
 1

Review of Content Languages Suitable for Agent-
Agent Communication1

Luis Botelho
luis.botelho@iscte.pt

ADETTI

Steven Willmott
steven.willmott@epfl.ch

EPFL

Tianning Zhang
zhang@agentscape.de

Agentscape

Jonathan Dale
jonathan.dale@fla.fujitsu.com

Fujitsu Laboratories of America

Abstract

This technical report provides an evaluation of several possible languages and semantic formalisms that
could be used in agent communication to play the role of a content language in the EU
Agentcities.RTD project. The conclusions and background information may however be useful for
agent developers more generally.

This document includes a description of candidate languages, a list of criteria applied, evaluations of
the five candidate languages and a final evaluation. The five candidate languages were DAML+OIL,
ebXML, FIPA-SL, KIF and Prolog and the choice made for the EU Agentcities.RTD project was to
develop services in KIF, FIPA-SL or both. Furthermore it is expected that the number and type of
content language used in the EU Agentcities.RTD project will evolve over time as tests are carried out.

The review process which led to the authoring of this document was carried out in the context of the
Agentcities.RTD IST funded project (IST-2000-28385) and we would like to thank all project partners
who contributed to it. The opinions expressed in this paper are those of the authors and are not
necessarily those of the EU Agentcities.RTD partners.

1 Version 2.0, 25 May, 2002.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902633?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

1 Introduction
Within an agent cooperation framework, the content language provides a key layer for exchanging
data and knowledge among agents. Message contents coded in the content languages are interpreted by
the agents within the context and constraints specified by other message components. Content
processing offers the major mechanism for flexible and intelligent agent interactions based on
exchanging and sharing of domain-specific, application-relevant agent knowledge.

Theoretically, many programming and knowledge representation languages can be used to code the
agent communication contents. However, different languages, with their specific theoretical bases and
targeted application areas, have heterogeneous levels of expressiveness, complexity, and available
support from the agent community or development/deployment platforms.

Generally speaking, an expressive content language can help to enhance the flexibility of agent
cooperation relations by encoding wider range of relevant information and knowledge. On the other
hand, the complexity of implementation and understanding, which can be associated to an expressive
language, can significantly influence the acceptability and usability of the solution in some application
contexts. Moreover, support from popular platforms and major agent communities can be also an
important factor in determining the development cost, and the possible penetration/acceptance of an
agent-based application.

This technical report aims at

• Identifying the key criteria for the suitability of a language for representing agent
communication content, and

• Evaluation of the suitability of a number of key candidate languages.

For this purpose, this report derives the criteria from FIPA standardization efforts and the applications
in the Agentcities.RTD project. Evaluation focuses on some selected candidates that have currently
significant influence in agent and semantic web applications.

The five candidate languages were DAML+OIL, ebXML, FIPA-SL, KIF and Prolog and the choice
made for the EU Agentcities.RTD project was to develop services in KIF, FIPA-SL or both.
Furthermore it is expected that the number and type of content language used in the EU
Agentcities.RTD project will evolve over time as tests are carried out.

Comment: This is the same as
the abstract; we should write a
separate introduction that provide a
little more motivation.

 3

2 Role of the Content Language
Communication between software systems is often characterized as a number of levels to separate
different aspects of communication. Table 1 provides such a level decomposition drawn from those
often used for FIPA and KQML/KIF.

Level Description Semantic Description

Context State of the world in which the
conversation takes place

Formalism for describing the meaning of
states of the world, an institution, a market,
etc.

Conversation Sequence of messages Formal account of the meaning of
statements in the protocol description
formalism – which can ideally be
interpreted to give the meaning of any
particular state in the conversation sequence
(AUML, FSM etc.)

Message A single communication from one or
more originators to one or more
listeners that expresses the speaker’s
opinion about the content2

Formal account of the meaning of messages
represented in a particular language, for
example:

• FIPA-ACL semantics in Modal logic

• KQML semantics in Definite Clause
Grammar formalism

• ebXML message semantics in natural
language

Content The description of a partial world
state (or a world) which may contain
references to objects, actions,
functions, … in one or more domains

Formal grammar, semantics represented in
particular language and a definition of those
semantics, for example:

• FIPA-SL: logic base

• KIF: logic base

• Prolog: logic base + interpreter

• Java: language + JVM

Domain
Description

References to and definite
descriptions of objects, action,
function and other instances

Formalism for defining possible classes
and/or instances of things in the world, for
example, DAML+OIL and Ontolingua KIF.

Table 1: Semantic Communication Stack3

A domain description may be arbitrary types according to how its description is formalized, for
example, in DAML+OIL [DAML+OIL] everything is a subtype of the Thing class, but every class
defined has its own identifier. Content expressions would normally be expressed in a content language
(such as KIF [KIF], FIPA-SL [FIPA00008]), the message in an agent communication language (such
as FIPA-ACL [FIPA00061], KQML [KQML]) and the conversation/context perhaps in a logical
formalism such as situation calculus with the protocol sequence specified in AUML [AUML], for
example.

2 The simplest and most usual case would be one receiver and one sender, but with more powerful semantic formalisms it could
be more.
3 Note that this breakdown differs from the Semantic Web stack [].

 4

The content language therefore expresses views of the world related to a particular communication an
agent makes and often references instances or descriptions of objects or other entities that are
externally defined in an ontology.

3 Candidate Content Languages
A large number of formalisms could be used as content languages from imperative programming
languages to declarative modal logics. For this review, we therefore address only the following five
candidates that were proposed by EU Agentcities.RTD project partners:

• DAML+OIL: An RDF and description logic-based formalism originally intended for expressing
ontologies.

• ebXML: A framework intended for communication between business systems.

• FIPA-SL: A content language developed by FIPA and often used in conjunction with FIPA-ACL.

• KIF: A knowledge representation language that is used as an interchange format between
knowledge systems and often used in conjunction with KQML.

• Prolog: A logic programming language.

4 Evaluation Criteria and Project Requirements
The content language evaluation criteria that have been applied to the candidate languages are grouped
into areas described in the following sections.

4.1 Expressivity Requirements
Content language Expressivity means the amount and complexity of natural language sentences (or
concepts) that may be expressed using the content language. In general, the more expressive the
language, the more difficult it is to build computational mechanisms to process it (Note however that
tractability is not directly considered in this review).

Independently of the complexity of the application domain, if a content language is to be used with
FIPA-ACL communication language, it must satisfy three requirements:

1. It must be capable of representing propositions,

2. It must be capable of representing actions (not their semantics, only their designators), and,

3. It must be capable of representing objects, including identifying referential expressions4 to
describe objects.

Languages that cannot be used to express the above types of concepts cannot be used with the full
range of FIPA-ACL performatives. In particular:

• Inform messages require propositions as content:

(inform :content "((is-blue car))")

• Request messages require action expressions as content:

 (request :content "((action you make-tea))")

• Query messages require object references as content:

 (query-ref :content "((all ?x (is-red ?x)))")

A content language does not need to be very expressive if any of the following two conditions hold
true:

1. Where agents have rigid interfaces and cannot or do not need to deal with more complex
expressions that are built from simpler ones. This is the case for applications in which agents do
not require more than API-like interfaces.

4 Used to represent the open questions what, which and who.

 5

2. Where provider agents have only rigid, simple information processing capabilities and where
requesting agents with complex information need to use simple information requests and are
responsible for all subsequent information integration. This approach may be used in many
application domains, but it generally leads to severe inefficiencies. Firstly, all information
processing is centralised in the demanding agent and secondly, large unrestricted amounts of data
must be conveyed from information providers to information requesters, for example, where the
requester asks for two large tables of the provider database in order perform a join which returns
only a few records.

In the EU Agentcities.RTD project, neither of the above conditions hold true so the content language
needs to be an expressive language. The capability to express rich propositions is the most demanding
requirement on EU Agentcities.RTD project content language choice since propositions are used for
many purposes within the message contents, such as, in questions, in assertions, in reasons (for instance
when a proposal is rejected), and, to express conditions for the execution of requested actions.

Besides atomic propositions, it is likely that any content language choice will need to support the
expression of:

• Propositions with explicit or implicit quantification,

• Propositions with logical connectives (not, and, or, implies and equivalence),

• Modal propositions (believe, intend, desire), and,

• Action propositions, such as propositions that describe states of the world in which a particular
action has been executed and states of the world in which it would be possible to execute a certain
action.

Finally, the language should be expressive enough to refer to objects, actions and propositions from
arbitrary application domains, that is, anything we can write an ontology for.

4.1.1 Examples

Ex1: Action propositions with modal operators

The Lisbon event planner would like to know if the pop artist Prince is going to perform a show in
Barcelona in order to see if it could be cheaper to hold it in Lisbon. Prince is represented by the
SexyMF agent who can express the question “do you intend to perform in Barcelona?” as follows:

Intends (SexyMF, Done (BarcelonaFShow))

BarcelonaFShow is an action designator which can be more complex.

Ex2: Quantifiers plus logical connectives

The Lisbon event planner would like to know the names of all theatres with more than 200 seats where
no seat is closer to the stage than 20 meters. The ontology has the following predicates and functions:

Theater/1 A predicate that maintains the names of theatre

Seat/2 A predicate that relates a theatre with each of its seats

Number-of-Seats/1 A function that takes the name of a theatre and returns its number of
seats

Distance-to-stage/2 A function that takes a seat and a theatre name and returns the distance
of that seat to the theatre’s stage

All (t, Theatre (t) ∧ Number-of-Seats (t) ≥ 2000 ∧ ∀ s [Seat (t, s) ⇒
Distance-to-Stage (s, t) ≥ 20])

 6

4.1.2 Expressivity Test

Since some of the languages being considered are not logic-based, the following table of example
expressions is used to identify what can be expressed in each language.

Expression Language Representation Details
“Schrödinger’s Cat is alive” Proposition about a particular instance

“Cats are animals” Proposition about a class of things

“You making the tea” An action expression (reference to an action instance)

“Drinking too much is bad for you” Proposition about a class or type of actions

“All red things” Direct reference to things (objects)

“Any colour a car might have” Direct reference to values of certain object properties

“All things are hot” Universal quantification

“Something is cold” Existential quantification

“Younger than 8 or older than 60” Disjunction

“The desired movie should be
romantic and the cinema should at
walk distance”

Conjunction

“The transport should not be private” Negation

“Success implies Payment” Implication

“Luis has the persistent goal that W” Persistent goal modal operator

“Steve Believes X” Belief modal operator

“Jonathan Desires Y” Desire modal operator

“Matthias Intends Z” Intention modal operator

N/A

4.2 Parsing and Processing Tools
This refers to the available processing tools including parsers, language translators and reasoners, such
as theorem provers, inference engines, and planners. Parsers may not be necessary if the message
contents are serialised objects of the agent implementation language, but they are necessary whenever
the content language is encoded into a string format, for example, XML and s-expressions.

Parsers are the minimum requirement, while inference and other reasoning mechanisms are important
but not a requirement since not all agents require a reasoning mechanism.

4.2.1 Evaluation

Considerations for these tools are:

1. Availability: Are tools available for the target language?

2. License: Commercial, open source or free?

3. Integration: Are the tools easy to integrate with existing agent platforms since parsers will exist
between the transport layer and the agent, that is, it is in the data path?

Language translators are used when it is convenient to convert some message content into another
language that may easily be used by the agent. Translators may also be needed to convert expressions
of an internal content language into expressions of an external content language. Consider an
information agent that stores information in a relational database which uses SQL and an internal
content language. If this agent receives a query that is expressed in FIPA-SL, then it will need to
convert the FIPA-SL content expression into SQL commands in order to be able to execute the query.

The term reasoner is used when referring to any reasoning mechanism, from theorem provers to
planners to inference engines. Reasoners have to be used in a variety of situations in inter-agent
communication and the most common are cases in which the agent, which is using the same
representation language as the content language, receives a question. Sometimes the answer to this

 7

question is explicitly represented in the knowledge base of the agent, but often, the agent must perform
some amount of reasoning in order to be able to answer a question that is not explicitly represented in
its knowledge base.

4.2.2 Examples

Knowledge base:

 {Citizen (Jonathan),
Lives (Steve, Switzerland), ∀ p ∀ c Lives (p, c) ⇒ Citizen (p)}

Query: Tell me the names of all known citizens

Answer: Jonathan, Steve

While Jonathan is explicitly represented to be a Citizen, the agent performed some inference to
conclude that Steve is also a Citizen.

4.2.3 Notes

It is not mandatory that the agent is a knowledge-based system. Even if the knowledge is implicitly
encoded into the program data structures and procedures of the agent, there still needs to be some
procedures to derive not-encoded knowledge from previously encoded knowledge.

It is also important to evaluate the commercial availability of these tools.

4.3 Knowledge Acquisition Facilities
Knowledge acquisition facilities are tools to help knowledge-based system engineers to create their
knowledge bases. Examples include:

• Editors: Graphical or other tools for manipulating or describing message instances.

• Validators: Checking the correctness of messages.

• Compilers and import features: Mechanisms for transforming human readable or editor output
into agent code.

Content languages do not have to be knowledge representation languages. It is possible to have a
knowledge-based agent with a one knowledge representation language (for example, OPS5, Prolog,
Golden Works or KEE) and a different content language. However, content languages have similar
properties to knowledge representation tools and therefore it also makes sense to have tools that
facilitate the task of writing message contents. These tools might include specialised editors (for syntax
enforcing), and tools to help writing content expressions by examples.

It is also important to evaluate the commercial availability of these tools.

4.4 Language Learning Difficulty
This is an estimate of the time it would take for a person without previous knowledge related to the
language would take to learn it and use practical examples:

1. Agent Developers5: The learning curve is towards the ability to develop required services.

2. Researchers: The learning curve is in understanding examples and the ability to apply it to their
own problems.

3. Industry: The learning curve is in understanding examples and the ability to apply it to their
problems.

4. Lay people: The learning curve is in understanding examples.

4.5 Migration Paths and Flexibility
This is an evaluation of the degree of flexibility offered by a particular content language:

5 In particular, people already familiar with agents, the FIPA agent standard and FIPA agent platforms.

 8

1. Syntax: Is it possible to migrate to new syntaxes?

2. Semantics: Is it possible to add user defined constructs? Is it possible to generalise or restrict
meanings to make the language more powerful?

3. Combination: Is it possible to embed fragments of other languages in messages?

4. Implementation: Are tool implementations for the language reusable for other languages or other
tasks?

4.6 Adoption Issues
This is a subjective assessment of the benefits of each choice considering resulting impact on:

• Likely adoption and interworking with other research projects,

• Likely adoption and existing user communities in industry, and,

• Ability to influence standards bodies and the support a language already has.

 9

4.7 Summary and Relative Importance
The first two criteria in the following list have more importance when evaluating a particular content
language that the others, which are considered to have approximately equal importance:

1. Expressivity (with the caveat that not everything may be needed initially),

2. Availability of message parsing and processing tools,

3. Availability of knowledge acquisition/manipulation facilities,

4. Difficulty of learning the learning,

5. Migration paths and flexibility, and,

6. Adoption issues.

The following table presents the list of all attributes that must be considered in the content language
evaluation.

Expressivity
01. Represents propositions Yes / No
02. Represents actions {Atomic, Composed} / No
03. Represents open questions Yes / No
04. Allows quantification Explicit / Implicit / No
05. Allows connectives {AND, OR, NOT, EQUIV, IMPLIES} / No
06. Allows action propositions {Done, Feasible} / No
07. Allows modal operators {I, B, G, PG, U} / No
08. Allows functions Yes / No

Available Processing Tools Tool Name License/Price Comments
09. Parsers
10. Translators
11. Reasoners

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

12. Editors
13. Others

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

14. Agent Developers

15. Researchers

16. Industry

17. Lay people

Migration Paths

18. Evaluation

Adoption Issues 1 (Low Preference) - 3 (High Preference)
19. Research preference
20. Industry preference
21. Standards impact

 10

5 DAML+OIL

5.1 Basis of the Review
The basis of this review is the DAML+OIL specification [DAML+OIL].

5.2 Expressivity
DAML+OIL is a language for specifying ontologies. In particular it is intended for making statements
about:

• Types and classes of objects and entities which exist in the world,

• Instances of such types and classes which exist in the world, and,

• The properties of such types and classes and instances.

The semantics for DAML+OIL are defined for statements such as class definitions, instance
definitions, property definitions and restrictions on classes, instances and property values. It is
therefore clear that DAML+OIL would be a very effective tool for expressing such ontological
knowledge in agent communication, but it is not clear how useful it would be for expressing other
types of communication.

The following two observations are important to make about DAML+OIL:

• Everything in DAML+OIL is an ontology. That is, DAML+OIL files usually begin with the
declaration of an ontology and it is not clear if definitions are valid outside the context of such a
declaration. It might be assumed, however, that something like “Message” could also be defined.

• All statements are propositions. In particular, they are propositions about the existence of classes
or instances or about the properties which apply to classes or instances. For example, the following
states that the are in the world of this ontology things called cats that are a type of animal:

<daml:Class rdf:ID=“cat”>
<rdfs:subClassOf rdf:resource=“#animal”>

</daml>

 Additionally, the following states that there is in the world defined by this ontology an instance of
a cat called Nermal which is alive (one can now also infer that there exists at least one animal in
the world):

<Cat rdf:ID= “Nermal”>
<status>alive</status>

</Cat>

5.2.1 Expressivity Test

Expression Language Representation Details
“Schrödinger’s Cat is alive” <Cat rdf:ID= “schrödinger-s_cat”>

<owner>Shrodinger</owner>
<status> alive </status>

</Cat>

This is not quite the
same since it states that
there exists in the world
a cat called
Schrodinger’s cat which
is alive6.

“Cats are animals” <daml:Class rdf:ID=“cat”>
<rdfs:subClassOf

rdf:resource=“#animal”>
</daml>

This is the kind of
statement for which
DAML+OIL is
intended.

“You making the tea” <making_tea rdf:ID= “instance_1”>
<actor>You</actor>

</making_tea>

As with the first
example, this states that
there exists an instance

6 Note that the statement is therefore acting like a constructor rather than a reference. While this is close, it would cause

problems in many systems where it is important to be able to make direct references to things.

 11

of an action called
making_tea in which
You are the actor.

“Drinking too much is bad for
you”

<daml:Class rdf:ID=“excessive_drinking”>
<rdfs:subClassOf

rdf:resource=“#bad_things”/>
</daml>

There are multiple ways
to express this. Another
way can be to use
properties.

“All red things” As with the first
example, it can be said
that there exist red
things or that all things
are red but they cannot
be referenced.

“Any colour a car might have” This can be expressed
closely by defining a
property car colour with
the domain “cars” and
then listing all of the
colours. Again this is
not a direct reference.

“All things are hot” <daml:Class rdf:about “#Thing”>
<rdfs:subClassOf>

<daml:restriction
daml:hasValue=“hot”>
<daml:onProperty

rdf:resource= “temperature”/>
</daml:restriction>

</rdfs:subClassOf>
<daml:Class>

The Thing class is the
top level entity in the
DAML world so every
sub class can be
constrained to be “hot”.

“Something is cold” <thing rdf:ID= “cold_thing”>
<temperature>cold</temperature>

</thing>

“Herring or Perch” Disjunction See Implication.

“Vodka and Tonic” Conjunction See Implication.

“Not cricket” Negation See Implication.

“Success implies Payment” <daml:Class rdf:ID=“Implication”>
…

</daml>

<Implication ref:Class= “logic_1”>
<precedent>Success</precedent>
<antecedent>Payment</antecedent>

</Implication>

This would rely on
defining a class of
implications and then
making the statement
that there exists an
implication of a
particular thing.

“Luis has the persistent goal that
W”

<PersistentGoal rdf:ID= “Wgoal”>
<owner> luis </owner>
<content>W</content>

</PersistentGoal>

or

<Person rdf:ID= “Luis”>
<PersistentGoals> W </PersistentGoals>

</Person>

Again it can only be
stated that something
exists. So for persistent
goals, it is possible to
say that there is a
persistent goal.
Alternatively one could
embed it into the
description of Luis.

“Steve Believes X” See Persistent Goals.

“Jonathan Desires Y” See Persistent Goals.

“Matthias Intends Z” See Persistent Goals.

5.2.2 Summary

Attempting to express the statements in the table above in DAML+OIL is an interesting exercise and
reveals the following things:

• DAML+OIL is good for expressing certain types of information, such as class declarations, and
instance declarations, but its semantics do not go far beyond this. It is a good way to define
languages (as a meta-languages) but not really sufficiently general in its own right. If it were to be
used as the basis for a new language, then this would need to be a language defined in

 12

DAML+OIL with its own semantics for the new terms defined, restrictions on how the
components can be composed, etc.

• It does not allow direct references to entities (objects or actions) and instead statements have to be
made that such a thing exists in the world, which is not the same.

• It could be possible to define any type of operator which may exist in the world including modal
operators, although when creating an instance of the operator one is force to revert to ‘there
exists…” Note that while this is very useful, it leads to using a content language wrapped in
DAML+OIL (with its own, new, semantics) and not expressed in DAML+OIL itself.

• It is not clear how defined logical operators could be conveniently composed (because of the
implicit existential quantification).

As a final note in this area, frameworks such as Sesame [Sesame] and Algae [Algae] are developing
RDF query engines that may make it possible to generate object references.

5.3 Parsing and Processing Tools
There are many tools available for DAML+OIL7. Furthermore, RDF and RDFS tools can be used to
support at least some DAML+OIL functionality, but not all of the language.

Name Details

Jena [Jena] This has an internal RDF model and a specific API to load DAML+OIL files, to
manipulate elements, to change values, etc. It has a HP-specific license which
appears to allow re-use and derived software as long as the authors name is not
used to endorse the resulting product.

RedLand
[RedLand]

An RDF application framework which allows the manipulation of RDF triples,
objects, etc., but it appears not to have DAML specific support. The license is
LGPL or MPL.

Wilbur RDF
Toolkit
[Wilbur]

A toolkit for RDF and DAML+OIL which includes a DAML+OIL parser as an
extension of the RDF parser. The license is the Nokia Open Source License.

ATOMIK
[ATOMIK]

A toolkit for ontology and agent language manipulation including support for
FIPA-SL, FIPA-ACL (s-expressions and XML), KQML, FIPA-KIF and
DAML+OIL ontologies. The license is LGPL.

There is a DAML API that has been developed for manipulating DAML objects in Java [DAML-API]
which can provide part of the parsing solution. Standard RDF parsers, Jena and ATOMIK appear to be
relatively easy to integrate into Java agent platforms. The RDF basis means that there are at least some
tools available for other platforms, for example, Wilbur for LISP.

5.4 Knowledge Acquisition Facilities
The majority of tools for DAML are for manipulation or reasoning with ontologies:

• Viewing: 4 Browsers and 2 viewers (1 for the Palm).

• Generation: 2 Crawlers.

• Translators: 1 XSLT adapter, PDDL to DAML, XMLSchema to DAML.

• Validation: 1 validator and 3 analysers.

• Editors: 3 editors8 (DUET, OILed and ONTOedit).

5.5 Language Learning Difficulty
This is dependent on the expressivity evaluation and can be summarised as follows:

7 See http://www.daml.org/
8 Protégé does not current support DAML+OIL.

 13

• In areas of functionality for which DAML+OIL was designed, it should be relatively easy to learn.
It has simple object oriented or declarative structures as well as a number of viewers and editors
that support learning. Furthermore, validators should take some of the difficulty out of learning
and applying the language by pointing out errors.

• In areas of functionality for which DAML+OIL was not designed and which require either
additional usage guidelines or language definitions, the functionality of the new language would
determine how quickly it could be learned. One immediate impact would be the lack of tool
support for the extensions and another would be the need to use the two specifications
simultaneously.

Besides these considerations is the structure and syntax of RDF which is arguably harder to understand
than either XML or a simple logical framework (s-expressions). Regarding the different user groups:

• Agent developers: Would probably find standard DAML+OIL fine to use but if extensions/new
language definitions are proposed then the ease of use depends upon the nature of those
extensions.

• Researchers: Would probably find standard DAML+OIL fine to use but if extensions are
proposed, then the ease of use depends upon the nature of those extensions.

• Industry: Would probably find DAML+OIL accessible through the tools that are provided but it is
not clear what impact additional rules would have.

• Lay people: Standard DAML+OIL captures concepts that can be easily presented to lay people,
although probably in an abstract form.

5.6 Migration Paths and Flexibility
This is divided into two areas:

• Syntax: Being based on an RDF/XML syntax is a clear advantage since a very large number of
ontology initiatives and business standards use XML based syntaxes.

• Semantics: DAML+OIL has a semantics that is limited to its intended domain of discourse which
does not limit extensions in principle and also provides very little structural support for additions
or extensions.

While DAML+OIL has some advantages here, the semantics are potentially more important than the
syntax in terms of migration paths (since it is a relatively simple matter to retrofit a different syntax
onto an existing language).

5.7 Adoption Issues
DAML+OIL and the Semantic Web activities are receiving interest fundamentally for their usage in
ontology specification and not necessarily as a content language.

5.8 Summary

Expressivity
Represents propositions Yes
Represents actions No
Represents open questions No
Allows quantification Implicit
Allows connectives No
Allows action propositions No
Allows modal operators No
Allows functions No (however, a function may be represented by a relation)

 14

Available Processing Tools Tool Name License/Price Comments
Parsers Jena, Redland,

Wilbur, ATOMIK
Free, assorted
licenses but some
are LGPL (which
should be
acceptable)

Good support here
and long term
view to efficiency
since it is based
on RDF

Translators Translators from
XMLSchema,
PDDL + a generic
XSLT adaptor

Free, license details
not found

The XSLT
adaptor in
particular could
be very useful

Reasoners Euler, Triple, cmw Not clear from the
sites but probably
free

Very early stage
work in all three
cases

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

Editors Duet, ONTOedit,
OILed

Free, license less
relevant since there
is no need to bundle

Some are not
complete or stable

Others An array of other
tools which may
come in handy

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

Agent Developers 2 (4)9

Researchers 2 (5)

Industry 2 (5)

Lay people 2 (5)

Migration Paths

Evaluation Syntax migration and integration is strong since it is based on
RDF/XML, but the semantic framework is not very general
which makes it unclear how to migrate.

Adoption Issues 1 (Low Preference) - 3 (High Preference)
Research preference 1 (Since it would require new structures to be added)
Industry preference 2 (RDF/XML/DAML+OIL definitions would help, but

additional structures may be unpopular)
Standards impact 3 (Would be high if an easy way to use DAML+OIL as a content

language were developed)

9 Figures in parentheses are for extensions to DAML+OIL.

 15

6 ebXML Review

6.1 Basis of the Review
The basis of this review is on the ebXML specification [ebXML].

6.2 Expressivity
ebXML is not defined as a general purpose knowledge representation language, as a result, it is
certainly less expressive in general purpose knowledge acquisition. On the other hand, ebXML is
strongly related to EDI, designed by keeping in mind the special requirements for modelling business
processes and collaborations, and shall be more suitable for such applications. The key expressivity
features can be summarized in the following:

• Basically, ebXML does not support the direct representation of propositions about the
states/properties of an agent (like the propositions in a FIPA inform message). Propositions, for
example about the capability/states of the submitting party are implied by the information
submitted to the ebXML registry.

• Actions are represented in ebXML as business transactions or activities.

• The relationship between concepts or object classes and object instances is specified in ebXML via
the classification of objects to a hierarchy of classification nodes, that is, concepts.

• Queries related to object references are realized by the ebXML query mechanisms supported via
the ebXML registry services.

• Quantifiers are not supported explicitly. The simple deployment of a universal quantifier can be
implicitly represented via the classification hierarchy, for example, all cats are animals.

• Modal operators are implied by the registry operation and business collaboration activities, and are
not specified in the language itself.

6.2.1 Expressivity Test

Expression Language Representation Details
“Schrödinger’s Cat is alive” <ClassificationNode

id=”livingThingNode”
name=”livingThing”/>

<ClassificationNode
id=”catXNode”
name=”catX”
parent=”catNode”/>

<ClassificationNode
id=”SchrödingerNode”
name=”Schrödinger”/>

<Classification
id=”statusClassification”
classifiedObject=”catXNode”
classificationNode=”LivingThingNode”/>

<Classification id=”ownerClassification”
classifiedObject=”catXNode”
classificationNode=”SchrödingerNode”/>

“Cats are animals” <ClassificationNode
id=”animalNode”
name=”animal”/>

<ClassificationNode
id=”catNode”
name=”cat”
parent=”animalNode”/>

This is used for hierarchical
classification of services.

 16

“You making the tea” <BusinessTransaction
name=”Make Tea”>
<RequestingBusinessActivity name=””

<DocumentEnvelope
businessDocument=”businessDoc”

<DocumentEnvelope/>
</RequestingBusinessActivity>

</BusinessTransaction>

An actor can only request
actions from other parties
via proposing a
collaboration protocol
agreement.

“Drinking too much is bad for
you”

 ebXML does not support
general logical statements.

“All red things”
<RegistryEntryQuery>
<hasClassificationBranch>
<ClassificationNodeFilter>

<Clause>
<SimpleClause leftArgument = “name”>
<StringClause

stringPredicate=”equal”>
“red”

</StringClause>
</SimpleClause>

</Clause>
</ClassificationNodeFilter>
</hasClassificationBranch>
</RegistryEntryQuery>

This is used to query the
registry for all objects that
are classified as “red”.
Thus, if the corresponding
registry/classification
actions were submitted this
would work.

“Any colour a car might have” <ClassificationNodeQuery>
<PermitsClassificationBranch>

<RegistryEntryQuery>
<hasClassificationBranch>

<Clause>
<SimpleClause leftArgument =

“description”>
<StringClause

stringPredicate=
”contains”>

“car”
</StringClause>

</SimpleClause>
</Clause>

</hasClassificationBranch>
</RegistryEntryQuery>

</PermitsClassificationBranch>

<HasParentNode>
<ClassificationNodeFilter>
<Clause>
<SimpleClause leftArgument = “name”>
<StringClause

stringPredicate=”equal”>
“colour”

</StringClause>
</SimpleClause>

</Clause>
</ClassificationNodeFilter>
</HasParentNode>

</ClassificationNodeQuery>

This is used to query the
registry about any colour
nodes that are used to
classify any “car” nodes. It
is assumed that the
description of such node
contains the key word
“car”.

“All things are hot”
<Classification

id=”property”
classifiedObject=”thingNode”
classificationNode=”hotNode”/>

“Something is cold”

“Herring or Perch” or can only be used to
query the registry.

“Vodka and Tonic” and can only be used to
query the registry.

“Not cricket” Negation is not supported.

“Success implies Payment” Implication (and the
associated reasoning) is not
supported.

 17

“Luis has the persistent goal that
W”

 A goal is represented by a
collaboration protocol
profile, which specifies the
services and the protocols
supported by a business
party. By registering such a
CPP in the registry, the
owner of the CPP commits
and publishes its business
goal, intension and desires
to the business community.

“Steve Believes X” Definition of beliefs is not
supported.

“Jonathan Desires Y” See Persistent Goals.

“Matthias Intends Z” See Persistent Goals.

6.3 Parsing and Processing Tools
There are currently few commercial and open source platforms that support the core components in an
ebXML-based business co-operation environment. As ebXML message syntaxes are defined in XML
schema or DTD, it is possible to deploy any XML parser with schema/DTD validation capability to
parse the messages. Semantic-related validations, however, must be realized at a higher layer within
the ebXML business co-operation platform or platform components.

Name Details

Open ebXML There are a number of open source ebXML tools and components10:

• Binary Mark-up Language: A faster and more compact
representation of XML.

• Workbench: A GUI workbench for editing process definitions,
viewing message stores, etc.

• Red-Line: A Business process Server.

• Registry: An open implementation of the ebXML registry.

• Message handler: A high performance message handler for ebXML
messages.

• SHS: Open source implementation of the Swedish governmental
protocol SHS.

• Tools: A set of tools to use when working with ebXML.

• Pretty printing of Collaboration-Protocol Profile XML files using
XSLT.

ebXML Registry and
Repository

This is a free Java technology-based the Sun ebXML Registry and
Repository Implementation. This package can be used out of the box to
submit, store, retrieve and manage XML resources based on the ebXML
Registry Information Model 1.0 and the ebXML Registry Services
Specification 1.0. This latest Registry/Repository implementation
includes enhanced support for form-based authentication and ebXML
query/retrieval methods.

JAXR JAXR provides an API for a set of distributed Registry Services that
enable B2B integration between business enterprises, using the ebXML
protocols.

Component-X This platform provides a simple and standards-based approach to

10 See http://www.ebxml.org/implementations/index.htm

 18

assembling XML-Java components for Web Services, B2B, Enterprise
Integration and supply chain automation that supports ebXML.

6.4 Knowledge Acquisition Facilities
Open ebXML is hosting two projects for delivering tools supporting knowledge acquisition, aiming at
implementing:

• A GUI workbench for editing process definitions, viewing message stores etc., and ,

• A set of tools to use when working with ebXML such as pretty printing of Collaboration-Protocol
Profile XML files using XSLT.

6.5 Language Learning Difficulty
ebXML is not a traditional knowledge representation framework and has therefore not such a strong
basis in predicate logics. On the other hand, it is strongly related to traditional frameworks like EDI for
the business process management and coordination. Therefore, knowledge acquisition based on
ebXML requires less expertise in logics and knowledge engineering, but more expertise in the context
of business process engineering.

• Agent developers, researchers and lay people: It is relatively difficult since it is based on many
concepts for commercial business transactions and processing management, which can be non-
intuitive for research communities from other context.

• Industry: Adoption is easy since it uses concepts that are common in commercial business
transaction and processing management.

6.6 Migration Paths and Flexibility
This can be analysed in the following aspects:

1. Syntax: Using XML technology, ebXML can be easily extended with new syntactical elements to
support new functional features.

2. Semantics: By adding new elements with new semantics, ebXML can be extended to modelling
and managing real business processes and business co-operations.

3. Combination The definition of ebXML framework allows the utilization of specifications from
other languages under certain standard conformance conditions.

4. Implementation: Tools for registry management and for process management and coordination
can be reused in other business cooperation environments.

6.7 Adoption Issues
ebXML is based on the tradition of EDI technology, which has wide applications in the industry which
is a factor contributing to the acceptance of the ebXML framework.

6.8 Summary
The following table presents the list of all attributes that must be considered in the content language
evaluation.

Expressivity
01. Represents propositions Yes (to some extent)
02. Represents actions Yes
03. Represents open questions Yes (only to the registry)
04. Allows quantification Implicit (Partially)
05. Allows connectives Yes (only and/or and only to the registry)
06. Allows action propositions No
07. Allows modal operators Implicit
08. Allows functions No

 19

Available Processing Tools Tool Name License/Price Comments
09. Parsers any XML parsers Free licenses
10. Translators Open ebXML Open source Not yet available
11. Reasoners Open ebXML, Sun

ebXML Registry,
X-component,
JAXR

Free evaluation.
Open Source (Open
ebXML)

Some are not yet
available until
early 2002

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

12. Editors Open ebXML Open source Not yet available
13. Others

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

14. Agent developers 3

15. Researchers 4

16. Industry 1

17. Lay people 3

Migration Paths

18. Evaluation Extensions can be easily supported by new XML elements.

Adoption Issues 3 (Strong industrial support)
19. Research preference 1 (A lack of sophisticated theoretical and semantic basis)
20. Industry preference 3 (Strong interest in the industrial community)
21. Standards impact 3 (Contributions to ebXML and the related efforts)

 20

7 FIPA-SL

7.1 Basis of the Review
The basis of this review is the FIPA standard specification for FIPA-SL [FIPA00061].

Since there are no commercially supported implementations of reasoning mechanisms for FIPA-SL, it
is difficult to evaluate certain of the criteria defined in this document, mainly the migration-path
criterion. However, future implementations of FIPA-SL processing tools may provide the means for
defining new constructs from previous ones. FIPA-SL provides the means for all requirements related
to language Expressivity, but only syntactically. When talking about languages with inference engines,
such as Prolog, they may also be supported by the inference mechanism.

Objectively, Prolog allows the syntactic representation of all kinds of expressions which are allowed by
FIPA-SL and more. All such expressions would be parsed by the Prolog read/1 command. However,
some of them would not be directly supported by the reasoning mechanism of Prolog.

7.2 Expressivity

7.2.1 Expressivity Test

Expression Language Representation Details
“Schrödinger’s Cat is alive” (forall ?x

(implies (and
(owned_by schrödinger ?x)
(cat ?x))

(alive ?x)))

or

(alive (cat :owner “schrödinger”))

“Cats are animals” (forall ?x (implies
(cat ?x) (animal ?x)))

“You making the tea” (action luis make-tea)

“Drinking too much is bad for
you”

(forall ?x (implies
(drunk_too_much ?x)
(bad_for ?x)))

“All red things” (all ?x (red ?x))

“Any colour a car might have” Car must be existentially
quantified outside of the
iota operator. If car has a
concrete identifier (for
example, car123), it
becomes possible:

(iota ?x
(colour car123
?x))

“All things are hot” (forall ?x (hot ?x))

“Something is cold” (exists ?x (cold ?x))

“Herring or Perch”

“Vodka and Tonic”

“Not cricket”

“Success implies Payment” (forall ?x (implies
(successful ?x)
(must_pay ?x)))

“Luis has the persistent goal that
W”

(PG luis W)

“Steve Believes X” (B steve X)

“Jonathan Desires Y” This could be written as a

 21

functional term, but it
would have no pre-defined
semantics.

“Matthias Intends Z” (I Matthias Z)

7.2.2 Summary

As shown in the table, FIPA-SL can represent most of the test statements.

Allows modal operators

FIPA-SL provides all the mentioned modal operators, but the U operator does not have a well-defined
semantics. From a practical point of view, this drawback is not an important impairment since
uncertainty has long been addressed using conceptual and computational tools without clearly defined
semantics, such as the confidence factor approach and fuzzy logic.

7.3 Parsing and Processing Tools
EPFL has implemented Java parsers for FIPA-SL with ATOMIK [ATOMIK] which provides support
for multiple languages. ADETTI has also implemented a Java Parser for FIPA-SL but it has not yet
been tested (in the real sense of the word). Since ADETTI has also implemented a XML-Schema based
Java parser for XML it may also be used to parse any future XML definition of FIPA-SL as long as a
XML-Schema is defined.

In addition to these, the following FIPA platforms have integrated support for (full) FIPA-SL:

• Agentworks platform,

• April Agent Platform [AAP],

• Comtec Agent Platform, and,

• FIPA-OS.

All other platforms in the EU Agentcities.RTD project support at least FIPA-SL011.

7.3.1 Translators

ADETTI has developed a simple translator for the s-expression syntax of FIPA-SL to a possible Prolog
syntax of FIPA-SL. The translator has been implemented in Prolog, but it has not been seriously tested.
ADETTI is also implementing a Java program to translate a subset of FIPA-SL into SQL.

7.3.2 Reasoners

ADETTI is developing a C++ inference engine for a subset of FIPA-SL which includes first-order
logic for finite domains with existential quantification but not with universal quantification.

7.4 Knowledge Acquisition Facilities
There are no knowledge acquisition tools for SL that we know of.

7.5 Language Learning Difficulty
Since SL is a logic-based language, its learning difficulty may be considerable for people without
previous knowledge of logic. Moreover, since there is no tool to help edit SL expressions, it is very
difficult to debug SL.

• Agent developers

Agent developer will learn how to use SL in concrete examples by comparison with other
examples. If an agent developer has some prior knowledge of other logic-based languages, such as
KIF, he or she will learn SL more easily. Undergraduate students can learn SL through examples
in about two weeks teaching in one of five courses.

11 Extending FIPA-SL is possible but is not necessarily trivial since it requires variable handling and the parse tree for FIPA-SL

is considerably deeper than that of FIPA-SL0.

Comment: This table was not
complete and had extra test
statements which I have removed.

Luis or Steve, can you please fill in
the blanks to support this
statement.

 22

• Researchers

Researches with previous knowledge of logic will have no difficulty learning SL.

• Lay people: It is relatively difficult since it is based on logic.

• Industry: Adoption is not easy.

7.6 Migration Paths and Flexibility
SL does not provide any explicit extension mechanism. SL is basically a logic-based language with no
provision for knowledge structuring as provided by frame-based or object-oriented languages.

With a logical language, however, the most important consideration is dependent on its usage in one of
the following two classes:

1. Using SL in a simple and restricted way where it is not expected that agents can understand
arbitrary expressions in the language or have access to a theorem prover.

2. Allowing and encouraging the use of arbitrary expressions in the language and expecting all agents
to be able to handle them.

The second approach would lead to a dependency on both SL and very expressive logic-based
languages, which cuts down the migration paths considerably. This would appear to apply to all of the
expressive languages being considered, such as, FIPA-SL, Prolog and KIF. It should be relatively easy
to migrate from FIPA-SL to KIF, although it is not clear that KIF has the same expressiveness as SL.

7.7 Adoption Issues
SL is unlikely to be popular with any community since it is very recent and used only within the FIPA
community, which does not like it particularly. SL can, however be accepted by some communities but
not by others:

• Research: In general, it would be well received by the artificial intelligence community and
relatively badly by most agent engineers currently using arbitrary content.

• Industry: Is unlikely to be popular since it is tagged as a research language.

• Standards: SL is used only in the FIPA Specs. However its use is not mandatory, even according
to the FIPA specs.

7.8 Summary

Expressivity
01. Represents propositions Yes
02. Represents actions Atomic and Composed
03. Represents open questions Yes
04. Allows quantification Explicit
05. Allows connectives AND, OR, NOT, EQUIV, and IMPLIES
06. Allows action propositions Done, and Feasible
07. Allows modal operators I, B, G, PG, and U
08. Allows functions Yes

Available Processing Tools Tool Name License/Price Comments
09. Parsers ADETTI, EPFL and

many current FIPA
platforms

Open Source ADETTI is
developing an
FIPA-SL parser for
C Programs

10. Translators ADETTI Open Source Prolog, SQL
11. Reasoners No

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

12. Editors No
13. Others No

 23

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

14. Agent Developers 2

15. Researchers 2

16. Industry 3

17. Lay people 4

Migration Paths

18. Evaluation FIPA-SL does not provide defining mechanisms therefore it
cannot be extended.

Adoption Issues 1 (Low Preference) - 3 (High Preference)
19. Research preference 2 (Similar to other modal logics)
20. Industry preference 1
21. Standards impact 2 (If FIPA-SL was used it would have a big impact in the FIPA-

SL specification)

 24

8 KIF Review

8.1 Basis of the Review
The basis of this review is the draft proposed American National Standard (dpANS) definition of KIF
(NCITS.T2/98-004) [KIF].

8.2 Expressivity
The Knowledge Interchange Format (KIF) is a well know, logic-based language for expressing
knowledge. The language has:

• Lisp like syntax,

• A declarative semantics (that is no procedural aspect to the semantics) is claimed to be one of the
language features,

• At its most general it can be used to express arbitrary logical sentences, and,

• Can be used to express meta-knowledge.

KIF semantics are based on a conceptualisation of the world in terms of objects and relations. Basic
elements in KIF are terms, sentences and definitions (although only sentences and definitions are
defined for use as complete standalone statements). Only restricted subsets of KIF are tractable for
reasoning, such as SKIF which is equivalent to Horn clause logic.

8.2.1 Expressivity Test

Expression Language Representation Details
“Schrödinger’s Cat is alive” (holds true

(is-alive
schrödinger-cat))

“Cats are animals” (forall (?x Cat)
(holds true

(is-animal ?x)))

“You making the tea” (make-tea you) There are no semantics for
actions; this is just a functional
term. One could also define the
notion of an action expression.
Note also that this is not a fully
formed KIF sentence or form, it
is only a term.

“Drinking too much is bad for
you”

(forall ?x
(=> (drink-excess ?x)

(poor-health ?x)))

“All red things” (?x red)
(get-all ?x

(is-red ?x))

The first two both work, but they
are not fully formed KIF
sentences or forms. Note that
there is no special defined term
for all, iota and any.

“Any colour a car might have” (?x allowed-car-colour)
(is-car-colour ?x)

Similar to the previous one –
very weak well.

“All things are hot” (forall ?x
(holds true (is-hot ?x)))

There are multiple ways of
doing this – this is longhand.

“Something is cold” (exists ?x
(holds true (is-cold ?x)))

There are multiple ways of
doing this – this is longhand.

“Herring or Perch” (or herring perch)

“Vodka and Tonic” (and vodka tonic)

“Not cricket” (not cricket)

 25

“Success implies Payment” (=> success payment)
(forall ?x

(=> (successful ?x)
(payment ?x)))

There are multiple ways of
doing this.

“Luis has the persistent goal that
W”

(hold true (has-pg W luis)) This is an example of using such
a defined function

“Steve Believes X” (hold true
(has-belief X steve))

(believes steve
‘(material moon stilton))

See Persistent Goals. Note also
the second example which uses a
quote to escape another KIF
sentence.

“Jonathan Desires Y” (hold true
(has-desire Y jonathan))

See Persistent Goals.

“Matthias Intends Z” (hold true
(has-intent Z matthias))

See Persistent Goals.

“Matthias Intends Z” (hold true
(had-intent Z matthias))

See Persistent Goals.

8.2.2 Summary

KIF is very expressive and it also has a number of features which are not found in all logical-based
languages:

• Quoting: The quoted section in (believes steve ‘(likes jonathan KIF)) is treated
at another denotational level.

• Definitions: As well as sentences, schemas such as objects, relations, functions, etc. can be
defined and hence KIF can be used as its own meta-language and be used to define itself or any
other ontology (the most common use of KIF is in building knowledge bases).

• Flexible syntax: both prefix and infix forms

• Flexible expression: there are quite a number of ways of saying most things (as in most logical
languages.

Anything that cannot be expressed using built-in language constructs can be defined in an ontology and
used as a functional term, an object, etc., but the semantics must the also be defined. KIF appears to
lack built-in support:

• Referential expressions: Such as iota, any and forall in FIPA-SL which means that it is not
possible to directly refer to a number of objects.

• Notion of action: There is no semantics or standardised language support for actions.

• Notions of belief, intension and persistent goal: There are no semantics for modal operators.

8.3 Parsing and Processing Tools
While it appears that a large number of people who have used KIF for various knowledge engineering
applications there are very few publicly available resources. Furthermore, the resources that are
available appear to be rather out of data an under maintained.

Name Details

MKIF [mKIF] Aims to implement all (or almost all of KIF). The license is not stated.

Java KIF Parser [JKP] Implements a parser for a limited form of Horn clause logic, named
SKIF. Java based. Last updated in March 1997. The license is free, but
the details for commercial use are not specified.

Stanford KIF parser
[KIFparser]

Flex, Bison and C++ based parser. The license is not stated.

ATOMIK [ATOMIK] A multi-language library that supports the same KIF subset as JKP, but
the KIF aspect has been implemented but not tested. The license is

 26

LGPL.

Prologic [Prologic] Generic reasoning systems that can also be applied to KIF which is Lisp-
based. The license is not stated.

EPILOG [EPILOG] A Lisp-based reasoner for SKIF. The license is free for university, non-
profit and commercial use.

8.4 Knowledge Acquisition Facilities
KIF has been used in a considerable number of systems although not always in a rigorous or well
documented way. Since KIF was primarily designed for knowledge interchange, much of the usage of
KIF has been in the knowledge engineering community and the best-known example of its use is
Ontolingua [Ontolingua], which uses an extended KIF syntax as its generic knowledge format.

It should therefore be possible to find bridges between KIF and various knowledge tools, such as
OKBC based tools and knowledge bases.

8.5 Language Learning Difficulty
This is difficult to gauge since the KIF specification [KIF] contains almost no examples and examples
that do exist are for more advanced parts of the language. There are other examples, such as [SOWA]
and in the FIPA-KIF Specification [FIPA-KIF].

• Positive points: Syntax is relatively readable but may hide complexity (differences between
functional terms, relational sentences etc.), relationship with conceptual graphs (see [SOWA]) for
visualisation.

• Negative points: The language is very deep and people without a strong logic background are
likely to find it quite challenging. There are also a lot of different ways of saying the same thing –
making for potentially complex system building. There are no “simplified subsets” that have been
standardised (there are two subsets for which parsers exist which may help).

Evaluation by groups:

• Agent developers: Possible, but difficult for those without a strong logic background, particularly
given the lack of good documentation.

• Researchers: Many will already have had some experience with KIF and it is a well-known
language. However, it is still likely to be challenging for those without a strong logic background.

• Industry: Of the logical language choices, KIF is probably known to an extent that it is not
completely new but it would be unrealistic to expect industry adoption without significant tool
support to hide much of the logic beneath.

• Lay people: KIF is more readable that RDF, for example, but it may be intimidating and
constructing KIF sentences would likely be more challenging. Conceptual graphs may help here if
they can be used to show the meanings of KIF sentences, but the mapping is only partial.

8.6 Migration Paths and Flexibility
As a logic-based language KIF, is very flexible and, in principle, aspects of the language which are
required but not present could easily be defined and added. KIF has an underlying object/relation
metaphor which may help in migrating to object oriented languages if desired

With a logical language, however, the most important consideration is dependent on its usage in one of
the following two classes:

3. Using KIF in a simple and restricted way where it is not expected that agents can understand
arbitrary expressions in the language or have access to a theorem prover.

4. Allowing and encouraging the use of arbitrary expressions in the language and expecting all agents
to be able to handle them.

The second approach would lead to a dependency on both KIF and very expressive logic-based
languages, which cuts down the migration paths considerably. This would appear to apply to all of the

 27

expressive languages being considered, such as, FIPA-SL, Prolog and KIF, and it should be relatively
easy to migrate between KIF and FIPA-SL.

8.7 Adoption Issues
As with the other languages, KIF is likely to be popular with some communities and unpopular with
others:

• Research: In general, it would be well received by the knowledge engineering community,
relatively well by the description logic community, relatively badly by the FIPA community (due
to its similarity to but difference from FIPA-SL) and relatively badly by most agent engineers
currently using arbitrary content.

• Industry: Is unlikely to be popular since it is tagged as a research language.

• Standards: Whilst there is a KIF standardisation process underway its status is unclear.

8.8 Summary
The following table presents the list of all attributes that must be considered in the content language
evaluation.

Expressivity
01. Represents propositions Yes
02. Represents actions No (must be defined)
03. Represents open questions Yes/No
04. Allows quantification Explicit
05. Allows connectives AND, OR, NOT, EQUIV, IMPLIES
06. Allows action propositions No (must be defined)
07. Allows modal operators No (must be defined)
08. Allows functions Yes

Available Processing Tools Tool Name License/Price Comments
09. Parsers MKIF, JKP,

ATOMIK, Stanford
Parser

Free, no license
specified or LPGL

None of these
parsers appear to
be very mature,
the first three
appear to have
fallen into disuse
(not maintained)
and they all
address
(potentially
different) subsets
of KIF

10. Translators None but some
must exist for
various KR
applications

11. Reasoners Prologic and
EPILOG

Free for non-
commercial use,
uncertain for
commercial use.

Both from
Stanford, both
LISP based, both
do not appear to
be maintained

 28

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

12. Editors None found but
may exist in the
context of
knowledge
engineering projects

13. Others

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

14. Agent Developers 2

15. Researchers 2

16. Industry 3

17. Lay people 4

Migration Paths

18. Evaluation Very limited if full expressivity is allowed and reliance on
theorem provers develops, reasonable migration paths if usage is
limited to simple subsets

Adoption Issues 1 (Low Preference) - 3 (High Preference)
19. Research preference 2.5 (It depends strongly on the community, people are likely to

appreciate the flexibility but some communities may prefer other
similar languages, for example FIPA-SL)

20. Industry preference 2 (KIF is one of the better-known logic-based languages but still
unlikely to be popular with industry)

21. Standards impact 2 (The fact that KIF is well known plays off against the fact that
it seems to be stuck in an inaccessible standardisation process)

 29

9 Prolog Review

9.1 Basis of the Review
The Review of Prolog as a possible content language was based on [Bratko, 2001].

9.2 Expressivity

9.2.1 Expressivity Test

Expression Language Representation Details
“Schrödinger’s Cat is alive” owns (‘schrödinger, X),

cat (X),
alive (X)

or

alive (cat_owned_by (‘Shrodinger’))

Functions are not evaluated in
Prolog.

“Cats are animals” animal (X):- cat (X) This kind of sentence can be
stated, used for inference but
not easily inferred.

“You making the tea” action (luis, make-tea) The semantics is given by the
client program.

“Drinking too much is bad for
you”

bad_for (X):- drink_too_much (X) Of course Prolog has some
difficulty representing such
lies.

“All red things” findall (X, red (X), RedThings)

hot (X):- red (X)

“Any colour a car might have” colour (car123, Y)

or

findall (Y, colour (car123, Y), L)

A specific car, say, car123.

“All things are hot” hot (X):-thing (X) Can be stated, can be used for
inference, but cannot easily be
inferred.

“Something is cold” cold (X) If used in a question. If this is
a statement, this means
everything is cold

“Younger than 8 or older than
60”

age (X, A),
(A > 60; A < 8)

In standard Prolog, A must be
instantiated before it is tested.

“The desired movie should be
romantic and the cinema should
at walk distance”

movie (X),
type (X, romantic),
cinema (X, Z),
near (Z)

“The transport should not be
private”

transport (X),
\+ type (X, private)

If this is a statement, it means
X is a transport that is not
private. If this is a query, it is
asking for some transport that
is not public.

“Success implies Payment” must_pay (X) :- successful (X)

“Luis has the persistent goal that
W”

pg (luis, W) Can be parsed, expressed and
represented. If inference is
needed, Prolog must be
extended.

“Steve Believes X” bel (steve, X) Can be parsed, expressed and
represented. If inference is
needed, Prolog must be
extended.

“Jonathan Desires Y” desire (jonathan, Y) Can be parsed, expressed and
represented. If inference is

 30

needed, Prolog must be
extended.

“Matthias Intends Z” current_time (T1),
exists (T2, time (T2,

intends (Matthias, Z))),
T2 < T1

Can be parsed, expressed and
represented. If inference is
needed, Prolog must be
extended. current_time
must be defined

9.2.2 Summary

Represents open questions

Prolog has the capability to express open questions through its meta-logical operators: findall,
bagof and setof. There is no Prolog operator that is the equivalent of the FIPA-SL iota operator,
but it can easily be defined as follows:

iota (T, P, X) :-
findall (T, P, [X])

Allows quantification

Prolog does not provide explicit quantification, but even without any extension, Prolog has the means
to implicitly represent quantification.

In questions, by default, all variables are implicitly existentially quantified; double negation may be
used to represent universal quantification.

In a statement, all variables are implicitly universally quantified. The effects of existentially quantified
variables can be achieved in statements only by the predicate definition mechanism, which is a
limitation of the language.

Allows connectives

Prolog has the standard conjunction and disjunction operators.

Implication is also possible but it is limited to expressions in which the consequent must be a positive
atomic proposition.

Most Prolog implementations have only negation as failure but not logical negation. Negation as failure
is everything that is not known to be true is assumed to be false. Some implementations of Prolog
(especially those that are based on the Edinburgh syntax) also have logical negation.

Prolog does not provide equivalence.

All connectives may be fully implemented in Prolog by extending the language, which is often the case
in AI applications.

Allows action propositions

Action operators do not belong to the language, but an explicit version (which cannot be inferred) of
action operators may be easily used.

Allows modal operators

Modal operators do not belong to the language. An explicit version (which cannot to be inferred) of
modal operators may be easily used. Reasoning may also be implemented with modal operators,
especially modal operators that are closed under the reasoning capabilities of the agent.

Allows functions

Syntactically, Prolog allows functions but it does not evaluate functions with a few exceptions, such as
arithmetic operators. The easiest way of circumventing this problem is by using predicates instead of
functions, which may result in lengthier expressions. Another way to address the problem is to extend
the language with the capability to evaluating functions.

 31

9.3 Parsing and Processing Tools
There are several implementations of Prolog. Some of them are available for the Windows operating
system and others for the Linux and UNIX operating systems. In general, Prolog may be integrated
with other languages, especially with C/C++. Some Prolog implementations, such as the Win-Prolog
and the SICStus Prolog may also be integrated with Java programs.

There are also several Prolog implementations (such as JavaLog) that are implemented as Java classes
therefore they may easily be used in Java programs. Unfortunately these implementations are not well
documented nor well supported.

Some Prolog systems may also access relational databases through ODBC and the Internet through
special purpose libraries, for example, Win-Prolog.

Name Details

Win-Prolog
[WinProlog]

Prolog for the Windows operating system which can be embedded in
Java, C/C++ and VB programs

SICStus Prolog
[SICStus]

Prolog for Windows, Linux and UNIX operating systems which can be
embedded in Java and C/C++ programs

Amzi Prolog [Amzi] Prolog for Windows, Linux and UNIX operating systems which can be
embedded in Java and there is an IDL compiler for Amzi Prolog

GNU Prolog [GNU-
Prolog]

Open source Prolog for the Linux operating system which can be
integrated with C/C++ programs

Visual Prolog [Visual-
Prolog]

Prolog for Windows, OS/2, and SCO UNIX operating systems which an
be integrated with C/C++ programs and can also call Windows library
files

SWI Prolog [SWI-
Prolog]

Prolog for Windows, Linux, and Solaris UNIX which can be integrated
with Java and C/C++ and there is an IDL compiler for SWI Prolog

JavaLog [JavaLog] Prolog implemented as a Java class which has little support and
documentation

Bin Prolog [Bin-
Prolog]

Prolog for Windows, Linux and Solaris UNIX operating system which
generates C/C++ code that can be embedded within Java and C/C++
programs. It is a multi-threaded programming environment with a AI
tools such as blackboards, etc.

Quintus Prolog
[Quintus]

Prolog for Windows and UNIX operating systems where programs may
be called from C/C++ programs and may call routines in other languages,
but only from Java programs under the Windows operating system

9.3.1 Parsers

It is easy to parse Prolog expressions since a single read command may be used to read and parse any
Prolog expression from any stream, including strings, sockets, files, etc. A stream containing a
character sequence represented by:

forall (X, implies (p (X), q (X))

It can be read using the read/1 predicate and it is automatically converted into a symbolic tree
structure.

9.3.2 Translators

It is unknown if there are any commercially available translators from Prolog to other languages or
from other languages to Prolog. However, Prolog has a built-in formalism to write grammars called
DCG which may be used to express a variety of grammars (including context dependent grammars)
and to create parsers for those grammars. ADETTI has built a simple translator from FIPA-SL to
Prolog.

 32

9.3.3 Reasoners

A Prolog interpreter is a reasoning mechanism. If the Prolog reasoning mechanism is not appropriate
for the problem, it is a relatively simple matter to define other kinds of reasoning mechanisms on top of
Prolog. Both logic-based reasoning mechanisms and non-logic reasoners such as planners and learning
algorithms may also be implemented.

9.4 Knowledge Acquisition Facilities
There are many Prolog implementations. Some of them have complex sophisticated development
environments. Others are very simple tools often with no more than a prompt-based interpreter. Even in
the simplest case, the interpreter can also be used to perform syntax validity tests.

9.5 Language Learning Difficulty
In terms of learning difficulty, no studies are known but by experience of some of the authors, Prolog
can easily be learned by people without previous knowledge of other programming languages.

Although Prolog is a logic-based language, its learning difficulty is not as much as that of SL or KIF,
because its syntax is simper and also because it is a programming language and therefore it is easy to
test the effects of designed message contents when interacting with a program.

• Agent developers

Agent developer will learn how to use Prolog in concrete examples by comparison with other
examples, and also trying their guesses with simple example programs playing the role of the
receiver. If an agent developer has some prior knowledge of other logic-based languages, such as
KIF, he or she will learn Prolog more easily. Undergraduate students without any prior knowledge
of logic can fully learn how to use Prolog in half of one of five courses.

• Researchers

Researches with previous knowledge of logic will have no difficulty learning Prolog.

• Lay people: It is relatively difficult since it is based on logic. But it is easier than other logic-based
languages because its syntax is simpler and its use may be tested with an interpreter

Industry: Adoption is easy, especially in community niches where Prolog is relatively known such as
in the UK, in France and in Japan.

9.6 Migration Paths and Flexibility
Being a programming language, Prolog can easily be extended. Since besides being a programming
language, Prolog has strong symbolic processing capabilities, the possibility to extend it is far more
powerful than that of competitors.

Since Prolog has quoting mechanism, it can be used with embedded expressions in other languages, but
those will not be interpreted by the original Prolog unless it is extended.

Prolog can also be embedded in programs written other programming languages such as C and Java.

9.7 Adoption Issues
Prolog is likely to become popular if the project adopted it and increase its dissemination. However
there are also research communities that offer strong resistance to the use of Prolog.:

• Research: In general, it would be well received by part of the artificial intelligence community
and relatively well by most agent engineers currently using arbitrary content.

• Industry: Is likely to become popular if it were adopted by the project, since it can also be used as
a programming language.

• Standards: There is an ISO Prolog standard but, in fact, it is not much used. It is not difficult that
FIPA would accept a Prolog Content Language in its Content Language Library since Prolog
provides the means to represent all content types required by FIPA ACL.

 33

9.8 Summary

Expressivity
01. Represents propositions Yes
02. Represents actions Atomic and composed
03. Represents open questions Yes
04. Allows quantification Implicit
05. Allows connectives AND, OR, NOT, EQUIV, IMPLIES
06. Allows action propositions Done, Feasible
07. Allows modal operators I, B, G, PG, U
08. Allows functions Yes

Available Processing Tools Tool Name License/Price Comments
09. Parsers Any Prolog Variable
10. Translators No
11. Reasoners Any Prolog

Knowledge Acquisition
Facilities

Tool Name License/Price Comments

12. Editors Not usually Variable
13. Others Yes

Language Learning Difficulty 1 (Very Easy) – 5 (Very Difficult)

14. Agent Developers 2

15. Researchers 2

16. Industry 3

17. Lay people 3

Migration Paths

18. Evaluation Prolog is very easy to extend, therefore new capabilities may
easily be added if needed.

Adoption Issues 1 (Low Preference) - 3 (High Preference)
19. Research preference 2 (Certain communities would really appreciate the idea but

some others would not)
20. Industry preference 1
21. Standards impact 2 (It would be very easy to create a specification of Prolog as a

content language o its own or as a concrete syntax for ACL and
also for FIPA-SL)

 34

10 Comparative Evaluation and Conclusions
This section briefly summarises the conclusions from the review for each of the potential languages
and indicates the final decisions taken in the EU Agentcities.RTD project as initial content languages
for the Agentcities Network.

10.1 Recommendations for DAML+OIL
1. DAML+OIL might not the correct tool to use as a generic content language because of its

restricted expressivity. However, DAML+OIL may prove useful in the following areas:

o Direct communication about ontologies between agents, perhaps ensuring that content
languages we chose can embed DAML+OIL.

o Definition of language elements for new or existing content languages (meta-level) which
might then make it possible to apply DAML+OIL tools to statements in the chosen content
language.

2. As a general communication language it is impossible to (cleanly) express many important
concepts, such as action expressions, object references, compound logical and modal statements.

10.2 Recommendations for ebXML
1. ebXML is not a traditional knowledge representation framework and is therefore not as expressive

as the typical knowledge representation languages like KIF, FIPA-SL or Prolog. The focus of
ebXML is on the direct and explicit representation of information items needed in business
collaborations and coordination. Instead of having a meta-language that can represent everything,
the strategy of ebXML is to have an extensible framework that supports core elements, which can
be easily extended to meet new requirements. The relation to traditional EDI frameworks and the
support from the industrial community are the other important characteristics.

2. ebXML is not suitable as a generic content language for agent communication.

3. A possible content language and ontology model should at least integrate the key features and
functionalities of ebXML to offer suitable support for e-Commerce collaborations.

4. The possibility of direct translations to ebXML representations can be advantageous in easing the
integration with existing and future e-Commerce platforms and in increasing the acceptance of
solutions from Agentcities by the industrial community.

10.3 Recommendations for Prolog
1. Prolog is less expressive than FIPA-SL in the following sense: although we can write and parse

any of the FIPA-SL expressions in Prolog, some of them would not mean a thing for the Prolog
inference engine.

2. Prolog has commercial support for parsing, syntax checking and inference. However, this support
is only effective if the agent implementation language is also Prolog. To use Prolog as a content
language for Java agents, there would not be any advantage in relation to using FIPA-SL or other
languages, except for parsing.

3. To integrate Prolog code with Java code, two approaches can be followed. The first is to write two
different programs that communicate via sockets, or the second is to embed Prolog predicates in a
Java program. The first is always possible, but the second alternative can only be used with a few
Prolog implementations, some of which are not free.

4. Prolog is easy to expand with new capabilities than it is to extend any other language, such as Java
or C/C++.

5. Prolog is relatively easy to learn but it is not a current trend.

10.4 Recommendations for FIPA-SL
1. FIPA-SL is more expressive than the other languages: The expressive power of FIPA-SL is well

founded in semantic terms (with a few exceptions and some clarifications), which ensures that

 35

some inference properties could be implemented. This is not the case for other candidates such as
Prolog or DAML+OIL. However, since no reasoning support exists for FIPA-SL, the expressive
power of the language is not an advantage in relation to other candidate content languages that
allow expression the same constructs.

2. FIPA-SL parsers have been built by other EU Agentcities.RTD project partners, which make them
free and easily adaptable to the needs of the project.

3. FIPA-SL does not provide the means for extension.

4. FIPA-SL is relatively easy to learn but it is not a current trend.

10.5 Recommendations for KIF

• Even though KIF is primarily designed for knowledge bases it can express most of the things in
the test set (and much more). There are some expressions it has no direct support for modal
operators, actions and referential expressions.

• KIF has been soundly tested for various knowledge engineering applications.

• Between FIPA-SL and KIF, KIF is likely to have an advantage over FIPA-SL since it is more
widely know. With reference to the other languages, it is difficult to say since they are differing
functionality.

• From the parsers available, most do not seem to be maintained, do not address different subsets of
the language, and, have (to our knowledge) never been tested together.

• Adopting KIF in the EU Agentcities.RTD project would require agreed language extensions for
action expressions (syntactic and semantic), agreement extensions for referential expressions
(syntactic and semantic), agreement on a potential subset of the languages to use, development
effort on one or more parsers for that subset, and, integration of these parsers into the existing
agent platforms.

10.6 Final Recommendations
Based of on the evaluations given in this document and experiences of the EU Agentcities.RTD project
partners the final choice made was as follows:

• Individual services can be built in either FIPA-SL or KIF.

• Work is to be carried out to establish necessary and useful subsets of both languages for use in the
project; while the full power of each language does not seem to be required it is also not clear a-
priori what is necessary for the target applications.

• Work is to be carried out to map subsets of the two languages to one another to facilitate
interoperable service development.

 36

11 References
[AAP] April Agent Platform

http://sf.us.agentcities.net/aap/

[Amzi] AMZI Prolog and Logic Server http://www.amzi.com/

[Algae] RDF Query Language
http://www.w3.org/1999/02/26-modules/User/Algae-HOWTO.html

[ATOMIK] Language and Ontology Toolkit
http://liawww.epfl.ch/ATOMIK/

[AUML] Agent-UML Modelling Language http://www.auml.org.

[Bratko, 2001] Ivan Bratko. 2001. “Prolog Programming for Artificial Intelligence. Third Edition”.

[Bin-Prolog] Bin-Prolog Toolkit http://www.binnetcorp.com/BinProlog/

[DAML+OIL] DAML+OIL Language Specification, March 2001
http://www.daml.org/2001/03/daml+oil.daml
DAML+OIL Example Ontology, March 2001
http://www.daml.org/2001/03/daml+oil-ex.daml
DAML+OIL Walk-thru, March 2001
http://www.daml.org/2001/03/daml+oil-walkthru.html

[DAML-API] DAML API
http://grcinet.grci.com/maria/www/codipsite/Tools/Components.html

[ebXML] Technical Architecture Specification, version 1.0.4
Business Process Specification Schema, version 1.01
Registry Service Specification, version 1.0
Collaboration-Protocol Profile and Agreement Specification, version 1.0

[EPILOG] EPILOG Inference Package, Stanford University, 1995
http://logic.stanford.edu/sharing/programs/epilog/

[FIPA00008] FIPA SL Content Language Specification, FIPA, 2000.
http://www.fipa.org/specs/fipa00008/

[FIPA00061] FIPA ACL Message Structure Specification, FIPA, 2000.
http://www.fipa.org/specs/fipa00061/

[GNU-Prolog] BNU-Prolog Toolkit http://org.gnu.de/software/prolog/prolog.html
http://pauillac.inria.fr/~diaz/gnu-prolog/

[KIF] Knowledge Interchange Format Draft ANSI Proposal, dpANS NCITS.T2/98-004
http://logic.stanford.edu/kif/dpans.html

[KQML] Specification of the KQML Agent-Communication Language -- plus example agent policies
and Architectures, Tim Finin et. Al. The DARPA Knowledge Sharing Initiative External
Interfaces Working Group Technical Report 1993. URL:
http://www.cs.umbc.edu/kqml/papers/kqmlspec.ps

[JavaLog] JavaLog Prolog Toolkit http://www.exa.unicen.edu.ar/~azunino/javalog.html

[Jena] RDF/DAML+OIL Parser
http://www.hpl.hp.com/semweb/jena-top.html

[JKP] Java KIF Parser, X. Luan
http://www.csee.umbc.edu/kse/kif/jkp/

[KIFparser] Stanford KIF Parser. Gregory Olsen
http://piano.stanford.edu/concur/software/kifparser.html

[FIPA-KIF] FIPA KIF Content Language Specification, Foundation for Intelligent Physical
Agents, 2000
http://fipa.org/specs/fipa00010/

 37

[mKIF] mKIF Parser, Mariusz Nowostawski
http://marni.otago.ac.nz/mKIF/

[Ontolingua] Ontolingua Knowledge Server, Stanford University
http://www-ksl-svc.stanford.edu:5915/

[Prologic] Prologic Reasoning Systems, Standford University
http://logic.stanford.edu/sharing/programs/prologic/

[Quintus] Quintus Prolog Toolkit http://www.sics.se/quintus/

[Redland] RDF Framework
http://www.redland.opensource.ac.uk/

[Sesame] RDF Query Language
http://sesame.aidministrator.nl/

[SICStus] Sictus Prolog toolkit http://www.sics.se/isl/sicstus.html

[SOWA] Conceptual Graph Examples
http://users.bestweb.net/~sowa/cg/cgexampw.htm

[SWI-Prolog] SWI Prolog Toolkit http://www.swi.psy.uva.nl/projects/SWI-Prolog/
http://gollem.swi.psy.uva.nl/twiki/pl/bin/view/Foreign/JavaInterface

[Visual-Prolog] Visual Prolog Toolkit http://www.visual-prolog.com/

[Wilbur] RDF Toolkit
http://wilbur-rdf.sourceforge.net/

[WinProlog] WinProlog Toolkit http://www.lpa.co.uk/

