], [59]). Beyond the individual definitions however, it is important
to recognise that it is the solution techniques developed in DAI which are fun-
damentally important over and above the varying definitions of “agent”. DAT’s
most important contributions in the light of the discussion here appear to be:



— A fundamentally asynchronous model: One thing most agent defini-
tions do agree upon is that agents are “autonomous”, that is they operate
without the direct intervention of humans or others, and have control over
their actions and internal state [59].! Further the mode of interaction is usu-
ally via asynchronous message passing of one form or another. This under-
lying of a fully decoupled asynchronous system assumption therefore forms
the basis for most work in the domain.

— High level communication and Interaction: Agent communication lan-
guages and protocols allows both human-system and system-system interac-
tions, to take place at a higher (semantic) level. This framework facilitates
the definition of common problem solving strategies, which can be more eas-
ily applied to heterogeneous systems. This “abstraction” level also provides
a basis for defining service descriptions, actions and common mechanisms.

— Coordination techniques: A large amount of work has been done on how
to ensure that groups of agents are able to operate together in a coherent
manner and achieve their individual or collective goals (see [28] for a review
of coordination approaches).

Accompanying this theory is a wide range of toolkits [54, 53, 43], development
environments [56] and methodologies [58]. These tools implement important as-
pects of the theory and provide developers with the means to create agent based
systems. Current trends in implemented systems are:

— Standardisation: In recent years there have been significant efforts to stan-
dardise some aspects of agent technology - particularly by the Foundation
for Intelligent Physical Agents (FIPA - see Section 3.1 for more on this) and
OMG MASIF [40] (although this effort seems to have stagnated for the time
being). Further efforts include developments in semantic web technology for
XML based ontology markup such as the DAML [15] and OIL [19] initiatives.

— Stability: Many of the agent systems available today are in their third or
fourth generation and are therefore becoming more mature. The feature set
provided by most platforms is also relatively constant (and are reflected in
the FIPA standards - see Section 3).

— Methodology: A recent trend is an increasing emphasis on the use of agents
as a system design paradigm [30] for the specification and modelling of com-
plex systems.

Despite these moves, many agent systems still suffer from a lack of maturity,
remain untested in outside the research laboratory and could not be considered
stable enough for commercial use.

3 FIPA MAS / J2EE Integration

This section outlines a prototype middleware based on the integration of a J2EE
application server middleware JBoss [55] and one of the best known FIPA stan-

! As we will see in and Section 3.2, Section 3.4, this raises interesting issues with
respect to implementation in J2EE frameworks.



dards compliant agent platforms Jade [54]. In Section 4 we discuss how this
hybrid middleware can be used to tackle the Group Communication Problem.

3.1 Comparing the J2EE and FIPA Models

This section outlines the differences between the two approaches to be integrated.

Characteristics of J2EE The Java’™ 2 Platform, Enterprise Edition (J2EE)
defines a standard for developing multi-tier enterprise applications. J2EE is a
component-based approach supplying most of the tools needed by such an ap-
plication (security, naming, transactions, etc.) and also defining clear roles for
designers involved in the development of such applications (logical design, ap-
pearance design, application assembly, application deployment and so forth).

Tier 1 Tier 2 Tier 3

J2EE Server

EJB Container

Enterprise
bean

Enterprise
bean
Database

Server

Client H

Web Container
JsP
File

Fig. 1. The J2EE model (taken from [24]) describes a three tier architecture and pro-
vides tools and components for the middle one: - servlets and JSP files interact with
the user and operate on EJB components implementing the business logic of the ap-
plication which in turn interacts with a back-end enterprise information system.

As shown in Figure 1, the J2EE application model defines three tiers for
building applications: the user interface tier (client or web), the business logic
tier and enterprise information system tier. The user interface tier is used for ac-
cessing and manipulating the business logic of the application. It can run either
on the client machine, on the application server or on both. The business tier
implements the logic of the application by taking requests from the interface tier
doing different operations, possibly sending requests to the information system
tier and returning the results to the user interface. The enterprise information



tier handles enterprise data sources like mainframes, enterprise resource plan-
ning systems, databases, etc.

Application components are installed in containers through which they can
access platform facilities such as:

— Security: web components or enterprise beans can be configured to restrict
the access to system resources to authorised users only.

— Transactions: specification of relationships among methods that make up
a single transaction so that all methods in one transaction are treated as a
single unit.

— Naming: JNDI lookup services provide to enterprise applications an unified
interface to different types of naming and directory services

— Distribution: remote connectivity manages low-level communications be-
tween clients and enterprise beans or between enterprise beans with different
network locations.

Characteristics of the FIPA Architecture FIPA is a standards body for
software agents and has been active since 1996. FIPA documents define an ab-
stract architecture, and concrete instances in terms of agent management, mes-
sage transport and communication:

— Naming and directories: agents register upon startup into the local Agent
Management System (white pages). They also can advertise their services
and capabilities through the use of the Directory Facilitator (yellow pages).

— Message transport: FIPA standards define three communications channels
that can be used for message transport - CORBA/IIOP, HTTP and WAP.
Messages can be routed, passed through gateways and stored in message
buffers. Messaging is provided to components inside a FIPA platform as the
Message Transport Service (MTS).

— Communication model: the communication model relies on the exchange
of communicative acts with well defined semantics based on speech act theory
[3]- These high level messages (such as “inform”, “request” etc.) are used to
wrap content in one of several content language and make use of application
level domain ontologies.

— Interaction protocols: agents can make use of a library of interaction pro-
tocols which define sequences of communicative acts. They range from simple
request response to protocols for negotiations. These basic interactions can
be composed to achieve complex behaviours.

Jade [54] is a middleware platform that complies with the FIPA model. It
offers tools for development and debugging, control and management of agents
and provides also support for code mobility.



Agent
Management
System

Directory
Facilitator

Message Transport System

Message Trasport System

Fig. 2. The FIPA model (taken from [20]) provides for three groups of services: mes-
sage transport (both local and non-local), management (naming, white pages, life-cycle
management) and directories (yellow pages). Finally legacy software can be incorpo-
rated into FIPA environments using agent wrappers.

Comparison: Leaving aside the extensive debate on the fundamental concep-
tual differences between agents and objects (see [58]), the J2EE and FIPA models
are very similar in terms of basic architecture and the services they provide. As
expected:

— J2EE’s strengths lie in: persistence, reliability, high availability and perfor-
mance (effective memory and CPU usage).

— FIPA’s strengths lie in: semantic model, ontology support, standard inter-
action protocols as well as direct support for autonomy and coordination.

The challenge is therefore to build a middleware which provides access to
FIPA’s high level features (and hence easy re-use of DAI theories) whilst pre-
serving and enhancing J2EE’s strengths.



3.2 Integration Issues

Integrating Jade and JBoss is more complex than simply integrating two different
software systems. It is important to consider the models these systems are based
upon and the intrinsic characteristics of each system. Among the most important
characteristics of the JADE model we have:

— FIPA agent communication apparatus (FIPA-ACL, interaction protocols,
content langauges etc.).

— FTPA compliant interfaces to directory services, management services and
directories.

— A single thread per agent by an internal scheduler s.t. actions (behaviours)
can be scheduled by the agent itself.

— An unique identifier for each agent.

The J2EE framework includes the following premises:

— A single thread based model managed by the AS rather than the agent
(invocation based).

— EJB container managed life-cycle (instantiating, loading and saving from
secondary storage).

— Concurrent execution for entity beans (i.e. multiple copies are spawned in
the case of concurrent requests.

— Message delivery based on transactions and automatic or application ac-
knowledgement of messages.

Although in most areas the fit is good - FIPA interfaces fit with J2EE,
message delivery by transactions is not contraditory to Jade’s operation, two
interesting areas are:

— Threaded model (Jade) versus non threaded model (J2EE).
— The notion of a persistant (singular) entitiy.

In the hybrid architecture described in this paper we sided with J2EE in
both cases to respect the J2EE constraints. For the second point (identity),
since the AS ensures that state is maintained even if mutliple instances of beans
there appears to be little problem. For the first point (threads) however there
are some interesting issues related to the autonomy of the agents - these are
discussed in Section 3.4.

3.3 Hybrid Jade/J2EE Architecture

The architecture is composed of three main components: a FIPA compliant mes-
sage transport service (MTS), an Agent Management “Core” (AMC) and a num-
ber of end agents (see Figure 3). More concretely the platform provides a service
(the MTS) which acts as an interface with other FIPA compliant agent plat-
forms, an enterprise application which keeps track of agents currently on the
platform, their types and the ways to contact them and finally “end” agents in
form of either enterprise applications or dynamically registered agents on remote
transient containers (these are provided by Jade and explained further below).



Application Server

APP 2
(Enterprise
Application)

APP1
(Enterprise App2 Queue
Application) (IMS Queue)

J2EE Agent

Home
T

J2EE Agent i
Remote Container-x
(JADE

Container)

AMC
(Enterprise Application)

External Incoming ExternalDelivery ) Internal
(IMS queue) (Message bean) Internal Deélven; (IMS Queue)
ean,

FIPA —@Q' OO

Main
MTS Container
(Entity Bean)

External Outgoing

Fig. 3. The hybrid JADE/J2EE is composed of a FIPA Message Transport Service
connected to a enterprise application (the AMC), which keeps track of agents on the
platform. On top of this applications can be implemented as collections of agents
hosted either on the Application service itself or on remote (transient) platforms (JADE
containers).

The MTS Service is an asynchronous message delivery facility which complies
to the FIPA MTS standard [21]. It is able to receive messages from remote agents
over different channels (HTTP /IIOP) and with different content types (string,
binary, XML).

The MTS service links with the AMC via two JMS queues - Externallncom-
ing (EI) and ExternalOutgoing (EQ). These are used to deliver messages from
remote platforms to the AMC and from the AMC to external platforms.

The MTS may be linked to the platform in one of two ways: tightly linked
- by installing the MTS in the application server, loosely linked - by having the
AS provide two message queues and having the MTS fetch and deliver from/to
these.

The advantages of the first approach are minimalisation of overhead and fol-
lowing the particular rules enforced by MTS’s management of the queues for
remote message delivery. The main advantage of the second approach comes
from the fact that installation of a JMS service is very dependent on the AS.
Sun’s J2EE blueprints and the JMS specification standardise interfaces and be-
haviour for message delivery and factories and destinations management but
they do not specify the management interfaces to the services itself. The cur-
rent implementation is closely linked (support for loosely linked configurations
is planned).



The AMC Application’s main role is to provide agent management support
for the platform. More concretely it has to keep track of types and addresses of
agents currently on the platform and provide life-cycle support to agents and
management tools. The AMC uses three JMS queues - ExternalIncoming (EI),
ExternalOQutgoing (EQ) and Internal (I), two message driven beans (MDBs) -
ExternalDelivery (ED) and InternalDelivery (ID) and an entity bean named
MainContainer.

As described above, messages between remote agents and the AMC are deliv-
ered through the EI and EO queues. Messages from internal agents are delivered
to the AMC either directly or through the I queue. The ED and ID beans are
used as bridges between the EI and I queues and the MainContainer. The Main-
Container entity bean uses transactions in the invocation methods which affect
the life-cycle of agents in order to consistently record the current state of the
agents on the platform into persistent storage .

Jade is a distributed platform which can run several “containers” in separate
Java Virtual Machines and on separate network hosts. Agents in different con-
tainers can communicate via RMI over IIOP and appear to be logically on the
same platform. To preserve this feature, the AMC supports Jade’s MainCon-
tainer remote interface for directly handling invocations from Jade containers.
The only major requirement such that existing usual containers directly use the
AMC is that they use RMI over IIOP as the underlining transport.

The AMC has also a web interface based on JSP pages for managing the
agents.

The End Agents supported by the platform can be included in two main
categories:

— “Enterprise agents” which are enterprise applications that have to be de-
ployed into the AS and installed into the MainContainer and for which par-
ticular platform resources might also have to be configured.

— “Standard” agents which are hosted on normal Jade containers, register and
deregister dynamically only at runtime and have a more transient nature.
(These correspond to agents which could be written now in the standard
version of Jade.)

This combination allows seamless mixing of different types of agents. Cur-
rently there are two kinds of enterprise agents:

— Entity agents: these implement the J2EEAgentHome and J2EEAgentRemote
interfaces such that messages are delivered by passing them as an argument
on the invocation of a particular known method. They are identified by the
AMC internally using the location of the home interface and the name of
the agent. The name is also used as a parameter for the finder method of
the J2EEAgentHome interface when trying to locate the agent. This kind
of agents are useful when support for a large number of agents of the same
type is needed.



— Message driven agents: these use an agent dependent message queue for
receiving messages from the AMC and use the Internal queue to send mes-
sages to the AMC. Each agent is identified by the AMC internally using
the location of his QueueFactory, of his QueueDestination and the agent
name. Note that in fact this kind of agents do not necessarily need to be im-
plemented as an enterprise applications because usually JMS services allow
message delivery also outside the AS.

In the near future, the idea is to develop a third type of “enterprise” agent
based on session beans. These agent types correspond to the primary types of
Java Beans commonly used in J2EE environments so that agents have full access
to all J2EE functionalities.

3.4 The Notion of Autonomy, J2EE and Jade

As stated in Section 3.2, the J2EE model limits the types of behaviour which
could be implemented in “enterprise” agents. This is even clearer from the de-
scriptions of entity and message driven agents in the previous section. Comparing
to common definitions of agents (such as [29]), the agents are:

— Situated - receiving messages and events from user actions and other agents
in the environment.

— Social - they are able to interact with other agents in the environment (in this
case using standard protocols, communication languages, ontologies etc.)

— Responsive - able to take complex decisions and perform complex actions
based on events in the environment.

The agents are however purely “reactive” - that is, they do not act sponta-
neously without being activated by an event or message. They would therefore
be considered as agents by some definitions of agent and not by others (see [26]
for a debate on the reactive v’s deliberative issue). Definitions which do not al-
low purely reactive systems generally require a notion independent action based
upon taking actions pro-actively without being prompted by any external event.

This is highlighted by the difference between programming a standard Jade
agent (which has its own thread) and an enterprise agent (which does not).
With the standard Jade agent it is possible to schedule events based on time
and looping behaviours which cannot be done with enterprise agents.

Interesting points are therefore: how can autonomy be modelled (or “allowed”
in a J2EE/Agent hybrid)? Is it in fact desirable to enable autonomous action ?
There appear to be two main ways by which “full autonomy” could be achieved
in a hybrid architecture:

1. Violate the J2EE constraints and allow agents to have their own threads.

2. Add an external timer which periodically sends trigger (time) events to en-
terprise agents. On receipt of the event the agents can evaluate if actions of
any kind are needed (a rough equivalent to schedulers automatically available
in multi-threaded environments but very symilary to ?7 ).



These examples highlight that the divide between deliberative / reactive
agents is in fact rather fuzzy and depends on the level the system is described
at. In many systems, actions are almost always taken in response to changes in
the environment and hence have a reactive aspect. The utility of introducing
“full autonomy” (pure pro-activity) is clearly application dependent. However,
the authors believe that as distributed applications develop the standard J2EE
model of assuming an external transaction trigger (usually a user) for all actions
will need to be augmented. The seems likely to take the form of additional sup-
port for triggers or schedulers based on time or environemtn sensors (e.g. Gizmo
Co’s inventory running low on widgets). These types of triggers are already built
into database systems and could usefully be brought into the J2EE model more
formally.

4 Implementing a Group Communication service

To illustrate the points made in the previous sections, this section considers the
Group Communication (GC) problem [23,13,6,17]. We first consider the GC
problem as usually described in the DS literature (Section 4) and then in Section
5 go on to possible extensions of GC, which correspond to the requirements for
future distributed applications in Section 2.

Group communication is a well known distributed systems paradigm. It ad-
dresses the reliable transmission of a message to a determined set of “processes”.
This abstraction is usually used for solving higher level problems such as repli-
cation, fault tolerance, atomic multicast, notifications, etc.

Formalisations of the problem consider a Group Communication Service
(GCS) used by a number of processes distributed across a network s.t.:2

1. A number of processes p; € Sp (know as GCS processes) are considered as
forming a group g; € G, where Sp is the system consisting of all processes
and G the set of all groups.

2. Processes can join and leave the group dynamically at any time (due to
network failures, process crashes or their own volition).

3. Each process in group g; must to keep a consistent view v(g;) of which other
processes are members of g; at any one time.

4. The processes in g; are able to ensure reliable delivery of messages to all
members of g;.

The first three statements define the Group Membership problem [13,6,17]
which underlies the Group Communication problem [1,57]. The problems in-
volved in creating a GCS system can be broken down as follows:

— Each process p; must maintain a current view v(g) of the groups it is a
member of.

2 Note that from here onwards descriptions a considerably simplified for presentation
purposes.



— Each process p; must be able to:
e Join groups it is not already member of.
e Leave groups it is a member of.
o Send messages to and receive messages from groups it is a member of.
— Mechanisms must exist such that:
e Processes can ensure that all members p;, of a group g; have the same
view v(g;) of the group.
e All messages are delivered to all members of g; (atomic multicast).
e Agents which have failed or joined can be detected and removed from or
integrated into g;.

These features are implemented by the protocols and systems which provide
the GCS. (Typically a number of other actions such as flush and block [57] are
also required but these are less relevant here).

4.1 Implementation in Hybrid Jade/J2EE

Mapping these operations and solutions found in existing literature into an agent
framework is relatively straight forward. In our prototype implementation we
considered partitionable systems, primary-component computed based on a ma-
jority quorum, sending view delivery and weak total order [57]. This could be
extended to include other variations.

The mapping into the agent framework is as follows:

— Each GCS process p; is implemented by an agent a; € S4, where S4 is the
system consisting of all agents.

— Each agent has a belief Bel(currentview,v(g;)) about the current view of
each group g; € G, the agent where G, is the subset of G, a; is a member
of.

— Agents may also establish beliefs Bel(currentview,v(g;)) about the current
view of each group g;; € Gous the agent is not member of (i.e. Gout is the
complement of G, in the set of all groups w.r.t. a;’s membership).

— The agent may establish beliefs Bel(hascurrentview,a,,v(g;)) about the
views other agents a, € Sa might have of particular groups g; € G.

— Each agent is able to query the FIPA yellow pages directory service (DF)
to obtain a list of current agents in the system S4 and which groups they
belong to using the FIPA standard request protocol.

— Agents send messages to a group g; € G by multicasting to their current
stable view v(g;) over the multicast message service in J2EE or Jade. The
message is wrapped in a FIPA inform communicative act.

— Joining is achieved by sending inform messages containing the required view
to all members of the group (established through a view vgj generated
by asking the DF for a list of agents in S4) the agent wishes to join (see
Figure 4).



— View consensus: If agents realise that their view of a group g; is inconsistent
with that of at least one other agent for some reason (due to a failure, new
agent joining etc.) they propagate their current views as described above. In
the current implementation consistency is established using a vector clocks
[34, 39,44] approach which the agents implement in their reasoning.

— Detection of failed or disconnected agents is carried out using a simple ping
protocol (using the FIPA standard Query protocol) which all agents period-
ically send to members of their respective groups (see Figure 5).

- — request search x
join x : :

Q L
infc;rm result gx(b,c)

®

a: inforn‘ll g'x(a,b,c)
— | ®

a: inform g'y(a,b,c)

<

b: inform g'y(a,b,c)

®

c: inform g'y(a,b,c)

view_chng g’y

©

Fig. 4. AUML [4] message sequence diagram for simple joining protocol.
One example is the sequence of messages that are generated when a new
GCS agent a wants to join a given group g,:

1. Agent a receives a request to join group g, (effectively from outside the
system).



2. Agent a searches the DF for group g,-

. The DF replies with the result group g, currently contains agents b and c.

4. Agent a then sends to b and ¢ a new inform membership message expressing a
belief that the view has changed: Bel(currentview,v(g,)) such that v(g;) =
{a,b,c}.

5. Agents b and c¢ reply with the same view.

6. As a result a decides to install the new view and delivers a view change
message to the upper layer (back outside the system).

w

This is a simplified version to the join procedure described in [17] (although
with the addition of the DF step). The next example shows how agent a carries
on failure detection, decides that agent b has crashed and creates a new view
with agent c:

query-ref ping
el

query-réf ping

>

inform alive

Q

<

a: inform g'y(a,c)

view_chng g’y < b: inform g'y(a,c)

® 5

Fig. 5. AUML message sequence diagram for failure detection protocol.



1. Agent a sends query-ref ping messages to agents b and c.

2. Agent c replies with an inform alive.

3. After a timeout agent a decides that b has crashed and sends a new view to
agent ¢ containing a and c.

4. Agent ¢ decides the same and sends to a the same view containing a and c.

5. Finally agent a install the new view and delivers a view change message to
the upper layer.

Seen like this, the semantics of communication provided by the agent frame-
work (Jade/FIPA) can be used to give a simple account of the interactions
involved in implementing a GCS. The semantics make explicit what each agent
(process) is entitled to believe at any one time and the exercise highlights a
number of implicit assumptions in the standard protocol including that every
agent is expected to accept the beliefs of others.

The implementation of the GCS service relies on the architecture described in
Section 3. In particular, the GCS framework has been modelled as an enterprise
application using a message oriented model. The interface with the AMC is
realised through two JMS Queues - the Internal queue defined by the application
server architecture and a custom GcesQueue installed in the AMC for delivering
messages to the GCS agent. Because it uses JMS the GCS is able to acknowledge
and commit certain sequences of messages. Transaction commit on queues can
be done by the GCS when for example safe prefix message are received.

The GCS contains also a failure detection subsystem. Since (as discussed in
Section 3.4) only invoking threads are available inside the application server no
pro-active behaviour can be implemented using the core J2EE tools however. So
due to the cyclic nature of the failure detection system this is implemented as
an external component. Communication with the GCS was also done through
the GesQueue.

5 New Perspectives on the Group Membership Problem

As indicated in Section 2 here are a number of trends in distributed application
requirements which present challenges for standard middleware. This section
discusses a number of extensions to the standard GCS problem to illustrates
how hybrid architectures such as the one described in Section 3 may by useful
in addressing some of the points raised in Section 2.

5.1 Group Communication with a Moderator

One of the most significant problems created by increasingly open environments
is the possibility that malicious agents (processes) will attempt to subvert pro-
tocols and services to achieve their own ends or simply disrupt normal usage.
Good examples of such behaviour in GCS systems are sending large amounts
of messages, sending oversized messages or sending messages with undesirable
content (unsolicted advertisements for Gizmos). This type of problem is not in



Application Server

Agent Management Core
DF

e
Internal

«—

k GCSs

GCSQueue

—

I —

FD

Fig. 6. The implementation of the GCS using the hybrid architecture described in 3
is realised as a message consumer which makes use of the AMC and relies on another
enterprise application - the directory facilitator (DF'). It also contains a failure detector
(FD) implemented as an agent external to the application server.

fact a protocols level failure or a process failure, it is an application level abuse
of a service. One way to deal with such attacks is to introduce moderators into
the system.

An extension of the GCS implementation described in the previous section
to include moderators is underway. At the time of writing however it is unfortu-
nately not complete, hence the description is an illustrative outline of how the
system might work. The extension can be described as follows:

— Introducing the notion of a group policy p(g;) for a group g; which states
usage rules for the group and the penalty for violation. A simple example
would be the

e Rule: Agents must not exceed a maximum message send rate r; for the
group g;.

e Penalty: immediate expulsion from the group and a ban on re-entering
for a specified time ¢.

— Introducing the notion of moderator status for a group g; which can be
assigned to agents S4.

— Ensuring that all agents in the group are aware which agents are moderators,
either by including this information in view propagation messages or through
additional messages.



— Agents with moderator status for a group g; and which are currently mem-
bers of g;:

o Have the goal of ensuring that p(g;) is enforced.

e May monitor activity in the group and detect violations of the group pol-
icy p(g;) usage. This could be achieved by recording average send rates
over time for all agents in the group (the moderator receives messages
since it is itself a member of the group, we assume that mechanisms are
in place to prevent malicious agents sending to everybody in the group
except the moderators).

e May enact an expulsion by:

* Sending a new view change message which excludes the agent a,
violating the rule to all members of the group and containing an
explicit preference to the exclusion.

x Sending a message to a, citing its violation.

* Since other agents are aware of the status of the moderator they:

- Are more likely to accept this view change (in preference to an
attempt to remain in the group by a, for example).

- Create a belief Bel(exzcluded, a,,t) representing the fact that a,
is excluded from the group until time t.

- Reject attempts by a, to re-join the group until ¢ has expired.

— One could also imagine an appeall proceedure wherby the agent negotiates
with the moderator which excluded it to regain entry.

— Clearly there are a number of variations on this: different types of policies
(message size, content etc.), assigning one or n moderators to the group,
mechanisms for moderator election, agreement between independent moder-
ators, different types of monitoring and excluding agents.

Value of the Agent Aspects The scenario highlights the utility of the agent
model for GCS since:

— The strong notion of identity in the agent model [20] is exploited in assigning
the role of the monitor and in identifying the violating agent, both at the
time of the exclusion and as a permanent reference during the exclusion
period t.

— The agents lend themselves well to expressing authority and this is exploited
in the way agents recognise the authority of the moderators in excluding
the violating agent above attempts of the violating agent to remain in the
group. More complex notions of social relationships and social structure are
well studied in work on (for example) computational organisations [25] and
social laws [41].

— The model makes it easy to mix application level (correct usage of the GCS)
with implementation level concerns. The violating agent is not violating the
actual GCS protocol itself, nor has it failed, it is misusing the system ac-
cording to the commonly agree policy.



— The use of an explicit policy raises the description of the system to a higher
level that (for example) extensions of the protocol given in [17] would. This
makes it possible to link to more advanced work on polices such as that
described in [50] and [37].

— The model clearly makes it easier to take advantage of more complex DAIT
techniques for reaching agreement such as negotiation variants (see [36] for
an overview), markets [8], distributed planning [9] or distributed constraint
solving [61].

Value of the J2EE Aspects The value of implementing this type of extended
service in a hybrid architecture such as the one described in Section 3 rather
than on a standard agent platform (such as JADE) lies in the robustness an
high performance of the hybrid architecture. The J2EE component of the archi-
tecture ensures that agents and messages are persistent (no message loss), highly
available and efficient in system resource usage.

For a general purpose GCS system to be of use in industrial applications these
requirements must be met and therefore the integration experiment appears
to be a valuable one. It is unlikely that environments which did not provide
guarantees of persistance, robustness (in particular resistance to message loss)
could be considered for mission critical services.

5.2 Further Extensions

Other examples of interesting extensions to the GCS include:

— Negotiation at the view resolution stage to enable more complex decision
making as to who might join the group. Again this corresponds to dealing
with the consequences of openness (this time attemtping to screen gorup
membership in advance).

— Use of formal ontologies in group descriptions to allow agents to more eas-
ily identify groups of interest. This corresponds to dealing with increased
heterogeneity.

— Inserting third parties (moderators, trusted third parties etc.) directly into
the message flow. That is - a message for the group first passes through
a number of other agents before being delivered, or acknowledgements are
needed from several parties that particular messages were received (to record
the fact of message delivery).This is related to increasing the complexity of
interactions and processes in the system.

5.3 A Final Note on Autonomy

The GCS extensions are also instructive on the points made about the auton-
omy of “enterprise” agents. In the moderator example, the moderator agent is
clearly embedded in its environment (by monitoring traffic), reactive to that en-
vironment (by taking action when necessary) but is also acting in a goal driven



manner. That is, action is taken when the goal of rule adherence by agents is
violated. Therefore, while the final action of excluding another agent is triggered
by an incoming message (as sensory input) the decision to act is based on a
higher level goal. While this is still not equivelant to scheduling an action com-
pletely independently it illustrates that complex decisions can result from simple
stimuli (in this case many stimuli over time).

The requirement for a trigger can also be seen in the algorithm description
for standard GCS (see Section 4.1). In this case the agent only makes group join
actions in response to user prompts from what is effectively outside the system.

6 Conclusions

This paper presents a perspective on the future evolution of distributed ap-
plications and analyses contributions that the areas of middleware, distributed
systems and distributed artificial intelligence may be able to make. There are
clear pressures in each of these fields to co-evolve:

— DALI systems have long been concerned with complex interactions, intelligent
autonomous processes but must begin to address concerns of scalability,
reliability, provability.

— Distributed Systems theory needs to be further generalised to fields consid-
ering hazards such as malicious processes, more complex interactions and
more opaque, unpredictable behaviour.

— Middleware solutions are becoming more loosely coupled and flexible but
are likely to face great challenges as they are expected to cope with some of
the more advanced requirements imposed by tomorrow’s distributed appli-
cations.

We also present a small piece of this convergence puzzle with the integration
of a standards compliant agent system with a J2EE platform to create a robust
middleware able to access high level agent communication tools. The resulting
hybrid platform was then used to implement a robust “agentified” extended
Group Communication Service illustrating how access to Distributed Artificial
Intelligence theory may open doors to tackling some of the key challenges faced.

The work presented here is preliminary and there is undoubtedly much more
to be said on the convergence between Middleware, Distributed Systems and
Distributed Artificial Intelligence. We hope however that the discussion herein
represents a useful contribution to the debate on future Middleware solutions.

Acknowledgements

The authors gratefully acknowledge the useful comments made by Giovanni Ri-
massa on earlier drafts of this paper. Also many thanks to all the JADE team
for their precious collaboration.



References

1. Yair Amir. Replication Using Group Communication Over a Partitioned Network.
PhD thesis, 1995.

2. T. Anker, G. Chockler, D. Dolev, and I. Keidar. Scalable group membership
services for novel applications, 1998.

3. John L. Austin. How to Do Things With Words. Oxford University Press, Oxford,
1962.

4. Muller J. P. Bauer B. and Odell J. An Extension of UML by Protocols for Multi-
agent Interaction. In Proceedings of ICMAS 2000, Boston, MA, 2000, 2000.

5. BizTalk. http://www.biztalk.org/.

6. Tushar Deepak Chandra, Vassos Hadzilacos, Sam Toueg, and Bernadette Charron-
Bost. On the impossibility of group membership. In Proceedings of the 15th Annual
ACM Symposium on Principles of Distributed Computing (PODC’96), pages 322—
330, New York, USA, 1996. ACM.

7. Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels, Michael F. Schwartz, and
Kurt J. Worrell. A hierarchical Internet object cache. In Proceedings of the 1996
Useniz Technical Conference, San Diego, CA, 1996.

8. S. H. Clearwater. Market Based Control: A paradigm for Distributed Resource
Allocation. World Scientific, Singapore, 1996.

9. S. E. Conry, R. A. Meyer, and J. E. Searleman. Multistage Negotiation in Dis-
tributed Planning. In A. H. Bond and L. Gasser, editors, Readings in Distributed
Artificial Intelligence, pages 367-384. Morgan Kaufmann, 1988.

10. Common Object Request Broker (CORBA). http://www.corba.org/.

11. COSEvent. http://www.omg.org/technology /documents/formal /event_service.htm.

12. COSTrading. http://www.omg.org/technology/documents/formal/trading_object_service.htm.

13. F. Cristian. Reaching agreement on processor-group membership in synchronous
distributed systems. Distributed Computing, 4(4):175-188, 1991.

14. Common Warehouse Metamodel (CWM). http://www.omg.org/technology /cwm /index.htm.

15. DAML. Darpa Agent Markup Language: DAML+OIL specification v 1.7. Techni-
cal report, DAML Project, 2001.

16. Universal Description Discovery and Integration (UDDI). http://www.uddi.org/.

17. D. Dolev, D. Malki, and R. Strong. An asynchronous membership protocol that
tolerates partitions, 1993.

18. ebXML Consortium. Whitepaper: Enabling Electronic Business with ebXML.
Technical report, UN/CEFACT and OASIS, December 2000.

19. D. Fensel, I. Horrocks, F. Van Harmelen, S. Decker, M. Erdmann, and Klein M.
OIL in a Nutshell. In Proceedings of the Workshop on Applications of Ontologies
and Problem-Solving Methods, 14th FEuropean Conference on Artificial Intelligence
(2000) 16.1-16.4. 2000.

20. FIPA. FIPA Agent Management Specification (00023). Technical report, Founda-
tion for Intelligent Physical Agents, 2000.

21. FIPA. FIPA Agent Message Transport Service Specification (00067). Technical
report, Foundation for Intelligence Physical Agents, 2000.

22. FIPA. FIPA Web pages. Technical report, Foundation for Intelligent Physical
Agents, 2001.

23. M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Technical Report 2, 1985.

24. The J2EE Tutorial for J2EE SDK version 1.3.
http://www.javasoft.com/j2ee/tutorial /.



25.

26.

27.

28.

29.

30.
31.
32.
33.
34.

35.

36.

37.

38.

39.

40.

41.

42.
43.

44.

45.

M. S. Fox. An Organisational View of Distributed Systems. IEEE Transactions
on Systems, Man and Cybernetics, SMC-11(1):70-80, 1981.

S. Franklin and A. Graesser. Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents. In Intelligent Agents III. Agent Theories, Architectures and
Languages (ATAL’96), volume 1193 of LNCS, Berlin, Germany, 1996. Springer-
Verlag.

R. Guerraoui and A. Schiper. Transaction model vs virtual synchrony model:
bridging the gap. In Theory and Practice in Distributed Systems, pages 121-132.
Springer-Verlag, 1995.

N. R. Jennings. Coordination Techniques for Distributed Artificial Intelligence. In
F. M. P. O’Hare and N. R. Jennings, editors, Foundations of Distributed Artificial
Intelligence, pages 187-210. John Wiley & Sons, 1996.

N. R. Jennings, K. Sycara, and M. Wooldridge. A Roadmap of Agent Research and
Development. Journal of Autonomous Agents and Multi- Agent Systems, 1:275-306,
March 1998.

N. R. Jennings and M. Wooldrige. Agent-Oriented Software Engineering. In
J. Bradshaw, editor, Handbook of Agent Technology. AAAI/MIT Press, 2001.
Jini. http://www jini.org.

Java Message Service (JMS). http://www.javasoft.com/jms/.

JXTA. http://www.jxta.org.

L. Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558-565, july 1978.

Mark C. Little and Santosh K. Shrivastava. Understanding the role of atomic trans-
actions and group communications in implementing persistent replicated objects.
In POS/PJW, pages 17-28, 1998.

A. Lomuscio, M. Wooldridge, and N. Jennings. A classification scheme for negoti-
ation in eletronic commerce. In F. Dignum and C. Sierra, editors, Agent-Mediated
Electronic Commerce: A European Perspective, pages 19-33. Springer Verlag, 2000.
E. Lupu, M. Sloman, and N. Yialelis. Policy based roles for distributed systems
security, 1997.

Pattie Maes. Artificial life meets entertainment: Lifelike autonomous agents. Com-
munications of the ACM, 38(11):108-114, November 1995.

Friedemann Mattern. Virtual time and global states of distributed systems. In
M. Cosnard et. al., editor, Parallel and Distributed Algorithms: proceedings of the
International Workshop on Parallel and Distributed Algorithms, pages 215-226.
Elsevier Science Publishers B. V., 1989.

D. Milojicic, M. Breugst, I. Busse, J. Campbell, S. Covaci, B. Friedman, K. Kosaka,
D. Lange, K. Ono, M. Oshima, C. Tham, S. Virdhagriswaran, and J. White.
MASIF: The OMG Mobile Agent System Interoperability Facility. In K. Rother-
mel and F. Hohl, editors, Proceedings of the 2nd International Workshop on Mobile
Agents, volume 1477 of Lecture Notes in Computer Science, pages 50—67. Springer-
Verlag: Heidelberg, Germany, 1998.

Y. Moses and M. Tennenholz. Artificial Social Systems. Computers and Artificial
Intelligence, 14(6):533-562, 1995.

Microsoft Message Queuing (MSMQ). http://www.microsoft.com/msmq/.
Charles Petrie. Agent-based engineering, the web, and intelligence. IEEE Expert,
11(6):24-29, December 1996.

Michel Raynal and Mukesh Singhal. Logical time: A way to capture causality in
distributed systems. Technical Report RR-2472, 1995.

Rosenschein, J. S. and Zlotkin, G. Rules of Encounter. MIT Press: Cambridge,
MA., 1994.



46.

47.

48.
49.
50.
51.
52.
53.
54.

55.
56.

57.

58.

59.

60.

61.

62.

Stuart J. Russell and Peter Norvig. Artificial Intelligence. A Modern Approach.
Prentice-Hall, Englewood Cliffs, 1995.

Tuomas Sandholm. eMediator: a next generation electronic commerce server. In
Carles Sierra, Gini Maria, and Jeffrey S. Rosenschein, editors, Proceedings of the
4th International Conference on Autonomous Agents (AGENTS-00), pages 341—
348, NY, June 3-7 2000. ACM Press.

André Schiper and Michael Raynat. From group communication to transactions
in distributed systems. Communications of the ACM, 39(4):84-87, 1996.

IBM MQ Series. http://www.ibm.com/software/ts/mqseries/.

M. Sloman. Policy driven management for distributed systems, 1994.

The GNUtella Protocol Specification. http://www.clip2.com.

C. A. Szyperski. Component Software: Beyond Object-Oriented Programming. Ad-
dison Wesley, 1997.

FIPA-OS Open Source Development Team. FIPA-OS Agent Platform. Technical
report, Open Source Project, 2001.

Jade Open Source Development Team. Java Agent Development Environment.
Technical report, Open Source Project, 2001.

JBoss Open Source Team. JBoss Open Source J2EE Server v2.2, 2001.

Zeus Open Source Development Team. ZEUS Agent Development Environment.
Technical report, Open Source Project, 2001.

R. Vitenberg, I. Keidar, G. Chockler, and D. Dolev. Group communication speci-
fications: A comprehensive study, 1999.

M. Wooldridge, N. R. Jennings, and D. Kinny. The GATA methodology for Agent-
Oriented Analysis and Design. International Journal of Autonomous Agents and
Multi-Agent Systems, 3, 2000.

M. Wooldridge and N.R. Jennings. Intelligent agents: Theory and practice. The
Knowledge Engineering Review, 10(2):115-152, 1995.

F. Ygge and H. Akkermans. Power Load Management as a Computational Market.
In M. Tokoro, editor, Proceedings of the Second International Conference on Multi-
Agent Systems (ICMAS’96). AAAT Press, 1996.

M. Yokoo, E. H. Durfee, T. Ishida, and K. Kuwabara. Distributed Constraint
Satisfaction for Formalising Distributed Problem Solving. Proceedings 12th IEEE
International Conference on Distributed Computing Systems., pages 614-621, 1992.
G. Zlotkin and J. S. Rosenschein. Negotiation and Task Sharing Among Auton-
mous Agents in Cooperative Domains. In Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (IJCAI’89), pages 912-917. 1989.



