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Abstract

This paper addresses fundamental tradeoffs in event
systems between scalability (in terms of event filter-
ing, routing, and delivery), expressiveness (when de-
scribing interests in events), and event safety (ensur-
ing encapsulation of polymorphic events and type-safe
handling of these). We point out some ramifications
underlying these tradeoffs and we propose a pragmatic
approach to handle them. We achieve scalability using
a multi-stage filtering strategy that combines approxi-
mate and perfect matching techniques for the purpose
of event routing and filtering. We achieve expressive-
ness and event safety by representing events as in-
stances of application-defined abstract types and defin-
ing subscriptions in terms of predicates expressed on
these types.

1 Introduction

The design and implementation of event systems
has been an active field of research over the last
few years. These systems have evolved from simple
multicast-oriented topic-based systems (e.g., [Cor99,
Ske98, TIB99, AEM99]) to elaborate, content-based,
systems that filter and disseminate data events accord-
ing to their content (e.g., [SAB+00, CRW00, SBCea98,
CNF98, M0̈1, SCG01]). Content-based dissemination
techniques permit accurate addressing of events to se-
lected subscribers according to their interests.

Event systems do however face fundamental trade-
offs while attempting to satisfy several demands made
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on them. First, these systems must scale to a poten-
tially large number of subscribers (hundreds of thou-
sands), subscriptions (millions), and events (hundreds
per second). Second, they should provide expressive
mechanisms to precisely specify the interests of sub-
scribers, in order to avoid receiving irrelevant events.
This is especially important when subscribers have
low bandwidths or expensive connections, as in the
case of wireless phones and pagers. Third, the event
model must be safe enough to permit exchange of ar-
bitrary information encapsulated within application-
defined types, i.e., without revealing implementation
details (preserving encapsulation) or requiring explicit
marshaling and unmarshaling (enforcing type safety)
of this information.

Until now, event systems have been focusing only
on parts of the equation, such as scalability and ex-
pressiveness [CRW00], and we are not aware of any
system that provides (even partial) support for all
three aspects, namely filtering scalability, subscription
expressiveness, and event safety. In fact, the trade-
offs are a consequence of an underlying conflict that
prevents filtering techniques from scaling without re-
ducing subscription expressiveness or violating encap-
sulation.

This paper proposes a way to pragmatically com-
bine the benefits of (1) a highly-scalable filtering tech-
nique, (2) an expressive subscription language and
(3) a generic, yet safe, event representation. Event
safety is enforced in the sense that events are defined
as objects which are instances of application-defined
types, and subscription expressiveness is obtained by
supporting subscriptions based on any public mem-
ber of these types. Scalability is achieved using a
multiple stage filtering approach, where events are
pre-filtered using elaborate information retrieval tech-
niques. While the use of these techniques generally has
the undesirable consequence of breaking event encap-
sulation, we circumvent this problem by performing
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approximate filtering on the intermediate stages and
preserving subscription expressiveness and type safety
on an end-to-end basis.

In short, the contribution of this paper is twofold.
First, we explicitly pose the inherent tradeoff in event
systems. Second, we propose a pragmatic way to han-
dle this tradeoff. We also provide a quantitative eval-
uation of our pragmatic approach by comparing the
filtering complexity of our approach with a simple ex-
isting scheme.

The rest of the paper is organized as follows. Sec-
tion 2 describes the tradeoffs involving event safety,
expressiveness and scalability. Section 3 introduces
the idea underlying our multi-stage filtering approach
and Section 4 presents an architecture for putting our
approach to work. Section 5 gives some simulation
results for a large scale setting.

2 Tradeoffs

In this section, we first discuss in more detail the
three desirable properties of events systems, namely
filtering scalability, subscription expressiveness, and
event safety, before pointing out inherent tradeoffs be-
tween these properties.

2.1 Desirable Properties

We start by the property of event safety, in order to
underline the impact of this often neglected constraint
on the two other closely studied properties, filtering
scalability and subscription expressiveness.

Event Safety. Most event systems make few or no
assumption on the nature of the events or their format
because of the loose coupling between the publishers
and subscribers. As a consequence, these systems usu-
ally provide low-level message-passing abstractions.

As discussed in [EGD01], working with typed events
(and objects in particular) in event systems offers a
number of advantages over unstructured and untyped
events. When events are objects (encompassing im-
plicit type inclusion information, a “value”, and some
behaviour), type hierarchies additionally permit the
filtering of these events according to their polymorphic
nature. In other terms, events can be filtered accord-
ing to their conformance to types, including “content-
based” queries expressed on any public members of
these event types. Subscribers can register their in-
terest to some event type (including all its subtypes),
and if encapsulation and type safety are guaranteed,
publishers can easily extend the hierarchy and create

new event (sub)types without requiring subscribers to
update their subscriptions.

Filtering Scalability. Most content-based event
systems use an indirect form of addressing where se-
lectivity is controlled by subscribers. The content of
the message acts as a destination address that must be
matched against the subscriptions (“group” addresses)
of subscribers.

One can imagine different alternative architectures
for content-based event systems.

• The first one relies on a centralized server (e.g.,
Elvin3 [SAB+00]) for filtering events and for-
warding those of interest to the appropriate sub-
scribers. The major drawback of the “central-
ized” approach is that the server is a bottleneck
both in terms of processing power and network
bandwidth, in addition to being a single point of
failure.

• The second architecture of interest, used by
event systems based on group communication,
consists in broadcasting events to all subscribers
and letting the each filter out events that do not
match its local subscriptions at runtime. This
“broadcast” approach, attractive because of its
fully distributed nature, but does not scale well
when the number of publishers and the message
frequency increase.

• The last and most scalable approach relies on
a set of networked nodes (e.g., [CRW00], also
known as overlay network) for content distribu-
tion. Publishers and subscribers are connected
to a local node (or a server) that is responsible
for forwarding events in the system and deliver-
ing it to the local subscribers. Nodes are also in
charge of storing events for temporarily discon-
nected subscribers with durable subscriptions.

Overlay networks are a key for scalability in
content-based event systems because the resource-
consuming tasks can be split among all the nodes of
the network. Each node is responsible for only a subset
of all subscribers and filtering can be performed in a
distributed manner. An example is shown in Figure 1
The architecture of the network nodes (e.g., hierar-
chical, peer-to-peer) and the techniques employed to
filter and route events are also key factors in scaling
to a large number of subscribers, subscriptions, and
event types and instances.
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Figure 1: An overlay network: Publishers and sub-
scribers are connected using a set of brokers.

Subscription Expressiveness. The expressiveness
of subscriptions defines how accurately subscriptions
can represent the interests of the subscribers. One can
imagine different “levels” of expressiveness:

• The simplest form of subscription languages only
permit string matching.

• More advanced subscription languages use filters
[SAB+00, Car98, M0̈1] in the form of a set of
attributes and constraints on the values of those
attributes, where constraints are specified using
common equality and ordering relations (=, 6=,
<, >, etc.), as well as regular expressions.

• A further step in subscription expressiveness is
to allow events to be filtered according to their
type [EGD01]. Type-based filtering adds a new
dimension to content-based event systems, by
letting subscribers register their interests both
to the nature and the value of published events.

Advanced subscription languages are highly desir-
able, because subscribers can more accurately express
their interests. As expressiveness increases, so does se-
lectivity and less irrelevant events have to be delivered
to subscribers.

2.2 The Conflicts

Event safety is a property of event representation,
scalability depends on the system architecture, and

expressiveness relates to the subscription language.
These three aspects, despite what might appear in Fig-
ure 2, are not orthogonal: desirable characteristics of
one aspect may have unwanted effect on the other as-
pects. These conflicts are highlighted in the rest of
this section.

Event  

Safety

Subscription 

Expressiveness

Filtering

Scalability

Unstructured data

Semi-structured data without schema

Semi-structured data with schema

Objects

String matching

Ordering relations

Conjunctions/disjunctions

Composition/combinations

Structural constraints

Application code

Centralized Filtering

Broadcast

Distributed

Filtering

Figure 2: Three Aspects of Event Systems.

Event Safety vs. Filtering Scalability. The use
of typed information adds some overhead to event fil-
tering. This overhead is generally small when events
are not objects, since it only includes the cost of type
verification and polymorphic data handling. When
events are objects (with their own behavior) and data
is in principle accessible only through the object access
methods, each object might have to be unmarshaled
and instantiated in the runtime execution environment
before filtering. When such a scheme is naively applied
at each filtering step, scalability and performance de-
crease strongly.

In general, as event representation becomes more
powerful and type-safe (becoming even part of the
application design), the subscription language should
also become more expressive, which might however
jeopardize scalability.

Expressiveness vs. Filtering Scalability.
Highly-expressive subscription languages allow sub-
scribers to accurately specify their interest. In some
respect, this can increase scalability by limiting the
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number of irrelevant events delivered to subscribers.
On the other hand, expressiveness increases filtering
complexity and processing time. When dealing with
real-time events, large numbers of subscriptions and
high emission frequencies, filtering time must be kept
as small as possible.

Event Safety vs. Expressiveness. Giving the ap-
plication the possibility of defining own event types
makes it difficult to ensure type safety and encapsula-
tion of these events when describing subscriptions. In-
deed, to ensure encapsulation and for expressiveness,
a subscription should be able to involve methods de-
fined by the type subscribed to, which is difficult to
achieve ”reasonably” in a programming language in a
way ensuring static type safety. Given the fact that,
for a reasonable performance in filtering and routing
of events, the publish/subscribe engine has to be given
an insight into subscriptions (e.g., for collapsing sub-
scriptions), describing subscriptions by implementing
typed filter objects is clearly unappealing. Language
extensions [HMN+00, Eug01], or at least powerful lan-
guage mechanisms, such as advanced reflection and
genericity mechanisms are required [Eug01] to achieve
satisfactory event safety and expressiveness.

3 Multi-Stage Filtering

In this section, we present a pragmatic approach for
the provision of scalability with a type-safe event rep-
resentation and an expressive subscription language.
Our approach is based on multi-stage filtering. We
first define some notions related to filtering before de-
scribing our approach.

3.1 Definitions

Publishers and subscribers communicate by ex-
changing events. A subscriber subscribes to specific
events by registering a filter that is applied to incom-
ing events: A subscriber only receives the events that
matches its filter(s).

Definition 1 (Filter). Consider a language LE for
representing events, and a language LF for specify-
ing filters. A filter is a function f ∈ LF : LE →
{true, false} such that f(e) = true if and only if event
e matches the filter f .

A filter corresponds to a subscription of a subscriber.
An event is forwarded to a subscriber when at least
one of its subscriptions returns true, and discarded
otherwise. The filter fT defined by “∀e ∈ LE fT (e) =

true” expresses interest in all events, while the filter
fF defined by “∀e ∈ LE fF (e) = false” discards all
events.

Example 1. Consider the following events describ-
ing stock quotes (events are represented by name-value
tuples):

e1 = (symbol,“Foo”) (price, 10.0) (volume, 32300)

e2 = (symbol, “Bar”) (price, 15.0) (volume, 25600)

A filter selecting only the stock quotes for symbol
“Foo” with price higher than $5 can be defined as
follows (filters are represented by name-value-operator
tuples):

f = (symbol, “Foo”, =) (price, 5.0, >)

Applying filter f to events e1 and e2 yields the fol-
lowing results:

f(e1) = true

f(e2) = false

We now introduce a covering relation for filters.

Definition 2 (Filter Covering). A filter f covers
another filter f ′ (f w f ′) if and only if the following
property holds:

f w f ′ ⇔ ∀e ∈ LE f ′(e) = true ⇒ f(e) = true

Informally, this means that f ′ is a more restrictive
(or stronger) filter than f . The fT filter covers all
filters and the fF filter is covered by all filters.

Example 2. The following filters cover filter f of
Example 1:

f ′ = (symbol, “Foo”, =)

f ′′ = (price, 5.0,>)

f ′′′ = (symbol, “Foo”, =) (price, 4.5, >=)

We also define a covering relation on event.

Definition 3 (Event Covering). An event e covers

another event e′ for filter f (e
f

w e′) if and only if the
following property holds:

e
f

w e′ ⇔ f(e′) = true ⇒ f(e) = true

Informally, this means that e can be filtered more ac-
curately than (or as well as) e′ by filter f , and e is
therefore a more accurate representation of the event.

Example 3. The following event covers event e1 of
Example 1 for filter f :

e′1 = (symbol, “Foo”) (price, 10.0)
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Note that the event covering relation is bound to a fil-
ter. This is necessary because filters can define com-
plex expressions, such as predicates on the presence
of some data in an event. For instance, with filter
“(volume, ∃)” that checks for the existence of an at-
tribute named “volume”, event e′1 of Example 3 does
not cover event e1 of Example 1.

3.2 Scalability through Pre-filtering

An important factor for scaling to a large number
of subscriptions and events is to limit the amount of
events that transit between the nodes of the network.
In particular, if a node has no subscriber interested in
a given event, the event should not be forwarded to
that node. It is therefore desirable to filter events as
early as possible in the overlay network on the path be-
tween the publisher and the subscribers. If the event
traverses multiple nodes, it may be filtered multiple
times, but the amount of events filtered by each node
— in particular nodes close to subscribers — will be
smaller. This is especially important when matching is
time-expensive, e.g., when using objects for events and
filters. Without pre-filtering, each node or subscriber
would need to filter the sum of all events published by
all publishers. The main goal of pre-filtering is thus
to scale to a large number of publishers (i.e., events),
while efficient indexing and matching techniques aim
at scaling to a large number of subscribers (i.e., sub-
scriptions).

e

e

e’’
f’’ e

e’
f’ e

f
Logical pathPublish

Transform

Deliver

Node n’Node n’’

Producer Consumer

Type Safety (events) Expressiveness (filters)

Figure 3: Multi-stage filtering increases scalability by
weakening the event representation and the subscrip-
tion language, and by filtering events on intermediary
nodes.

The intuition behind our multi-stage filtering ap-
proach is illustrated in Figure 3. Consumer subscrip-
tions are transformed into covering subscriptions that
are simpler to evaluate and can be easily indexed for
efficient matching. Similar ideas are used in XML doc-
ument filtering [CFF+02, CFGR02] based on filter ag-
gregation and indexing schemes. Producer events are
transformed into covering events adequate for match-
ing against the weakened subscriber filters; with event

objects, transformation typically leads to augment-
ing the event with some meta-data that describes the
relevant attributes of the object’s state. Filtering is
performed on intermediate nodes using the weakened
events and filters. Only the events that match all in-
termediary filtering stages need to be matched against
the original filters by the subscriber runtime.

3.3 Transformations

Imperfect filtering is performed through the in-
termediate nodes by applying transformed filters on
transformed events. We now describe how these trans-
formations are performed to guarantee that filtering
will be consistent with the original events and sub-
scriptions.

Filter Transformation. A filter f can be trans-
formed into a weaker filter f ′ for the purpose of pre-
filtering. Using f ′ at strategic locations in the in-
frastructure can reduce the network traffic and the
amount of events to be filtered by the subscribers.

Proposition 1 (Filter Transformation). Given
an original filter f , a filter f ′ can be used for event
pre-filtering if and only if f ′ w f .

It follows that, if f ′ w f , then f ′ can be applied
before f to the events without loss of consistency.

Event Transformation. Since the event covering
relation depends on a filter, events and filters must be
weakened in a coordinated manner. For that purpose,
one should use transformation functions that generate
covering filters in such a way that weakened events
cover original events for all covering filters.

Proposition 2 (Event Transformation). Given
two subscription languages LF and LF ′ , a trans-
formation function t : LF → LF ′ , and an original
event e, an event e′ can be used for pre-filtering if

∀f ∈ LF e′
t(f)

w e.

3.4 High-Level Abstractions

So far, we have represented events as sets of proper-
ties (name-value pairs), and filters as constraints ex-
pressed on these properties. When providing high-
level abstractions as interface to an event system, i.e.,
events as encapsulated instances of application-defined
object types, and filters possibly expressed with arbi-
trary language constructs based on the types of these
instances, the picture becomes more complex.
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Ensuring Event Encapsulation on an End-
to-End Base. While expressing event-based dis-
tributed interaction through such high-level abstrac-
tions is more convenient for programmers, it makes
efficient implementations hard. Filtering performance
can only be poor if at each filtering stage events have
to be deserialized and filtered by performing high-level
code. Viewing events as sets of properties is on the
other hand not adequate for ensuring encapsulation
of events, but leads to more performant implemen-
tations. To get the best of both worlds, the event
system has to be able to infer a low-level event rep-
resentation for filtering from a high-level view offered
to developers. This low-level representation can be
viewed as meta-data attached to event objects, which
is used for filtering of these objects, and a similar rep-
resentation is constructed from filters expressed in a
high-level programming language.

To support the event system in inferring meta-data,
event types have to be designed by following a simple
convention: for each attribute (used for filtering), the
type offers an access method (used for expressing fil-
ters), whose name corresponds to the attribute’s name
prefixed with get. Reflection techniques of modern
object-oriented languages are then used to extract in-
formation from objects and types.

Arbitrary methods defined in event types, e.g., with
parameters, are harder to consider in filtering without
actually performing them. These are hence only ap-
plied locally, which is sufficient in most cases, since
event types are usually fine-grained types encompass-
ing a limited set of attributes, and filters are in most
cases expressed on these attributes, i.e., their access
methods in our case.

Example 4. A simple stock event can be represented
as an instance of the stock class shown below, ex-
pressed with a Java-like syntax for illustration. The
attributes symbol and price are declared as private,
and the corresponding access methods getSymbol and
getPrice as public. The event system automatically
deduces the effective attributes from this. Even if no
such attributes were defined in the “type”, but only
access methods, the event system would look for these
attributes at run-time.

public class Stock {

private String symbol;

private float price;

public String getSymbol { return symbol; }

public float getPrice { return price; }

Stock(String symbol, float price) {

this.symbol = symbol;

this.price = price;

}

}

Filter Interpretation. Similarly, filters can be ex-
pressed as closures in a programming language, and
are interpreted by the event system. For the sake of
simplicity, we continue this discussion through an ex-
ample building on the Stock class introduced above.
Consider a filter expressed through a class BuyFilter
with a single method match() (by the absence of clo-
sures in Java):

class BuyFilter {

private float last = 0;

private String symbol;

private float max;

private float threshold;

BuyFilter(String symbol, float max,

float threshold)

{

this.symbol = symbol;

this.max = max;

this.threshold = threshold;

}

public boolean match(Stock stock) {

float price = s.getPrice();

if(price >= max) return false;

boolean match = (price <= last * threshold);

last = price;

return match;

}

}

The filter expresses interest in stock events, cheaper
than a given price, such that the value of those stock
events is smaller than a percentage of the value of the
previous matching stock event.

Consider the following data event d and filters f

and g:

Stock d = new Stock(‘‘Foo’’, 9.0);

BuyFilter f = new BuyFilter(‘‘Foo’’, 10.0, 0.95);

BuyFilter g = new BuyFilter(‘‘Foo’’, 11.0, 0.97);

We can generate the following data event d1, f1 and

g1 such that f1 w f , g1 w g and d1

f1,g1

w d:

d1 = (class,′′ Stock′′) (symbol,′′ Foo′′) (price, 9.0)

f1 = (class,′′ Stock′′, =) (symbol,′′ Foo′′,=) (price,10.0, <)

g1 = (class,′′ Stock′′, =) (symbol,′′ Foo′′,=) (price,11.0, <)

Filters f1 and g1 filter stock events according to their
type, symbol, and current price, but not according to
the price difference with respect to the previous event.
Filtering using f1 and g1 is therefore not accurate.

An interesting consequence is that, by weakening
filters f and g, g1 is now covering f1 (g1 w f1). On the
common path between publishers and the subscribers
that registered f and g, we can now ignore filter f1

(and its derivative) and keep only filter g1.
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Filter g1 can be further weakened by generating g2

such that g2 w g1 and d1

g2

w d (no significant benefit
will be obtained from weakening d1 further):

g2 = (class,′′ Stock′′,=) (symbol,′′ Foo′′, =)

Finally, one can weaken g2 again and generate g3 such
that g3 w g2. Since g3 only compares a single attribute
for equality, one can use the same efficient mechanisms
than with topic-based publish/subscribe, e.g., group
communication, and define one topic per attribute
value. This illustrates the actual fact that topic-based
addressing is a degenerated form of content-based ad-
dressing. In our case, g3 filter data according to its
type:

g3 = (class,′′ Stock′′,=)

4 The Architecture

For the implementation of multi-staged filtering, we
arrange a set of intermediate nodes in an arbitrarily-
deep hierarchy.1 An example of this arrangement,
with four stages, is shown in Figure 4. The “user-
level” stage, where subscribers are located, is the low-
est stage. The other stages consist of intermediate
nodes, i.e., nodes of the overlay network. Events
are filtered and forwarded to the subscribers by these
nodes. Published events are first forwarded to the top
most stage. Then, events traverse down the hierarchy
from higher to lower stages. Filters are kept at each
node. Weaker filters are applied at higher-stages; the
strongest filters are at the lowest stage. As shown in
Figure 4, each node has one or more child nodes (or
subscribers at the stage-0). Filters associated with
children nodes are weakened and stored in the par-
ent node with the corresponding child identity. This
procedure is elaborated later in this section. Hence
a node has a limited set of filters and an associated
set of children nodes which is also limited. That is,
nodes do not contain any global knowledge which fa-
cilitates scalability. When a node receives an event, it
is checked against each filter and if the event matches
the filter, it is forwarded to the child node/s associated
with the filter.

Example 5. Filters are arranged in a four-stages hi-
erarchy as follows.

1Non-hierarchical configurations can also be used, but they
have a higher complexity and are not described in this paper.
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Figure 4: Multi-stage filtering using a hierarchical con-
figuration.

• Stage-0. At this stage the received events
are evaluated against the exact filters specified
by the subscribers. Hence perfect filtering is
achieved at this level. It is expected that only
a small portion of the overall traffic reaches
each of these nodes, and that the match ratio is
high (i.e., few irrelevant messages ever reach a
user-level node). The subscribers have specified
the following filters:

f1 = (class, “Stock”, =) (symbol, “DEF”, =)
(price, 10.0, <)

f2 = (class, “Stock”, =) (symbol, “DEF”, =)
(price, 11.0, <)

f3 = (class, “Stock”, =) (symbol, “GHI”, =)
(price, 8.0, <)

f4 = (class, “Auction”, =) (Product, “Vehicle”, =)
(Kind, “Car”, =) (Capacity, 2K, <)
(price, 10K, <)

• Stage-1. Filters at this stage are constructed
by weakening the subscriber filters. The weak-
ening is done such that the weakened filters cover
one or more user-level filters. In general, as
a result there will be less filters at this stage
than the user-level stage. The weakening of fil-
ters can be done by transforming the least gen-
eral2 set of attributes as described in Section 4.1.
The most general set of attributes are kept un-
changed when weakening the filters at this stage.

2In a filter such as f1 = (class, “Stock”, =) (symbol, “DEF”,
=) (price, 10.0, <) we choose “class” as the most general at-
tribute and “Price” as the least general attribute. The process
of classifying attributes from most general to least general is
described in Section 4.1.
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The user-level filters (f1, f2, f3, f4,) are weak-
ened to obtain the following filters (g1, g2, g3)
which will be used at first stage.

g1 = (class, “Stock”, =) (symbol, “DEF”, =)
(price, 11.0, <)

g2 = (class, “Stock”, =) (symbol, “GHI”, =)
(price, 8.0, <)

g3 = (class, “Auction”, =) (Product, “Vehicle”, =)
(Kind, “Car”, =) (Capacity, 2K, <)

• Stage-2. Filters at this stage are constructed by
weakening the filters at first stage. When weak-
ening, the least general set of attributes which
were already weakened are removed. The next
set of least general attributes are weakened as
appropriate to form the filter at the second stage.
Note that, by removing attributes from the fil-
ters, filtering speed is increased even if the num-
ber of filters does not change.

The filters h1, h2, and h3 are constructed by
transforming g1, g2, and g3.

h1 = (class, “Stock”, =) (symbol, “DEF”, =)
h2 = (class, “Stock”, =) (symbol, “GHI”, =)
h3 = (class, “Auction”, =) (Product, “Vehicle”, =)

(Kind, “Car”, =)

• Stage-3. At this stage filtering is done only on
the type of events. That is, the filters are con-
structed by weakening second stage filters such
that the newly formed filters contain only type
information. Finally h1, h2, and h3 are trans-
formed to obtain i1 and i2.

i1 = (class, “Stock”, =)

i2 = (class, “Auction”, =)

The above shown weakening process can be auto-
mated such that the system creates all the weakened
filters once the subscription filters are available for an
advertised set of events. A description of the automa-
tion process is given next.

4.1 Automating the Filter Weakening

One approach to obtain weakened filters is to make
use of < or > relations, as shown in Example 5 where
the weakened filter g1 is obtained to cover f1 and f2.
This approach does not apply, however, to other re-
lations such as “=”. We therefore introduce a more

elaborate scheme to automate filter weakening in a
generic manner.

Informally, our automation process works as follow.
At each stage, a subset of attributes is removed from
the filters to form the weakened filters. For removing
attributes, we first categorize attributes into groups
(process to be described shortly). Each group is as-
sociated with a stage and consists of one or more at-
tributes, which are used at that stage to weaken the
filter. When generating an event, the publisher spec-
ifies the groups and the attributes they contain. This
information is disseminated together with event adver-
tisements. When a node subsequently receives a filter
to be weakened, the node can use the group informa-
tion from the publisher and create a weakened filter in
an automated fashion, according to the node’s stage.
Once both the advertisements and subscriber filters
are available, all the intermediate filters can be gen-
erated automatically. This process is presented more
formally in the rest of this section.

Attribute-Stage Association. Let Gc be a set,
which specifies the association of attributes of the
weakened filters with each stage for the event class
c in a multi-stage filtering scheme with n + 1 stages.
We represent Gc as follows:

Gc = {s0, s1, ... sn}
si = < Stage-i: Ai >

Where Ai is the set of attributes used in the weakened
filters at Stage-i. Gk is sent by producers together
with advertisements of event class k.

Example 6. Consider the event class “auction” and
filter f4 of Example 5. The following information can
be propagated to all the nodes at the advertisement
phase.

GAuction = {s0, s1, s2, s3}
s0 = <Stage-0: 1, 2, 3, 4, 5>

s1 = <Stage-1: 1, 2, 3, 4>

s2 = <Stage-2: 1, 2, 3>

s3 = <Stage-3: 1>

Tuple s1, for instance, is interpreted as follows: at
Stage-1 the first four attributes of the standard sub-
scription filter3 are used to form the weakened filter.
Therefore, g3 is obtained from f4 by keeping only the
first four attributes at Stage-1.

Grouping the attributes. Among all attributes,
the attribute which divides the event space into a
small set of large sub-categories (i.e., containing many
events) is called the most general attribute. Con-
versely, the least general attribute divides the event

3We denote as “standard subscription filter” the filter that
contains all the attributes (see Section 4.4).
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space into many small sub-categories. Attributes are
arranged from the most to the least general, and
groups are created accordingly. In the filtering pro-
cess, the most general attributes are used at higher
stage nodes (while less general attributes are ignored).
In our notation, we order filters from left to right start-
ing by the most general.

4.2 Subscription

A subscriber wanting to subscribe to an event
should connect to a particular node in the hieararchy
so that the events will be forwarded to the subscriber.
One possibility is connecting to a node depending on
the locality in terms of the network. That is, the sub-
scriber connects to a node which has a low latency
and high bandwidth link. Even though low latency
message delivery is possible with this scheme, “simi-
lar” subscriptions might not be “closer” to each other
in the hierarchy. For example, though f1 and f2 are
similar subscriptions which differ only by one specific
attribute filter they could be connected to node N1.1
and N1.4 respectively. As a result there would be 2
similar covering filters covering f1 and f2 stored in the
Stage-1 (in N1.1 and N1.4 ). Also the events which
match f1 and f2 would be forwarded twice; i.e., along
two paths via N2.1 and N2.2. This is not efficient -
espcialy when there are more than two similar filters-
as will be seen next.

On the other hand, subscribers can be connected
to nodes by arranging similar subscriptions together.
That is, if 2 subscriptions have number of equal at-
tribute filters as with f1 and f2, they can be arranged
closer to each other in the hierarchy. For example,
they both can be connected to the node N1.1. In
this configuration there will be only one covering filter
at Stage-1 (at N1.1 ). Also the events that match f1

and f2 only need to be forwarded along a single path;
i.e., via N2.1. This increases the filtering efficiency
and bandwidth usage. Filtering efficiency is increased
since in parent nodes, a single weakened filter covers
many children/subscription filters. As a result there
are less number of filters to be evaluated in the sys-
tem. Bandwidth usage should increase since an event
is forwarded along a less number of paths in the net-
work. The gain achieved by this configuration is quite
significant when there are many similar subscriptions.

We propose an algorithm that arranges “similar”
subscriptions together at the phase of subscription.
When a subscriber joins the hiearchy, with its sub-
scription filter a “search” is done to find the node in
which similar subscription filters are stored. This is
acheived by searching the strongest filter which covers
the subscription filter and which is already stored in

Send Subscription(fsub) to the root node

while Joined 6= True do

if receives join-At(idnode) then

send Subscription(fsub) to idnode

if receives accepted-At(nodei) then

Parent ←nodei

Joined=True
2

task RENEW THE SUBSCRIPTIONS {Before the
Expiry of each Time To Live(TTL)}

send Renewal-of-subcription to Parent

(a) At Subscriber :

Upon Receiving Subscription(fsub)

if nodei is not in the Stage-1 then

if ∃ weakened filter fw stored in nodei such that fw w
fsub then

idn ← id of node associated with fw

Send join-At(idn) to the subscriber
else

if ∃ a set C of wild-card attribute filters in fsub then

do HANDLE-WILDCARD-SUBS()
else

idchild ← Randomly selected child of nodei

send join-At(idchild)
else

do INSERT-SUBSCRIBER()
2

Upon Receiving req-Insert(fc, idc) from a child
Add <fc, idc> pair to the filtering table
if Not root then

send the weakened fc to the parent
2

task EXTEND THE VALITIDY OF FILTERS {Before
the Expiry of each Time To Live(TTL)}

send renewal messages to all the filters submitted to
the Parent

2

task REMOVE INVALID FILTERS {At the end of each
3x(TTL) periods}

Remove the filters/ids to which renewal messages are not
received

2

INSERT-SUBSCRIBER()
f ′

sub
← weakened form of fsub

store <f ′
sub

, idsub > in nodei

send accepted-At(i)
f ′′

sub
← weakened form of f ′

sub
send req-Insert(f ′′

sub
, i) to parent

2

HANDLE-WILDCARD-SUBS()
find the most general attribute Attrmg from C
using G find the top most Stage j at which Attrmg is used
if Nodei is at Stage (j +1) then

do INSERT-SUBSCRIBER()
else

idchild ← Randomly selected child of nodei

send join-At(idchild)

(b) At Nodei :

Figure 5: Algorithm for Insertion and Deletion of Sub-
scription
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an intermediate node. The algorithm which performs
this is shown in the Figure 5(a) and 5(b). It is effi-
cient since it looks for the covering filter in stage by
stage basis and does not look for the covering filter in
each and every node.

4.3 Unsubscription

When a subscriber joins a node in the hierarchy,
a filter is stored in this node. As a result the node
submits a weaker filter to its parent and the process
continues along all the stages until there is a corre-
sponding weaker filter in the root node. In our scheme
the subscriber is expected to renew its subscription be-
fore the end of a predefined Time-To-Live (TTL). Also
each node renews the validity of the filters which they
submitted to their parents. When a subscriber or a
node doesn’t send renewal messages for their filters, it
is assumed that these subscribers or nodes do not exist
or are not interested in the subscriptions. As a result
after the expiry of TTL those filters are removed from
corresponding nodes. The unsubscriptions are han-
dled according to this scheme. The scheme is better
suited than explicit unsubscription in some sense as
it handles process failure and network partitions well,
in which case explicit unsubscribe messages cannot be
sent. If necessary, this scheme can be combined with
explicit unsubscription for efficiency.

4.4 Handling Missing Attributes in
Subscriptions

In some subscription filters it is possible that some
of the attributes are not specified or specified for all
possible values. We denote them as “wildcard” sub-
scription. Some examples are shown below.

fx = (class, “Stock”, =) (symbol, “DEF”, =)

fy = (class, “Stock”, =) (symbol, “ALL”, =)

(price, 100, <)

fz = (class, “Stock”, =) (price, 100, <)

In fx the attribute “price” is not specified (unlike in
f1), hence the subscriber should receive all the events
which match fx irrespective of price values. If an at-
tribute is not specified in a subscription filter, it means
that the subscriber is interested about the events irre-
spective of the values of the unspecified attribute. As
a result, in the above example, fy and fz are equal. In
our scheme all the subscription filters are converted to
filters having all the attributes specified; for example
in the form of fy. That is, if the subscriber doesn’t
specify an attribute Attr -which exists in events- in its
filter, (Attr, “ALL”,=) is automatically added to the

filter. We denote this form as standard subscription
filter format and attribute filters in the form (Attr,
“ALL”,=) is denoted as “wildcard” attribute filters.

With this kind of filters, a question arises about the
node to which these subscribers should be connected.
If they are connected to a stage-1 node naively, the
efficiency of the system could be significantly reduced.
One basic idea of our pre-filtering scheme is to limit
the number of events that pass through nodes. As
a result, the number of evaluations that need to be
carried out at each node is decreased. But if a sub-
scription filter like fy or fz is linked to Stage-1 node,
say N1.1, then that node will receive all the events in
the class stock. There can be a huge number of stock
events. This overloads the node N1.1 as it will have to
evaluate all these events. The same scenario applies
for the node N2.1 which forwards events from the root
node to the subscriber via N1.1.

To avoid this inefficiency, we devise a scheme in
which such subscription filters are connected to higher
stage nodes directly instead of connecting them to
stage-1 nodes. The algorithm in Figure 5(b) presents
this scheme more formally and a description is given
in Section 4.5

4.5 The Algorithm

The algorithm shown in Figure 5(a) and 5(b) han-
dles subscription and unsubscription ( including the
ones with wild-card attribute filters). The basic idea
of this algorithm is as follows.1) The subscriber sends
a subscription request with the corresponding filter
fsub to the root node. 2) Any node nodei(including
the root node) unless it is at the stage-1, upon re-
ceiving a subscription request checks if there exists
a filter fw which covers fsub stored in the nodei. If
there exists a fw, the subscriber is asked to send the
subscription request again to the node idn which is as-
sociated with fw. It is possible that the node idn has
a stronger covering filter for fsub. 3) If there is no such
covering filter for fsub in nodei, then it checks if any
wild-card attribute filters exist in fsub. If there ex-
ist, the HANDLE-WILDCARD-SUBS() function (de-
scribed next) is executed. If no wild-card attribute
filters exist in fsub, the nodei selects one of its chil-
dren node randomly and asks the subscriber to join
at the selected child node. 4) If a subscription re-
quest message is received by any node at the stage-1
the subscriber is joined at this node. The subscriber is
notified about this by using “accepted-At(node)” mes-
sage. Then the node sends a corresponding weakened
filters to the parent node so that events which match
fsub will be forwarded properly along the paths from
the root to the node at stage-1.
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As a result once this is performed, if there exists
a stronger filter in a node which covers fsub, the sub-
scriber joins this node. Hence “similar” subscription
filters are grouped together.

Handle-wildcard-subs. 1)First find the most gen-
eral attribute Attrmg from the set C, which contain
all the wildcard attribute filters of the fsub. (In other
words, scan the fsub from left to right and find the
first occurrence of the wildcard attribute. This is the
most general wildcard attribute since attribute filters
are ordered according to the generality.) 2) Using G
(which associate stages with attributes) find the top
most stage j at which Attrmg is used. If Nodei is at
stage (j+1) then insert the subscribers at this node.
3) Otherwise select a child node of nodei randomly
and asks the subscriber to join at the selected child
node.

4.6 Event Filtering and Forwarding

After the execution of the algorithm shown in Fig-
ure 5(a) and 5(b) each node will have a set of weak-
ened filters and corresponding child node/subscriber
Ids in the form of < fw, id>. When a node receives
an event e and if fw(e) = true, then e should be for-
warded to the child node identified by id. This is the
event filtering and forwarding scheme. For each event
received by a node, the event should be evaluated and
matched against all the weakened filters in the node.
For this, efficient indexing and matching techniques
can be used. Those techniques are beyond the scope
of our paper. For clarity and to present the global
picture of our scheme to the reader, we present the
simplest possible techniques in terms of an algorithm
in Figure 6.

The basic idea behind this naive algorithm is as
follows. 1)Each node maintains a table T with entities
in the form of < f ′

sub, id1[,id2,...]> where f ′

sub is a
weakened filter and id1[,id2,...] is/are Ids of node/s
associated with f ′

sub. 2)Whenever a node stores <

f ′

sub, id1 > (Figure 5(b)) insert the < f ′

sub, id1> pair
in the table T. If f ′

sub already exists in T add id1 to
the list of Ids associated with f ′

sub. 3) For each event
e evaluate all the filters in the T with e.4) Whenever
the result is true for the filter fw, forward the e to the
corresponding node/s.

5 Performance Evaluation

To have a type safe, expressive (these two prop-
erties add overhead to filtering) and a scalable event

Upon receiving a <filter,ID> pair

for all < f ‘sub, idsub > received do

if f ‘sub is already in table T then

add idsub to the list of IDs associated with f ‘sub

else

insert < f ‘sub, idsub > to T
2

Upon receiving an event e

for all events e received do

for all filters f in T do

if f(e)=true then

forward e to node/s associated with f

Figure 6: Algorithm for Filtering and Forwarding
Events

system, the computational power requirement at each
node should be as low as possible for the proposed fil-
tering scheme. To measure the power requirement for
filtering, we introduce the notion of Load Complexity
(LC). We also introduce the Relative Load Complexity
(RLC) notion for the purpose of comparing the multi-
stage event system with the centralized approach (Sec-
tion 2.1). For evaluating efficiency of pre-filtering, we
introduce the Matching Rate (MR) concept. The re-
sults clearly show that our multi-stage filtering scheme
scales better in terms of the number of nodes and the
number of events.

5.1 Metrics

Load Complexity (LC). This is defined as follows;
For any time unit, at any node which performs filter-
ing,

LC = (# ofevent received) × (# offilter)

Where “# of event received” is the number of messages
received for filtering and “# of filter” is the number
of filters in the node.

It is clear by keeping a small amount of filters in a
node we can reduce the computational power require-
ment even if there are many number of events in a
time period.

The “Relative Load Complexity (RLC)” can be
used for comparing a content based event system with
many intermediate filtering nodes, with respect to a
centralized server architecture (first architecture dis-
cussed in Section 2.1) that has a complete set of sub-
scriptions in a centralized server. It is defined as fol-
lows; for any time unit, at any node which performs
filtering,
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RLC =
LC

(Total # ofEvents) × (Total # ofSubs)

Where “Total # of Events” is the total number of
events received for filtering and “Total # of Subs” is
the total number of subscriptions in the event system.
This metrix represents how a system balances and del-
egates the work load of filtering among nodes. For a
content based event system with a centralized server,
with all subscription filters at one server, the RLC is
equal to one. It is desirable to have a smaller value for
the RLC.

Matching Rate (MR). This is defined as follows.
In a time unit, at any node which performs filtering,

MR =
Number of matched events

Total number of received events

A higher value in this metric indicates that a higher
number of events are evaluated to “true”. This means
a node receives a higher number of events that it is
interested in. Hence nodes spend less time evalu-
ating unnecessary events against filters and the net-
work bandwidth is used for forwarding more “rele-
vant” events. As a result of pre-filtering, lower stage
nodes and subscribers should optimally have a MR
value close to 1.

5.2 Simulation Environment

In our simulations, a dummy set of events and a
dummy set of subscriptions are generated initially.
The events generated represent a simple form of bibli-
ographic data. The attributes of an event are: author,
conference, year and title.

We create a hierarchy of nodes with four levels4.
Then the weakened filters for each stage are created.

The filters at each stage have the following formats:
At Stage-0 (subscription filters)

f1 = (Year, “yeari”, =) (Conference, “conferencei”, =)

(Author, “authori”,=) (Title, “titlei”, =)

At Stage 1:

f1 = (Year, “yeari”, =) (Conference, “conferencei”, =)

(Author, “authori”,=)

At Stage 2:

f2 = (Year, “yeari”, =) (Conference, “conferencei”, =)

4Note that it is not necessary to have equal number of at-
tributes and levels in the hierarchy.

At Stage 3:

f3 = (Year, “yeari”, =)

Each weakened filter is associated with one or more
child nodes. Each node has a table which consists of
entries with the following format;

<Filter filteri>, <IDs of child nodes id-listi>

The filteri is a subscription filter or weakened form
of it. The id-listi consists of child nodes that are as-
sociated with filteri. Once an event is received by a
node, it evaluates the event against all the filters. If
the evaluation is “true” for a given filteri then the
event is forwarded to all the child nodes in the id-listi
of filteri. The sizes of the tables varries according to
the number of subscriptions and their nature. Similar
to Figure 4, our simulation tool consists of 4 levels and
we simulate 100 nodes at level-1, 10 nodes at level-2
and 1 node at level-3.

5.3 Results

In our simulations, we passed the pseudo randomly
generated events to the node of level 3. This node
evaluates the event against all the filters it has and if
the event evaluates to “true” for any of the filter, the
node forwards the event to respective stage-2 node/s;
the event is considered as a “matched event”. If the
event evaluates to “false” for all entries in the table,
then it is discarded by the node and is not be for-
warded any further. As a result, child nodes are not
receiving any events that they are not interested in.
This forwarding process continues until the event is
received by subscribers or be discarded by nodes. To
evaluate the performance figures, at each node, the
number of filters, the number of received events and
the number of matched events are counted.

RLC. We calculate the relative load complexity
(RLC) using the data gathered from the simulations.
The RLC can be used for comparing the processing
power requirements at each node.

The following table summarizes the results. The
first column shows the respective level. The node
average of RLCs of a given level is shown in the
second column. The third column shows the total of
averages of RLC at each level.
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Stage Node avg. of RLC Total node avg. of RLC

0 2 × 10−7 2 × 10−4

1 2 × 10−4 2 × 10−1

2 0.1 1
3 0.02 0.02

According to the RLC values shown above, it is
clear that the processing power requirement at each
node is much less than the requirement of the cen-
tralized server (Section 2.1). Since the computational
power requirement for filtering is very much less at
any node, the event system hence scales in terms of
message rate. As a result more expressive filters can
also be used without much performance degradation.
The system scales better also with the number of sub-
scriptions since by adding a few number of intermedi-
ate nodes, the number of subscribers can be increased
significantly without increasing the required compu-
tational power at any node. In other words, due to
the delegation of work among intermediate nodes, the
addition of more subscribers does not overload the ex-
isting nodes. The global total of RLCs in the system
(addition of all values of the column 3 of the table)
is around 1. This shows that, in multi-stage filtering
though there are many intermediate nodes in the sys-
tem, there is no greater computational power require-
ment in global sense, comparatively to the centralized
server approach.

MR. The matching rate (MR) was also calculated
for all the nodes in the system. Figure 7 shows the
matching rate for 150 level-0 nodes, 100 level-1 nodes
and 10 level-2 nodes. Calculations show that the av-
erage matching rate is 0.87 for the above subscribers.

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100 120 140 160

M
at

ch
in

g 
R

at
e 

(M
R

)

Process Id

MR of Level 2 Nodes
MR of Level 1 Nodes
MR of Level 0 Nodes

Figure 7: Matching rate of the nodes.

6 Conclusion

In this paper we present the desirable but conflic-
tiong properties of event systems. These properties are
event safety, filtering scalability and expressiveness.
But as shown in the paper, acheiving them together is
a difficult task since they are conflicting to each other.
We acheive expressiveness and event safety by repre-
senting events as objects. Use of objects increases the
complexity of the filtering since -for example- the ob-
jects need to be instantiated at run time during the
filtering. To circumvent this complexity we use a prag-
matic filtering technique based on filter weakening and
data weakening. The events are filtered multiple times
on the path between the publisher and the subscriber
by a set of intermediate nodes; each node performs
partial filtering of the events but nodes taken together
perform complete filtering of events according to the
interests of subscribers. Filter weakening is used to
acheive partial filtering at each node while data weak-
ening is used to make the filtering scheme efficient
while the preserving the encapsulation. As a result,
it is possible to acheive filtering scalability together
with event safety and expressiveness.
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