
7/6/02

1

StreamCom: Business Analysis and System
Design Specification

(Deliverables: M2, M7)

Technical Report #

IC/2002/037

Pavel Balabko
Hien Dat TRAN
Alain Wegmann

Institute for computer Communications and Applications

Swiss Federal Institute of Technology – Lausanne
EPFL-DSC-ICA

CH-1015 Lausanne, Switzerland

{pavel.palabko@epfl.ch,
alain.wegmann@epfl.ch,

hiendat.tran@epfl.ch}

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902635?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

7/6/02

2

September 2001

7/6/02

3

Table Of Contents

STREAMCOM: BUSINESS ANALYSIS AND SYSTEM DESIGN SPECIFICATION 1
TECHNICAL REPORT V.2 (DELIVERABLES: M2, M7) ... 1
1. INTRODUCTION... 5
2. BUSINESS ANALYSIS SPEC .. 7

2.1. COLLABORATION MODEL.. 7
2.2. COLLABORATION SPEC .. 9

2.2.1. Sell and Get a Service... 9
Sell and Get a Service... 11
Sell and Get a Service Activity Diagram... 12
Sell a Service... 13

Actors in Sell a Service... 15
Get a Service.. 15

Actors in Get a Service ... 17
“StreamCom General Architecture”: an Example of the Business Scenario 19

3. IT SYSTEM DESIGN... 21
Activity Diagram : Choose Service ... 22
Activity Diagram: Buy Online Stream and Ticket Distribution.. 23
Conceptual Model : ClientSystem View-Point ... 24
Conceptual Model : RetailerSystem View-Point .. 26
Conceptual Model : BBystem View-Point .. 28
Conceptual Model : KeyServer View-Point.. 29
Conceptual Model : Ticket... 30

3.1.1. Get a Service ... 31
Activity Diagram : Get a Service in particular .. 31
Pattern of Get a Service .. 32
Conceptual Model : ClientSystem View-Point ... 34
Conceptual Model : ContentSystem View-Point .. 36
Conceptual Model : KeyServer View-Point.. 38
Conceptual Model : BBSystem View-Point.. 40

3.1.2. Payment ... 42
Payment ... 43

4. IT SYSTEM IMPLEMENTATION... 44
4.1. SELL AND GET A SERVICE ... 44

4.1.1. Sell a Service ... 44
Sequence Diagram : Choose a Service .. 44
Sequence Diagram : Buy a Service.. 45
Logical Desgin Class Diagram : Client System View-Point .. 46
Logical Design Class Diagram : RetailerSystem View-Point.. 48
Logical Design Class Diagram : BBSystem View-Point ... 50
Logical Desgin Class Diagram : KeyServer View-Point ... 51
Interfaces in Get a Service.. 52

4.1.2. Get a Service ... 53
Sequence Diagram : Get a Service... 53
Logical Design Class Diagram : ClientSystem View-Point... 54
Logical Design Class Diagram : ContentServer View-Point ... 56
Logical Design Class Diagram : KeyServer View-Point ... 58
Interfaces in Get a Service.. 60

7/6/02

4

4.1.3. Redeem .. 61
Redeem.. 61

7/6/02

5

1.Introduction

This report represents the work of several people within the framework of the StreamCom
project. This work, done together with our colleges from the University of St. Gallen1, covers the
modeling part of StreamCom. The aim of the modeling part of the StreamCom project includes
the following goals (see Figure 1):
• Specify the main business actors, business activities and business environment for the

StreamCom project (done by ICA).
• Specify the Generic Components model for streamed information distribution (done by

MCM).
• Provide a system design that specifies one of the possible system’s behaviors that is based on

the StreamCom Business Analysis and use the StreamCom Generic Component model (done
by ICA).

StreamCom
Business Analysis

Model
(ICA)

Reference Model for
Business Media Platforms

(MCM)

StreamCom
System Design

Spec
(ICA)

StreamCom
Generic

Components
(MCM)

Implementation
P Partner1

Implementation
P Partner2

Implementation
P PartnerN

The Subject of Modeling

StreamCom Model

Component
Interfaces

Role Behavior Spec

Figure 1 Main Modeling Deliverables

1 See: Markus Greunz, Katarina Stanoevska-Slabeva « Generic Components that enable Business Models for Content
Streaming», Universität St. Gallen – Hochschule für Wirtschafts-, Rechts- und Sozialwissenschaften (HSG)

7/6/02

6

The StreamCom Business Analysis Model done by ICA uses generic actors and generic business
actions (or collaborations), represented in the StreamCom Generic Components Model.
According to the General System Theory2, any “system is inseparable from its environment”.
This means that the consideration of the environment of a system is important in understanding
the system itself. That is way one of the main goals of the business analysis is to consider the
environment of systems that can be build on the base of the StraemCom platform. In this work we
have considered the following business actors in the StreamCom environment: Ads Provider,
Stream Owner, Stream Publisher, Monitor Company (see the Section 2.1).

The StreamCom Generic Components part is done by MCM. “Components of a generic business
model can be viewed as a template for specific business models which factors out a set of
assumptions that all specific business models derived from it will have in common while leaving
open some aspects that are to be decided on a case by case basis”

The SteamCom System Design Specification3 describes one of several possible design choices
that can be done based accordingly to StramCom Business Analysis model. The presented here
design corresponds to the implementation of the demonstrator done by programming partners.
The SteamCom System Design Specification complements the Generic Component Model. While
the Generic Components model specifies components for the StreamCom platform, the System
Design model specifies the example of system behavior that can be built using such components.

Let’s also note that this report as well as the report provided by MCM does not specify all the
technical details of implementations provided by StreamCom programming partners.
Specification artifacts allow to understand the overall project ideas and to see how technical
solutions from different partners can be integrated into one system.

This report was automatically was build from the UML model done in the Rational Rose case
tool4. The structure of this report is the following: In section 2 of this report we show the
specification of the StreamCom Business Analysis Model (Deliverable M.2 accordingly to the
plan of the project). In section 3 of this report we show the implementation model (Deliverable
M.7 accordingly to the plan of the project).

2 L. Von Bertalanffy, General System Theory. New York: George Braziller, 1968
3 The System Design specification still can have some minor changes till the end of the project.
4 To get the Rational Rose model please send a request to Pavel Balabko: pavel.balabko@epfl.ch

7/6/02

7

2. Business Analysis Spec

The Business Analysis Specification represents the result of the analysis of several existing
systems dealing with streaming of the information over the Internet and the environment of these
systems. Here we show just only the resulting model that gives the business context for systems
based on the StreamCom framework. For details on the analysis see
http://in3www.epfl.ch/~pbalabko/Projects/StreamCom/AsIsToBeModels.pdf

2.1. Collaboration Model

Business Collaboration Model

Ads Provider
(from Actors)

Sell and publish an original
Stream

(from Sell and Get Service)

Publish Ads
(from Sell and Get Service)

Stream Owner
(from Actors)

Stream
Publisher
(from Actors)

Monitor
Company
(from Actors)

Customer
(from Actors)

KeyServer
(from Actors)

Bandwidth
Broker

(from Actors)

Content Server
(from Actors)

Retailer
(from Actors)

Keep statistics and pay for
copyright

(from Sell and Get Service)

Sell and Get a Service
(from Sell and Get Service)

<<include>>

Retailer Proxy
(from Actors)

7/6/02

8

Glossary

Ads Provider

An Ads Provider provides advertisement to Retailer in order to give it to
Customer

Stream Owner
A Stream Owner owns streams he wants to sell on the market

Stream Publisher
A Stream Publisher prepares streams for reselling

Monitor Company
A Monitoring Company observes all the traffic activity of selling streams

Customer
A Customer is anyone who is interested in getting or previewing a Stream

KeyServer
A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

Bandwidth Broker
A BandWidth Broker BB is responsible for the bandwidth reservation

Content Server
A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

Retailer
A Retailer sells streams (provided by the Content Provider) to Customer

Retailer Proxy
Retailer Proxy goal is to collects offers from different customers and matching
them in an optimal way. This optimization results in SLA/OLAs messages send to
a retailer.

7/6/02

9

2.2. Collaboration Spec

2.2.1. Sell and Get a Service

Documentation:
Purpose:
 The Purpose of this collaboration is to sell a Service from a Retailer to a Member. The
service can be provided in the form of CDs, DVDs or on-line streams.

Participants:
 One Member (Customer) who buys the stream
 One Retailer who sells the Stream
 Retailer Proxy who collects and optimizes customer requests.
 One Content Server who broadcasts the stream (in case of Online Stream)
 One KeyServer who sells keys for security (in case of Online Stream)
 One Bandwidth Broker who reserves for bandwidth requirement (in case of Online
Stream)

Pre-Conditions:
 ServiceCatalog exists
 Credit card number exists

Policies:

The Member should be provided with an on-line stream version of the service when he
buys it on CD or DVD.
Customer can get on-line service just on the specified computer (due to reservation)
A Stream can include ads from the Ads provider
The Bandwidth Broker should reserve required bandwidth for on-line stream.
The Retailer has the right to start a bandwidth reservation
Relationships between Retailer, Content Server, Key Server, Bandwidth Broker exist.

Non-functional Requirements (Security Requirements):
Any exchange of information between Participants should be done in a secure way.
Customer and Retailer should exchange money against ticket using fair-exchange
protocol.
Retailer and Content Server should be able to identify clients that using provided
services illegally.

Post-condition:
 PC1. A Customer became a Member (for the first time only)
 PC2. A Customer got a Service (content and keys).

7/6/02

10

 PC3. A Retailer got money from the Customer.
 PC4. A Content Server, A Key Server and A Bandwidth Broker got money from the
Retailer for co-operatively providing stream content to a customer (by means of
redeeming tickets).
 PC4. A Client got Service Level Agreement (SLA)
 PC5. A Retailer Proxy got Operational Level Agreement (OLA)
 PC6. A KeyServer got a ticket and micro-payments from the client.
 PC7. A Retailer got confirmation of QoS with OLA.

Note: The stream can be copied to the user device like CD, or MP3 player (if the
customer does not have any copy restrictions).

7/6/02

11

Sell and Get a Service

Sell and Get a Service Collaboration

Customer
(from Actors)

Become a Member

Content Server
(from Actors)

Retailer
(from Actors)

KeyServer
(from Actors)

Member
(from Actors)

Get a Service

+service provider

+key provider

+buyer

Sell a Service

+seller

+buyer

Modify a Service

Payment

Bandwidth
Broker

(from Actors)

+BankwidthReservation

Retailer Proxy
(from Actors)

7/6/02

12

Sell and Get a Service Activity Diagram

Sell a Service

Modify Sell a
Service

Get a Service

Payment

Main Activites of Sell and Get a Service

Sign Up as a
Member

Start

End

[modify]

[get service]

[pay for service]

[get service]

[cancel to get service]

[register for the first time]

[already a member]

7/6/02

13

Sell a Service
Documentation:
Purpose:
 The purpose of this collaboration is that a Member gets a Service (on-line stream Ticket
or hard copy) of his choice from a Retailer and pays for it with a credit card. In the case
of an on-line stream, the Member also gets a Ticket and a key that allows him to start the
Video

Parameters:
 Identification information (MemberId and Password, RetailerId, ContentServerId ...)
 Name of the service (video or TV channel)
 Service information
 Bandwidth require
 Payment information (ex: credit card number).

Pre-Conditions:
 ServiceCatalog exists
 Relationships between Retailer, Content Server, Key Server, Bandwidth Broker exist

Post-Conditions:
 A Customer became a member of Retailer (for the first time only)
 A Member got a Ticket and key
 A keyServer got a TicketID (or Ticket)
 A bandwidth reservation is done by Bandwidth Broker
 A Retailer got a reference to the Customer’s paying facilities (credit card, or address for

issuing a bill)
 A customer got hard copy (not mandatory)

Non-functional Requirements (Security Requirements):

Any exchange of information between Participants should be done in a secure way.
Customer and Retailer should exchange money against ticket using fair-exchange
protocol.

Basic Course of Events:

1. [A new Service Provider] registers at Retailer.
2. [Client] Registers in the system.
3. [Retailer] Sends information (Mainly it is some advertisement information, some

bonuses, special offers, based on the UserProfile).
4. [Member] Chooses a service title and type (on-line stream, DVD, CD) and

specifies the number of minutes/views/copies. The Member can see the service
description and preview if necessary.

5. [Client] sends requests SLA message to RetailerProxy.
6. [RetailerProxy] sends a OLR message to Retailer.
7. [Retailer] sends request for QoS accordingly to OLR to BB

7/6/02

14

8. [Bandwidth Broker] Setup bandwidth reservation and sends confirmation message
to Retailer.

9. [Retailer] sends the OLA message to RetailerProxy and price information to
Client

10. [RetailerProxy] sends the SLA message to Client
11. [Client] Enters payment information (credit card number or address for issuing a

bill).
12. [Retailer] create a Ticket and sends a Ticket to Customer.

7/6/02

15

Actors in Sell a Service

Get a Service
Documentation:
Purpose:
 The Purpose of this UC is to get a Service bought in the "Buy a Service" UC and
specified by the TicketId. A customer can get the service in several pieces that are
broadcasted by the Content Server.

Note: A customer can get his Service (stream) in the "hard copy" (in form of CD, DVD
etc). The ticket is not used in that case.

Parameters;
 TicketId
 Ticket, Key

Pre-Conditions:
 Customer had a Ticket and key
 Content server had an Online-Service
 Bandwidth between Content server and Customer is ensured

Post-Conditions:
 Customer got/viewed an On-line Service
 KeyServer got Ticket and Micro-payments
 Bandwidth reservation is deleted

Actors in Sell a Service

Client
(from Actors)

ClientSystem
(from Actors)

RetailerClerk
(from Actors)

RetailerSystem
(from Actors) BBClerk

(from Actors)
BBSystem

(from Actors)

KeyServerClerk
(from Actors)

KeyServerSystem
(from Actors)

Member
(from Actors) Retailer

(from Actors)

Bandwidth Broker
(from Actors) KeyServer

(from Actors)

Sell a Service

+buyer +seller +bandwidth Reservation

Retailer Proxy System
(from Actors)

7/6/02

16

Non-functional Requirements (Security Requirements):

Any exchange of information between Participants should be done in a secure way.
Retailer and Content Server should be able to identify clients that using provided
services illegally.

Main Course of Events:
1. [Customer] Sends the Ticket to the KeyServer of Content Server

2. [Customer] Sends micro-payments to Keyserver

3. [KeyServer] Sends decryption key to Customer

4. [Customer] Receives and decrypts messages (content)

5. Repeats event 2 – 4

[1-5] Content Server broadcasts the content
[1-5] We ISP supports QoS for the Customer

7/6/02

17

Actors in Get a Service
Documentation:

Actors in Get a Service

Client

(from Actors)

ClientSystem

(from Actors)

BBClerk

(from Actors)

BBSystem

(from Actors)
ContentSystem

(from Actors)

ContentClerk

(from Actors)

KeyServerClerk

(from Actors)

KeyServerSystem

(from Actors)

Member

(from Actors)
Bandwidth Broker

(f rom Actors)Content Server

(from Actors)

KeyServer

(from Actors)

Get a Service

+buyer
+BankwidthReservation

+service provider

Payment
Purpose:
 The Purpose of this UC is that the Retailer redeem money to KeyServer, Content Server
and Bandwidth Broker

Parameters;
 The last second half of micropayment token

Pre-Conditions:
 Key Server got Ticket and micro-payment tokens

Post-Conditions:
 KeyServer got money from Retailer
 ContentServer got money from Retailer
 Bandwidth Broker got money from Retailer

Main Course of Events:
1. [KeyServer] Sends the Ticket identifier and the last received micro-payment token to
Retailer.

2. [Retailer] Verifies the Ticket and the last micro-payment token

7/6/02

18

3. [Retailer] Calculates redeem money correspondent to Ticket and the last half token

4. [Retailer] Pays for KeyServer, ContentServer, RetailerProxy and Bandwidth Broker .

Actors in Payment

Actors in Payment

RetailerClerk
(from Actors)

RetailerSystem
(from Actors)

ContentClerk
(from Actors)

ContentSystem
(from Actors)

KeyServerClerk
(from Actors)

KeyServerSystem
(from Actors)

BBClerk
(from Actors)

BBSystem
(from Actors)

Client
(from Actors)

ClientSystem
(from Actors)

Retailer
(from Actors)

Content Server
(from Actors)

KeyServer
(from Actors)

Bandwidth Broker
(from Actors) Member

(from Actors)

Payment

7/6/02

19

“StreamCom General Architecture”: an Example of the
Business Scenario

The following collaboration diagram (instance level) represents a possible scenarios based on “Sell a
service”, “Get a Service” and “Payment” Collaborations. This typical scenario gives the general
understanding of the main StreamCom Systems and the way how these system collaborate together.

:Retailer
System

:Content
Server
System

:Key Server
System

:Client
System

:Bandwidth
Broker
System

:Retailer
Proxy

System

1.
1

re
gi

st
er

Service
provider

2:
 re

gi
st

er
 a

nd
 g

et
 in

fo
rm

at
io

n

Service Broker

1.
4.

 k
ey

s

Ticket Broker

:ISP

4.
1:

 p
ay

m
en

t

4.
2:

 ti
ck

et

3.
1:

S
er

vi
ce

 L
ev

el
 R

eq
ui

re
m

en
ts

 (S
LR

)

CSP

3.
2:

O
pe

ra
tio

na
l L

ev
el

 R
eq

ui
re

m
en

ts
 (

O
LA

)

3.
6:

S
er

vi
ce

 L
ev

el
 A

gr
ee

m
en

t (
S

LA
)

3.
5:

O
pe

ra
tio

na
l L

ev
el

 A
gr

ee
m

en
t (

O
LA

)

QoS Broker

End Customer

a.
1:

 s
et

up
 r

ou
te

r

3.
3*

 [f
or

 e
ac

h]
:

re
qu

es
t

Q
oS

 a
cc

or
di

ng
 to

 O
LR

3.
4*

: c
on

fir
m

 Q
oS

 w
ith

O
LA

content

Content Server

Ticket Broker

User

5.1: ticket
5.2*: [while not finished] micropayments

 a.2: content

5.3*: keys

6.
1.

 u
se

d
tic

ke
t

6.
2.

 P
ay

m
en

t f
or

 th
e

pr
ov

id
ed

 s
er

vi
ce

1.
2

se
gm

en
ta

tio
n

in
fo

rm
at

io
n

1.
3

ad
dr

es
se

s

service
provider

Client

7/6/02

20

The following collaboration diagram (specification level) specifies the main business systems, they
relations and cardinalities.

Retailer
System

Content
Server
System

Key Server
System

Client
System

Bandwidth
Broker
System

Retailer
Proxy

Service
provider

service
broker 1

1.
4.

 k
ey

s

ticket broker 1

ISP

CSP 1

QoS Broker *

End
Customer *

Content
Server 1

ticket broker 1

User *

content
server *

Client *

service
broker 1

isp 1

isp *

key server *

isp *

key server *

ticket broker 1

key
server 1

7/6/02

21

3. IT System Design

The System Design in the StreamCom project (see Figure 2) represents the composition of 5 subsystems
implemented by different programming partners. The specification of each subsystem includes the behavior
(done with activity diagrams here) and state (done with class diagrams here) specifications.

Figure 2 System in StreamCom Project

ClientSystem
(from Sell and Get a Service)

RetailerSystem
(from Sell and Get a Service)

KeyServerSystem
(from Sell and Get a Service)

ContentServerSystem
(from Sell and Get a Service)

RetailerProxySystem
(from Sell and Get a Service)

BBSystem
(from Sell and Get a Service)

System
(from Sell and Get a Service)

7/6/02

22

Activity Diagram : Choose Service

Sta
rt

en
d

enter MemberID
and Password

Enter Search
Criteria

Choose type of Stream
(Online/VCD/CD) and other infomation

Choose a Service to
view Details or to buy

start Payment and get
Ticket

send to Retailer

receive and
show

send Searching
request

receive Search
result and show

send Request

receive1

buy send Buy
Request

receive and
show

accept

choose another
service

in the first
interaction we have

verify MemberID
and Password

validation

build Search Page
Information (and Ads)

build preview

Lookup and Build
Details view

Calculate Amount to pay
and create Selling pay

Choose and Buy Service

receive memberID
and Password

send to Client

receive lookup in
Database

send result

start bandWidth
Reservation

receive
Request

send

reveive1

send 1

Describes in
Another Diagram

send reservation
infomation

reveive1

receive info

Set up Bandwidth
Reservation

send confirm

no yes

yes

no

yes

no

no
yes

:Bandwidth Broker:RetailerSystem:ClientSystem

7/6/02

23

Activity Diagram: Buy Online Stream and Ticket Distribution

Start

end

generateMicroPayment
(w[0],...,w[n])

sendMicroPay
ment(n,w[0])

start payment and enter
credit card number

receive and show
Confirmation

receive

send

Save Ticket T
va key k

This ticket is not useable until
User pay for the Service

generate Session
Key k

generate Ticket T

send Ticket and
Key (T,k)

Buy Online Stream and Ticket Distribution

receive

receive

send
confirmation

:RetailerSystem :ClientSystem

7/6/02

24

Conceptual Model : ClientSystem View-Point
Conceptual Model :
ClientSystem View-Point > Buy a Service

BuyServiceParameters

time
date

(from Classes)

On-line Service

bandWidth
(from Classes)

MySelf
(from Classes)

User

userID
password

(from Classes)
Retailer

retailerID
name

(from Actors)

* 1* 1

own

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

1

*

1

*

isFor

LoginTxn
(from Classes)

11 11 1* 1*

as

Service

serviceID
price
title
description

(from Classes)

1

*

1

*

o w n

ExchangeTicketAgainstMoneyTxn

date
(from Classes)

11 11

get

BuyServiceTxn

date
totalPrice
numberOfService

(from Classes)

0..1

1

0..1

1

create

** **

buy

0..1

1

0..1

1

create

Glossary

BuyServiceParameters

Concept representing some information when buy a Service
On-line Service

Concept representing a Service in form of an Online Service
MySelf

User

Concept representing one User of the System, i.e. a Member
Retailer

A Retailer sells streams (provided by the Content Provider) to Customer
Ticket

Concept representing a ticket that is used to get an online Service
LoginTxn

Concept representing information regarding the action of a Customer login on the
System

7/6/02

25

Service
Concept representing any kind of Service

ExchangeTicketAgainstMoneyTxn
Concept representing information regarding the action of buying Ticket for an
online service

BuyServiceTxn
Concept representing information regarding the action of buying Services

7/6/02

26

Conceptual Model : RetailerSystem View-Point
Conceptual Model :
RetailerSystem View-Point > Sell a Service

SellServiceParameter

nbMinutes
date
time

(from Classes)

ServiceCatalog
(from Classes)

SellServiceHistory
(from Classes)

Service

serviceID
price
title
description

(from Classes)

*1 *1

l ists

MySelf
(from Classes)

1

1

1

1

has

11 11

has

On-line Service

bandWidth
(from Classes)

Bandwidth Broker
(from Actors)

BandWidthReservation

date
time
bandWidth
srcAddr
srcPort
destAddr
destPort

(from Classes)

UserCatalog
(from Classes)

1

1

1

1

has

SellServiceTxn

date
totalPrice
numberOfService

(from Classes)*

1

*

1

list

** **

sel l

1

1

1

1

current

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

*

1

*

1

isFor

KeyServer

keyServerID
name

(from Actors)

BandWidthReservationTxn

date
time
status

(from Classes)

1* 1*

request

1

1

1

1
for

0..1

1

0..1

1

creates

User

userID
password

(from Classes)

*1 *1

list

1

*

1

*

for

TicketDistributionTxn

date
(from Classes)

0..1

1

0..1

1

create

1

*

1

* distribute Ticket

0..1

1

0..1

1

create

1

*

1

*

distribute Ticket

Glossary

SellServiceParameter

Concept representing the different way a Service can be bought, i.e. payment per
views, payment per time and payment per copy

ServiceCatalog

7/6/02

27

Concept representing all ServiceSpecs
SellServiceHistory

Concept representing all past Sell Service Transactions
Service

Concept representing any kind of Service
MySelf

On-line Service

Concept representing a Service in form of an Online Service
Bandwidth Broker

A BandWidth Broker BB is responsible for the bandwidth reservation
BandWidthReservation

Concept representing the bandwidth reserve for an on line service
UserCatalog

Concept representing all User concepts
SellServiceTxn

Concept representing information regarding the action of selling one or several
Services

Ticket
Concept representing a ticket that is used to get an online Service

KeyServer
A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

BandWidthReservationTxn
Concept representing information regarding the action of reserving the bandWidth

User
Concept representing one User of the System, i.e. a Member

TicketDistributionTxn
Concept representing information regarding the action of distributing the Ticket

7/6/02

28

Conceptual Model : BBystem View-Point
Conceptual Model Sell a service :
BandWidth Broker View-Point > Buy a Service > BandWidth Reseration

Policy(RetailerList)
(from Classes)

ReservationList

resID
status

(from Classes)

Myself(BBSystem)
(from Classes)

1

1

1

1

has

1

1

1

1

has

Retailer

retailerID
name

(from Actors)

*1 *1

list

BandWidthReservation

date
time
bandWidth
srcAddr
srcPort
destAddr
destPort

(from Classes)

*1 *1

Admission Control
(from Classes)

11 11

*

1

*

1

request

1

1

1

1

for

Glossary

Policy(RetailerList)

Concept representing all Retailer that has administrative permission to make
reservation

ReservationList
Concept representing all BandWidth Reservation

Myself(BBSystem)

Retailer
A Retailer sells streams (provided by the Content Provider) to Customer

BandWidthReservation
Concept representing the bandwidth reserve for an on line service

Admission Control
Concept representing the action of setup Bandwidth Reservation

7/6/02

29

Conceptual Model : KeyServer View-Point

Conceptual Model :
KeyServer View-Point > Buy a Service >Get Ticket

Retailer

retailerID
name

(from Actors)

On-line Service

bandWidth
(from Classes)

GetTicketTxn
(from Classes)

1* 1*

fromMySelf
(from Classes)

11 11

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

1

*

1

*

created by

* 1* 1

isFor

1

1

1

1

get

TicketCatalog
(from Classes)

1

1

1

1

has

*1 *1

list

Glossary

Retailer

A Retailer sells streams (provided by the Content Provider) to Customer
On-line Service

Concept representing a Service in form of an Online Service
GetTicketTxn

Concept representing information regarding the action of getting Ticket that is
stand for money

MySelf

Ticket
Concept representing a ticket that is used to get an online Service

TicketCatalog
Concept representing all current Ticket of KeyServer

7/6/02

30

Conceptual Model : Ticket

KeyServer

keyServerID
name

(f rom Actors)

Retailer

retailerID
name

(from Actors)

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(f rom Classes)

*

1

*

1used at

*

1

*

1

created by

On-line Service

bandWidth
(from Classes)

*1 *1

isFor

Conceptual Model for Ticket

Glossary

KeyServer

A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

Retailer
A Retailer sells streams (provided by the Content Provider) to Customer

Ticket
Concept representing a ticket that is used to get an online Service

On-line Service
Concept representing a Service in form of an Online Service

7/6/02

31

3.1.1. Get a Service

Activity Diagram : Get a Service in particular

sta
rt

request DecryptionKey
(keyID, Token w[i])

request Online
Service i-th

decrypts
Broadcast with k[i]

display

continues

SendTicket T

receive

receive

receive

decrypts and show
confirmation

decrypts to
get key k[i]

send the last
second half

end

verify Ticket T

verifyMicropaym
ent w[i]

generateSessi
onKey k[i]

Get an Online Service in particular

receive

receive

store Ticket

decrypts the
session key k

send confirmation
encrypted by key k

send

save lastest
token w[i]

receive

send k[i]
encrypted with k

save

send

receive

receive

encrypts
Message with k[i]

broadcast encrypted
message to IP multicast

decrypts to
get key k[i]

receive and
start Redeem

yes

no

no

:ContentServer:KeyServer:Client

7/6/02

32

Pattern of Get a Service
Pattern of Get a Service

check Ticket for using

Ticket
(f rom Classes)

MessageKey
(from Classes)

KeyDistribution

Message
(f rom Classes)

BroadCast Online Service

ChangeTicketForKeyTxn
(from Classes)

Member

(from Actors)

GetServiceTxn

date
(from Classes)

Content Server

(from Actors)

GetKeyTxn
(from Classes)

Bandwidth
Broker

(from Actors)

BroadcastServiceTxn
(from Classes)

KeyServer

(from Actors)

SellKeyTransaction
(from Classes)

Glossary

Ticket

Concept representing a ticket that is used to get an online Service
MessageKey

Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

Message
Concept representing a message that is a part of an Online Service

ChangeTicketForKeyTxn
Concept representing information regarding the action of change Ticket for Key
that is used to decrypt the online Service

Member

7/6/02

33

GetServiceTxn
Concept representing information regarding the action of getting a message that is
a part of an Online Servie

Content Server
A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

GetKeyTxn
Concept representing information regarding the action of getting key that is used
to encrypt message before broadcasting

Bandwidth Broker
A BandWidth Broker BB is responsible for the bandwidth reservation

BroadcastServiceTxn
Concept represent information regarding the action of encrypting and
broadcasting a message of an Online Service

KeyServer
A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

SellKeyTransaction
Concept representing information regarding the action of selling key that is used
to encrypt or decrypt a message of an online service

7/6/02

34

Conceptual Model : ClientSystem View-Point
Conceptual Model :Get a Service
ClientSystem View-Point > Get an Online Service

Content Server
(from Actors)

Message

data
(from Classes)

On-line Service

bandWidth
(from Classes)

1. .*

1

1. .*

1

owns

*

1

*

1

divide intoKeyServer

keyServerID
name

(from Actors)
GetServiceTxn

date
(from Classes)

*

1

*

1

gets

MessageKey
(from Classes)

11 11

decrypted with
*

1

*

1

create 1

1

1

1

uses

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

1* 1*

isFor

ChangeTicketForKeyTxn
(from Classes)

1 *1 *

request

0..11 0..11

create

1

1

1

1

gets

1

*

1

*

uses

MySelf
(from Classes)

11 11

o w n

1

1

1

1

initates

Glossary

Content Server

A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

Message
Concept representing a message that is a part of an Online Service

On-line Service
Concept representing a Service in form of an Online Service

KeyServer
A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

GetServiceTxn
Concept representing information regarding the action of getting a message that is
a part of an Online Servie

7/6/02

35

MessageKey
Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

Ticket
Concept representing a ticket that is used to get an online Service

ChangeTicketForKeyTxn
Concept representing information regarding the action of change Ticket for Key
that is used to decrypt the online Service

MySelf

7/6/02

36

Conceptual Model : ContentSystem View-Point
Conceptual Model : BroadCast Online Service
Content View-Point > BroadCast Online Service

MySelf
(from Classes)

On-line Service

bandWidth
(from Classes)

*1 *1

own

KeyServer

keyServerID
name

(from Actors)

User

userID
password

(from Classes)

GetKeyTxn
(from Classes)

1 *1 *

ask

start

Message

data

(from Classes)

1

*

1

*

divide into

MessageKey
(from Classes)

1

*

1

*

create

1 11 1

encrypt with

1

1

1

1

get

BroadcastServiceTxn
(from Classes)

*

1

*

1

to

create

*

1

*

1

1

1

1

1

use

Glossary

MySelf

On-line Service

Concept representing a Service in form of an Online Service
KeyServer

A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

User
Concept representing one User of the System, i.e. a Member

GetKeyTxn
Concept representing information regarding the action of getting key that is used
to encrypt message before broadcasting

Message
Concept representing a message that is a part of an Online Service

MessageKey

7/6/02

37

Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

BroadcastServiceTxn
Concept represent information regarding the action of encrypting and
broadcasting a message of an Online Service

7/6/02

38

Conceptual Model : KeyServer View-Point

PublicKey
(from Classes)

PrivateKey
(from Classes)

Conceptual Model : Get a Service
 KeyServer View-Point > Get Online Service > Sell Keys

User

userID
password

(from Classes)

MessageKey
(from Classes)

Content Server
(from Actors)

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

TicketCatalog
(from Classes)

1 *1 *

SellKeyTransaction
(from Classes)

1

*

1

*

sell for

* 1* 1

create

1

*

1

*
sell for

1

1

1

1

with

MySelf
(from Classes)

11 11

has

1

1

1

1

start

Glossary

PublicKey

Concept representing public key that is used to encrypt the message
PrivateKey

Concept representing public key that is used to encrypt the message
User

Concept representing one User of the System, i.e. a Member
MessageKey

Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

Content Server
A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

Ticket
Concept representing a ticket that is used to get an online Service

TicketCatalog
Concept representing all current Ticket of KeyServer

SellKeyTransaction

7/6/02

39

Concept representing information regarding the action of selling key that is used
to encrypt or decrypt a message of an online service

MySelf

7/6/02

40

Conceptual Model : BBSystem View-Point
Conceptual Model Get a Service : BBSystem View-Point

BandWidthReservation

date
time
bandWidth
srcAddr
srcPort
destAddr
destPort

(from Classes)

ReservationList

resID
status

(from Classes)

*1 *1

Policy(RetailerList)
(from Classes)

On-line Service

bandWidth
(from Classes)

Routing Protocol
(from Classes)

Entry

IPAddress
bandWidth

(from Classes)

conresponds

Myself(BBSystem)
(from Classes)

11 11

has

1

1

1

1

has

Message

data
(from Classes)

1

*

1

*

divide into

Routing Table
(from Classes)

Router

ipAddress
name

(from Classes)

includes

includes

has

transmits

has

Glossary

BandWidthReservation

Concept representing the bandwidth reserve for an on line service
ReservationList

Concept representing all BandWidth Reservation
Policy(RetailerList)

Concept representing all Retailer that has administrative permission to make
reservation

7/6/02

41

On-line Service
Concept representing a Service in form of an Online Service

Routing Protocol
Concept representing rounting protocol using in a router

Entry

Myself(BBSystem)

Message
Concept representing a message that is a part of an Online Service

Routing Table

Router

7/6/02

42

3.1.2. Payment

Payment

Member

(from Actors)

charge money

M = Mr + Mc + Mk + Mb

Content Server

(from Actors)

payment for Content

get money

Mc

KeyServer

(from Actors)

Payment for key

Mk

pqy

get money
Retailer

(from Actors)

get money

pqy

pay

Bandwidth Broker

(from Actors)

payment for Bandwidth

pay

get money

Mb

Payment Collaboration

 M = Mr + Mc + Mk + Mb

Mr = Money for Retailer
Mc = Money for Content Server
Mk = Money for Key Server
Mb = Money for Bandwidth Broker

7/6/02

43

Payment

start

require redeem
T, w[last]

send T,
w[last]

receive
money

verify (T,
w[last])

calculate
money redeem

send redeem
for keyserver

send redeem for
ContentServer

send redeem for
Bandwidth Broker

recieve

end

receive
money

receive
money

:BandwidthBroker:ContentServer:Retailer:KeyServer

7/6/02

44

4.IT System Implementation

4.1. Sell and Get a Service
4.1.1. Sell a Service

Sequence Diagram : Choose a Service

 : Client

:ClientSytem
(BuyServiceTxn)

:RetailerSystem
(SellServiceTxn)

:Bandwidth Broker

enter MemberID and password

verify

build Search page

page

enter Search Criteria

lookup and build preview

view Details a service

lookup and build details

buy

reservate bandwidth

setup bandwidth reservation

calculate Price

7/6/02

45

Sequence Diagram : Buy a Service

 : Client

:ClientSystem
(ExchangeTicketAgaintMoneyTxn)

TicketDistributionTxn
: Retailer

:KeyServer
(GetTicketTxn)

:BankSystem

payment information

(w[]..w[n])= generateMicroPayments()

n,w[0]

k=generateKey()

generateTicket()

(k,T)

Payment and Ticket distribution

payment information

check solvency(payment info)

save(ticketID)

confirmation

confirmation

confirmation

7/6/02

46

Logical Desgin Class Diagram : Client System View-Point

Logical Design Class Diagram :
ClientSystem View-Point > Buy a Service

BuyServiceParameters

time
date

(from Classes)

On-line Service

bandWidth

getBandWidth()

(from Classes)

MySelf
(from Classes)

User

userID
password

checkPassword()
checkUser()
insertUser()
findByPrimaryKey()

(from Classes)

Retailer

retailerID
n a m e

(from Actors)

* 1* 1

own

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

1

*

1

*

isFor

LoginTxn

sendLoginInfo()
startBuyServiceTxn()

(from Classes)

11 11 1* 1*

a s

Service

serviceID
price
title
description

findBySearching()
getService()
findByPrimaryKey()

(from Classes)

1

*

1

*

own

ExchangeTicketAgainstMoneyTxn

date

sendTicket()
getTicket()
createMicroPayment()

(from Classes)

11 11

get

BuyServiceTxn

date
totalPrice
numberOfService

getChosenIds()
sendingSearchingRequest()
receiveAndShowSearchingRequest()
sendingViewDetails()
receiveAndShowDetails()
sendBuyingRequest()
receiveAndShowPrice()
startExchangTicketAgainstMoney()

(from Classes)

0..1

1

0..1

1

create

** **

buy

0..1

1

0..1

1

create

Glossary

BuyServiceParameters

Concept representing some information when buy a Service
On-line Service

Concept representing a Service in form of an Online Service
MySelf

User

Concept representing one User of the System, i.e. a Member
Retailer

A Retailer sells streams (provided by the Content Provider) to Customer
Ticket

7/6/02

47

Concept representing a ticket that is used to get an online Service
LoginTxn

Concept representing information regarding the action of a Customer login on the
System

Service
Concept representing any kind of Service

ExchangeTicketAgainstMoneyTxn
Concept representing information regarding the action of buying Ticket for an
online service

BuyServiceTxn
Concept representing information regarding the action of buying Services

7/6/02

48

Logical Design Class Diagram : RetailerSystem View-Point

Logical Design Class Diagram :
Retailer View-Point > Sell a Service

SellServiceParameter

nbMinutes
date
time

save()
getSellServiceTxnIds()
getServiceIds()

(from Classes)

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(f rom Classes)

KeyServer

keyServerID
n a m e

(from Actors)

On-line Service

bandWidth

getBandWidth()

(from Classes)

*

1

*

1

isFor

Bandwidth Broker
(from Actors)

ServiceCatalog
(from Classes)

UserCatalog
(from Classes)

TicketDistributionTxn

date

receiveMicroPayment()
createKey()
sendTicket()
sendKey()
reveicePayment()
checkSolvency()
receiveConfirm()
sendConfirm()

(from Classes)

0..1 10..1 1
create

1* 1*

distribute Ticket

SellServiceHistory
(from Classes)

Service

serviceID
price
title
description

findBySearching()
getService()
findByPrimaryKey()

(from Classes)

*1 *1

lists

BandWidthReservationTxn

date
time
status

flowDesc()
checkStatus()
setSrc()
setDesc()

(from Classes)

1

*

1

*

request

0..1

1

0..1

1

create

MySelf
(from Classes)

1

1

1

1

has

11 11

h a s

1

1

1

1

has

User

userID
password

checkPassword()
checkUser()
insertUser()
findByPrimaryKey()

(from Classes)

*1 *1

list

1

*

1

*

distribute Ticket

SellServiceTxn

date
totalPrice
numberOfService

getChoenServiceIds()
addService()
removeService()
calculateTotalPrice()
startExchangeTicket()
setUser()
createtransaction()
saveTransaction()
addServieId()

(from Classes)

*

1

*

1

list

** **

sel l

0..1

1

0..1

1

creates

1

1

1

1

current

1

*

1

*

Glossary

SellServiceParameter

Concept representing the different way a Service can be bought, i.e. payment per
views, payment per time and payment per copy

Ticket
Concept representing a ticket that is used to get an online Service

KeyServer

7/6/02

49

A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

On-line Service
Concept representing a Service in form of an Online Service

Bandwidth Broker
A BandWidth Broker BB is responsible for the bandwidth reservation

ServiceCatalog
Concept representing all ServiceSpecs

UserCatalog
Concept representing all User concepts

TicketDistributionTxn
Concept representing information regarding the action of distributing the Ticket

SellServiceHistory
Concept representing all past Sell Service Transactions

Service
Concept representing any kind of Service

BandWidthReservationTxn
Concept representing information regarding the action of reserving the bandWidth

MySelf

User
Concept representing one User of the System, i.e. a Member

SellServiceTxn
Concept representing information regarding the action of selling one or several
Services

7/6/02

50

Logical Design Class Diagram : BBSystem View-Point

Logical Design Class Diagram :
BBSystem View-Point > Buy a Service > Bandwidth Reservation

Policy(RetailerList)
(from Classes)

ReservationList

resID
status

(from Classes)

Myself(BBSystem)
(from Classes)

1

1

1

1

has

1

1

1

1

has

Retailer

retailerID
name

(from Actors)

*1 *1

list

BandWidthReservation

date
time
bandWidth
srcAddr
srcPort
destAddr
destPort

(from Classes)

*1 *1

Admission Control

checkBandWidth()
receiveRequest()
setupBandWidth()
sendConfirm()

(from Classes)

11 11

*

1

*

1
request

1

1

1

1

for

Glossary

Policy(RetailerList)

Concept representing all Retailer that has administrative permission to make
reservation

ReservationList
Concept representing all BandWidth Reservation

Myself(BBSystem)

Retailer
A Retailer sells streams (provided by the Content Provider) to Customer

BandWidthReservation
Concept representing the bandwidth reserve for an on line service

Admission Control
Concept representing the action of setup Bandwidth Reservation

7/6/02

51

Logical Desgin Class Diagram : KeyServer View-Point

Retailer

retailerID
name

(from Actors)

On-line Service

bandWidth

getBandWidth()

(from Classes)

GetTicketTxn

receiveTicket()
saveTicket()
sendConfirm()

(from Classes)

1* 1*

fromMySelf
(from Classes)

11 11

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(f rom Classes)

1

*

1

*

created by

* 1* 1

isFor

1

1

1

1

get

TicketCatalog
(from Classes)

1

1

1

1

has

*1 *1

list

Logical Design Class Diagram :
KeyServer View-Point > Buy a Service >Get Ticket

Glossary

Retailer

A Retailer sells streams (provided by the Content Provider) to Customer
On-line Service

Concept representing a Service in form of an Online Service
GetTicketTxn

Concept representing information regarding the action of getting Ticket that is
stand for money

MySelf

Ticket
Concept representing a ticket that is used to get an online Service

TicketCatalog
Concept representing all current Ticket of KeyServer

7/6/02

52

Interfaces in Get a Service

buy Service <Interface>

getChosenIds()
sendingSearchingRequest()

receiveAndShowSearchingRequest()
sendingViewDetails()

receiveAndShowDetails()
sendBuyingRequest()

receiveAndShowPrice()
startExchangTicketAgainstMoney()

Member
(from Actors)

<<Actor>>

ExchangticketAgainstMo
ney <Interface>

sendTicket()
getTicket()

createMicroPayment()

KeyServer

keyServerID
name

(from Actors)

<<Actor>>

GetTicket

receiveTicket()
saveTicket()

sendConfirm()

Choose Service
(from Sell and Get a Service)

Bandwidth Reservation

(from Sell and Get a Service)

Sell Service <Interface>

getChoenServiceIds()
addService()

removeService()
calculateTotalPrice()
startExchangeTicket()

setUser()
createtransaction()
saveTransaction()

addServieId()

Ticket Distribution
<Interface>

receiveMicroPayment()
createKey()
sendTicket()

sendKey()
reveicePayment()
checkSolvency()
receiveConfirm()
sendConfirm()

Retailer

retailerID
name

(from Actors)

<<Actor>>

Bandwidth Reservation
<Interface>

flowDesc()
checkStatus()

setSrc()
setDesc()

Bandwidth Broker
(from Actors)

<<Actor>>

Ticket Distribution

(from Sell and Get a Service)

Reservation
<Interface>

checkBandWidth()
receiveRequest()
setupBandWidth()

sendConfirm()

Interfaces in Sell Service

7/6/02

53

4.1.2. Get a Service

Sequence Diagram : Get a Service

 : Client

:ClientSystem :KeyServer :ContentServer :IPMulticast

startVideo(ticketID)
sendTicket(T)

verifyTicket(T)

verifyMicroPayment(w[j])

DecryptionKey

getBroadCast[i]

createSessionKey()

encryptionKey

encrypt B[i]

decryptBroadcast(B[i])

display(B[i])

Get a Service

getDecryptionKey(keyId,w[j)]

store Ticket

k = decryptsTheSessionKey()

confirmation

decrypts and show confirmation

save(w[j])

decrypts to get key k[j]

encrypted by
key k

stop
the last second-half

send last second-half

repeat many
times

@

back to @

encrypted by
key k

broadCast B[i]

broadCast B[i]

Verifies :
_Identifier of Content Server
_Expiration time of the tiket
_Signature of the Retailer
_Ticket is not used

7/6/02

54

Logical Design Class Diagram : ClientSystem View-Point

Content Server
(from Actors)

Message

data
(from Classes)

On-line Service

bandWidth

getBandWidth()

(from Classes)

1. .*

1

1..*

1

owns

*

1

*

1

divide intoKeyServer

keyServerID
name

(from Actors)

GetServiceTxn

date

requestService()
getService()
decryptService()
displayService()

(from Classes)

*

1

*

1

gets

MessageKey
(from Classes)

11 11

decrypted with
*

1

*

1

create
1

1

1

1

uses

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(from Classes)

1* 1*

isFor

ChangeTicketForKeyTxn

sendTicket()
receiveAndDecryptConfirm()
requestSessionKey()
getSessionKey()
sendLastMicroPayment()

(from Classes)

1 *1 *

request

0..11 0..11

create

1

1

1

1

gets

1

*

1

*

uses

MySelf
(from Classes)

11 11

own

1

1

1

1

initates

Logical Design Class Diagram :
Client View-Point > Get an Online-Service

Glossary

Content Server

A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

Message
Concept representing a message that is a part of an Online Service

On-line Service
Concept representing a Service in form of an Online Service

KeyServer
A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

GetServiceTxn

7/6/02

55

Concept representing information regarding the action of getting a message that is
a part of an Online Servie

MessageKey
Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

Ticket
Concept representing a ticket that is used to get an online Service

ChangeTicketForKeyTxn
Concept representing information regarding the action of change Ticket for Key
that is used to decrypt the online Service

MySelf

7/6/02

56

Logical Design Class Diagram : ContentServer View-Point

MySelf
(from Classes)

On-line Service

bandWidth

getBandWidth()

(from Classes)

*1 *1

own

KeyServer

keyServerID
name

(from Actors)

User

userID
password

checkPassword()
checkUser()
insertUser()
findByPrimaryKey()

(from Classes)

GetKeyTxn

getKey()
decryptKey()

(from Classes)

1 *1 *

ask

start

Message

data

(from Classes)

1

*

1

*

divide into

MessageKey
(from Classes)

1

*

1

*

create

1 11 1

encrypt with

1

1

1

1

get

BroadcastServiceTxn

encryptMessage()
broadCastMessage()

(from Classes)

*

1

*

1

to

create

*

1

*

1

1

1

1

1

use

Logical Design Class Diagram : Get a Service
ContentServer View-Point > BroadCast Online Service

Glossary

MySelf

On-line Service

Concept representing a Service in form of an Online Service
KeyServer

A Key Server works like a Digital Rigth Manager. It is responsible for the digital
keys distribution used for encrypting and decrypting online streams

User
Concept representing one User of the System, i.e. a Member

GetKeyTxn
Concept representing information regarding the action of getting key that is used
to encrypt message before broadcasting

Message
Concept representing a message that is a part of an Online Service

7/6/02

57

MessageKey
Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

BroadcastServiceTxn
Concept represent information regarding the action of encrypting and
broadcasting a message of an Online Service

7/6/02

58

Logical Design Class Diagram : KeyServer View-Point

PublicKey
(from Classes)

PrivateKey
(from Classes)

User

userID
password

checkPassword()
checkUser()
insertUser()
findByPrimaryKey()

(from Classes)

MessageKey
(from Classes)

Content Server
(from Actors)

Ticket

ticketID
expTime
tokenValue
retailerSignature
w0
n
date
time

(f rom Classes)

TicketCatalog
(from Classes)

1 1..*1 1..*

SellKeyTransaction

getTicket()
verifyTicket()
saveTicket()
getMicroPayment()
verifyMicroPayment()
generateSessionKey()
saveLastestMicroPayment()
sendSessionKey()

(from Classes) 1

*

1

*

sell for

* 1* 1

create

1

*

1

* sell for

1

1

1

1

with

MySelf
(from Classes)

h a s

1

1

1

1

start

Logical Desgin Class Diagram : Sell Keys
KeyServer View-Point > Get Online Service > Sell Keys

Glossary

PublicKey

Concept representing public key that is used to encrypt the message
PrivateKey

Concept representing public key that is used to encrypt the message
User

Concept representing one User of the System, i.e. a Member
MessageKey

Concept representing key to decrypt or encrypt a message that is a part of an
Online Service

Content Server
A Content Server disseminates service to Customer by broadcasting encrypted
message which is a part of a stream

Ticket
Concept representing a ticket that is used to get an online Service

TicketCatalog
Concept representing all current Ticket of KeyServer

SellKeyTransaction

7/6/02

59

Concept representing information regarding the action of selling key that is used
to encrypt or decrypt a message of an online service

MySelf

7/6/02

60

Interfaces in Get a Service

KeyServer

keyServerID
name

(from Actors)

<<Actor>>

Distribute Keys <interface>

getTicket()
verifyTicket()
saveTicket()

getMicroPayment()
verifyMicroPayment()

generateSessionKey()
saveLastestMicroPayment()

sendSessionKey()

getKey
<interface>

getKey()
decryptKey()

KeyDistribution

(from Sell and Get a Service)

changTiketfor Key <interface>

sendTicket()
receiveAndDecryptConfirm()

requestSessionKey()
getSessionKey()

sendLastMicroPayment()

Content Server
(from Actors)

<<Actor>>

disserminate Service
<interface>

encryptMessage()
broadCastMessage()

Member
(from Actors)

<<Actor>>

BroadCast Online Service

(from Sell and Get a Service)

get Online <interface>

requestService()
getService()

decryptService()
displayService()

Interfaces in Get a Service

7/6/02

61

4.1.3. Redeem

Redeem

:KeyServer :Retailer :ContentServer :Bandwidth
Broker

T, w[¨last]
verify

payment

payment

payment

calculate redeem

Sequence Diagram : Redeem process

