
Mutual Exclusion in Asynchronous Systems

with Failure Detectors ∗†

Carole Delporte-Gallet Hugues Fauconnier
Laboratoire d’Informatique Algorithmique:

Fondements et Applications

University of Paris VII

Rachid Guerraoui Petr Kouznetsov
Distributed Programming Laboratory,

Swiss Federal Institute of Technology in Lausanne

Abstract

This paper defines the fault-tolerant mutual exclusion problem in a
message-passing asynchronous system and determines the weakest failure
detector to solve the problem. This failure detector, which we call the
trusting failure detector, and which we denote by T , is strictly weaker than
the perfect failure detector P but strictly stronger than the eventually
perfect failure detector �P . The paper shows that a majority of correct
processes is necessary to solve the problem with T . Moreover, T is also the
weakest failure detector to solve the fault-tolerant group mutual exclusion
problem.

1 Introduction

This paper addresses the fault-tolerant mutual exclusion problem in a dis-
tributed message-passing system where channels are reliable and processes can
fail by crashing. The mutual exclusion problem [5, 11, 12, 17] involves man-
aging access to a single, indivisible resource that can only support one user at
a time (mutual exclusion property). The user accessing the resource is said to
be in its critical section (CS). In the fault-tolerant mutual exclusion problem,
we require that if a correct process (i.e., a process that does not crash) wants
to enter its critical section, then there eventually will be some correct process
in its CS (progress property), even if some process crashed while in the critical
section.

∗This work is partially supported by the Swiss National Science Foundation (project num-
ber 510-207).

†Technical report ID:200227

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Evidently, the problem cannot be solved deterministically in a crash-prone
asynchronous system without any information about failures1: there is no way
to determine that a process in its CS is crashed or just slow. Clearly, no deter-
ministic algorithm can guarantee fault-tolerant progress and mutual exclusion
simultaneously. In this sense, the problem is related to the famous impossibil-
ity result that consensus cannot be solved deterministically in an asynchronous
system that is subject to even a single crash failure [6].

To circumvent the impossibility of consensus, Chandra and Toueg [3] intro-
duced the notion of failure detector. Informally, a failure detector is a distributed
oracle that gives (possibly incorrect) hints about which processes have crashed
so far. Each process has access to a local failure detector module that monitors
other processes in the system. In [3], it is shown that a rather weak failure
detector �W is sufficient to solve consensus in an asynchronous system with a
majority of correct processes, and that �W can be implemented using partial
synchrony assumptions. In [2], it is shown that �W is also necessary to solve
consensus. In short, �W is the weakest failure detector to solve consensus.

A natural question follows: what is the weakest failure detector to solve
the fault-tolerant mutual exclusion problem? Traditionally, mutual exclusion
algorithms either consider a failure-free model [13, 19], or suppose that (1) every
crash is eventually detected by every correct process and (2) no correct process is
suspected [1, 16]: the conjunction of (1) and (2) is equivalent to the assumption
of the perfect failure detector P [3]. In other words, perfect information about
failures is sufficient to solve the fault-tolerant mutual exclusion problem. But
is P necessary? We show that the answer is “no”: we can solve the problem
using the trusting failure detector T , a new failure detector we introduce here,
which is strictly weaker than P (but strictly stronger than �P , the eventually
perfect failure detector of [3]).

Roughly speaking, failure detector T eventually and permanently (1) trusts
(considers to be up) every correct process and (2) does not trust any crashed
process. If T stops trusting a process, then the process is crashed. T might
however trust temporarily a crashed process as well as not trust temporarily
a correct process. Intuitively, T can thus make mistakes and algorithms using
T are, from a practical point of view, more resilient than those using P .

The algorithm we present here to show that T is sufficient to solve fault-
tolerant mutual exclusion assumes a majority of correct processes and is inspired
by the well-known Bakery algorithm of Lamport [11, 12]: a process that wishes
to enter its CS first gets trusted by some correct process, then draws a ticket
and is served in the order of its ticket number. T guarantees that a crash of the
process will be eventually detected by every correct process in the system. We
show that, in addition to mutual exclusion and progress, our algorithm guar-
antees also a fairness property, ensuring that the only excuse for not granting
the access to a CS required by a process, is the permanent stay of some correct
process in its CS (starvation-freedom property).

Besides, we show that if at least one process can crash, then no algorithm can
1We do not consider here probabilistic mutual exclusion algorithms [4, 7].

2

solve the problem using a strictly weaker failure detector. Intuitively, this stems
from the fact that, if a process in its CS does not deliberately resign, another
process can enter its CS only if it is sure that the first process is crashed. We
use this very fact to extract the information provided by T from any algorithm
that solves fault-tolerant mutual exclusion.

In other words, T is indeed the weakest failure detector to solve the problem
in a system with a majority of correct processes. We show also that the majority
is actually necessary for any fault-tolerant mutual exclusion algorithm using T .
Then we address the question: what if we do not make the assumption of a
majority of correct processes? Is P necessary? We show that it is still not: we
present a failure detector T + S (where S is the strong failure detector of [3])
which is strictly weaker than P and which is sufficient to solve the problem even
with an arbitrary number of failures.

Finally, we turn our attention to group mutual exclusion [8, 9, 10], a recent
generalization of mutual exclusion and we show that T is the weakest to solve
fault-tolerant group mutual exclusion (with a majority of correct processes). In
other words, we show that the problem is equivalent to fault-tolerant mutual
exclusion in an asynchronous system augmented with failure detectors and the
assumption of a majority of correct processes. Analogously, failure detector T +
S is sufficient to solve fault-tolerant group mutual exclusion in an asynchronous
system with an arbitrary number of failures.

The rest of the paper is organized as follows. Section 2 overviews the system
model. Section 3 defines the fault-tolerant mutual exclusion problem. Section 4
introduces the trusting failure detector T . Sections 5 and 6 show that T is
necessary and sufficient to solve the problem, respectively. Section 7 discusses
the bounds on the number of correct processes necessary to solve the problem
with T and introduces a failure detector T + S which is sufficient to solve the
problem without a majority of correct processes. Section 8 generalizes our result
to the group mutual exclusion problem. Section 9 discusses the performance cost
of the resilience provided by T and Section 10 concludes the paper with some
practical remarks.

2 The Model

We consider in this paper a crash-prone asynchronous message passing system
model augmented with the failure detector abstraction [2].

System. The system consists of a set of n processes Π = {1, .., n} (n > 1).
Every pair of processes is connected by a reliable channel. Processes communi-
cate by message passing. To simplify the presentation of our model, we assume
the existence of a discrete global clock. This is a fictional device: the processes
have no direct access to it.2 We take the range N of the clock’s ticks to be the
set of natural numbers.

2More precisely, the information about global time can come only from failure detectors.

3

Failures and failure patterns. Processes are subject to crash failures. A
failure pattern F is a function from the global time range N to 2Π, where F (t)
denotes the set of processes that have crashed by time t. Once a process crashes,
it does not recover, i.e., ∀t < t′ : F (t) ⊆ F (t′). We define correct(F) =
Π − ∪t∈NF (t), the set of correct processes. A process p /∈ F (t) is said to be up
at time t. A process p ∈ F (t) is said to be crashed at time t. We do not consider
Byzantine failures: a process either correctly executes the algorithm assigned
to it, or crashes and stops forever executing any action. An environment E is
a set of possible failure patterns. Ef consists of all failure patterns in which up
to f processes can crash. We consider Ef with 0 < f < n, in which at least one
process might crash and at least one process is correct.

Failure detectors. A failure detector history H with range R is a function
from Π × N to R. H(i, t) is the value of the failure detector module of process
i at time t. A failure detector D is a function that maps each failure pattern to
a set of failure detector histories (usually defined by a set of requirements that
these histories should satisfy). D(F) denotes the set of possible failure detec-
tor histories with range RD permitted by D for the failure pattern F . Processes
use a failure detector D in the sense that every process i has a failure detector
module Di that provides i with information about the failures in the system.
Typically, this information includes the set of processes that i currently suspects
to have crashed.3 Among the failure detectors defined in [3], we consider the
following ones, each one defined by a completeness and an accuracy property:

Perfect (P): strong completeness (i.e., every crashed process is eventually sus-
pected by every correct process) and strong accuracy (i.e., no process is
suspected before it crashes);

Eventually perfect (�P): strong completeness and eventual strong accuracy
(i.e., there is a time after which no correct process is ever suspected).

Strong (S): strong completeness and weak accuracy (i.e., some correct process
is never suspected).

For any failure pattern F , P(F), �P(F) and S(F) denote the sets of all histories
satisfying the corresponding properties.

Algorithms, configurations, schedules, and runs. We model the asyn-
chronous communication channels as a message buffer which contains messages
not yet received by their destinations. An algorithm A is a collection of n (pos-
sibly infinite state) deterministic automata, one for each of the processes. A(i)
denotes the automaton running on process i. Computation proceeds in steps
of the given algorithm A. In each step of A, process i performs atomically the

3In [2], failure detectors can output values from an arbitrary range. In determining the
weakest failure detector for our fault-tolerant mutual exclusion problem, we indeed consider
the original failure detector model of [2], i.e., we do not make any assumption a priori on the
range of a failure detector.

4

following three actions: (1) i receives a single message addressed to i from the
message buffer, or a null message, denoted λ; (2) i queries and receives a value
from its failure detector module; (3) i changes its state and sends a message
to a single process according to the automaton A(i), based on its state at the
beginning of the step, the message received in the receive phase, and the value
that i sees in the failure detector query phase. Note that the received message is
chosen non-deterministically from the messages in the message buffer destined
to i, or the null message λ.

A configuration defines the current state of each process in the system and
the set of messages currently in the message buffer. Initially, the message buffer
is empty. A step (i, m, d, A) of an algorithm A is uniquely determined by the
identity of the process i that takes the step, the message m received by i during
the step (m might be the null message λ), and the failure detector value d seen
by i during the step. We say that a step e = (i, m, d, A) is applicable to the
current configuration if and only if m = λ or m is in the current message buffer.

A schedule S of algorithm A is a (finite or infinite) sequence of steps of A.
S� denotes the empty schedule. We say that a schedule S is applicable to a
configuration C if and only if (a) S = S�, or (b) S[1] is applicable to C, S[2] is
applicable to S[1](C), etc. For a finite schedule S applicable to C, S(C) denotes
the unique configuration that results from applying S to C.

A partial run of algorithm A in an environment E using a failure detector D
is a tuple R = 〈F, HD, I, S, T 〉 where F ∈ E is a failure pattern, HD ∈ D(F) is a
failure detector history, I is an initial configuration of A, S is a finite schedule
of A, and T ⊆ N is a finite list of increasing time values (indicating when each
step S occurred) such that |S| = |T |, S is applicable to I, and for all t ≤ |S|,
if S[t] is of the form (i, m, d, A) then: (1) i has not crashed by time T [t], i.e.,
i /∈ F (T [t]) and (2) d is the value of the failure detector module of i at time
T [t], i.e., d = HD(i, T [t]).

A run of algorithm A in an environment E using a failure detector D is a
tuple R = 〈F, HD , I, S, T 〉 where F ∈ E is a failure pattern, HD ∈ D(F) is a
failure detector history, I is an initial configuration of A, S is an infinite schedule
of A, and T ⊆ N is an infinite list of increasing time values indicating when
each step S occurred. In addition to satisfying the properties (1) and (2) of a
partial run, a run R should guarantee that (3) every correct process in F takes
an infinite number of steps in S and eventually receives every message sent to
it (this conveys the reliability of the communication channels).4

Problems and solvability. A problem is a set of runs (usually defined by
a set of properties that these runs should satisfy). An algorithm A solves a
problem M in an environment E using a failure detector D if all the runs of A
in E using D are in M (i.e., they satisfy the properties of M). We say that a
failure detector D solves problem M in E if there is an algorithm A which solves
M in E using D.

4In fact, in this paper we can succeed with a weaker guarantee, such as “every correct
process eventually receives every message sent to it by any correct process”.

5

Let M and M ′ be any two problems and E be any environment. If for any
algorithm A′ that solves M ′ in E , there is a transformation algorithm of A′ into
an algorithm A, RA′→A, such that A solves M in E , we say that M ′ is harder
than M in E . If M ′ is harder than M in E and M is harder than M ′ in E , we
say that M and M ′ are equivalent in E .

Weakest failure detector. If for failure detectors D and D′ there is an
algorithm RD′→D that transforms D′ into D in environment E (RD′→D emulates
histories of D using histories of D′), we say that D is reducible to D′ in E
(RD′→D is called a reduction algorithm), or D is weaker than D′ in E , and we
write D 	E D′ . If D 	E D′ but D′ �E D, we say that D is strictly weaker than
D′ in E , and we write D ≺E D′ (note that RD′→D does not need to emulate all
histories of D; it is required that all the failure detector histories it emulates be
histories of D).

We say that a failure detector D is the weakest failure detector to solve a
problem M in an environment E if the following conditions are satisfied: (suffi-
ciency) D solves M in E and (necessity) if a failure detector D′ solves M in E ,
then D is reducible to D′ in E .

3 The fault-tolerant mutual exclusion problem

We define here the fault-tolerant mutual exclusion problem (from now on -
FTME) using the terminology and notations given in [14]. We associate to
every process i ∈ Π a user ui that can require exclusive access to the critical
section. The users can be thought of as application programs.

As in [14], every process i ∈ Π and every user ui are modelled as state
machines. A process i ∈ Π and the corresponding user ui interact using tryi,
criti, exiti and remi actions. The input actions of process i (and outputs of
ui) are the tryi action, indicating the wish of ui to enter its CS, and the exiti
action, indicating the wish of ui to leave its critical section. The output actions
of i (and inputs of ui) are the criti action, granting the access to its critical
section, and the remi action, which tells ui that it can continue its work out of
its critical section.

A sequence of tryi, criti, exiti and remi actions for the composition (ui, i) is
called a well-formed execution if it is a prefix of the cyclically ordered sequence
{tryi, criti, exiti, remi}. A user ui is called a well-formed user if it does not
violate the cyclic order of actions tryi, criti, exiti, remi, ...

Given an execution of (ui, i), we say that process i is

- in its remainder section (a) initially or (b) in between any remi action and
the following tryi action;

- in its trying section (or i is a volunteer) in between any tryi action and the
following criti action;

- in its critical section (CS) in between any criti action and the following (a)
exiti action or (b) crash of i;

6

- in its exit section (or i is a resigner) in between any exiti action and the
following remi action.

A mutual exclusion algorithm defines trying and exit protocols for every process
i. We say that the algorithm solves the FTME problem if, under the assumption
that every user is well-formed, any run of the algorithm satisfies the following
properties:

Well-formedness: For any i ∈ Π, the execution describing the interaction
between ui and i is well-formed.

Mutual exclusion: No two different processes are in their CSs at the same
time.

Progress:

(1) If a correct process volunteers, then at some time later some correct
process is in its CS.

(2) If a correct process resigns, then at some time later it enters its
remainder section.

We will show in Section 6 that any algorithm that solves the FTME problem
with T in an environment with a majority of correct processes can be trans-
formed into an algorithm satisfying not only the properties above but also the
following fairness property:

Starvation freedom: If no process stays forever in its CS, then every correct
process that volunteers enters its CS at some time later.

4 The trusting failure detector

This section introduces a new failure detector that we call the trusting failure
detector and we denote by T . Failure detector T is such that RT = 2Π and
HT (i, t) represents the set of processes that process i trusts (i.e., that i considers
to be up) at time t. For every failure pattern F , T (F) is defined by the set of
all histories HT that satisfy the following properties:

Trusting completeness
Eventually, no crashed process is trusted by any correct process. That is:

∀i /∈ correct(F), ∃t : ∀t′ > t, ∀j ∈ correct(F), i /∈ HT (j, t′)

Trusting accuracy

(1) Eventually, every correct process is permanently trusted by every
correct process. That is:

∀i ∈ correct(F), ∃t : ∀t′ > t, ∀j ∈ correct(F), i ∈ HT (j, t′)

7

(2) Every process j that stops being trusted by a process i is crashed.
That is:

∀i, j, t′ > t : j ∈ HT (i, t) ∧ j /∈ HT (i, t′) ⇒ j ∈ F (t′)

Example. Figure 1 depicts a possible scenario of failure detection with T . We
consider the system Π = {1, 2, 3, 4}. Initially, the failure detector module at
process 1 outputs {1}: H(1, t1) = {1}, i.e., process 1 trusts only itself. At time
t2 > t1, processes 2 and 3 also get trusted by process 1: H(1, t2) = {1, 2, 3}.
Process 3 crashes and at some time later is not trusted anymore by process 1 :
∀t ≥ t3, H(1, t) = {1, 2}. Note that the id of crashed process 4 is never output
by the module of T at process 1, that is, process 1 never trusts process 4.

1�

2�

3�

4�

H(1,t �)={1,2,3}�H(1,t �)={1}� H(1,t �)={1,2}�1� 2� 3�

Figure 1: Failure detection scenario for T .

Now we identify the position of T in the hierarchy of failure detectors intro-
duced in [3].

Proposition 1 T ≺Ef
P, in any environment Ef with f > 0.

Proof:
(a) We first show that T is reducible to P . For this we define a reduction
algorithm RP→T by outputting HT (i, t) = Π\HP(i, t), ∀t ∈ N, ∀i /∈ F (t).

Trusting completeness follows directly from the strong completeness prop-
erty of P . Indeed, if every crashed process is eventually suspected by every
correct process, then eventually no crashed process is trusted.

Trusting accuracy follows from (1) the fact that initially every process is
trusted and (2) the strong accuracy property of P . Indeed, since P does not
make mistakes, correct processes are always trusted. If a process stops being
trusted, then it is crashed.
(b) Now we show that P is not reducible to T . Intuitively, the proof follows
from the fact that T is allowed not to give any information about a crashed
process (see process 4 in the scenario of Figure 1).

Assume that there exists a reduction algorithm RT →P that, for any failure
pattern F ∈ Ef , constructs HP from HT , such that HP ∈ P(F).

Consider failure pattern F1 ∈ Ef , such that F1(0) = {j}, correct(F1) =
Π\{j} (the only crashed process j is initially crashed) and take a history H1

T ∈

8

T (F1), such that H1
T (i, t) = Π\{j}, ∀i �= j, ∀t ∈ N (remember that we consider

an environment where at least one process can crash). Consider run R1 =
〈F1, H

1
T , I, S1, T 〉 of RT →P that outputs a history H1

P ∈ P(F1). By the strong
completeness property of P : ∃t0 ∈ N, i ∈ Π\j : H1

P (i, t0) = {j}.
Consider failure pattern F2 ∈ Ef , such that correct(F2) = Π (F2 is failure-

free) and define a history H2
T , such that ∀i ∈ Π and ∀t ∈ N:

H2
T (i, t) =

{
H1

T (i, t), t ≤ t0
{j} ∪ H1

T (i, t), t > t0

Clearly, H2
T ∈ T (F2). Consider run R2 = 〈F2, H

2
T , I, S2, T 〉 of RT →P that

outputs a history H2
P ∈ P(F2). Moreover, take S1[t] = S2[t], ∀t ≤ t0. Thus, j

takes no steps in S2 for all t ≤ t0. Since partial runs of R1 and R2 for t ≤ t0 are
identical, the resulting history H2

P is such that H2
P(i, t0) = {j}, for some i ∈ Π.

In other words, a correct process is suspected, and the strong accuracy of P is
violated.

Thus, we come to a contradiction and T ≺Ef
P . �

Proposition 2 �P ≺Ef
T , in any environment Ef with f > 0.

Proof:
(a) We first define a reduction algorithm outputting H�P(i, t) = Π\HT (i, t),
∀t ∈ N, ∀i /∈ F (t). Assume that the strong completeness property of �P is
violated. More precisely,

∃F, ∃i ∈ correct(F), ∃j /∈ correct(F), ∀t, ∃t′ > t : j /∈ H�P(i, t′)
⇒ ∀t, ∃t′ > t : j ∈ HT (i, t′).

Hence, a crashed process is permanently trusted by some correct process - con-
tradicting the trusting completeness property of T .

Assume that the eventual strong accuracy property of �P is violated. More
precisely,

∃F, ∃i, j ∈ correct(F), ∀t, ∃t′ > t : j ∈ H�P(i, t′) ⇒ ∀t, ∃t′ > t : j /∈ HT (i, t′).

Hence, a correct process never becomes permanently trusted by some correct
process - contradicting the trusting accuracy property of T . Thus, �P 	 T .
(b) Now we show that T is not reducible to �P . Indeed, assume that there exists
a reduction algorithm R�P→T that, for any failure pattern F ∈ Ef , constructs
HT from H�P , such that HT ∈ T (F).

Consider a failure-free pattern F1 ∈ Ef and take H1
�P ∈ �P(F1), such that

∀i, ∀t ∈ N : H1
�P(i, t) = ∅. Consider a run R1 = 〈F1, H

1
�P , I, S1, T 〉 of R�P→T

that outputs a history H1
T ∈ T (F1). By the trusting accuracy (1) property of

T , there exists a time t0 ∈ N, such that ∀t ≥ t0 and ∀i ∈ Π: H1
T (i, t) = Π.

Now consider a failure pattern F2 ∈ Ef in which j crashes at time t0 + 1.
More precisely, ∀t ∈ N:

F2(t) =
{

∅, t ≤ t0
{j}, t > t0

9

Take H2
�P ∈ �P(F2), such that for all t ∈ N and i ∈ Π:

H2
�P(i, t) =

{
H1

�P(i, t), t ≤ t0
H1

�P(i, t) ∪ {j}, t > t0

Now consider a run R2 = 〈F2, H
2
�P , I, S2, T 〉 of R�P→T that outputs a history

H2
T ∈ T (F2). Assume that S1[t] = S2[t], ∀t ≤ t0. Clearly, for all i ∈ Π,

H2
T (i, t0) = Π. By the trusting completeness property of T , there exists a time

t1 > t0, such that ∀i �= j: H2
T (i, t1) = Π\{j}.

Construct a history H3
�P , such that for all t ∈ N and i ∈ Π:

H3
�P(i, t) =

H1
�P(i, t), t ≤ t0

H2
�P(i, t), t0 < t ≤ t1

∅, t > t1

Clearly, H3
�P ∈ �P(F1).

Finally consider a run R3 = 〈F1, H
3
�P , I, S3, T 〉 that outputs a history H3

T ∈
T (F1). Assume that S3[t] = S2[t], ∀t ≤ t1. Since partial runs of R2 and R3 for
t ≤ t0 are identical, there exists i �= j, such that:

H3
T (i, t0) = Π,

H3
T (i, t1) = Π\{j}.

In other words, j stops being trusted by i at time t1. By the trusting accuracy
(2) property of T , j is crashed in F1, which contradicts the assumption that F1

is failure-free.
Thus, �P ≺Ef

T . �

5 The necessary condition

This section shows that the trusting failure detector T is necessary to solve
FTME in any environment E . In other words, we show that if a failure detector
D solves FTME in E , then T 	E D. Assume that an algorithm A solves FTME
using a failure detector D. A reduction algorithm RD→T is presented in Figure 2.
At any time t ∈ N and for any process i ∈ Π, RD→T outputs the set of processes
trusted by i, outputi(t).

The processes run n instances of algorithm A: f1, .., fn. The interaction
between process i and instance fj is defined through the actions tryij , critij ,
exitij and remij (each process i acts as a user of a critical section provided by
fj). We assume that if each fi is used correctly (its users are well-formed), then
fi guarantees the properties of FTME.

The idea of the algorithm is the following. Initially, every process i is the
only volunteer in its own instance fi of A. Eventually, i crashes or enters its
CS and sends message [me, i, i] to all. Every correct process that has received
[me, i, i] starts trusting i and volunteers in instance fi. Processes can leave
their CSs only because of a crash. Thus, if a correct process j �= i enters its
CS in fi, then i has crashed. Process j sends message [me, i, j] to all and every

10

correct process eventually stops trusting i. As a result, eventually, every correct
process is permanently trusted by every correct process and no crashed process
is trusted by any correct process. Moreover, the only reason to stop trusting a
process i, is a crash of i.

1: outputi := ∅ {* Initialization *}
2: crashedi := ∅

3: tryii

4: upon critij do
5: send [me, j, i] to all

6: upon receive [me, j, k] do
7: if j = k and j /∈ crashedi then
8: outputi := outputi ∪ {j}
9: if j �= i then

10: tryij

11: else
12: crashedi := crashedi ∪ {j}
13: outputi := outputi\{j}

Figure 2: Reduction algorithm RD→T - process i.

Lemma 3 The output of the reduction algorithm of Figure 2 satisfies the prop-
erties of the trusting failure detector T .

Proof: According to the algorithm of Figure 2, no process i volunteers twice
in the same instance fj or resigns. Thus, each i is well-formed with respect to
each fj.

Assume that the trusting completeness property of T is violated. More
precisely,

∃F, ∃i ∈ correct(F), ∃j /∈ correct(F) : ∀t, ∃t′ > t, j ∈ outputi(t′).

By the algorithm of Figure 2, i volunteers in fj at some time t0. Due to the
progress property of FTME, at some time t1 > t0, some correct process m enters
its CS in fj and sends [me, j, m] to all. At some time t2 > t1, process i receives
[me, j, m], includes process j into crashedi and removes j from outputi. Since
j stays forever in crashedi, ∀t > t2 : j /∈ outputi(t) - a contradiction. Thus,
trusting completeness property of T is satisfied.

Assume that the first part of trusting accuracy is violated. More precisely,

∃F, ∃i ∈ correct(F), ∃j ∈ correct(F), ∀t, ∃t′ > t : j /∈ outputi(t′).

Two cases are possible:

11

(1) i never trusts j ⇒ i never receives [me, j, j] from j ⇒ the only correct
volunteer j never enters its CS in fj - progress property is violated in fj .

(2) i stops trusting j at time t0 ⇒ some process k entered its CS in fj at time
t1 < t0 ⇒ either j is in its CS in fj at t1 - fj violates mutual exclusion
property, or j left its CS in fj at t < t1, not crashed and not resigned -
well-formedness property is violated in fj .

Assume that the second part of trusting accuracy is violated. More precisely,

∃F, ∃i, ∃j ∈ correct(F), ∃t′ > t : (j ∈ outputi(t) ∧ j /∈ outputi(t′)).

By the algorithm of Figure 2, i stops trusting j only if some process k �= j enters
its CS in fj at some time t0 and only if at some time t1 < t0 j entered its CS in
fj. But according to mutual exclusion, j had to leave its CS at time t2 < t0.
Since j never resigns, it could leave its CS in fj only if it crashes (due to the
well-formedness property) - a contradiction.

Thus, the reduction algorithm of Figure 2 guarantees the properties of T . �

As a corollary, we obtain the following result.

Theorem 4 For any environment E, if a failure detector D solves FTME in E,
then T 	E D.

6 The sufficient condition

We give in Figure 3 an algorithm solving FTME using T in any environment
Ef with a majority of correct processes (f < �n

2 �). The algorithm uses the fact
that �P 	Ef

T . More precisely, with T and the assumption of a majority of
correct processes, we can implement a total order broadcast5 algorithm [3].

Our algorithm of Figure 3 assumes:

- an algorithm implementing total order broadcast is provided through two
primitives available at every process: TO-Broadcast() and TO-Deliver()
(the latter returns the next delivered message in the total order, if there is
no such message, it waits until the next message is delivered);

- that each process i has access to the output of its trusting failure detector
module Ti;

- environment Ef such that f < �n
2 �;

- that each user ui, i ∈ Π, is well-formed.

5Total order broadcast satisfies the following properties: (1) validity (i.e., if a correct
process TO-Broadcasts a message m, it eventually TO-Delivers m); (2) agreement (i.e., if
a process TO-Delivers a message m, every correct process eventually TO-Delivers m); (3)
integrity (i.e., every message is TO-Delivered at most once, and only if the message was
previously TO-Broadcast); (4) total-order (i.e., if a process i TO-Delivers m before m′, then
no process j can TO-Deliver m′ without having TO-Delivered m).

12

1: readyi := false {* Initialization *}
2: ri := 0
3: trustedi := ∅

4: send [me, i] to all
5: wait until received (n − f) [ack]
6: readyi := true

7: while true do
8: [j, k] := TO-Deliver() {* wait for the next candidate *}
9: if i = j then

10: criti
11: else
12: wait until((j ∈ trustedi and j /∈ Ti) or

received [exit, j, k] or
received [crash, j])

13: if not received [exit, j, k] then
14: send [crash, j] to all
15: else
16: send [exit, j, k] to all

17: upon receive [me, m] do
18: wait until m ∈ Ti

19: trustedi := trustedi ∪ m
20: send [ack] to m

21: upon tryi do
22: wait until readyi

23: ri := ri + 1
24: TO-Broadcast([i, ri])

25: upon exiti do
26: send [exit, i, ri] to all
27: remi

Figure 3: FTME algorithm using T : process i.

In our algorithm of Figure 3, each process i has the following variables:

1. a boolean readyi, initially false, indicating whether i is ready to execute
the trying protocol;

2. a list trustedi, initially empty, of processes currently trusted by i;

3. an integer ri, initially 0, indicating the number of times i has volunteered.

The idea of our algorithm is inspired by the well-known Bakery algorithm of
Lamport [11, 12]: the processes that wish to enter their CSs first draw tickets
and then are served in the order of their tickets numbers. First every candidate
asks for a permission to proceed from some correct process and does not take
steps (wait clause in line 5 in Figure 3) until the permission is received (it
eventually happens due to the assumption of a majority of correct processes

13

in the system). Then the candidate is put into the waiting line implemented
by the total order broadcast mechanism that guarantees that the requests are
eventually delivered in the same order by every correct process (line 8 in Figure
3). No candidate i can be served unless every candidate in the line before i has
been served and has released the resource, or crashed (line 12 in Figure 3).

Now we prove the correctness of the algorithm of Figure 3. Let R be an
arbitrary run of the algorithm for some failure pattern F ∈ Ef (f < �n

2 �). First
we prove Lemmata 5-7 for R.

Lemma 5 For any i ∈ Π, the execution describing the interaction between ui

and i is well-formed.

Proof: All users are well-formed. Thus, to complete the proof it is enough
to show that i is not the first to violate the cyclic order of actions tryi, criti,
exiti, remi. More precisely, ∀i ∈ Π:

- the preceding action of each criti is tryi, and

- the preceding action of each remi is exiti.

The two properties follow from the code presented in Figure 3. �

Lemma 6 No two different processes are in their CSs at the same time.

Proof: By contradiction, assume that i and j (i �= j) are in their CSs at
time t0. Let, at time t0, ri = k and rj = l. According to the algorithm, j can
be in the CS at t0 only if the corresponding TO-Deliver([j, l]) occurred at some
time t1 < t0. By the ordering property of TO-Broadcast, one of the processes i
and j delivered both messages [i, k] and [j, l]. Without loss of generality, assume
that TO-Deliver([i, k]) precedes TO-Deliver([j, l]) at process j (otherwise we can
swap the indices i and j). That means that at some time t2 < t1, j passed the
wait clause in line 12 while processing [i, k]. Thus, one of the following events
occurred before t2 at j:

(1) i ∈ trustedj and i /∈ Tj : by the trusting accuracy (2) property of T , i is
crashed at t2. But it is in the CS at t0 > t2 : a contradiction.

(2) j received [exit, i, k]: by the algorithm of Figure 3, i resigned from the
CS with ri = k at t2. But i is in the CS at t0 > t2 : a contradiction.

(3) j received [crash, i]: by the algorithm of Figure 3, at some process m, at
some time t3 < t2 the following is true: i ∈ trustedm and i /∈ Tm (m stops
trusting i). By the trusting accuracy (2) property of T , i is crashed at t2.
But it is in the CS at t0 > t2 : a contradiction.

Hence, mutual exclusion is guaranteed. �

Lemma 7 If a correct process volunteers, then at some time later some correct
process is in its CS. If a correct process resigns, then at some time later it enters
its remainder section.

14

Proof: Assume that a correct process i volunteers at time t0 with ri = k, and
no correct process is ever in its CS after t0. According to the algorithm, after
t0, process i never reaches line 10 of the algorithm. In other words, i is blocked
at some wait clause. The first wait clause (line 5 in Figure 3) is not able to
block the process, due to the trusting accuracy (1) property of T and the fact
that (n − f) processes are correct. Thus, eventually, readyi = true, and wait
clause in line 22 in Figure 3 cannot block the process neither. Thus, i issues
TO-Broadcast([i, k]). The second wait clause (more precisely, the statement in
line 8 in Figure 3) is not blocking neither, because of the guarantee that any
broadcast message is eventually delivered by every correct process. Thus, i is
blocked in the third clause (line 12 in Figure 3) while processing some [j, l]
(i �= j). Formally, none of the following is ever satisfied at i:

(1) j ∈ trustedi and j /∈ Ti;

(2) i received [exit, j, l];

(3) i received [crash, j].

We show first that if a correct process i is blocked while processing some entry
[j, l], then all correct processes are blocked while processing [j, l]. Indeed, assume
that there exists a correct process m that is not blocked while processing [j, l].
That is, one of the following events occurred at m:

1. m = j and j enters its CS. According to the assumption of the proof, no
correct process is in its CS after t0, thus, j resigned before t0 and sent
[exit, j, l] to all. Correct process i eventually receives the message and
releases : a contradiction.

2. (j ∈ trustedm and j /∈ Tm) ⇒ j is crashed (by the trusting accuracy (2)
property of T) ⇒ m sends [crash, j] to all. Correct process i eventually
receives the message and releases : a contradiction.

3. m received [exit, j, l] and forward it to all. Correct process i eventually
receives [exit, j, l] and releases : a contradiction.

4. m received [crash, j] and forward it to all. Correct process i eventually
receives [crash, j] and releases : a contradiction.

Thus, all correct processes are blocked while processing [j, l]. Process j is ob-
viously crashed (if j is correct, then it is also blocked while processing [j, l] :
a contradiction with the algorithm). By the algorithm, before invoking TO-
Broadcast([j, l]), j received (n − f) messages of type [ack] (line 5 in Figure 3).
Since at least (n − f) processes are correct and f < �n

2 �, there is at least one
correct process m, such that j ∈ trustedm at some time t. By the trusting com-
pleteness property of T , the condition (j ∈ trustedm and j /∈ Tm) is eventually
satisfied. Hence, m can not be blocked while processing [j, l] : a contradiction.

The second part of the lemma follows directly from the algorithm: every
correct process i that receives exiti invokes remi after a finite number of steps.
That is, every correct resigner eventually enters its remainder section.

15

Thus, progress is guaranteed. �

The following theorem comes directly after Lemmata 5, 6 and 7:

Theorem 8 The algorithm of Figure 3 solves FTME using T , in any environ-
ment Ef with f < �n

2 �.

Finally, combining this with the result of Section 5 we can state the following
theorem:

Theorem 9 For any environment Ef with f < �n
2 �, T is the weakest failure

detector to solve FTME in Ef .

Remark. In fact, the algorithm of Figure 3 solves a harder problem that, in
addition to well-formedness, mutual exclusion and progress, satisfies also the
starvation-freedom property of Section 3.

Indeed, assume that i is a correct volunteer with ri = k. Eventually, due to
the properties of the total order broadcast, all entities [j, l] preceding [i, k] in
the total order are processed: if any process releases its CS, no process can be
blocked in a wait clause (see line 12 in Figure 3). Finally, i eventually reaches
its own entry [i, k] in the total order and i enters its CS.

From Theorem 9 it follows that any algorithm solving FTME (in Ef with
f < �n

2 �) can be transformed into an algorithm that not only solves FTME, but
also guarantees the starvation freedom property.

7 On the number of correct processes

Proposition 10 No algorithm solves FTME using T in any environment Ef

where f ≥ �n
2 �.

Proof: Assume that an algorithm A solves FTME using T in an environment
where a majority of correct processes is not guaranteed. Let X and Y be any
two disjoint sets of processes, such that Π = X ∪ Y and |X | = �n

2 �. Consider
two possible runs of A:

(1) R1: no process from Y takes any step in R1 and no process from X ever
trusts any process from Y . Assume that correct process i ∈ X is the only
volunteer. By the progress property of FTME, i invokes criti at some time
t1.

(2) R2: no process from X takes any step in R2, no process from Y takes any
step before t1 + 1 and no process from Y ever trusts any process from X .
Assume that correct process j ∈ Y is the only volunteer. By the progress
property of FTME, j invokes critj at some time t2. Clearly, t1 < t2.

Assume that no user ever resigns in R1 and R2. We construct a run R that
consists of the steps from R1 ∪ R2 made before t2. Now assume that every

16

process is correct in R, that the processes from X and Y start to trust each
other later than t2 (this is a valid history of T) and that all messages sent
between X and Y are delayed until t2 + 1. Evidently, R is a valid run of A.
But, since ui and uj never resign, they can not leave their CSs (due to the
well-formedness property of FTME), at time t2 + 1 both i and j are in their
CSs - a contradiction with the mutual exclusion property of FTME. �

What happens in an environment where up to n − 1 processes can crash?
Consider the extreme case of an environment Ef , where f = n − 1. Is P the
weakest failure detector to solve the problem in En−1? A close look at the cor-
rectness proof for the algorithm of Figure 3 reveals that we use the assumption
of a correct majority only to implement the total order broadcast primitive and
to guarantee that for each correct process i, there is a correct process m that
trusts i. If a strong failure detector S [3] is available, we can overcome both
issues even if n − 1 processes can crash. Indeed, total order broadcast is im-
plementable in En−1 using S and the wait clause at line 5 of the algorithm in
Figure 3 can be substituted for:

wait until receive [ack] from all j /∈ Si.

By the strong completeness property of S, eventually all processes not in Si are
correct. On the other hand, by the trusting accuracy (1) of T , every correct
process is eventually trusted by all correct processes. Hence, this wait clause is
not blocking.

By the weak accuracy property of S, one correct process is never suspected.
That is, some correct process m is never in Si, ∀i ∈ Π. If i crashes while in
its CS, m can detect the crash and inform the other processes. Thus, we can
implement FTME in En−1 using failure detector T +S. For every failure pattern
F ∈ Ef (f < n), T +S outputs a pair of histories (HT , HS) (RT +S = 2Π × 2Π),
such that HT ∈ T (F) and HS ∈ S(F).

Proposition 11 T + S ≺Ef
P, in any environment Ef with 0 < f < n.

Proof:
(a) S ≺Ef

P [3] and T ≺Ef
P (Proposition 2). That is, both T and S are

reducible to P . Thus, T + S 	Ef
P .

(b) Now we show that P is not reducible to T + S. Indeed, assume there
exists an algorithm RT +S→P that, for any failure pattern F ∈ Ef , constructs
HP from HT ∈ T (F) and HS ∈ S(F), such that HP ∈ P(F).

Consider failure pattern F1 ∈ Ef , such that F1(0) = {j}, correct(F1) =
Π\{j} and take histories H1

T ∈ T (F1) and H1
S ∈ S(F1). Assume that the

corresponding run R1 = 〈F1, (H1
T , H1

S), I, S1, T 〉 of RT +S→P outputs a history
H1

P ∈ P(F1). By the strong completeness property of P : ∃t0 ∈ N, i ∈ Π\{j} :
H1

P(i, t0) = {j}.
Consider failure pattern F2 ∈ Ef , such that correct(F2) = Π and define

17

histories H2
T and H2

S , such that ∀i ∈ Π and ∀t ∈ N:

H2
T (i, t) =

{
H1

T (i, t), t ≤ t0
H1

T (i, t) ∪ {j}, t > t0

H2
S(i, t) =

{
H1

S(i, t), t ≤ t0
H1

S(i, t)\{j}, t > t0

Clearly, H2
T ∈ T (F2) and H2

S ∈ S(F2). Consider a run R2 = 〈F2, H
2
T ⊕

H2
S , I, S2, T 〉 of RT +S→P that outputs a history H2

P ∈ P(F2), where S1[t] =
S2[t], ∀t ≤ t0. Thus, j takes no steps in S2 for all t ≤ t0. Since partial runs
of R1 and R2 for t ≤ t0 are identical, the resulting history H2

P is such that
H2

P(i, t0) = {j}, for some i ∈ Π. In other words, a correct process is suspected,
and the strong accuracy of P is violated.

By (a) and (b), we have T + S ≺Ef
P . �

Hence, there is a failure detector T +S which is strictly weaker then P and is
sufficient to solve FTME in an environment where up to n processes can crash.
Determining the weakest failure detector to solve FTME in such environment
is an open issue.

8 Group mutual exclusion

Group mutual exclusion [8, 9, 10] is a natural generalization of the classical mu-
tual exclusion problem [5, 12], where a process wishing to enter its CS volunteers
for a “session”. Processes that request different sessions cannot be in their CSs
at a time, but processes that request the same session can. Sessions represent
resources each of which can be accessed simultaneously by an arbitrary number
of processes, but no two of which can be accessed simultaneously.

Thus, in addition to the well-formedness and progress properties of FTME,
fault-tolerant group mutual exclusion (FTGME) satisfy also the following prop-
erties (we follow the terminology used in Section 3):

Mutual exclusion: If two processes are in their critical sections at the same
time, then they volunteer for the same session.

Concurrent entering: If a correct process i volunteers and no other process
volunteers for a different session, then i eventually enters its CS.

The last property means that, for a given session, a process that has already
entered its CS cannot prevent another process requesting the same session from
entering its CS. In contrast to [8, 9], we do not make the assumption that a
process can stay in its CS for a finite time only. Evidently, if another process is
concurrently trying to enter a different session, it can enter its CS first. In this
case, the trying process can prevent another process from entering its CS.

Clearly, FTGME is at least as hard as FTME: we can easily implement
FTME from FTGME just associating every process with unique session. On

18

the other hand, we show here that T solves FTGME in a system with a majority
of correct processes. Thus, FTME and FTGME are equivalent in our model.

In Figure 4, we present an algorithm that solves FTGME using T . The
tryi(s) action indicates the wish of user ui to enter its CS with session s. The
criti(s) action grants user ui access to its CS with session s. Each process i
uses the following variables:

1. a boolean readyi, initially false, indicating whether i is ready to execute
the trying protocol;

2. a list trustedi, initially empty, of processes currently trusted by i;

3. an integer ri, initially 0, indicating the number of requests for the CS that
ui has made;

4. an integer sni, indicating the id of the currently processed session;

5. a FIFO list incsi of processes requesting sni, first(incsi) dequeues the
first element of a non-empty list incsi.

The algorithm is similar to one of Section 6. Before requesting a session ev-
ery process waits until it gets trusted by a correct process. The requests are
broadcast using total order broadcast primitive TO-Broadcast(), and delivered
through TO-Deliver() (the latter returns the next broadcast message in the to-
tal order). If several consecutive requests for the same session s are placed in
the total order, then the requests are satisfied simultaneously. No request for
a different session is satisfied until the processes requested earlier the session s
have resigned or crashed.

Now we state the correctness of the algorithm through Lemmata 12-15.

Lemma 12 For any i ∈ Π, the execution describing the interaction between ui

and i is well-formed.

Proof: Follows from the algorithm and the fact that all ui (i ∈ Π) are
well-formed. �

Lemma 13 If two processes are in their critical sections at the same time, then
they request for the same session.

Proof: By contradiction, assume that processes i and j requesting sessions,
respectively, si and sj (si �= sj) are in their CSs at time t0. Let, at time t0,
ri = k and rj = l. According to the algorithm, j can be in the CS at t0
only if the corresponding TO-Deliver([j, l, sj]) occurred at some time t1 < t0
and, at t1, snj = sj . By the ordering property of TO-Broadcast, one of the
processes i and j delivered both messages [i, k, si] and [j, l, sj]. Without loss
of generality, assume that TO-Deliver([i, k, si]) precedes TO-Deliver([j, l, sj]) at
process j (otherwise we can swap the indices i and j). Hence, at some time
t2 < t1, the wait clause in line 20 for (i, k) was overcome at process j. Thus,
one of the following events occurred before t2 at process j:

19

1: readyi := false {* Initialization *}
2: trustedi := ∅
3: ri := 0

4: send [me, i] to all
5: wait until receive (n − f) [ack]
6: readyi := true

7: [j, k, s] := TO-Deliver() {* wait for the next candidate *}
8: sni := s
9: while true do

10: incsi := ∅
11: repeat
12: if i = j then
13: criti(s)
14: incsi := incsi.(j, k)
15: [j, k, s] := TO-Deliver() {* wait for the next candidate *}
16: until (sni �= s)
17: sni := s
18: while incsi �= ∅ do
19: (l, m) := first(incsi)
20: wait until ((l ∈ trustedi and l /∈ Ti) or

received [exit, l, m] or
received [crash, l])

21: if not received [exit, l, m] then
22: send [crash, l] to all
23: else
24: send [exit, l, m] to all

25: upon receive [me, m] do
26: wait until m ∈ Ti

27: trustedi := trustedi ∪ m
28: send [ack] to m

29: upon tryi(u) do
30: wait until readyi

31: ri := ri + 1
32: TO-Broadcast([i, ri, u])

33: upon exiti do
34: send [exit, i, ri] to all
35: remi

Figure 4: FTGME algorithm using T : process i.

20

(1) i ∈ trustedj and i /∈ Tj : by the trusting accuracy (2) property of T , i is
crashed at t2. But i is in the CS at t0 > t2 : a contradiction.

(2) j received [exit, i, k]: by the algorithm of Figure 4, i resigned from the
CS with ri = k at t2. But i is in the CS at t0 > t2 : a contradiction.

(3) j received [crash, i]: by the algorithm of Figure 4, at some process m, at
some time t3 < t2 the following is true: i ∈ trustedm and i /∈ Tm (m stops
trusting i). By the trusting accuracy (2) property of T , i is crashed at t2.
But it is in the CS at t0 > t2 : a contradiction.

Hence, mutual exclusion is guaranteed. �

Lemma 14 If a correct process volunteers, then at some time later some correct
process is in its CS. If a correct process resigns, then at some time later it enters
its remainder section.

Proof: Assume that a correct process i volunteers at time t0 with ri = k, and
no correct process ever is in its CS after t0. Hence, according to the algorithm,
i never reaches line 13 of the algorithm. Applying the same arguments as in the
proof of Lemma 7, we come to a conclusion that i is blocked in the third clause
(line 20 in Figure 3) while processing some (l, m) (i �= j). Formally, none of the
following is ever satisfied at i:

(1) l ∈ trustedi and l /∈ Ti;

(2) received [exit, l, m];

(3) received [crash, l].

Analogously to the proof of Lemma 7, we can easily show that all correct pro-
cesses are blocked while processing (l, m). Two cases are possible:

1. Process l is correct, then it is also blocked while processing (l, m). Ac-
cording to the algorithm, l ∈ incsl and, since l is correct and no [exit, l, m]
is received by l, l is in its CS : a contradiction.

2. Process l crashes at some moment, then eventually some correct process
stops trusting it and sends [crash, l] to all. The message is eventually
received by i : a contradiction.

The second part of the lemma follows directly from the algorithm. Thus,
progress in the sense of FTME is guaranteed. �

Lemma 15 If a correct process i volunteers and no other process volunteers for
a different session, then i eventually enters its CS.

Proof: Assume that, at time t0, a process i requests a session s with ri = k
and no other process requests a different session. Thus, all processes requesting
different sessions have resigned before t0. Thus, for every request [l, m, r] (r �=

21

s), the entity (l, m) in the corresponding wait clause (line 20 in Figure 4) cannot
block process i. Thus, eventually, i reaches the point when [i, k, s] is processed
(line 12) and enters its CS (line 13). �

Finally, we can state the following theorem:

Theorem 16 For any environment Ef with f < �n
2 �, T is the weakest failure

detector to solve GFTME in Ef .

Remark. Similar to the FTME algorithm of Figure 3, our FTGME algo-
rithm solves (in Ef with f < �n

2 �) a harder problem that, in addition to well-
formedness, mutual exclusion, progress and concurrent entering, satisfies also
the starvation freedom property.

Analogously, in case when up to n processes can crash, we can solve FTGME
with T + S, simply by substituting line 5 of the algorithm in Figure 4 can be
substituted with:

wait until receive [ack] from all j /∈ Si.

9 Cost of resilience

In this section we compare the performance of our algorithm (Figure 3) with
the well-known algorithms of [15] and [18].6

The performance of mutual exclusion algorithms can be measured through
the following metrics [19]: (a) the bootstrapping delay, which is the time required
for a new user before entering the CS for the first time; (b) the number of
messages necessary per CS invocation, (c) the synchronization delay, which is
the time required after a user leaves the CS and before the next user enters
the CS, and (d) the response time, which is the time interval a request waits to
enter the CS after its request message have been sent out. We also consider
two special loading conditions: low load and high load. In low load conditions,
there is seldom more than one request to enter the CS at a time in the system.
In high load conditions, any process that leaves the CS immediately volunteers
again. In discussing performance, we concentrate here on the runs where no
process crashes (the most frequent runs in practice), which are usually called
nice runs.

We denote by tc the average message propagation delay, and ec the aver-
age CS execution time. The bootstrapping delay of our algorithm (Figure 3) is
about 2tc: before volunteering for its CS, every process should receive the ac-
knowledgement from a majority of the processes. The algorithm has a relatively
high message complexity: each request for a CS requires O(n2) messages per
CS invocation. The synchronization delay is low - tc: that is, it requires only
one communication step to inform the next waiting process that it can enter the

6The algorithms of [15] and [18] were designed for the failure-free asynchronous model but
could be ported into the crash-prone model assuming P. It would be interesting to determine
the costs of implementing the algorithms in the crash-prone model. More details on the
comparative analysis of the algorithms of [15] and [18] are available in [19].

22

CS. The response time in low load conditions is defined by the time to deliver
a total order broadcast message - 2tc. At high loads, on the average, all other
processes execute their CSs between two successive executions of the CS: the
response time converges to n(tc + ec).

The results of our comparative analysis are presented in Figure 5. The
performance degradation due to the use of T reflects the longer bootstrapping
delay which is inherent to the use of T and higher message complexity inherited
from using total order broadcast. It would be interesting to figure out to which
extent our algorithm of Figure 3 could be optimized, e.g., by breaking the
encapsulation of the total order broadcast box.

Metrics Maekawa [15] RA [18] T -based

Bootstrapping delay 0 0 2tc

Number of messages Low Moderate High
Sync. delay 2tc (deadlock-prone) tc tc

tc (deadlock-free)
Response time
low load 2tc 2tc 2tc

high load n(2tc + ec) n(tc + ec) n(tc + ec)

Figure 5: Comparative performance analysis of mutual exclusion algorithms.

10 Concluding remark

Is it beneficial in practice to use a mutual exclusion algorithm based on T ,
instead of a traditional algorithm assuming P? The answer is “yes”.

Indeed, if we translate the very fact of not trusting a correct process into a
mistake, then T clearly tolerates mistakes whereas P does not. More precisely,
T is allowed to make up to n2 mistakes (up to n mistakes for each module Ti,
i ∈ Π). As a result, T ’s implementation has certain advantages comparing to
P ’s (given synchrony assumptions). For example, in a possible implementation
of T , every process i can gradually increase the timeout tij corresponding to
a heart-beat message sent to a process j until a response from j is received.
Thus, every such tij can be flexibly adapted to the current network conditions.
In contrast, P does not allow this kind of “fine-tuning” of tij : there exists
a maximal possible timeout ∆, such that i starts suspecting j as soon as tij
exceeds ∆. In order to minimize the probability of mistakes, ∆ is normally
chosen sufficiently large, and the choice is based on some a priori assumptions
about current network conditions. This might exclude some remote sites from
the group and violate the properties of the failure detector. Thus, we can
implement T in a more effective manner, and an algorithm that solves FTME
using T exhibits a smaller probability to violate the requirements of the problem,
than one using P , i.e., the use of T provides more resilience. As we have shown
in Section 9, the performance cost of this resilience reflects the bootstrapping

23

delay, i.e., the time a new user needs to enter its CS for the first time, and
higher message complexity inherited from using total order broadcast.

References

[1] D. Agrawal and A. E. Abbadi. An efficient and fault-tolerant solution for
distributed mutual exclusion. ACM Transactions on Computer Systems,
9(1):1 – 20, February 1991.

[2] T. D. Chandra, V. Hadzilacos, and S. Toueg. The weakest failure detector
for solving consensus. Journal of the ACM, 43(4):685–722, March 1996.

[3] T. D. Chandra and S. Toueg. Unreliable failure detectors for reliable dis-
tributed systems. Journal of the ACM, 43(2):225–267, March 1996.

[4] G. Chockler, D. Malkhi, and M. K. Reiter. Backoff protocols for distributed
mutual exclusion and ordering. In Proceedings of the 21st International
Conference on Distributed Computing Systems (ICDCS-21), April 2001.

[5] E. W. Dijkstra. Solution of a problem in concurrent programming control.
Communications of the ACM, 8(9):569, September 1965.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(3):374–382,
April 1985.

[7] E. Gafni and M. Mitzenmacher. Analysis of timing-based mutual exclusion
with random times. SIAM Journal on Computing, 31(3):816–837, 2001.

[8] V. Hadzilacos. A note on group mutual exclusion. In 20th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing, August 2001.

[9] Y.-J. Joung. Asynchronous group mutual exclusion. In 17th ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing,
pages 51–60, June 1998.

[10] P. Keane and M. Moir. A simple local-spin group mutual exclusion algo-
rithm. IEEE Transactions on Parallel and Distributed Systems, 12(7):673–
685, July 2001.

[11] L. Lamport. A new solution of Dijkstra’s concurrent programming problem.
Communications of the ACM, 17(8):453–455, August 1974.

[12] L. Lamport. The mutual exclusion problem. Parts I&II. Journal of the
ACM, 33(2):313–348, April 1986.

[13] S. Lodha and A. D. Kshemkalyan. A fair distributed mutual exclusion algo-
rithm. IEEE Transactions on Parallel and Distributed Systems, 11(6):537–
549, June 2000.

24

[14] N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, 1996.

[15] M. Maekawa. A
√

N algorithm for mutual exclusion in decentralized sys-
tems. ACM Transactions on Computer Systems, 3(2):145–159, May 1985.

[16] D. Manivannan and M. Singhal. An efficient fault-tolerant mutual exclusion
algorithm for distributed systems. In Proceedings of the ISCA International
Conference on Parallel and Distributed Computing Systems, pages 525–530,
October 1994.

[17] M. Raynal. Algorithms for Mutual Exclusion. MIT Press, Cambridge,
Massachusetts, 1986.

[18] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion
in computer networks. Communications of the ACM, 24(1):9–17, January
1981.

[19] M. Singhal. A taxonomy of distributed mutual exclusion. Journal of Par-
allel and Distributed Computing, 18(1):94–101, May 1993.

25

