
Auction System Design Using
Open Multithreaded Transactions

Jörg Kienzle, Alfred Strohmeier
Software Engineering Laboratory

Swiss Federal Institute of Technology Lausanne
CH - 1015 Lausanne EPFL

Switzerland
email: Joerg.Kienzle, Alfred.Strohmeier@epfl.ch

Alexander Romanovsky
Department of Computing Science

University of Newcastle
NE1 7RU, Newcastle upon Tyne

United Kingdom
email: Alexander.Romanovsky@newcastle.ac.uk

Abstract
Open Multithreaded Transactions form an advanced

transaction model that provides features for controlling
and structuring not only accesses to objects, as usual in
transaction systems, but also threads taking part in trans-
actions. The model allows several threads to enter the
same transaction in order to perform a joint activity. It pro-
vides a flexible way of manipulating threads executing
inside a transaction by allowing them to be forked and ter-
minated, but it restricts their behavior in order to guaran-
tee correctness of transaction nesting and isolation among
transactions. In addition, transactions are exception han-
dling contexts, and the model therefore provides forward
and backward error recovery. In this paper we show that
the model is indeed powerful, and that a complex applica-
tion, i.e. an online auction system, can be designed and
implemented in a very elegant way.

1 Introduction
Modern applications must respond to an increasing

number of requirements. To satisfy user expectations,
applications offer more and more functionality, and hence
grow more complex. Fancy user interfaces, multi-media
features or interaction with real-time devices, e.g. sensors,
require software to promptly respond to external stimuli
and to be able to perform several operations simulta-
neously. There is also an increasing need for integrating
different systems and applications, which results in hetero-
geneous and possibly distributed systems. Moreover, the
ever increasing popularity of the Internet and the growing
field of e-commerce have led to an explosion of the num-
ber of distributed systems in operation. Such systems typi-
cally are required to provide highly available services, and
must satisfy hundreds of clients simultaneously.

One approach for satisfying the ever increasing demand
in software is to improve software development methods
[1, 2, 3], whereas another one is to make available more

powerful implementation infrastructures. In our work we
focussed on the latter approach.

Concurrent systems can be classified into cooperative
systems, where individual components collaborate, share
results and work for a common goal, and competitive sys-
tems, where the individual components are not aware of
each other and compete for shared resources [4].

Many researchers view all object-oriented systems as
inherently concurrent, since objects themselves are “natu-
rally concurrent” entities. In reality, concurrency adds a
new dimension to system structure and design. Concurrent
systems are extremely difficult to understand, design, ana-
lyze and modify.

Sophisticated object-oriented systems often need more
advanced and elaborate concurrency features than those
offered by current programming languages. Multiple
objects must usually be accessed or updated jointly to cor-
rectly reflect the real world, hence great care must be taken
to keep related objects globally consistent. Any interrup-
tion of updates to objects, or the interleaving of updates
and accesses, can break the overall consistency of an object
system. Transactions [5] address this kind of problems.

This paper is a follow-up paper of [6], in which we
introduced in detail the open multithreaded transaction
model. Here we describe the design and implementation of
an online auction system, an example of a dynamic system
with cooperative and competitive concurrency, and how
the aforementioned problems have been solved by structur-
ing the application using open multithreaded transactions.
Section 2 briefly reviews the open multithreaded transac-
tion model, emphasizing the way transactional objects are
handled; section 3 then introduces the auction system case
study, and section 4 presents its design based on open mul-
tithreaded transactions; section 5 gives insight on the pro-
totype implementation of the application, section 6
discusses the advantages of using open multithreaded
transactions and lessons learnt during the case study, and
the last section draws some conclusions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Open Multithreaded Transactions
The open multithreaded transaction model [6, 7] is a

transaction model that provides features for controlling
and structuring not only accesses to objects, as usual in
transaction systems, but also threads taking part in trans-
actions. The model allows several threads to enter the
same transaction in order to perform a joint activity. It
provides a flexible way of manipulating threads execut-
ing inside a transaction by allowing them to be forked
and terminated, but it restricts their behavior in order to
guarantee correctness of transaction nesting and isolation
among transactions. Lightweight and heavyweight con-
currency are treated in the same way in the open multi-
threaded transactions model, meaning that what is called
thread here might as well be a process executed on a sin-
gle machine or in a distributed setting.
Life-cycle of an Open Multithreaded Transaction

Any thread can start a transaction. A thread wishing to
work on behalf of an already existing transaction can do
so by joining it. In order to join, it has to learn (at run-
time) or to know (statically) the identity of the transac-
tion it wishes to join. Threads working on behalf of an
open multithreaded transaction are referred to as partici-
pants. External threads that create or join a transaction
are called joined participants; a thread created inside a
transaction by some other participant is called a spawned
participant.

Within an open multithreaded transaction, threads can
access a set of transactional objects. Although individual
threads evolve independently inside an open multi-
threaded transaction, they are allowed to collaborate with
other threads of the transaction by accessing the same
transactional objects.

All participants finish their work inside a transaction
by voting on the transaction outcome. Possible votes are
commit and abort. Voting abort is done by raising an
external exception (see below). The transaction commits
if and only if all participants vote commit.

Once a spawned participant has given its vote, it ter-
minates immediately. Joined participants are not allowed
to leave a transaction, i.e. they are blocked, until the out-
come of the transaction has been determined. If a partici-
pating thread “disappears” from a transaction without
voting on its outcome, the transaction is aborted, as this
case is considered an error.

Exceptions and Open Multithreaded Transactions
The open multithreaded transaction model incorpo-

rates disciplined exception handling adapted to nested
transactions. It allows individual threads to perform for-
ward error recovery by handling an abnormal situation
locally. If local handling fails, the transaction support
applies backward error recovery and reverses the system
to its “initial” state.

The model distinguishes internal and external excep-
tions; the latter ones are also called interface exceptions.

The set of internal exceptions for each participant con-
sists of all exceptions that might occur during its execu-
tion. There are three sources of exceptions inside an open
multithreaded transaction:

• An internal exception can be raised explicitly by a
participant.

• An external exception raised inside a nested trans-
action is raised as an internal exception in the par-
ent transaction.

• Transactional objects accessed by a participant of a
transaction can raise an exception to signal a situa-
tion that violates the consistency of the state of the
transactional object.

All these situations give rise to a possibly inconsistent
application state. If a participant does not handle such a
situation, the application’s correct behavior can not be
guaranteed.

A participant must therefore provide handlers for all
internal exceptions. If such a handler is not able to deal
with the situation, it can signal an external exception1.

If any participant of a transaction signals an external
exception, the transaction is aborted, the exception is
propagated to the containing context, and the exception
Transaction_Abort is signalled to all other joined
participants. If several joined participants signal an
external exception, each of them propagates its own
exception to its own context.

Transactional Objects
In the open multithreaded transactions model partici-

pants perform their work by invoking operations on
transactional objects. To guarantee the ACID properties,
operation invocations made by participants must be con-
trolled at two levels. Guaranteeing the isolation property
of all updates made within a transaction with respect to
other transactions running concurrently is the first con-
cern. This can be achieved using existing optimistic or
pessimistic concurrency control techniques. The second
concern is data consistency. To ensure correct updates,
data access operations performed concurrently by partic-
ipants of the same transaction must be executed within
mutual exclusion. This can be achieved by using moni-
tors or similar techniques found in modern concurrent
languages.

Early error detection and consistency of application
state is important for modern applications. Existing
transactional systems mainly rely on the programmer to
write a transaction in such a way that it preserves consis-
tency. In the open multithreaded transaction model,
developers of transactional objects can help the applica-
tion programmer to write consistency-preserving code by
developing so-called self-checking transactional objects

1. If a participant “forgets” to handle an internal
exception, the external exception
Transaction_ Abort is signalled, and the
application consistency is restored by aborting the
transaction.

that encapsulate invariants. For such objects, methods
are decorated with pre- and post-conditions. When an
invariant, a pre- or a post-condition is violated by the
execution of a method, an exception is propagated to the
participant that has invoked the operation. 1The partici-
pant must then handle this internal exception in order to
address a potential inconsistency. If handling fails, the
transaction is aborted, all the changes made to transac-
tional objects on behalf of the transaction are undone and
an external exception is propagated to the calling con-
text.

Object Creation and Deletion
Most data stored in transactional objects is persistent,

i.e. it continues to exist when the application terminates.
An application might want to create new objects, but also
use objects created during previous runs. This is why
such objects must provide three housekeeping opera-
tions: Create, Restore and Delete.
Create physically creates the object on some storage

unit, whereas Restore attempts to read a previously
stored state from the storage unit. Delete deletes the
data stored on the unit.

In order to provide atomicity and durability in the
presence of crash failures, the transaction support must
be able to redo the operations of a committed transaction
that have been accidentally lost, or to undo the effects of
a partially executed transaction.

The effect of a transaction consists in the set of state
changes of all accessed transactional objects, but may
also include the creation and deletion of transactional
objects. If a transaction that created new objects aborts,
these objects must be deleted, and likewise, if objects
have been deleted, they must be recreated. The transac-
tion support must therefore monitor all creation and dele-
tion operations made on transactional objects, and record
them, together with state information of the objects for
deletion operations. Only then the transaction support is
able to reverse the creation or deletion operations in case
the transaction aborts.

3 Case Study Description
The informal description of the auction system pre-

sented in this section is inspired by the auction service
example presented in [9], which in turn is based on auc-
tion systems found on various internet sites, e.g.
www.ebay.com, www.ubid.com or www.iba-
zar.com.

General Requirements
The auction system runs on a set of computers con-

nected via a network. Clients access the auction system
from one of these computers.

The system allows the clients to buy and sell items by
means of auctions. Different types of auctions are sup-
ported, namely English auctions, Dutch auctions, 1st
Price auctions, 2nd Price auctions, etc.

The English auction is the most well-known form of
auction. The item for sale is put up for auction starting at
a relatively low minimum price. Bidders are then
allowed to place their bids until the auction closes.
Sometimes, the duration of the auction is fixed in
advance, e.g. 30 days, or, alternatively, a time-out value
reset with every new bid can be associated with the auc-
tion.

In a Dutch auction, the starting price is set to a high
price. Then, following a predefined interval, e.g. once
per day, this price is lowered by a certain amount. The
first bidder wins the auction.

During a 1st Price auction, all bidders place one secret
bid. When the auction closes after a specified amount of
time, the bidder that made the highest bid wins the auc-
tion. The 2nd Price auction is based on the same princi-
ple. However, the winner, i.e. the bidder that placed the
highest bid, must pay only the amount of the next best
bid.
Registration

Any client interested in using the auction system ser-
vices must first register with the system by filling out a
registration form on which he or she must provide his or
her real name, postal address and email address, and a
desired username and password.

Moreover, all registered users must deposit a certain
amount of money or some other security with the auction
system at registration time. The money is transferred to a
bank account under control of the auction system. When
bidding for goods, the sum of the bids placed by a client
may never exceed the money available on his or her
account.

Once the registration process is completed, the client
becomes a member of the auction system.
Login

A member of the auction service that wants to make
use of the system must first login to the system using his
or her username and password. Once logged, the member
may choose from one of the following possibilities:

• Start a new auction,
• Browse the current auctions,
• Participate in an ongoing auction,
• Consult the history of other members, or
• Deposit or withdraw money from his or her

account.

1. There is a considerable body of research related to
designing objects / classes together with develop-
ing their pre- and post-conditions and invariants, as
well as to developing executable conditions to be
checked at run-time. The best known example is B.
Meyer's “design by contract” methodology sup-
ported by features of Eiffel [8].

Starting an Auction
A member wanting to start a new auction must fill out

an item form describing the item to be put up for auction.
Required information includes a title, a detailed descrip-
tion of the item the member wants to sell, and an opening
bid. In addition, the type of auction to be used must be
specified.

Once the item form has been submitted successfully,
the system starts the auction and inserts it into the list of
current auctions.
Browsing the List of Current Auctions

Any member logged into the auction system is
allowed to browse the list of current auctions. The infor-
mation available in the current auction list is the title of
the auction, the auction type, the description of the item
for sale, the expiration date, and other data related to the
specific kind of auction.
Participating and Bidding in an Auction

While browsing the list of current auctions, a member
can decide to participate in one or several of them. To bid
on an item, a participant simply has to enter the amount
of the bid. A valid bid must fulfill the following require-
ments:

• The amount left on the bank account of the member
that wants to place a bid is at least as high as the
sum of all his or her pending bids plus the new bid.
This requirement ensures that a member is always
in the position to pay for all items he or she placed
bids on.

• The member placing the bid is not the member hav-
ing started the auction. This rule prohibits a seller
to bid in his or her own auction.

• The auction has not expired.
• In English auctions, the new bid must be higher

than the current bid. If nobody has placed a bid yet,
then the bid must be at least as high as the opening
bid.

• In Dutch auctions, the new bid is usually equal to
the current bid. In general, bids that are higher than
the current bid are also accepted.

• In 1st Price auctions and 2nd Price auctions, the
new bid must be at least as high as the opening bid.

• If any of the previously stated requirements is not
met, the auction system rejects the bid.

Closing an Auction
The time of closure of an auction depends on the type

of auction. If an auction closes, and no participant has
placed a valid bid, then the auction was unsuccessful. In
that case, the auction system does not charge any money
for the provided services.

If the auction closes and at least one valid bid has been
made, then the auction ends successfully. In that case, the
participant having placed the highest bid wins the auc-
tion. The money is withdrawn from the account of the
winning participant and deposited on the account of the

seller, minus two percent, which is deposited on the
account of the auction system for the provided services.
Member History

The auction system keeps track of all auctions started
or won by a member. Any member can consult the his-
tory of other members.
Delivery of the Goods

The auction site Ibazar, for instance, trusts its mem-
bers to effectively send the goods that have been sold in
an auction to the winning member. In these systems, the
winning member can, once he or she has received the
item, vote on the quality of the delivery. This vote will be
registered in the history of the seller.

Other systems provide a special escrow service that
blocks the money of the winning bidder until the seller
sends the goods. Only when the goods have been
received and the bidder is satisfied, the money gets trans-
ferred to the seller account.
Fault-Tolerance Requirements

The auction system must be able to tolerate failures.
Crashes of any of the host computers must not corrupt
the state of the auction system, e.g. money transfer from
one account to the other should not be executed partially.

4 Application Design
The auction system is an example of a dynamic sys-

tem with cooperative and competitive concurrency. The
concurrency originates from multiple connected mem-
bers, who each may participate in or initiate multiple
auctions simultaneously. Inside an auction, the members
cooperate by bidding for the item on sale. On the outside,
the auctions compete for external resources, such as the
user accounts. The system must be dynamic, since a
member must be able to join an ongoing auction at any
time.

To deal with this complexity, the design of the auction
system is based on open multithreaded transactions.

Transactional Objects in the Auction System
Any data used from within a transaction and also any

data that should survive crashes must be encapsulated
inside a transactional object.

The transactional objects needed for implementing the
auction system are fairly easy to identify. Every concrete
transactional object must implement the operations Cre-
ate, Restore and Delete. The relationships among
the classes are presented in Figure 1 (for brevity, T_
stands for Transactional_).

Registration and history information of members are
stored in the Transactional_Member_Information
class. In addition to providing a constructor method
Create, the class also offers a method that allows a
member to change password, and a method
Add_To_History that appends a successful auction to
the history of a user.

The Transactional_Member_Directory class
defines the set of all registered members. It provides
methods to register and unregister members, and to
retrieve the Transactional_Member_Information
object of a member.

The abstract Auction class represents auctions. It
defines methods to query information about the auction,
and a method that can be called by a bidder to know if a
previously placed bid has been accepted. The Auction
class has several concrete subclasses, e.g.
English_Auction and Dutch_Auction, that define
the different auction types. Every subclass must imple-
ment the required operations Create, Restore and
Delete, plus the Place_Bid operation.

The Auction_List class contains the list of all cur-
rent auctions. It provides the usual operations available
on lists, i.e. Insert_Auction, Remove_Auction and
Get_Auction.

Finally, every member has a bank account, repre-
sented by the Transactional_Account class.

The Transactional_Account Class
The Deposit, Withdraw and Balance operations

have the usual semantics. A Withdraw is only possible
if there is enough money on the account, since members
are not allowed to overdraw their account. If this is not
the case, the exception Not_Enough_Funds is raised.

In addition, the Transactional_Account class
provides the required housekeeping operations Create,
Restore and Delete required for transactional objects,
plus a Transactional_Balance operation. This oper-
ation is similar to the Balance operation, but it allows
one to query the current balance of the account even if
other active transactions have modified the balance,
thereby relaxing the isolation among concurrent transac-
tions. Such an operation is necessary, for it allows the
owner of the account to query how much money is avail-
able for new bids in case his or her other bids placed in
other auctions are accepted.

In order to maximize concurrent execution, the opera-
tions of the transactional account class must be analyzed
to determine conflicting operations. Strict concurrency
control designates Withdraw and Deposit as modifi-

T_Account

Create

Balance: Natural

T_Member_Information

Username: String
Password: String
Real_Name: String
Address: String
Email: String
History: History_List

Create
Restore
Delete

T_Member_Directory

Create

T_Auction_List

Create

T_Auction

Name: String
Description: String
Opening_Bid: Natural
Current_Bid: Natural
Status: enum {Open, Closed}

T_English_AuctionT_Dutch_Auction

Decrement: Natural
Time_Interval: Time

Create

Duration: Time

Create

0..*1 1 1

account

0..*

1

0..*

1

seller

0..1

0..*

winner

Figure 1: Transactional Objects found in the Auction System

Change_Password
Add_To_History

Restore
Delete
Register_Member
Unregister_Member
Get_Member

Restore
Delete
Insert_Auction
Delete_Auction
Get_Auction

Restore
Delete
Deposit
Withdraw
Balance
Transactional_Balance

Get_Name
Get_Description
Get_Status
Get_Current_Bid
Place_Bid
Bid_Accepted

T_... stands for
Transactional_

...

Create

Other_Auction

Restore
Delete
Place_Bid

Restore
Delete
Place_Bid

Restore
Delete
Place_Bid

ers, Balance and Transactional_Balance as
observers. Unfortunately, for accounts, strict concur-
rency control unnecessarily restricts concurrency. Ana-
lyzing the semantics of the operations of the
Transactional_Account class reveals that some of
them commute.

The compatibility table for the operations of the
Transactional_Account class is given in Figure 2. It
is based on backward commutativity.

Note that the table is not symmetric. A Deposit
operation commutes with a Withdraw operation, but
Withdraw does not commute with Deposit. This is due
to the fact that the Withdraw operation can not be com-
pleted successfully if there is not enough money on the
account. An uncommitted Deposit operation could give
the illusion that a withdraw is possible, but if the deposit
is rolled back later on, the withdraw would not be valid
anymore.

The Transactional_Account is an example of a
self-checking transactional object. If a withdraw can not
be completed, the exception Not_Enough_Funds is
raised. The participant of the open multithreaded transac-
tion that invoked the Withdraw operation is forced to
address this abnormal situation by providing a local
exception handler. Otherwise, the exception crosses the
transaction boundary and the transaction is aborted.

Open Multithreaded Transactions in the
Auction System

Open multithreaded transactions are used throughout
the design of the auction system according to the follow-
ing rules:

• Any operation that might potentially interfere with
other operations executed concurrently must be
encapsulated inside a transaction.

• Any set of operations that should never be executed
partially must be encapsulated inside a transaction.
This includes also the creation of several transac-
tional objects that logically belong together.

• Any set of operations that might have to be undone
must be encapsulated inside a transaction or sub-
transaction.

• Threads that want to cooperate by accessing the
same transactional objects must be participants of
the same open multithreaded transaction.

The following two sections present the design of two
open multithreaded transactions found in the auction sys-
tem. The Registration transaction uses a single-threaded,
non-nested transaction, whereas the English auction
transaction is based on multithreaded, nested transac-
tions.
Registration Transaction

A client wanting to become a member of the auction
system must first register with the system by filling out
the registration form. As a consequence, a new Account
with the initial deposit is created for the member. Then, a
new Member_Information object is created, initial-
ized with all relevant data from the registration form and
a reference to the new account, and finally inserted into
the Member_Directory.

These three operations, namely creating the Account
and Member_Information objects and updating the
Member_Directory, must be performed atomically,
since a partial execution, e.g. creating the
Member_Information object without registering it in
the Member_Directory, would lead to permanent stor-
age leaks. The two Create operations and the Regis-
ter operation are therefore encapsulated in a transaction
as shown in Figure 3. In this case, the structure is identi-
cal to the one of a flat transaction, namely single-
threaded, without subtransactions.
English Auction

Maybe the most important requirement for auctions is
that they must be fault-tolerant. All-or-nothing semantics
must be strictly adhered to. Either there is a winner, and
the money has been transferred from the account of the
winning bidder to the seller account and the commission
has been deposited on the auction system account, or the
auction was unsuccessful, in which case the balances of
the involved accounts remain untouched.

Deposit(y) Withdraw(y) Balance Trans_Bal

Deposit(x) yes yes no yes
Withdraw(x) no yes no yes
Balance no no yes yes
Trans_Bal yes yes yes yes

Figure 2: Compatibility Table for the
Transactional_Account Class

Figure 3: The Registration Transaction

Thread

Create (...)

Transaction Begin

Member_Directory

Transaction Commit

Member_Information

Register (Member_Information)Create (...)

Account

Auctions are complicated interactions among multiple
participants. They incorporate cooperative and competi-
tive concurrency. The participants of an auction cooper-
ate by placing bids on the same item. Members are
allowed to participate in several auctions at the same
time. Concurrently executing auctions compete for the
money on the member accounts.

The number of participants of an auction is not fixed
in advance. Therefore, auctions must also be dynamic:
new participants must be able to join the auction at any
time.

All these requirements can be met if an individual
auction is encapsulated inside an open multithreaded
transaction. A graphical illustration of an English auc-
tion is shown in Figure 4.

Every member creates a new thread that acts on behalf
of the member inside the auction transaction. As a result,
members can participate in multiple auctions at the same
time.

In Figure 4, member 1 starts a new auction, creating a
new seller thread. Once the item form has been com-
pleted, a new open multithreaded transaction, here
named T1, is started. Then, the seller creates a new auc-
tion object by invoking the Create function, and inserts
it into the list of current auctions.

Other members consulting the current auction list will
now see the new auction. In our example, member 2
decides to participate. A new bidder thread is created,

which joins the open multithreaded transaction T1. It
queries the amount of the current bid by invoking the
Get_Current_Bid operation on the auction object.
Before placing the bid, a new subtransaction, here named
T1.1, is started. Within the subtransaction, the required
amount of money is withdrawn from the account of
member 2. Since there is enough money on the account,
the withdrawal completes successfully and the bid is
announced to the Auction object by calling
Place_Bid.

In the meantime, some other member, member 3, joins
the auction, spawning also a bidder thread, which joins
the open multithreaded transaction T1. After consulting
the current bid, member 3 decides to overbid member 2.
Again, a subtransaction is started, here named T1.2, and
the required amount of money is withdrawn from the
account of member 3. The new bid is announced to the
Auction object by calling Place_Bid. Once the bidder
thread of member 2 gets to know this, it consequently
aborts the subtransction T1.1, which in turn rolls back
the withdrawal performed on the account of member 2.
The money returned to the account of member 2 can now
be used again for placing new bids.

In the example shown in Figure 4, no other bidder
enter the auction, nor does member 2 try to overbid
member 3. The bidder thread of member 2 has therefore
completed its work inside the auction, and commits the
global transaction T1. Once the auction closes, the bidder

Commit T1.2

T1

Member 1

Member 2

Member 3

Auction Object

Member 1 Account

Member 2 Account

Member 3 Account

Create

Get_Current_Bid

Withdraw
Place_Bid

Get_Current_Bid

Withdraw
Place_Bid T1.1

T1.2
Abort T1.1

Get_Status

Deposit

B
id

de
r

B
id

de
r

Se
lle

r

System Account

Deposit

Figure 4: The English Auction Transaction

Current_Auction_List
Insert_Auction

Member 1 Information

Add_To_History

Commit T1

Get_Auction

Get_Auction

thread of member 3 gets to know that it has won the auc-
tion. It then commits the subtransaction T1.2, which
confirms the previous withdrawal. It also commits the
global transaction T1. The seller thread in the meantime
deposits two percent of the amount of the final bid on the
account of the auction system as a commission, deposits
98% of the amount of the final bid on the account of
member 1, inserts the Auction object into the history of
the Member_Information object of member 1, and
finally also commits T1.

Only now that all participants have voted commit, the
transaction support will make the changes made on
behalf of T1 persistent, i.e. the creation of the auction
object, the bidding, the withdrawal from the account of
member 3 (inherited from subtransaction T1.2), the
deposit on the auction system account, the deposit on the
account of member 1, and the insertion of the auction
object into the history of the Member_Information
object of member 1.

5 Implementation
[7] describes the design of an object-oriented frame-

work called OPTIMA, which provides the necessary run-
time support for open multithreaded transactions. Since
applications from many different domains can benefit
from using transactions, it is important to allow an appli-
cation programmer to customize the framework. This
flexibility is achieved with the help of design patterns.
Class hierarchies with classes implementing standard
transactional behavior are provided, but a programmer is
free to extend the hierarchies to tailor the framework to
the application-specific needs. The framework supports
among others optimistic and pessimistic concurrency

control, different recovery strategies (i.e. Undo/Redo,
NoUndo/Redo, Undo/NoRedo), different caching tech-
niques, different logging techniques (i.e. physical log-
ging and logical logging), different update strategies (in-
place and deferred), and different storage devices.
Among pessimistic concurrency control, the framework
provides built-in support for lock-based concurrency
control, with strict read / write or commutativity-based
locking. The feasibility and the elegance of the interface
for application programmers depend on the available fea-
tures of the programming language.

The OPTIMA framework has been implemented for the
concurrent object-oriented programming language Ada
[10]. It has been realized in form of a library based on
standard Ada only. This makes the approach useful for
all settings and platforms which have standard Ada com-
pilers. Based on the features offered by Ada 95, a proce-
dural, an object-based and an object-oriented interface
for the transaction framework have been implemented.

Auction System Implementation
The implementation of the auction system is based on

the implementation of the OPTIMA framework for Ada.
Figure 5 shows the Ada code of the thread
Bidder_Task that represents a user that wants to bid
for an item in an English auction. The Bidder_Task
collaborates with the Seller_Task through the
Transactional_Auction object.

The references to the user account object and auction
object are handed to the task during initialization, as well
as the name of the auction . The Bidder_Task then
wants to join the open multithreaded transaction previ-
ously started by the Seller_Task.

Figure 5: Implementation of the Bidder Task

task body Bidder_Task is

Auction : Transactional_Auction_Ref := …
My_Account : Transactional_Account_Ref:= …
Auction_Title : String := …

Current_Bid, My_Bid : Natural;

Auction_Transaction : Transaction
(new String’ (Auction_Title);

begin

while Get_Status (Auction.all) /= Closed
loop
Current_Bid :=

Get_Current_Bid (Auction.all);
GUI.Get_Bid_From_User (My_Bid,

Current_Bid);

begin

declare
Subtransaction : Transaction;

begin
Withdraw (My_Account.all, My_Bid);
Place_Bid (Auction.all, My_Bid);

while Bid_Accepted (Auction.all)
and Get_Status (Auction.all)

/= Closed loop
delay A_While;

end loop;

if Bid_Accepted (Auction.all) then
Commit_Transaction

(Subtransaction);
else

GUI.Notify_User (Overbid);
raise Transaction_Abort;

end if;

exception
when Not_Enough_Funds =>

GUI.Notify_User
(Not_Enough_Funds);

raise Transaction_Abort;
end;

exception
when Transaction_Abort => null;

end;

end loop;

Commit_Transaction (Auction_Transaction);
end Bidder_Task;

1

2

6

4

5

7

8
10

11

12

13

9

14

15
16

1

The sample code uses the object-based interface to the
transaction support. Joining a transaction is done in this
case by declaring a transaction object, here named
Auction_Transaction, passing to the constructor the
name of the transaction to join (in this case, the name of
the auction is used to identify the desired
transaction) . As a result, the entire Ada block, i.e.
from to , is executed from within the transaction.

The Bidder_Task now obtains the current bid from
the Auction object , and asks the member to place a
bid . As long as the auction is not closed, the member
is allowed to place a bid .

If the user places a bid, a new subtransaction is started
by opening a new Ada block and declaring another trans-
action object . An attempt is made to withdraw the
required money from the member’s bank account . If
there is not enough money on the account, the account
object raises the Not_Enough_Funds exception. The
internal exception is handled locally: a notification is
sent to the user, and the subtransaction is aborted . If
the withdrawal succeeds, the bid is sent to the Auction
object .

Now, the Bidder_Task must wait until either the
auction closes, or some other bidder places a higher
bid . If finally the bid is accepted, the subtransaction is
committed . Otherwise, the user is notified that some-
one else has placed a higher bid, the subtransaction is
aborted, resulting in a rollback of the Withdraw opera-
tion, and the user is given a chance to place a new
bid .

Each time a member overbids some other member, a
subtransaction is aborted. Attempts to overdraw a mem-
ber account also result in aborting a subtransaction. Such
rollbacks are part of the normal life cycle of an auction,
and should not affect the outcome of the auction in gen-
eral. This is why the external exception
Transaction_Abort propagated by the subtransaction
upon rollback can be safely ignored .

In any case, once the auction closes, the global trans-
action is committed by invoking the
Commit_Transaction operation on the
Auction_Transaction object .

6 Discussion

Advantages of using Open Multithreaded Transac-
tions in the Auction System Case Study

Using open multithreaded transactions in the design of
the auction system has greatly simplified the problems
introduced by the inherent concurrency and dynamicity
of the system. The application state remains consistent in
spite of concurrent auctions. Executing an individual
auction inside a transaction automatically provides the
desired all-or-nothing semantics: either the auction com-
pletes as a whole, or no money is transferred between
accounts. Fault tolerance is also provided automatically
by the underlying transaction support.

Inside an auction, partial undo functionality has been
achieved using nested transactions. When a user places a
bid, the money is withdrawn from his account inside a
nested transaction. Later on, if someone places a higher
bid, the money is returned to the account by aborting the
nested transaction. That way, a user that participates in
several auctions concurrently can not cheat and overdraw
his account.

Graphical User Interface
During implementation it turned out that it was not

straightforward to connect the graphical user interface
and the threads taking part in an open multithreaded
transaction.

Standard graphical user interfaces are single-threaded,
e.g. there is a single thread that executes the callbacks
registered for buttons, etc. In the auction system, a sepa-
rate thread represents a user in an auction as a participant
of the transaction. Commands from the user interface
must be sent to this thread, because it only is allowed to
work on behalf of the transaction. It was therefore neces-
sary to build a bridge between the graphical user inter-
face and the business logic of the application.
Commands from the user result in callbacks from the
GUI, which are then dispatched to the corresponding
threads.

7 Conclusion
The auction system case study has shown how the

inherent complexity of a dynamic, distributed, concur-
rent application can be reduced by structuring the execu-
tion with open multithreaded transactions. Reasoning
about fault tolerance issues and consistency of the over-
all system is also made a lot easier. Without open multi-
threaded transactions, the application programmer would
have to deal with threads, object creation and deletion,
and exception propagation in an ad hoc way, making the
process error prone.

Due to the isolation property and disciplined excep-
tion handling, open multithreaded transactions act as
firewalls for errors, since they can not propagate to the
outside. This fact, together with the ability to nest open
multithreaded transactions, makes them ideal units of
fault tolerance.

The prototype implementation of the OPTIMA frame-
work and the auction system can be downloaded from
http://lglwww.epfl.ch/research/OMTT/optima.html.

8 Acknowledgements
Jörg Kienzle has been partially supported by the Swiss

National Science Foundation project FN 2000-
057187.99/1. Alexander Romanovsky has been partially
supported by the EC IST RTD Project on Dependable
Systems of Systems (DSoS).

3

3 16

4

5

6

7

8

9

10

11

12

13

14

15

9 References
[1] S. Sendall and A. Strohmeier: “From Use Cases to System

Operation Specifications”. In S. Kent and A. Evans (Eds.),
UML’2000 - The Unified Modeling Language: Advancing
the Standard, Third International Conference, York, UK,
October 2-6, 2000, pp. 1–15, Lecture Notes in Computer
Science 1939, Springer Verlag, 2000.

[2] M. M. Kandé and A. Strohmeier: “Towards a UML Profile
for Software Architecture”. In S. Kent and A. Evans
(Eds.), UML’2000 - The Unified Modeling Language:
Advancing the Standard, Third International Conference,
York, UK, October 2-6, 2000, pp. 513–527, Lecture Notes
in Computer Science 1939, Springer Verlag, 2000.

[3] S. Sendall and A. Strohmeier: “Specifying Concurrent
System Behavior and Timing Constraints Using OCL and
UML”. In UML 2001 - The Unified Modeling Language:
Modeling Languages, Concepts and Tools, Fourth Inter-
national Conference, Toronto, Canada, October 1-5, Mar-
tin Gogolla (Ed.), pp. 391 – 405, Lecture Notes in
Computer Science 2185, Springer Verlag, 2001.

[4] P. A. Lee and T. Anderson: “Fault Tolerance - Principles
and Practice”. In Dependable Computing and Fault-Toler-
ant Systems, Springer Verlag, 2 ed., 1990.

[5] J. Gray and A. Reuter: Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, San
Mateo, California, 1993.

[6] J. Kienzle, A. Romanovsky, and A. Strohmeier: “Open
Multithreaded Transactions: Keeping Threads and Excep-
tions under Control”. In Proceedings of the 6th Interna-
tional Worshop on Object-Oriented Real-Time
Dependable Systems, Universita di Roma La Sapienza,
Roma, Italy, January 8th - 10th, 2001, pp. 209 – 217,
2001.

[7] J. Kienzle: Open Multithreaded Transactions: A Transac-
tion Model for Concurrent Object-Oriented Program-
ming. Ph.D. Thesis #2393, Swiss Federal Institute of
Technology, Lausanne, Switzerland, April 2001.

[8] B. Meyer: Object-Oriented Software Construction. Pren-
tice Hall, Englewood Cliffs, NJ 07632, USA, 2 ed., 1997.

[9] J. Vachon: COALA: A Design Language for Reliable Dis-
tributed Systems. Ph.D. Thesis #2302, Swiss Federal Insti-
tute of Technology, Lausanne, Switzerland, December
2000.

[10] J. Kienzle, R. Jiménez-Peris, A. Romanovsky, and
M. Patiño-Martinez: “Transaction Support for Ada”. In
Reliable Software Technologies - Ada-Europe’2001, Leu-
ven, Belgium, May 14-18, 2001, pp. 290 – 304, Lecture
Notes in Computer Science 2043, Springer Verlag, 2001.

	Auction System Design Using Open Multithreaded Transactions
	1 Introduction
	2 Open Multithreaded Transactions
	Exceptions and Open Multithreaded Transactions
	Transactional Objects
	Object Creation and Deletion

	3 Case Study Description
	4 Application Design
	Transactional Objects in the Auction System
	The Transactional_Account Class
	Open Multithreaded Transactions in the Auction System

	5 Implementation
	Auction System Implementation

	6 Discussion
	Advantages of using Open Multithreaded Transactions in the Auction System Case Study
	Graphical User Interface

	7 Conclusion
	8 Acknowledgements
	9 References

