-

View metadata, citation and similar papers at core.ac.uk brought to you byf’f CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

Scalable Data Access in Peer-to-Peer Systems
Using Unbalanced Search Trees

Karl Aberer
Swiss Federal Institute of Technology (EPFL)
Switzerland
email: karl.aberer@epfl.ch

June 28, 2002

Abstract

With the appearance of Peer-to-Peer information systems the interest
in scalable and decentralized data access structures is attracting increas-
ingly interest. We propose to that end P-Grid, a scalable data access
structure resulting from the distribution of a binary prefix tree. When
adapting the P-Grid structure to skewed data distributions one obtains
unbalanced search trees. The key result of this paper shows that unbal-
anced trees do not harm as long as communication is considered as the
critical cost and the access structures are constructed properly. Besides
proving this result we propose the necessary distributed, randomized al-
gorithms that allow to construct the P-Grid in a self-organized manner
such that the tree structure dynamically adapts to the data distribution
and the aforementioned result is applicable.

Keywords: Scalable Data Access Structures, Peer-to-Peer Systems, Self-
organization

1 Introduction

With the appearance of Peer-to-Peer systems the interest in scalable and decen-
tralized data access structures is attracting increasingly interest. Such access
structures emerge from the interaction of multiple peers. Each peer is storing a
small fraction of the data and maintains a routing table to neighboring peers to
forward search requests that it cannot answer. Different organisations of such
routing schemes have been proposed. Most frequently they are constructed
based on an underlying abstract model of binary search trees. This approach
has been pursued by us [1], but also in [5], [6] and [7]. As a result, queries can
be answered with at most O(log N) messages, where N is the number of peers,
since the trees are balanced and thus the path length is limited.

However, with skewed data distributions, this approach may lead to very un-
evenly distributed workloads for the peers. In classical approaches to database

https://core.ac.uk/display/147902642?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

indexing this problem is addressed by using balanced tree structures, like B*-
Trees, rather than binary search trees. Such an approach applied to P2P en-
vironments might pose substantial problems in terms of coordination among
peers.

In this paper we will demonstrate that the use of balanced tree structures
for data indexing is not necessarily required in a P2P environment. We will
construct binary search trees by using randomized algorithms such that the
storage space required at each peer is balanced. As consequence the search
trees will no longer be balanced if the data distribution is not uniform.

We make the key observation that in a P2P environment not the depth of
a search tree is critical for search performance, but the number of messages
exchanged for a search. Our assumption is that the cost of traversals of paths
in trees that are made locally at one peer can be neglected as compared to
the cost of message exchanges. In case this is not true, we still may consider
to use any local indexing structure to speed up local traversal. We will show
that even if the (virtual) search trees, as implicitely represented in the structure
of the routing tables, are extremely unbalanced, the number of messages used
to process a query still scales gracefully. The assumption to be made for this
property to hold is fairly weak: the entries in the routing tables must be selected
with uniform probability from the set of peers that qualify for routing a query.

This result shows that in distributed, and in particular decentralized data
management, we have to rethink some of the very fundamental assumptions
on data management, that have evolved in the context of mostly centralized
databases.

In the following Section 2 we first introduce the system model and the P-
Grid data access structure that serve as the basis for our analysis. In Section 3
we introduce the distributed algorithm that results in unbalanced data access
structures. In Section 4 we give then the main result showing that the search
cost in terms of communication cost scales well despite of the unbalanced nature
of the search tree. Finally, we give some directions on future research in the
concluding Section 5.

2 System Model and Data Access Structure

We give an informal introduction into the decentralized, scalable data access
structure, P-Grid, on which our subsequent discussion is based. More details
are found in [1, 2]. Similar structures have also been proposed in [6], [5] and [7].

We assume that a set of N peers P = {p;,...,pn} is given. A data object
d € D is identified by a binary key key(d) = by ...b,,b; € {0,1}, where the
length k4 of the data key is constant. Each peer p € P has associated a binary
key key(p) = by...by,,b; € {0,1}, k, < kq. A peer p stores data objects d,
where key(p) is a prefix of key(d). Thus each peer is responsible for the storage
of part of the data. Note that the peers’ key length may vary for different peers.

For each prefix by ...b; of key(p) of length I, I =1,...,kp, the peer p main-
tains a routing table. It consists of a reference list to other peers p’, that have

the same prefix of length [, but a different value at position [+ 1. We will
call these references to other peers p’s references at level [and denote it as
refs(p,l). These references are used to route search requests for data keys with
prefix b; ... b that do not match at position [+ 1 with key(p).

We illustrate the data access structure in Figure 1. The position in the
virtual search tree of peer in the example P-Grid shows that it is responsible
for all data objects with prefix '10°, thus stores them. The keys implicitly
partition the search space and define the structure of the virtual binary search
tree. As can be seen from the figure, multiple peers may be responsible for
the same path (e.g. peer! and peer6 in Figure 1). This improves robustness
and responsiveness, when peers are not online all the time but with a certain,
possibly low, probability.

A search request can start at any peer and proceeds in the obvious way:
starting from the first bit the search key is compared bit by bit to the peers’
keys. When the local key matches the next bit is compared, if it does not match
the query is forwarded to one of the peers from the routing table. For example,
a query for ’100’ sent to peer6 is forwarded to peer5 at the first level (there is
no common prefix between the path of peer6 and the key, so that the peer has
to directly forward the request to a peer he knows in the other half of the tree).
Upon receiving the query, peerd, responsible for prefix '11°, finds out that the
query is to be forwarded to peer4 (as the longest prefix between peerd and the
key is of size one, the peer forwards the request to the other branch of the tree
at the second level). Peer4, being responsible for keys beginning with ’10’, may
finally deliver the content to the peer having issued the query. Note that in a
real setting, multiple peers would be listed for each level in the routing tables,
and one of them would be selected randomly when forwarding the request.

Legend:

©Q reox
Routing table
(route keys with prefix P to peer X)

E Data store
(keys have prefix P)

“virtual binary search tree"

query(s, 100)
query(s, 100)

stores data
with key
prefix 11

stores data
with key
prefix 10

stores data
with key
prefix 10

stores data
with key
prefix 01

stores data
with key
prefix 00

stores data
with key
prefix 00

Figure 1: Sample P-Grid

In [1] we have shown that there exists an efficient, randomized and dis-

tributed algorithm for constructing such a data access structure based on ran-
dom interactions among the peers. The basic idea is that whenever peers meet
they refine their keys into opposite directions. If a global maximal keylength
kmaz 18 given, this algorithm results in a uniform distribution of keys over the

peers. Each key will be associated on average with szo— peers. From a global

Y T
viewpoint the resulting access structure consists of flzllly balanced binary search
trees, where each peer supports the search along one path from the root to a
leaf of the tree. Thus the total amount of resources scales linearly in number
of peers and the search cost, both in time and number of messages generated

scales logarithmically.

3 Constructing the Data Access Structure

With skewed data distributions, as they can be expected in realistic applica-
tions, using a balanced binary tree for data distribution and search would imply
an unevenly distributed workload among the peers. Therefore we use a modi-
fied version of the construction algorithm, that has been introduced in [1]. This
modified algorithm results in unbalanced search trees. We assume that the peers
store already some data that reflects the actual data distribution. Throughout
the construction process, whenever peers meet, they not only extend their cor-
responding keys, but they also exchange their data correspondingly. In that
way the data is globally disseminated and the peers use the data to guide the
construction process. We no longer make use of a maximal keylength parameter
kmaaz to control the termination of the construction process as in [1]. Rather
peers extend their key only if sufficient data, i.e. a minimal number of data
items, is known to them to justify a further extension of their key.

The algorithm is given as pseudcode in Algorithm 1. It consists of the
following main steps:

e Exchange of references: This leads to an increasingly uniform distribution
of references in the reference lists of the different peers. Note that during
an exchange no references are lost.

e Exchange of data: This leads to an increasing distribution and replication
of data among the peers. This step also ensures that eventually all data
objects are stored at a peer that is responsible for them, i.e. where the
peer’s key is a prefix of the data object key.

e Extension of the key associated with a peer: This step is only executed if
the peer has after the exchange a sufficient number of data objects related
to the extended key. In this way the lengths of the peers’ keys flexibly
adapt such that each peer stores on average the same number of data
objects.

We explain the different steps of the algorithm in more detail: the algorithm
is executed each time two peers p; and ps meet (they meet either actively in
order to construct the P-Grid or as side-effect of other activities, such as pinging

Algorithm 1 Exchange algorithm two peers p; and ps perform in order to
construct the P-Grid structure

exchange(py, p2, 1)
1: if length(key(p1)) > length(key(p2)) then
2: swap p1 and p> { make sure that p2 has the longer key }
3: end if
4: lec = length of common prefix of key(p1) and key(p2) ;
5: if lc >0 then
6: exchange references between refs(pi,lc) and refs(pz,lc) ;
7: end if
8: 11 = length(key(p1)) — lc; l2 = length(key(p2)) — lc;
9: if [; > 0and ly > 0 then
10: the peers select from each other data stores the data that belong to their key; {peers
may store data that does not correspond to their key }
11: now forward the peer with the shorter path (which is p1) to another peer using
refs(p2,l1) ;
12: end if
13: if [y =0 and l» =0 then
14: k1 = key(p1) extended by a random bit;
15: k2 = key(p2) extended by the inverse of the random bit;
16: di = SelectData(data(pi) U data(p2)), k1); d2 = SelectData(data(pi) U data(p2)), k2);
{SelectData(d, k) selects from the set d the data objects with a key of which k is prefix}
17: ldi = number of data items in di; ld> = number of data items in dz; { now proceed
differently depending on the number of data objects each peer holds; minstorage is
the minimal number of data items required in order to extend the key of a peer by an
additional bit }
18: if ld; > minstorage and lda <= minstorage then
19: key(p1) = k1 ; update reference lists and exchange data objects;
20: end if
21: if ld; <= minstorage and ld> > minstorage then
22: key(p2) = k2 ; update reference lists and exchange data objects;
23: end if
24: if ld; > minstorage and ld2 > minstorage then
25: key(p1) = ki1;key(p2) = ko2 ; update reference lists and exchange data objects;
26: end if
27: if ldi <= minstorage and ld2 <= minstorage then
28: data(p1) = data(p2) = di1 Uds ;
29: end if
30: end if
{ now we treat the cases where the peers have paths of different length; extend the path of
peer p; if it has already a sufficient number of data objects corresponding to the extended
key }
31: if {1 =0 and Il > 1 then
32: ki is extended by the inverse bit from key(p2) at position lc + l1;
33: ldi = number of data objects matching key ki ;
34: if ld; > minstorage then
35: key(p1) = k1; update reference lists and exchange data objects;
36: end if
37: end if

each other). First they decide which peer has the longer key and determine the
common prefix of their keys (line 1-4). Then they exchange at the level of
their common prefix references from their routing tables (line 5-7). This step is
required in order to disseminate and uniformly distribute references across all
routing tables. Then the peers continue depending on how their keys are related
(line 8). If the keys extend the common key prefix in different ways (line 9-12),
the peers exchange data objects that the other peer might (wrongly) store (line
10). Then the peer with the shorter part uses the routing table of the other peer
in order to locate another peer, in order to perform the exchange algorithm with
it (line 11). This ensures that each exchange initiates some extension of keys if
possible and the data access structure is constructed quickly. The next case is
where the keys of the peers are equal (line 13-30), and it is the main construction
step. The peers extend their keys by opposite bits which are randomly selected
(line 14-15) and then determine the number of data objects they know for the
two new keys from their both two stores (line 16-17). Depending on whether
enough data objects are present (minstorage) they will decide to adopt the
new key (line 18-26). When a peer extends its key, it has to obtain all the data
objects that belong to the new key, and to create a new reference list for the
new routing level, which at the beginning will only contain a reference to the
peer it currently encounters. Only later the reference list will be filled with
other entries, due to the reference exchanges (line 5-7). If both peers decide not
to extend their keys they exchange all their data objects (line 27-29). In this
way data is replicated, and in later encounters with other peers enough data
objects may accumulate in order to allow an extension of the key. The last case
to consider is where the key of one peer is a prefix of the key of the other peer
(line 31-36). All the steps performed here are essentially the same. Only the
peer with the shorter key is now forced to extend its key opposite to the key of
the second peer.

We have simulated the algorithm in order to demonstrate its effectiveness
in constructing a binary prefix tree of which the depth is correlated to the data
distribution. In this simulation we have used 1024 peers. The data that they
store follow a Zipf distribution, i.e. it is heavily skewed. The value minstorage
is selected such that peers would hold at least 6% replicas of the data objects on
average. An average replication factor of approximatively 11% results after the
simulation converged to a stable state. On average 16 exchanges were executd
by each peer, which shows that the algorithm scales well. An average key length
of approximately 4% was reached by the peers. A substantial number of peers
has reached a key length of 5. For those we compared the number of peers
associated with each of the 25 = 32 possible keys, to the number of data objects
with a data key of which the peers’ key is the prefix. The result is shown
in Figure 2. It shows for each key the percentage of peers respectively data
objects associated with the key. The result shows nicely that the distribution
of the peers and data objects are closely correlated.

In summary, this distributed and randomized algorithm for constructing a
P-Grid has the following effects:

0% peers
B3 data objedqts

(O o e e e e e e L B B

10
1

16
19
22
2

28
31

Figure 2: Comparison of peer distribution to data distribution

1. Each peer will store on average the same number of data items and thus
require comparable resources for storage.

2. The lengths of the keys that are associated with the peers in a key interval
are related to the number of data objects occuring in that interval. For
key intervals where many data items occur, the keys tend to grow longer
than in key regions with fewer data items. Therefore the (virtual) tree
that is constructed is unbalanced.

3. No global parameter k., is required as in the earlier version of this
algorithm. It is replaced by the global data distribution, which we can
assume to be available. This is a more natural form of global knowledge
to exploit in the search tree construction than global knowledge on the
maximal keylength, which encodes essentially knowledge on the global
number of data objects in relation to the local storage capacity of a peer.
Thus we further reduce global knowledge required for index construction
and increase the degree of self-organization.

Counstructing an access structure that is based on an unbalanced tree poses
however another problem: it is no longer guaranteed that search paths remain
short. In fact, the trees may now contain paths that in the worst case have
length O(N) which would defeat the purpose of having a search tree. This is
the problem we will address in the following section.

4 Analyzing Search Cost

At this point we have to consider the physical characteristics of P2P systems.
Actually we are not so much interested in the absolute length of the search path
from the root to the leaf of a search tree, but rather in the number of messages
that need to be exchanged in order to find a data object. This number will be
lower than the path length if we can traverse multiple tree nodes at the same
peer. Local processing of the traversal of multiple tree nodes is not critical, as
we may assume that the cost of local processing is by orders of magnitude faster
than message exchanges between peers. Even if the local processing cost were
non-negligible it could be sped up by using a local indexing structure.

Therefore, in the following we consider only the number of message exchanges
in a search process. The main finding is: even in the case a search tree is
extremely unbalanced, the number of messages will remain low, i.e. O(log N),
assuming the peer distribution found in the reference lists is the same as the
global distribution of peers having the corresponding key.

More precisely, for a reference list ref(p,l) of a peer associated with key
key(p) = b1 ...by, there exists a set of peers p' € P, that qualify to occur
within this list. These are the peers p' with key key(p') = b1 ... b—1 b;l, where
b, ' = (1 —1b). We need to make the assumption that the probability to occur
in ref(p,1) is the same for each peer p' € P, ie. Prob(p' € ref(p,l)) = const
for all p' € P. This property is ensured by the step of merging the reference
lists of different peers in the exchange algorithm (see Algorithm 1, line 5-7).

We have not described in detail this step yet. In this step two peers p; and
p2 with reference lists 1 = ref(pl,l) and ro = ref(ps,l) construct from the
two lists two new lists by randomly exchanging the entries of r; and 72. This
needs to be done however with care in order to arrive at the desired distribution,
where each entry occurs with the same probability. Informally, the peers first
each randomly distribute the entries from the set r; U7y among each other, by
maintaining the relative order of the entries. If after that step further entries can
be added, the peers select from each others reference lists as many additional
references as possible, starting from the beginning of the list. Thus some of
the references are replicated. Observing this order of selecting the additional,
replicated entries, implicitely ensures that always the less frequently occurring
entries are replicated first. Therefore the algorithm tends to balance the global
distribution of references.

In order to demonstrate that the algorithm achieves the desired behavior we
give a simluation result. We assume that a population of 32 peers interacts in
exchanging their references. This would correspond to the exchange of references
at level [= 5 when having a total of 1024 peers. Furthermore we assume that
there exist 64 peers that may be referenced, i.e. that 64 peers occur in the
union of all reference lists of the 32 peers. Note, that this is a part of the
search tree that is particularly deep; in a balanced tree one would expect only
32 peers at level 5. The reference lists themselves have maximal length 24. The
mean frequency of the 64 referenced peers possibly occuring in a reference list

is then 12 (also counting references with frequency zero). We start with a Zipf
distribution of the reference frequencies. After about 10 exchange operations
executed by each peer, we arrive at a stable state where the standard deviation of
the frequencies of peers occuring in the reference lists does not further decrease.
This result is shown in Figure 3. One can see that at the beginning the standard
deviation is around 15 and then it drops quickly to a value of around 2.7. More
importantly, the distribution of frequencies of peers occurring in reference lists
has changed from a Zipf distribution to a distribution that closely resembles to
a binomial distribution with mean value 12 (Figure 4). In fact, the standard
deviation for the binomial distribution B(n;prob) with n = 32 and prob = 2%
is 2.74, which is very close to the value obtained in the simulation. prob = 2—4
is the probability for one of the 64 possible references to occur in a reference
list of length 24 and the binomial distribution gives thus the distribution of
frequencies assuming that each reference appears with constant probability.

Figure 3: Decrease of standard deviation of frequencies of references in the
reference lists

We give now the proof of our main claim. For doing this we will make
use of the fact that the peers in the reference lists have constant probability
for occurrence, which as we could see is fairly well achieved by the exchange
algorithm for reference lists.

For proofing the claim we analyze the search process. We consider one
specific key at a leaf node of the search tree. A search for this key starts at
some peer. In each step (going from one bit of the key to the next) either
the peer itself has a matching bit, and therefore no message is required, or a
message has to be sent to another peer, following one of the references stored in
the routing table at the corresponding level. There the same process continues
until the leaf level is reached.

Let us look at the search paths and the number of peers responsible for a
fixed key. At level 0 we have ng = N peers, namely all peers are responsible for
the empty key. Of these peers n; do not match the first bit, whereas ng — n
do. Thus, with probability Z—é a message is required, in order to arrive at a peer

30

25

20

15

10

Figure 4: Frequency distribution of peers in reference lists before and after 400
exchanges

with the first bit matching if a randomly selected peer of the peer population is
selected.

Once this peer is found we look at the next bit. Again ny peers, among the
no — np remaining peers that match the first bit, will not match the second bit.
Since we can assume that the distribution of peers within reference lists is the
same as the global distribution of peers, in other words each peer occurs with
the same constant probability, with probability ﬁ a message is sent to find
a peer matching the bit. We can continue now this process for & steps if the key

has length k. The whole process is illustrated in the Figure 5.

bit matching bit not matching

message

bit k

key match

Figure 5: Search process

Adding up the expected number of messages in each step results in the expected
total number of messages for the search process:

k
D
Nng —...—Nj_
i—1 0 i—1
. .. . k
for an arbitrary sequence of positive numbers ni,...,n; with Y. n; <mng. In

order to estimate the value of the expected number of messages we can proceed
as follows. Each term can be considered as the area of a rectangle. We have
arranged these rectangles as in Figure 6.

f(x) =1/x

1/n0-...-nk-1-nk

/n0-...-nk-1

1/n0-n1
1/n0

nk nk-1 n2 nl no

Figure 6: Deriving an upper bound for the number of expected messages

One can see from this figure, that the rectangles fall exactly under the curve
of the function f(z) = 2. Therefore the total area of the rectangles is smaller
than

no 1
/ — dz = logng — logr
, x

where 7 = ng — Y.¥_ n; > 1. This results in a bound

k
Z B L — < logng =log2 log, V.
— No — ... — N1
i=1
which shows that independently of how the search tree is unbalanced the number
of messages will always remain of order O(log N). This bound is in fact very
tight. For example, it is close to %logz N, which is the expected number of
messages if the search tree were exactly balanced.

11

5 Conclusion

We have shown in this paper that the property of search trees being balanced
is of a quite different relevance if we look at decentralized system environments
and take into account the physical characteristics of them. The result is not
contradicting findings on the impossibility of constructing distributed balanced
search trees [4], rather it relativizes the importance of the question of having
balanced search trees.

Questions for further investigation relate in particular to practical, algorith-
mic problems. For large datasets the algorithm for adapting the tree depth
could operate on representative samples of data objects rather than the whole
dataset a peer holds. This would reduce the bandwidth consumed during the
tree construction phase. Such an approach would however require complemen-
tary methods for disseminating quickly all data objects to their corresponding
peers once the access structure is constructed. Also dynamic settings, where the
tree structure adapts to changing data distributions, are an interesting question
for further study. In this work we have assumed that the tree structure adapts
to the data distribution. However, it would be also of interest to study methods
for adapting to the distribution of the access frequencies, such as proposed in
[3], by using dynamic replication of data objects. This in turn has an impact
on the analysis of the expected number of messages required for searching data
objects.

We are currently integrating the mechanism described in this paper into
the implementation of our prototype P2P content sharing system, Gridella [2],
which we intend to evolve over time into a completely decentralized full-fledged
data management system.

References

[1] K. Aberer, P-Grid: A self-organizing access structure for P2P information
systems Proceedings of the Ninth International Conference on Cooperative
Information Systems (CoopIS 2001), Trento, Italy, 2001.

[2] K. Aberer, M. Punceva, M. Hauswirth, R. Schmid, Improving Data Access
in P2P Systems, IEEE Internet Computing, Jan./Feb. 2002.

[3] P. Cudre-Maroux, K. Aberer, A Decentralized Architecture For Adaptive
Media Dissemination, Proceedings IEEE International Conference on Mul-
timedia and Expo, Lausanne, Switzerland, 2002.

[4] B. Kroll, P. Widmayer Balanced Distributed Search Trees Do Not Exist
WDAS 95, p 50-61, 1995.

[5] C. G. Plaxton, R. Rajaraman, A. W. Richa, Accessing Nearby Copies of
Replicated Objects in a Distributed Environment, Proceedings of the 9th
Annual Symposium on Parallel Algorithms and Architectures, pp. 311-20,
1997.

12

[6] S. Rhea et al. Maintenance-free Global Data Storage, IEEE Internet Com-
puting, vol.5, no.5, Sept./Oct.2001, pp. 40-49.

[7] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan: Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Applications Proceed-
ings of the ACM SIGCOMM, 2001.

13

