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Abstract

This paper brings the following three main contributions: a hierarchy of specifications for replication tech-
niques, semi-passive replication, and Lazy Consensus.

Based on the definition of the Generic Replication problem, we define two families of replication techniques:
replication with parsimonious processing (e.g., passive replication), and replication with redundant processing
(e.g., active replication). This helps relate replication techniques to each other.

We define a novel replication technique with parsimonious processing, called semi-passive replication, for
which we also give an algorithm. The most significant aspect of semi-passive replication is that it requires a
weaker system model than existing techniques of the same family.

We define a variant of the Consensus problem, called Lazy Consensus, upon which our semi-passive replica-
tion algorithm is based. The main difference between Consensus and Lazy Consensus is a property of laziness
which requires that initial values are computed only when they are actually needed.

Keywords: replication techniques, fault tolerance, high availability, failure detectors, asynchronous systems,
consensus, group membership, distributed systems

1 Introduction

A major problem inherent to distributed systems is their potential vulnerability to failures. Indeed, whenever a
single node crashes, the availability of the whole system may be compromised. However, the distributed nature
of those systems provides the mean to increase their reliability. The distribution makes it possible to introduce
redundancy and, thus, make the overall system more reliable than its individual parts.

Redundancy is usually introduced by the replication of components, or services. Although replication is an
intuitive and readily understood concept, its implementation is difficult. Replicating a service in a distributed
system requires that each replica of the service keeps a consistent state, which is ensured by a specific replication
protocol [18]. There exist two major classes of replication techniques to ensure this consistency: active and
passive replication. Both replication techniques are useful since they have complementary qualities.

With active replication [22, 30], each request is processed by all replicas. This technique ensures a fast
reaction to failures, and sometimes makes it easier to replicate legacy systems. However, active replication uses
processing resources heavily and requires the processing of requests to be deterministic. 1 This last point is a very
strong limitation since, in a program, there exist many potential sources of non-determinism [27]. For instance,
multi-threading typically introduces non-determinism.

With passive replication (also called primary-backup) [9, 18], only one replica (primary) processes the re-
quest, and sends update messages to the other replicas (backups). This technique uses less resources than active
replication does, without the requirement of operation determinism. On the other hand, the replicated service
usually has a slow reaction to failures. For instance, when the primary crashes, the failure must be detected by the

0A preliminary abstract of this paper appeared in Proceedings of the 17th IEEE International Symposium on Reliable Distributed Systems
(IEEE CS Press, pp. 43–50). It is now largely superseded by this version.

1Determinism means that the result of an operation depends only on the initial state of a replica and the sequence of operations it has
already performed.

This work has been submitted in May 2001 to Academic Press for possible publication. Copyright may be transferred without notice, after
which this version may no longer be accessible.
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Figure 1: Semi-passive replication (no crash).
(conceptual representation: the update protocol actually hides several messages)

other replicas, and the request may have to be reprocessed by a new primary. This may result in a significantly
higher response time for the request being processed. For this reason, active replication is often considered a
better choice for most real-time systems, and passive replication for most other cases [32].

In most computer systems, the implementation of passive replication is based on a synchronous model, or
relies on some dedicated hardware device [4, 9, 15, 28, 36]. However, we consider here the context of asyn-
chronous systems in which the detection of failures is not certain. In such systems, all implementations of passive
replication that we know of are based on a group membership service and must exclude the primary whenever it is
suspected to have crashed (e.g., [6, 24, 33]). In practice, this is a strong limitation of passive replication since this
means that a mere suspicion will be turned into a failure, thus reducing the actual fault-tolerance of the system.
Conversely, there exist implementations of active replication that neither require a group membership service nor
need to kill suspected processes (e.g., active replication based on the Atomic Broadcast algorithm proposed by
Chandra and Toueg [10]).

In this paper, we present the semi-passive replication technique; a new technique that retains the essential char-
acteristics of passive replication while avoiding the necessity to force the crash of suspected processes. The most
important consequence is that it makes it possible to decouple 1) the replication algorithm from 2) housekeeping
issues such as the management of the membership. For instance, this allows the algorithm to use an aggressive
failure detection policy in order to react quickly to a crash.

The main contribution of this paper is to specify the problem of semi-passive replication, and to propose an
algorithm to solve it. We also give a general definition for replication techniques, and prove the correctness of
our semi-passive replication algorithm with respect to this definition. Our semi-passive algorithm is based on a
variant of the Consensus problem called Lazy Consensus, for which we also give a specification, an algorithm,
and proofs of correctness.

The rest of the paper is structured as follows. Section 2 gives a brief informal overview of semi-passive
replication. Section 3 presents the system model considered in this paper, and defines the notation used by the
algorithms. Section 4 proposes a hierarchy of problems that define replication techniques. In Section 5, we give
an algorithm for semi-passive replication, and specify the problem of Lazy Consensus used by this algorithm. In
Section 6 we present an algorithm for the Lazy Consensus problem designed for asynchronous systems augmented
with a failure detector. Section 7 illustrates the execution of our semi-passive replication algorithm. Section 8
concludes the paper.

2 Overview of Semi-Passive Replication

The passive replication technique is quite useful in practice, since it requires less processing power than active
replication and makes no assumption on the determinism of processing a request. Semi-passive replication can
be seen as a variant of passive replication, as it retains most of its major characteristics (e.g., allows for non-
deterministic processing). However, in semi-passive replication, the selection of the primary is based on the
rotating coordinator paradigm [10] and not on a group membership service as usually done in passive replication.
The rotating coordinator mechanism is a much simpler mechanism.

Informally, semi-passive replication works the following way. The client sends its request to all replicas
p1; p2; p3 (see Fig. 1). The servers know that p1 is the first primary, so p1 handles the requests and updates the
other servers (the update messages from p1 to fp2; p3g are not shown on Fig. 1).

If p1 crashes and is not able to complete its job as the primary, or if p1 does not crash but is incorrectly
suspected of having crashed, then p2 takes over as the new primary. The details of how this works are explained
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Figure 2: Semi-passive replication (crash of the coordinator).
(conceptual representation: the update protocol actually hides several messages)

later in Section 5. Figure 2 illustrates a scenario in which p1 crashes after handling the request, but before sending
its update message. After the crash of p1, p2 becomes the new primary.

These examples do not show which process is the primary for the next client requests, nor what happens if
client requests are received concurrently. These issues are explained in detail in Section 5. However, the important
point in this solution is that no process is ever excluded from the group of servers (as in a solution based on a
membership service). In other words, in case of false suspicion, there is no join (and state transfer) that needs later
to be executed by the falsely suspected process. This significantly reduces the cost related to an incorrect failure
suspicion, i.e., the cost related to the aggressive timeout option mentioned before.

3 System Model and Definitions

We define here some notation used in the paper. Replication techniques are usually defined in the client-server
interaction model. We describe this model and introduce some related notations.

3.1 Client-Server Model

We consider two types of processes: (1) clients and (2) replicas of a server. The set of all clients in the system is
denoted by �C , and the set of server replicas is denoted by �S .2 We also denote the number of server processes
by n = j�S j.

We assume that the system is asynchronous (i.e., there is no bound on communication delays and on the rela-
tive speed of processes). Processes fail by crashing, i.e., we do not consider malicious (also known as Byzantine)
processes. A correct process is a process that does not crash. Crashes are permanent. 3 Processes communicate
through quasi-reliable communication channels, that is, if a correct process p sends a message m to a correct
process q, then q eventually receives m.

3.2 Sequences

The algorithms presented in this paper rely on sequences. A sequence is a finite ordered list of elements. With a
few minor exceptions, the notation defined here is borrowed from Gries and Schneider [17].

A sequence of three elements a, b, c is denoted by the tuple ha; b; ci. The symbol � denotes the empty sequence.
The length of a sequence seq is the number of elements in seq and is denoted #seq . For instance, # ha; b; ci = 3,
and #� = 0.

Elements can be added either at the beginning or at the end of a sequence. Adding an element e at the beginning
of a sequence seq is called prepending (see [17]) and is denoted by eC seq . Similarly, adding an element e at the
end of a sequence seq is called appending and is denoted by seq B e.

We define the operator [ ] for accessing a single element of the sequence. Given a sequence seq , seq [i ]
returns the i th element of seq . The element seq [1 ] is then the first element of the sequence, and is also denoted
as head :seq . The tail of a non-empty sequence seq is the sequence that results from removing the first element
of seq . Thus, we have

seq = head :seq C tail :seq

2Note that �C and �S may overlap.
3In practice, this means that whenever a crashed process recovers, it takes a new identity.
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Figure 4: Replication with redundant processing

For convenience, we also define the following additional operations on sequences. First, given an element e
and a sequence seq , the element e is a member of seq (denoted e 2 seq) if e is a member of the set composed of
all elements of seq . Second, given a sequence seq and a set of elements S, the exclusion seq � S is the sequence
that results from removing from seq all elements that appear in S.

4 Specification of Replication Techniques

In the context of replication techniques, there exist specifications for passive replication [9, 8] and for active
replication [22, 30]. However, these specifications are expressed in such a way that they are not compatible
with each other. This is strongly against the intuition that both replication techniques solve a common problem:
replication.

In this section, we define this common problem, as the Generic Replication Problem. We then define vari-
ous replication techniques—passive, semi-passive, and active replication—by extending the specification of the
Replication problem. This defines a hierarchy of replication problems, and thus brings a new light on the relation
between those problems.

4.1 The Generic Replication Problem

Without loss of generality, the Generic Replication Problem is defined in the client-server model. The clients issue
requests to a (replicated) server, and receive replies. We consider that a server is replicated when it is composed
of more than one process (called replicas hereafter). The server replicas update their respective state according to
the requests that they receive from the clients.

We consider a model in which each process is modeled as a state machine. There are two types of state
machines: clients and server replicas. Clients execute the following two external events: send(req), the emission
of the request req by a client; and receive(respreq), the reception by a client of the response to request req
(message respreq). Server replicas execute the following two events: handle(req), the processing of request req
that generates an update message updreq ; update(req), the modification of the state of the replica as the result of
processing req . The Generic Replication Problem is defined by the following properties:

(TERMINATION) If a correct client c 2 �C sends a request, it eventually receives a reply.

(TOTAL ORDER) If there is an event update(req) such that a server replica executes update(req) as its i th

update event, then all server replicas that execute the i th update event execute update(req) — as their ith

update event.

(UPDATE INTEGRITY) For any request req, every replica executes update(req) at most once, and only if
send(req) was previously executed by a client.

(RESPONSE INTEGRITY) For any event receive(respreq) executed by a client, the event update(req) is executed
by some correct replica.

Replication techniques satisfy these properties. Specific replication techniques can be grouped into two basic
families that differ only with the fact that they satisfy additional properties: replication techniques with par-
simonious processing, and replication techniques with redundant processing. The replication techniques with
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parsimonious processing (see Fig. 3) are replication techniques that restrict the processing of requests to a single
process. This requirement ensures that processing requests consumes as few resources as possible. Conversely,
the replication techniques with redundant processing (see Fig. 4) require that all processes process each request.

4.2 Replication Techniques with Parsimonious Processing

Replication techniques with parsimonious processing satisfy a property of parsimony, which states that requests
are normally processed by one replica only. The various replication techniques that belong to this family differ
by the exact definition of this property. We define three different parsimony properties, and present then three
replication techniques with parsimonious processing: passive replication, coordinator-cohort, and semi-passive
replication.

4.2.1 Parsimony Properties

We distinguish between three parsimony properties: strong parsimony, quasi-strong parsimony and weak parsi-
mony.

(STRONG PARSIMONY) If a request req is processed by a replica p, then req is processed by no other replica
before p crashes.

Strong parsimony forbids to ever suspect a process before it crashes. This requires the assumption of either a
synchronous system model [19, 23, 5] or an asynchronous system model with a perfect failure detector (known as
class P) [10].

(QUASI-STRONG PARSIMONY) If the same request req is processed by two replicas p and q, then p and q are
not both correct.

Quasi-strong parsimony is weaker than strong parsimony, because unlike strong parsimony, quasi-strong par-
simony is not violated in the following case: two replicas p and q process the same request req , and p crashes after
q has processed the request. In practice, quasi-strong parsimony can be ensured in the context of the (primary
partition) group membership service [7]. With such a service a process, e.g., p in the example above, learning that
it has been incorrectly suspected and excluded from the group, kills himself. 4

(WEAK PARSIMONY) If the same request req is processed by two replicas p and q, then at least one of p and q

is suspected by some replica.

The definition of weak parsimony links parsimony to the properties of a failure detector (which outputs lists
of suspected processes). It is important to understand the fundamental difference between weak parsimony and
quasi-strong parsimony. If two correct processes p and q process the same request then quasi-strong parsimony
can only be satisfied if either one of the two processes is forced to crash. Conversely, weak parsimony never forces
any of the processes to crash.

4.2.2 Passive Replication

Passive replication, also sometimes called primary-backup [9], requires to select one particular replica called
the primary. Clients issue their requests to the primary. The primary processes every request and sends update
messages to the other replicas, called the backups. Once the backups have been brought up-to-date, the primary
sends a reply to the client. If the primary crashes during the processing of a request, it is the client’s responsibility
to reissue its request to a new primary.

Passive replication can be characterized as satisfying the strong parsimony property defined above: 5 after a
replica p (primary) has processed the request req , then the same request can be processed by another replica q

(new primary) only after p has crashed.

4See [14] for a discussion on process exclusion and process controlled crash.
5Linking passive replication to the strong parsimony property is specific to this paper. However, most systems that implement passive

replication assume a synchronous system. So, we believe that linking passive replication to the strong parsimony property makes sense and
helps clarifying the specificity of the different replication techniques.
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4.2.3 Coordinator-Cohort

Coordinator-cohort [7] is a variant of passive replication designed in the context of the Isis group communication
system [6]. With this replication scheme, one of the replicas is designated as the coordinator (i.e., primary) and
the other replicas as the cohort (i.e., backups). Unlike passive replication, a client sends its request to the whole
group of replicas. Then, both techniques behave similarly: the coordinator processes the request and sends update
messages to the cohort. If the coordinator crashes, a new coordinator is selected by the group and takes over the
processing of the request.

In addition to a different interaction model, coordinator-cohort bases the selection of the coordinator on a
group membership service. As a result, coordinator-cohort guarantees quasi-strong parsimony rather than strong
parsimony.

4.2.4 Semi-Passive Replication

In this paper, we introduce the semi-passive replication technique. This new replication technique bears simi-
larities with passive replication and coordinator-cohort, but differs by several important aspects. The interaction
model resembles that of coordinator-cohort. The most important difference is that, contrary to coordinator-cohort,
semi-passive replication, which satisfies weak parsimony, never forces any of the processes to crash.

4.3 Replication Techniques with Redundant Processing

Replication techniques with redundant processing require that all correct replicas process each request. This
is clearly in contrast with the requirement of parsimonious processing set forth by the replication techniques
presented in Section 4.2. The main motivation for redundant processing is to guarantee a constant response time,
regardless of the occurrence of failures. This is hence no surprise that this family of replication techniques is
usually favored by real-time systems designers [27]. There are two main replication techniques with redundant
processing: active replication, and semi-active replication.

4.3.1 Active Replication

In active replication [22, 30], clients sends their requests to all replicas. All replicas process incoming requests in
the same way and in the same order. So, not only the state of the replicas is replicated, but also the processing of
the requests. To reflect this, active replication must ensure the following property of redundancy:

(REDUNDANCY) For any request req , if a process p executes the event update(req), then p has previously
executed the event handle(req).

In practice, the processing of the requests (i.e., handle(req)) is interleaved with the application of the state
updates (i.e., update(req)), as illustrated on Figure 4.

4.3.2 Semi-Active Replication

Semi-active replication [28] is a replication technique with redundant processing that improves on active repli-
cation by circumventing the requirement for deterministic processing. Semi-active replication extends active
replication with the notion of leader and followers. While the actual processing of a request is performed by all
replicas, it is the responsibility of the leader to perform the non-deterministic parts of the processing and inform
the followers.

The semi-active replication technique was implemented in the context of Delta-4 [28]. The project was de-
signed to support the replication of time-critical applications, and assumes a synchronous system model.

As an extension of active replication, semi-active replication must also satisfy a property of redundancy.
However, the specification must be extended to define the exact role of leader and followers, and hence explicitly
lift the constraint of deterministic processing. Such a definition is however beyond the scope of this paper.

5 Semi-Passive Replication Algorithm

We begin this section by giving a general overview of the semi-passive replication algorithm. First, we introduce
the problem of Lazy Consensus, on which our semi-passive replication algorithm is based. We then present our
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Figure 5: Semi-passive replication: update message sent by the primary.

algorithm for semi-passive replication, expressed as a sequence of Lazy consensus problems. Finally, we prove
and discuss the parsimony property of the semi-passive replication algorithm (the algorithm is proved in the
appendix).

5.1 Basic Idea: Consensus on “update” values

As mentioned in Section 2, in the semi-passive replication technique, the requests are handled by a single process;
the primary. After the processing of each request, the primary sends an update message to the backups, as
illustrated on Figure 5.

Our solution is based on a sequence of Lazy Consensus problems, in which every instance decides on the
content of the update message. This means that the initial value of every consensus problem is an update value,
generated when handling the request. The cost related to getting the initial value is high as it requires the process-
ing of the request. So, we want to avoid a situation in which each server processes the request, i.e., has an initial
value for consensus (the semi-passive replication technique could no more be qualified as “parsimonious”). This
explains the need for a “laziness” property regarding the Consensus problem.

Expressing semi-passive replication as a sequence of Lazy Consensus problems hides the question of selection
a primary inside the consensus algorithm. A process p takes the role of the primary (i.e., handles client requests)
exactly when it proposes its initial value for Consensus.

5.2 Lazy Consensus

The Lazy Consensus problem is a generalization of the Consensus [10] problem: it allows processes to delay the
computation of their initial value — in the standard Consensus problem each process starts with an initial value;
in the Lazy Consensus each process gets its initial value only when necessary. 6

5.2.1 Specification of Lazy Consensus

We consider the set of processes �S . With the standard Consensus [10], processes in �S begin by proposing
a value. This is in contradiction with the laziness property that we want to enforce. So, processes begin the
problem by calling the procedure LazyConsensus(giv), where giv is an argument-less function 7 that, when called,
computes an initial value v (with v 6= ?8) and returns it. When the algorithm calls giv on behalf of process p, we
say that p proposes the value v returned by giv . When a process q executes decide(v), we say that q decides the
value v. The Lazy Consensus problem is specified in �S by the following properties:

(TERMINATION) Every correct process eventually decides some value.

(UNIFORM INTEGRITY) Every process decides at most once.

(AGREEMENT) No two correct processes decide differently.

(UNIFORM VALIDITY) If a process decides v, then v was proposed by some process.

(PROPOSITION INTEGRITY) Every process proposes a value at most once.

6The problem is called “Lazy Consensus” in reference to similarities with the programming technique known as “lazy evaluation.”
7giv stands for get initial value.
8The symbol? (bottom) is a common way to denote the absence of value. This is called either nil or null in most programming languages.
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(WEAK LAZINESS) If two processes p and q propose a value, then at least one of p and q is suspected by some 9

process in �S .

Laziness is the only new property with respect to the standard definition of the Consensus problem. In the sequel,
we present an algorithm for semi-passive replication that uses Lazy Consensus. Solving Lazy Consensus is
discussed in Section 6.

Remark 1 Alternatively, stronger definitions of Lazy Consensus problems can be given, by requiring stronger
definitions of laziness. Thus, we define the quasi-strong Lazy consensus and the strong Lazy consensus as Lazy
consensus problems that respectively satisfy the following laziness properties:

(QUASI-STRONG LAZINESS) If two processes p and q propose a value, then p and q are not both correct.

(STRONG LAZINESS) If a process p proposes a value, then no process q proposes a value before p has
crashed or q has crashed before p proposes a value.

Note that the strong laziness property can only be ensured in a system in which failures are always correctly
detected (e.g., synchronous system, asynchronous system with a perfect failure detector).

With weak laziness, an incorrect suspicion may lead two correct processes to propose a value. The overhead
is related to the price of generating the initial value. In practice, if failure detectors are tuned properly, the
probability of incorrectly suspecting a process should remain low.

5.3 Semi-Passive Replication Algorithm

The algorithm for semi-passive replication relies on the laziness property of the Lazy Consensus. The laziness
property of Lazy Consensus is the key to satisfy parsimonious processing (see Sect. 5.4, p. 9). However, laziness
does not affect the correctness of the algorithm as a Generic Replication problem (see Sect. A, p. 18; Remark 2,
p. 10)

5.3.1 Notation and System Model

In order to express our semi-passive replication algorithm, we introduce the following notation.

� req : request message sent by a client (denoted by sender(req)).

� updreq : update message generated by a server after handling request req .

� respreq : response message to the client sender(req), generated by a server after handling request req .

� states: the state of the server process s.

� handle : (req ; states) 7�! (updreq ; respreq): Processing of request req by the server s in states . The result
is an update message updreq and the corresponding response message respreq .

� update : (updreq ; states0) 7�! state 0s0 : Returns a new state state 0s0 , obtained by the application of the up-
date message updreq to the state states0 . This corresponds to the event update(req) mentioned in Section 4,
where s0 is the server that executes update.

We express the semi-passive replication algorithm as tasks that can execute concurrently (Algorithm 1, page 9).
A task with a clause when is enabled when the condition is true. We assume that (1) any task that is enabled is
eventually executed, and (2) there are no multiple concurrent executions of the same task (Task 1 or Task 2 in
Algorithm 1). We also make the following assumptions regarding the system (see Sect. 3.1):

� processes fail by crashing only (no Byzantine failures);

� communication channels are quasi-reliable (no message loss if sender and destination are correct);

� crashed processes never recover (see Footnote 3, p. 3).

We make these assumptions in order to simplify the description of the algorithms. Indeed, based on the literature,
the algorithms can easily be extended to lossy channels and network partitions [1, 3], and to handle process recov-
ery [2, 21, 26]. However, this would obscure the key idea of semi-passive replication by introducing unnecessary
complexity.

9As a matter of fact, the Lazy Consensus algorithm presented in this paper satisfies a stronger property: two processes propose a value
only if one is suspected by a majority of processes in �S (Lemma 22, p. 22).
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5.3.2 Algorithm

We now give the full algorithm (Algorithm 1 below), which solves semi-passive replication as a sequence of Lazy
Consensus problems. The algorithm is executed by every server process.

Every server s manages an integer k (line 5), which identifies the current instance of the Lazy Consensus
problem. Every server process also handles the variables recvQ and hand (lines 2,3):

� recvQs is a sequence (receive queue) containing the requests received by a server s, from the clients.

� hands is a set which consists of the requests that have been processed.

Lines 11 – 15 Whenever s receives a new request (line 10), it is appended to recvQ s (line 12).

Lines 13 – 20 This is the main part of the algorithm. A new Lazy Consensus is started whenever the preceding
one terminates, and the receive queue recvQs is not empty (line 13). At the end of the consensus, the request that
has been processed (handling and update) is removed from recvQ s and inserted into hands (line 20). At line 15
the Lazy Consensus algorithm is started. Then, the server waits for the decision value (req ; upd req ; respreq) of
Consensus: req is the request that has been handled; updreq is the update resulting from handling req ; and respreq

is the response that should be sent to the client.
At line 17, the response respreq is sent to the client. At line 18, the local state of the server s is updated

according to the update message updreq . Finally, the request that has been handled is inserted into the set hand at
line 20.

Lines 6 – 10: The function handleRequest The function handleRequest returns initial values for each instance
of the Lazy consensus problem. The function handleRequest (line 6) is called by the Lazy consensus algorithm. In
other words, when a process calls handleRequest, it acts as a primary in the context of the semi-passive replication
technique.

The function handleRequest selects a client request that has not been handled yet (line 7), handles the request
(line 8), and returns the selected request req , the update message upd req resulting from handling req , as well as
the corresponding response message respreq (line 9).

Algorithm 1 Semi-passive replication (code of server s)
1: Initialisation:
2: recvQs  � fsequence of received requests, initially emptyg
3: hands  ; fset of handled requestsg
4: states  state0

5: k 0

6: function handleRequest()
7: req  head :recvQs

8: (updreq ; respreq ) handle(req; states)
9: return (req; updreq ; respreq )

10: when receive(reqc) from client c fTask 1g
11: if reqc 62 hands ^ reqc 62 recvQs then
12: recvQs  recvQs B reqc

13: when #recvQs > 0 fTask 2g
14: k k + 1
15: LazyConsensus(k,handleRequest) fSolve the kth Lazy consensusg
16: wait until (req; updreq ; respreq ) decided
17: send (respreq ) to sender(req) fSend response to clientg
18: states  update(updreq ; states) fUpdate the stateg
19: recvQs  recvQs � freqg
20: hands  hands [ freqg

5.4 Parsimony of the Semi-Passive Replication Algorithm

As mentioned earlier, the semi-passive replication algorithm only relies on the laziness of the Lazy Consensus
in order to satisfy the Parsimony property of semi-passive replication. This means that laziness is the key to
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parsimonious processing, but it does not influence the safety properties of the algorithm. In other words, even
if the algorithm relies on a Consensus algorithm which does not satisfy any laziness property, the replication
algorithm still satisfies the properties of Section 4.1 (but it might not satisfy the parsimonious processing property,
Sect. 4.2.1).

THEOREM 11. Algorithm 1 solves the generic replication problem (defined in Section 4.1).

The details of the proof are given in the appendix (pp. 18–19). It is nevertheless important to note that
Theorem 11 is proved independently of the laziness property of the Consensus.

LEMMA 1. Algorithm 1 with weak Lazy Consensus satisfies weak parsimony.

PROOF. Processes process a request at line 8, i.e., when they propose a value. Therefore, the weak parsimony
property follows directly from the weak laziness property of the Lazy Consensus. �

THEOREM 2. Algorithm 1 with weak Lazy Consensus solves the semi-passive replication problem.

PROOF. Follows directly from Theorem 11 (generic replication) and Lemma 1 (weak parsimony). �

We now show that implementing passive replication based on Algorithm 1 merely consists in relying on a
strong Lazy Consensus algorithm (see Sect. 5.2.1).

LEMMA 3. Algorithm 1 with strong Lazy Consensus satisfies strong parsimony.

PROOF. The proof is a trivial adaptation from that of Lemma 3. �

COROLLARY 4. Algorithm 1 with strong Lazy Consensus solves the passive replication problem.

PROOF. Follows directly from Theorem 11 (generic replication) and Lemma 3 (strong parsimony). �

Remark 2 An interesting (and potentially controversial) point to raise here is that the property of parsimony in
itself is merely a question of quality of service rather than actual correctness. Indeed, as long as the server solves
the Generic Replication problem, it will continue to operate devoid of any inconsistencies even if laziness is not
satisfied.

If not for our algorithm, this remark would be quite pointless since other passive replication algorithms
cannot separate both issues (generic replication and parsimony). In contrast, our algorithm presents these issues
as orthogonal.

6 Solving Lazy Consensus

In this section, we give an algorithm that solves the problem of Lazy Consensus defined in Section 5.2.1. 10 The
algorithm is based on the asynchronous model augmented with failure detectors [10].

We first give a brief description of the system model for solving Lazy Consensus and we give an algorithm
that solves the Lazy Consensus problem using the class �S of failure detectors.

6.1 System Model

In order to solve Lazy Consensus among the server processes�S , we consider an asynchronous system augmented
with failure detectors [10]. Semi-passive replication could easily be expressed in other system models in which
Lazy Consensus is solvable. We have chosen the failure detector model for its generality and its conceptual
simplicity. We assume here the �S failure detector defined on the set of server processes �S , which is defined by
the following properties [10]:

(STRONG COMPLETENESS) There is a time after which every process in �S that crashes is permanently sus-
pected by all correct processes in �S .

(EVENTUAL WEAK ACCURACY) There is a time after which some correct process in �S is never suspected by
any correct process in �S .

10An earlier version of this algorithm was called DIVconsensus [13]. Note that DIVconsensus used to designate an algorithm, whereas
Lazy Consensus now designates a problem.
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Figure 6: Lazy Consensus with �S (no crash, no suspicion)

6.2 Lazy Consensus Algorithm using �S

The algorithm for Lazy Consensus is adapted from the consensus algorithm using �S proposed by Chandra and
Toueg [10]. This algorithm assumes that a majority of the processes are correct (f =

�
n
2

�
, where f is the

maximum number of processes that may crash). The algorithm proceeds in asynchronous rounds, and is based on
the rotating coordinator paradigm: in every round another process is coordinator.

Note that different algorithms for Lazy Consensus using �S can be adapted from other consensus algorithms
based on the rotating coordinator paradigm (e.g., [25, 29]).

6.2.1 Solving the Lazy Consensus Problem

Algorithm 2 (page 13) solves the Lazy Consensus problem. There are actually only little difference between the
Algorithm 2 and the �S consensus algorithm of [10]: the lines in which the two algorithms differ are highlighted
with an arrow in the margin on Algorithm 2. We do not give a full explanation of the algorithm as the details
can be found in [10]. However, we explain the parts on which the algorithms differ. Compared with Chandra and
Toueg’s algorithm, we have the following three differences.

1. Laziness (Alg. 2, lines 4,19,24–27). The most important difference is the modifications necessary to satisfy
the laziness property, see Sect. 6.2.2.

2. Reordering of the process list (Alg. 2, lines 2,5,10,28,37,53). The ability of the algorithm to reorder the
list of processes improves its efficiency in the case of a crash (in the case of a sequence of consensus
executions), see Sect. 6.2.3.

3. Optimization of the first phase (Alg. 2, lines 13,18). The first phase of the first round of the consensus
algorithm is not necessary for the correctness of the algorithm [12, 29]. We have thus optimized it away,
see Sect. 6.2.4.

6.2.2 Laziness

In the context of a solution based on the rotating coordinator paradigm, a process p i proposes a value only when
it is coordinator, and only if pi is not aware of any previously computed initial value. So, in the absence of
failures (and suspicions), only one process calls the function giv (see Sect. 5.2.1). Figure 6 illustrates a run of
the algorithm in the absence of crash (and incorrect failure suspicions). Only the coordinator of the first round
(process p1) calls the function giv , and the Lazy Consensus problem is solved in one round. If p 1 crashes, two
rounds may be needed to solve the problem (see “consensus k” on Fig. 7): process p 1, coordinator of the first
round, calls giv and crashes. The surviving processes move to the second round. Process p 2, coordinator of the
second round, in turn calls giv .

6.2.3 Reordering of the System List

In the rotating coordinator paradigm, every instance of the Chandra and Toueg’s Consensus algorithm invariably
starts the first round by selecting the same process, say p1, as the coordinator. If p1 crashes, further executions of
the consensus algorithm will always require at least two rounds to complete. This extra cost (two rounds instead
of one) is avoided by a very simple idea.
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Figure 7: Permutations of �S and selection of the coordinator

Assume that, for the consensus number k, the processes of �S are ordered as follows: [p1; p2; p3; p4; p5],
which defines p1 as the first coordinator (see Fig. 7). If p1 is suspected (e.g., it has crashed) during consensus k, the
processes of �S are reordered [p2; p3; p4; p5; p1] for the consensus k+1, which defines p2 as the first coordinator.
So, despite the crash of p1 in consensus k, consensus k + 1 can be solved in one single round.

This reordering, implemented in the context of the Lazy Consensus algorithm, requires no additional message.
In the algorithm, processes not only try to reach an agreement on the decision value, but also on the order of the
process list. For this purpose, they manage two estimate variables: estVp for the decision value, and estLp for the
process list. When a coordinator proposes a value, it also proposes a process list in which it is the first coordinator
(see Alg. 2, line 5 and 31).

Remark 3 Note that we present the idea of the dynamic process list using a simple reordering policy. This is
enough to illustrate the idea but it is possible, in practice, to reorder the list according to some smarter heuristics.
Changing the reordering policy does not compromise the correctness of the algorithms, as long as the list is only
reordered at line 5 and 31 in Algorithm 2.

Remark 4 Because of its name, the process list managed by our Lazy Consensus algorithm could easily be
mistaken for some kind of group membership. There is however a fundamental difference: a group membership
defines (and dynamically modifies) a set of processes, whereas the process list employed by our algorithm defines
(and dynamically modifies) an order relation on a given (static) set of processes. In other words, the membership
never changes in the latter case.

6.2.4 Optimization of the First Phase

Compared with Chandra and Toueg’s algorithm, a further difference consists in the optimization of the first phase
of the algorithm [29]. In the Lazy Consensus algorithm, all processes start with? as their estimate. Consequently,
the coordinator of the first phase cannot expect anything but? from the other processes. Hence, in the first round,
the algorithm skips the first phase and proceeds directly to the second phase in line 19.

7 Selected Scenarios for Semi-Passive Replication

Algorithm 2 may seem complex, but most of the complexity is due to the explicit handling of failures and suspi-
cions. So, in order to show that the complexity of the algorithm does not make it inefficient, we illustrate typical
executions of the semi-passive replication algorithm based on Lazy Consensus using �S.

We first present the semi-passive replication in the context of a good run (no failure, no suspicion), as this is
the most common case. We then show the execution of the algorithm in the context of one process crash.

7.1 Semi-Passive Replication in Good Runs

We call “good run” a run in which no server process crashes and no failure suspicion is generated. Let Figure 8
represent the execution of Lazy Consensus number k. The server process p 1 is the initial coordinator for con-
sensus k and also the primary. After receiving the request from the client, the primary p 1 handles the request.
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Algorithm 2 Lazy Consensus (code of process p)
1: Initialisation:

! 2: procListp  hp1; p2; : : : ; pni

3: procedure LazyConsensus (function giv : ; 7! v)
! 4: estVp ? fp’s estimate of the decision valueg
! 5: estLp  pC (procListp � fpg) fp’s estimate of the new process list (with p at the head)g

6: statep  undecided

7: rp  0 frp is p’s current round numberg
8: tsp  0 ftsp is the last round in which p updated estVp , initially 0g

9: while statep = undecided do do frotate through coordinators until decision reachedg
! 10: cp  procListp [(rp mod n) + 1] fcp is the current coordinatorg

11: rp  rp + 1

12: Phase 1: fall processes p send estVp to the current coordinatorg
! 13: if rp > 1 then

14: send (p; rp; estVp; estLp; tsp) to cp
! 15: end if

16: Phase 2: fcoordinator gathers
l
(n+1)

2

m
estimates and proposes new estimateg

17: if p = cp then
! 18: if rp = 1 then
! 19: estVp eval giv() fp proposes a valueg
! 20: else

21: wait until [for
l
(n+1)

2

m
processes q: received (q; rp; estVq; estLq ; tsq) from q]

22: msgsp[rp] f(q; rp; estVq ; estLq ; tsq) j p received (q; rp; estVq; estLq ; tsq) from qg
23: t largest tsq such that (q; rp; estVq ; estLq ; tsq) 2 msgsp[rp]

! 24: if estVp = ? and 8(q; rp; estVq ; estLq ; tsq) 2 msgsp[rp] : estVq = ? then
! 25: estVp eval giv() fp proposes a valueg
! 26: else
! 27: estVp select one estVq 6= ? s.t. (q; rp; estVq ; estLq ; t) 2 msgsp[rp]
! 28: estLp  estLq
! 29: end if
! 30: end if
! 31: send (p; rp; estVp; estLp) to all

32: end if

33: Phase 3: fall processes wait for new estimate proposed by current coordinatorg
34: wait until [received (cp; rp; estVcp ; estLcp) from cp or cp 2 Dp] fquery failure detector Dpg
35: if [received (cp; rp; estVcp ; estLcp ) from cp] then fp received estVcp from cpg
36: estVp estVcp

! 37: estLp  estLcp
38: tsp  rp
39: send (p; rp; ack) to cp
40: else fp suspects that cp crashedg
41: send (p; rp; nack) to cp

42: Phase 4: fthe current coordinator waits for replies from a majority of processes. If those replies indicate thatg
fa majority of processes adopted its estimate, the coordinator R-broadcasts a decide messageg

43: if p = cp then

44: wait until [for
l
(n+1)

2

m
processes q : received (q; rp; ack) or (q; rp; nack)]

45: if [for
l
(n+1)

2

m
processes q : received (q; rp; ack)] then

46: R-broadcast (p; rp; estVp; estLp; decide)
47: end if
48: end if
49: end while

50: when R-deliver (q; rq; estVq; estLq ; decide) fif p R-delivers a decide message, p decides accordinglyg
51: if statep = undecided then
52: decide(estVq )

! 53: procListp  estLq fupdates the process list for the next executiong
54: statep  decided

55: end if
56: end when
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Figure 8: Semi-passive replication (good run). The critical path request-response is highlighted in gray. The
execution of the Lazy Consensus is also depicted in Fig. 6.
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Figure 9: Semi-passive replication with one failure (worst case). The critical path request-response is highlighted
in gray. The execution of the Lazy Consensus in the case of one crash is also depicted in Fig. 7.

Once the processing is done, p1 has the initial value for consensus k. According to the Lazy consensus protocol,
p1 multicasts the update message upd to the backups, and waits for ack messages. Once ack messages have
been received (actually from a majority), process p1 can decide on upd , and multicast the decide message to the
backups. As soon as the decide message is received, the servers update their state, and send the reply to the client.

It is noteworthy that the state updates do not appear on the critical path of the client’s request (highlighted in
gray on the figure).

7.2 Semi-Passive Replication in the Case of One Crash

Figure 9 ilustrates the worst case latency for the client in the case of one crash, without incorrect failure suspi-
cions. The worst case scenario happens when the primary p1 (i.e., the initial coordinator of the Lazy Consensus
algorithm) crashes immediately after processing the client request, but before being able to send the update mes-
sage upd to the backups (compare with Fig. 8). In this case, the communication pattern is different from usual
algorithms for passive replication in asynchronous systems, as there is here no membership change.

In more details, the execution of the Lazy Consensus algorithm runs as follows. If the primary p 1 crashes, then
the backups eventually suspect p1, send a negative acknowledgement message nack to p1 (the message is needed
by the consensus algorithm), and start a new round. The server process p 2 becomes the coordinator for the new
round, i.e., becomes the new primary, and waits for estimate messages from a majority of servers: these messages
might contain an initial value for the consensus, in which case p2 does not need to process the client request again.
In our worst case scenario, the initial primary p1 has crashed before being able to multicast the update value upd .
So none of the estimate messages received by p2 contain an initial value. In order to obtain one, the new primary
p2 processes the request received from the client (Fig. 9), and from that point on, the scenario is similar to the
“good run” case of the previous section (compare with Fig. 8).

8 Conclusion

Semi-passive replication is a replication technique which does not rely on a group membership for the selection of
the primary. While retaining the essential characteristics of passive replication (i.e., non-deterministic processing
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and parsimonious use of processing resources), semi-passive replication can be solved in an asynchronous system
using a �S failure detector. This is a significant strength over almost all current systems that implement replication
techniques with parsimonious processing. Indeed, in those systems, the replication algorithm requires to force the
crash of excluded processes in order to make progress, and thus combines the selection of the primary with the
composition of the group.

The semi-passive replication algorithm proposed in this paper is based on solving the problem of Lazy Con-
sensus. Lazy Consensus extends the usual definition of the Consensus problem with a property of Laziness,
which is the key to the restrained use of resources in semi-passive replication. The semi-passive replication
algorithm however only relies on the conventional properties of Consensus for its correctness. Even though
we have not discussed this issue, other Consensus algorithms can easily be adapted to solve Lazy Consensus
(e.g., [20, 29, 34, 35]).

As mentioned above, the main advantage of our semi-passive replication algorithm is that it does not rely on a
group membership or on any other mechanism that forces the crash of processes. This may however give the wrong
impression that housekeeping issues, such as eventually excluding crashed processes or adding new processes
dynamically, are incompatible with semi-passive replication. This is not the case as discussed in [11, 12].

Other contributions can also be mentioned. First, we provide a specification framework that includes most of
the existing replication techniques. Indeed, instead of overemphasizing the specificities of one given technique,
we have tried to harmonize the specifications by stressing their common points rather than their difference. This
clearly comes in contrast with previous work (e.g., [31, 30, 9]). Second, our semi-passive replication algorithm
follows the exactly same protocol as active replication from the standpoint of the clients. This, combined with
the fact that both replication techniques can be implemented based on consensus, makes it much easier for both
techniques to coexist [16].
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A Correctness of the Semi-Passive Replication Algorithm

We prove that our algorithm for semi-passive replication (Algorithm 1, page 9) satisfies the properties of the
Generic Replication Problem given in Section 4.1. The proof assumes that (1) procedure LazyConsensus solves the
Lazy Consensus problem according to the specification given in Section 5.2.1 (ignoring the laziness property 11),
and (2) at least one replica is correct. Solving Lazy Consensus is discussed in Section 6. In fact, Lazy Consensus
solves Consensus, which is enough to prove the correctness of the algorithm as a Generic Replication algorithm.

LEMMA 5. [Termination] If a correct client c 2 �C sends a request, it eventually receives a reply.

PROOF. The proof is by contradiction. Assume that there is a reply for which a correct client in � C never receives
a reply. Let c denote this client and reqc the request. Because c is correct, all correct replicas in �S eventually
receive reqc at line 10, and insert reqc into their receive queue recvQs at line 11. By the assumption that c never
gets a reply, no correct replica decides at line 14 on (reqc ;�;�): if one correct replica would decide, then by the
Agreement and Termination property of Lazy Consensus, all correct replicas would decide on (req c;�;�). As
we assume that there is at least one correct replica then, by the property of the reliable channels, and because c

is correct, c would eventually receive a reply. Consequently, req c is never in hand of any replica, and thus no
replica s removes reqc from recvQs (Hypothesis A).

Let t0 be the earliest time such that the request reqc has been received by every replica that has not crashed.
Let beforeReqCs denote the prefix of sequence recvQs that consists of all requests in recvQs that have been
received before reqc. After t0, no new request can be inserted in recvQs before reqc , and hence none of the
sequences beforeReqC can grow.

Let l be the total number of requests that appear before req c in the recvQ of any replica:

l =
X
s2�S

�
0 if s has crashed
#beforeReqCs otherwise

After time t0, the value of l cannot increase since all new request can only be inserted after req c. Besides,
after every decision of the Lazy Consensus at line 16, at least one replica s 0 removes the request reqhs0 at the head
of recvQs0 (l.7, l.19). The request reqhs0 is necessarily before reqc in recvQs0 , and hence belongs to beforeReqCs0 .
As a result, every decision of the Lazy Consensus leads to decreasing the value of l by at least 1.

Since reqc is never removed from recvQs (by Hyp. 5.1), Task 2 is always enabled (#recvQs � 1). So, because
of the Termination property of Lazy Consensus, the value of l decreases and eventually reaches 0 (this is easily
proved by induction on l).

Let t1 be the earliest time at which there is no request before reqc in the receive queue recvQ of any replica
(l = 0). This means that, at time t1, reqc is at the head of the receive queue of all running replicas, and the next
execution of Lazy Consensus can only decide on request req c (l.7). Therefore, every correct replica s eventually
removes reqc from recvQs , a contradiction with Hypothesis A. �

LEMMA 6. [Total order] If there is an event update(req) such that a replica executes update(req) as its i th

update event, then all replicas that execute the i th update event also execute update(req) as their i th event.

PROOF. Let some replica execute update(req) as the i th update, i.e., the replica reaches line 18 of the algo-
rithm with k = i and executes state  update(updreq ; state). This means that the replica has decided on
(req ; updreq ;�) at line 16. By the Agreement property of Lazy Consensus, every replica that decides for k = i,
also decides on (req ; updreq ;�) at line 16. Therefore, every replica that executes line 18 with k = i also executes
state  update(updreq ; state). �

LEMMA 7. If a replica executes update(req), then send(req) was previously executed by a client.

PROOF. If a replica p executes update(req), then some replica q has selected and processed the request req at
line 7 and line 8 respectively. It follows that req was previously received by q, as req belongs to the sequence
recvQs . Therefore, req was sent by some client. �

11See Sect. 5.4, p. 9.
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LEMMA 8. For any request req, every replica executes update(req) at most once.

PROOF. Whenever a replica executes update(req) (line 18), it has decided on (req ;�;�) at line 15, and inserts
req into the set of handled requests hand (line 18). By the Agreement property of Lazy Consensus, every replica
that decides at line 15 decides also on (req ;�;�) and inserts also req into hand at line 18. As a result, no replica
can select req again at line 7, and (req ;�;�) cannot be the decision of any subsequent Lazy Consensus. �

LEMMA 9. [Update integrity] For any request req, every replica executes update(req) at most once, and only if
send(req) was previously executed by a client.

PROOF. The result follows directly from Lemma 7 and Lemma 8. �

LEMMA 10. [Response integrity] For any event receive(respreq) executed by a client, update(req) is executed
by some correct replica.

PROOF. If a client receives respreq , then send(respreq) was previously executed by some replica (line 16).
Therefore, this replica has decided (req ; updreq ; resreq) at line 15. By the Termination and Agreement properties
of Lazy Consensus, every correct replica also decides (req ; updreq ; resreq) at line 15, and executes update(req) at
line 17. The lemma follows from the assumption that at least one replica is correct. �

THEOREM 11. Algorithm 1 solves the generic replication problem (defined in Section 4.1).

PROOF. Follows directly from Lemma 6 (total order), Lemma 9 (update integrity), Lemma 10 (response integrity),
and Lemma 5 (termination). �

B Correctness of the Lazy Consensus Algorithm

Here, we prove the correctness of our Lazy Consensus algorithm (Algorithm 2, page 13). The algorithm solves the
weak Lazy Consensus problem using the �S failure detector, with a majority of correct processes. Lemma 13–16
are adapted from the proofs of Chandra and Toueg [10] for the Consensus algorithm with �S.

LEMMA 12. No correct process remains blocked forever at one of the wait statements.

PROOF. There are three wait statements to consider in Algorithm 2 (l.21, l.34, l.44). The proof is by contradiction.
Let r be the smallest round number in which some correct process blocks forever at one of the wait statements.

In Phase 2, we must consider two cases:

1. If r is the first round, then the current coordinator c = procList [1] does not wait in Phase 2 (l.18), hence it
does not block in Phase 2.

2. If r > 1 then, all correct processes reach the end of Phase 1 of round r, and they all send a message of
the type (�; r; estV ;�;�) to the current coordinator c = procList [((r � 1) mod n) + 1] (l.14). Since a
majority of the processes are correct, at least

l
(n+1)

2

m
such messages are sent to c and c does not block in

Phase 2.

For Phase 3, there are also two cases to consider:

1. c eventually receives
l
(n+1)

2

m
message of the type (�; r; estV ;�;�) in Phase 2.

2. c crashes.

In the first case, every correct process eventually receives (c; r; estVc;�) (l.34). In the second case, since D
satisfies strong completeness, for every correct process p there is a time after which c is permanently suspected
by p, that is, c 2 Dp. Thus in either case, no correct process blocks at the second wait statement (Phase 3, l.34).
So every correct process sends a message of the type (�; r; ack) or (�; r;nack) to c in Phase 3 (resp. l.39, l.41).
Since there are at least

l
(n+1)

2

m
correct processes, c cannot block at the wait statement of Phase 4 (l.44). This

shows that all correct processes complete round r—a contradiction that completes the proof of the lemma. �
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LEMMA 13. [Termination] Every correct process eventually decides some value.

PROOF. There are two possible cases:

1. Some correct process decides. If some correct process decides, then it must have R-delivered some mes-
sage of type (�;�;�;�; decide) (l.50)). By the agreement property of Reliable Broadcast, all correct
processes eventually R-deliver this message and decide.

2. No correct process decides. Since D satisfies eventual weak accuracy, there is a correct process q and a
time t such that no correct process suspects q after time t. Let t 0 � t be a time such that all faulty processes
crash. Note that after time t0 no process suspects q. From this and Lemma 12, because no correct process
decides there must be a round r such that: (i) all correct processes reach round r after time t 0 (when no
process suspects q), and (ii) q is the coordinator of round r (i.e., q = procList [((r�1) mod n)+1]). Since
q is correct, then it eventually sends a message to all processes at the end of Phase 2 (l.31):

� If round r is the first round, then q does not wait for any message, and sends (q; r; estV q ;�) to all
processes at the end of in Phase 2.

� For round r > 1, then all correct processes send their estimates to q (l.14). In Phase 2, q receivesl
(n+1)

2

m
such estimates, and sends (q; r; estVq ;�) to all processes.

In Phase 3, since q is not suspected by any correct process after time t, every correct process waits for q’s
estimate (l.34), eventually receives it, and replies with an ack to q (l.39). Furthermore, no process sends a
nack to q (that can only happen when a process suspects q). Thus, in Phase 4, q receives

l
(n+1)

2

m
messages of

the type (�; r; ack) (and no messages of the type (�; r;nack )), and q R-broadcasts (q; r; estV q ;�; decide)
(l.46). By the validity and agreement properties of Reliable Broadcast, eventually all correct processes
R-deliver q’s message (l.50) and decide (l.52)—a contradiction.

So, by Case 2 at least one correct process decides, and by Case 1 all correct processes eventually decide. �

LEMMA 14. [Uniform integrity] Every process decides at most once.

PROOF. Follows directly from Algorithm 2, where no process decides more than once. �

LEMMA 15. [Uniform agreement] No two processes decide differently.

PROOF. If no process ever decides, the lemma is trivially true. If any process decides, it must have previously
R-delivered a message of the type (�;�;�;�; decide) (l.50). By the uniform integrity property of Reliable
Broadcast and the algorithm, a coordinator previously R-broadcast this message. This coordinator must have
received

l
(n+1)

2

m
messages of the type (�;�; ack) in Phase 4 (l.44). Let r be the smallest round number in whichl

(n+1)
2

m
messages of the type (�; r; ack ) are sent to a coordinator in Phase 3 (l.39). Let c denote the coordinator

of round r, that is, c = procList [((r � 1) mod n) + 1]. Let estVc denote c’s estimate at the end of Phase 2 of
round r. We claim that for all rounds r 0 � r, if a coordinator c0 sends estVc0 in Phase 2 of round r 0 (l.31), then
estVc0 = estVc.

The proof is by induction on the round number. The claim trivially holds for r 0 = r. Now assume that the claim
holds for all r0; r � r0 < k. Let ck be the coordinator of round k, that is, ck = procList [((k � 1) mod n) + 1].
We will show that the claim holds for r 0 = k, that is, if ck sends estVck in Phase 2 of round k (l.31), then
estVck = estVc.

From Algorithm 2 it is clear that if ck sends estVck in Phase 2 of round k (l.31) then it must have received
estimates from at least

l
(n+1)

2

m
processes (l.21).12 Thus, there is some process p such that (1) p sent a (p; r; ack)

message to c in Phase 3 of round r (l.39), and (2) (p; k; estVp;�; tsp) is in msgsck [k ] in Phase 2 of round k (l.22).
Since p sent (p; r; ack ) to c in Phase 3 of round r (l.39), tsp = r at the end of Phase 3 of round r (l.38). Since tsp
is nondecreasing, tsp � r in Phase 1 of round k. Thus, in Phase 2 of round k, (p; k; estV p;�; tsp) is in msgsck [k]
with tsp � r. It is easy to see that there is no message (q; k; estVq ;�; tsq) in msgsck [k] for which tsq � k. Let t
be the largest tsq such that (q; k; estVq ;�; tsq) in msgsck [k ]. Thus, r � t < k.

12Note that r < k hence round k is not the first round.
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In Phase 2 of round k, ck executes estVck  estVq where (q; k; estVq ;�; t) is in msgsck [k ] (l.27). From
Algorithm 2, it is clear that q adopted estVq as its estimate in Phase 3 of round t (l.36). Thus, the coordinator of
round t sent estVq to q in Phase 2 of round t (l.31). Since r � t < k, by the induction hypothesis, estV q = estVc.
Thus, ck sets estVck  estVc in Phase 2 of round k (l.27). This concludes the proof of the claim.

We now show that, if a process decides a value, then it decides estVc. Suppose that some process p R-delivers
(q; rq ; estVq ;�; decide), and thus decides estVq. By the uniform integrity property of Reliable Broadcast and
the algorithm, process q must have R-broadcast (q; rq ; estVq ;�; decide) in Phase 4 of round rq (l.46). From
Algorithm 2, some process q must have received

l
(n+1)

2

m
messages of the type (�; rq ; ack ) in Phase 4 of round rq

(l.45). By the definition of r, r � rq . From the above claim, estVq = estVc. �

LEMMA 16. [Uniform validity] If a process decides v, then v was proposed by some process.

PROOF. From Algorithm 2, it is clear that all estimates that a coordinator receives in Phase 2 are proposed values.
Therefore, the decision value that a coordinator selects from these estimates must be the value proposed by some
process. Thus, uniform validity of Lazy Consensus is also satisfied. �

The two properties proposition integrity and weak laziness are specific to the Lazy Consensus problem. In order
to prove them, we first prove some lemmas.

LEMMA 17. Every process that terminates the algorithm considers the same value for the process list procList
after termination.

PROOF. The proof is a trivial adaptation of Lemma 15 (uniform agreement) to estL. �

LEMMA 18. Given a sequence of Lazy Consensus problems, processes begin every instance of the problem
with the same process list.

PROOF. The proof is by induction on the instance number k. If k = 0, then all processes initialize the process
list using the lexicographical order of processes (l.2). If k > 0, then it follows from Lemma 17 that, if the process
list is the same for all processes at the beginning of instance k � 1, then it is the same for all processes at the
beginning of instance k. �

LEMMA 19. For each process p in �S , after p changes its estimate estVp to a value different from ?, then
estVp 6= ? is always true.

PROOF. A process p changes the value of its estimate estVp only at lines 19, 25, 27, and 36. Assuming that
estVp is different from ?, we have to prove that a process p does not set estV p to ? if it reaches one of the
aforementioned lines.

The result is trivial for lines 19, 25 (by hypothesis the function giv never returns ?) and line 27 (the process
selects a value explicitly different from?).

At line 36, a process sets its estimate to a value received from the coordinator. This value is sent by the
coordinator cp at line 31. Before reaching this line, cp changed its own estimate estVcp at one of the following
lines: 19, 25, or 27. As shown above, estVcp is never set to ? at these lines. �

LEMMA 20. During a round r, a process p proposes a value only if p is coordinator of round r and estV p = ?.

PROOF. We say that a process proposes a value when it executes estVp  eval giv (line 19 or 25). By line 17,
p proposes a value only if p is the coordinator of the round (i.e., p = c p). Let us consider line 19 and line 25
separately.

Line 19: The test at line 18 ensures that line 19 is executed only during the first round. Before executing
line 19, estVp of the coordinator p is trivially equal to ? (initial value).

Line 25: The result directly follows from the test at line 24. �

LEMMA 21. [Proposition integrity] Every process proposes a value at most once.
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PROOF. We say that a process propose a value when it executes estVp  eval giv (lines 19 and 25). We prove
the result by contradiction. Assume that some process p proposes a value twice. By definition giv returns a value
different from?. By Lemma 19, once estVp 6= ?, it remains different from? forever. By Lemma 20, p proposes
a value only if estVp = ?. A contradiction with the fact that p proposes a value twice. �

LEMMA 22. If two processes p and q propose a value, then at least one of p and q is suspected by a majority of
processes in �S .

PROOF. We prove this by contradiction. We assume that neither p nor q are suspected by a majority of processes
in �S . From Lemma 20 and the rotating coordinator paradigm (there is only one coordinator in each round), p
and q do not propose a value in the same round. Let r p (resp. rq) be the round in which p (resp. q) proposes a
value. Let us assume, without loss of generality, that p proposes before q (r p < rq).

During round rp, any process in �S either suspects p or adopts p’s estimate (lines 34, 35, 36). Since p is
not suspected by a majority of processes in �S (assumption), a majority of processes adopt p’s estimate. By
Lemma 19, it follows that (1) a majority of the processes have an estimate different from? for any round r > r p.

Consider now round rq with coordinator q. At line 21, q waits for a majority of estimate messages. From (1),
at least one of the estimate messages contains an estimate estV 6= ?. So the test at line 24 returns false, and q

does not call giv at line 25. A contradiction with the fact that q proposes a value in round r q . �

COROLLARY 23. [Weak laziness] If two processes p and q propose a value, then at least one of p and q is
suspected by some processes in �S .

PROOF. Follows directly from Lemma 22. �

Lemma 22 is obviously not necessary to prove the weak laziness property defined in Section 5.2.1. However, as
stated in Footnote 9 on page 8, it is interesting to show that our algorithm ensures a property stronger than weak
laziness. The property is established by Lemma 22.

THEOREM 24. Algorithm 2 solves the weak Lazy Consensus problem using �S in asynchronous systems with
f =

�
n
2

�
.

PROOF. Follows directly from Lemma 13 (termination), Lemma 14 (uniform integrity), Lemma 15 (agreement),
Lemma 16 (validity), Lemma 21 (proposition integrity), and Lemma 23 (weak laziness). �

22


