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Abstract. What abstractions are useful for expressing distributed in-
teraction? This question has constituted an active area of research in the
last decades and several candidates have been proposed, including re-
mote method invocation, tuple spaces and publish/subscribe. How should
these abstractions be supported? Through a library or “directly” within
a language? This important complementary question has sparked less
enthousiasm.

This paper contributes to addressing this question in the context of
Java and the type-based publish/subscribe (TPS) abstraction, an object-
oriented variant of the publish/subscribe paradigm. We compare our
three implementations of TPS, namely in (1) an extension of Java we
designed to inherently support TPS, (2) standard Java, and (3) Java
augmented with genericity.

Through our comparison, we identify some general purpose that fea-
tures that an object-oriented language should have in order to enable a
satisfactory library implementation of TPS. We (re-)insist here on the
importance of providing both genericity and reflective features in the
language, and point out the very fact that the way these features are
currently supported might indeed enable satisfactory implementations
of remote method invocations, yet is still insufficient for TPS and tuple
spaces.

1 Introduction

Motivations. Typically, when useful programming abstractions are identified,
they are provided as libraries written in various programming languages. Some-
times, they are later on integrated into the programming languages themselves.
A seminal example is the monitor abstraction proposed by Hoare. It was first
implemented as a library, became a first class construct in languages like Concur-
rent Pascal [5] or Portal [9], and is today part of the Java [24] root object type.
The same historical pattern has also been applied to abstractions for concurrent,
parallel, and most recently, distributed programming. The remote procedure call
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(RPC) abstraction made it through its remote method invocation (RMI) incar-
nation to several languages (e.g., Argus [28], CLU [29], Modula-3 [12], Obliq [11],
and Java [40]). A derivate of the distributed shared memory (DSM) paradigm
appeared as tuple space (TS) in Linda [22], and, more recently, we proposed an
extension of Java with the type-based publish/subscribe (TPS) abstraction [19].
Roughly speaking, TPS is to publish/subscribe what remote method invocation
is to RPC: namely, an object-oriented variant of the paradigm.1

On the one hand, extending languages with new abstractions is not a priori
a good idea, especially in an area like distributed computing where it is still
not clear what the fundamental abstractions really are. Besides the fact that
the language might end up being very complicated, the integration makes any
change to the abstraction’s implementation usually impossible (the difficulty of
this task of course depends on the language). On the other hand, one might
argue that integrating an abstraction into a language is legitimated by good
arguments, such as type safety or performance.

The goal of this paper is neither to argue for the power of TPS, nor to
argue for its integration into Java, but rather to better quantify how much
we lose by “simply” supporting TPS as a library implemented on top of the
language (with respect to integrating it into the language). Beyond this exercise,
we actually address a more fundamental question: what general features should
an object-oriented programming language have in order to enable satisfactory
library implementations of abstractions for distributed interaction like TPS?
Interestingly, and as we discuss in this paper, TPS is demanding enough that
identifying those language features means identifying adequate language features
that would also enable satisfactory implementations of TS or RMI.

Contributions. This paper compares three implementations of TPS. The first
implementation is based on JavaPS [17], which is a variant of Java we devised
with specific primitives for supporting the TPS interaction style. The second
implementation [18, 16] is based on standard Java. The third implementation is
based on Generic Java (GJ) [4], an extension of Java that provides genericity
(and is underlying Sun’s efforts for integrating genericity into a future version
of Java).

We consider four comparison axes: (1) simplicity, (2) flexibility, (3) type
safety, and (4) performance. Intuitively, these depict (1) the effort invested by
a developer when learning how to use the considered TPS solution, (2) the way
the considered solution enables developer customizations, (3) the type safety
provided when deploying a TPS application, and (4) the performance observed.

Not surprisingly, and even if it somehow impacts flexibility, the JavaPS im-
plementation comes off best. However, the GJ implementation seems to offer
a close number of positive arguments. Its weak points, compared to JavaPS,
mainly result from its unsatisfactory expression of content filters (constraints
expressed on events).
1 Just like RPC, TPS can be integrated with a programming language, yet can as well

be implemented in a way which enforces interoperability (à la CORBA).
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We use our comparison to point out how inherent reflective and generic capa-
bilities could actually enable a satisfactory library implementation of TPS (and
other abstractions for distributed interaction), refraining from any language ex-
tensions. While the importance of these capabilities has already been pointed
in other contexts, this paper (1) argues, through TPS and Java, that current
support of the capabilities in mainstream object-oriented languages is still not
sufficient for distributed computing, and (2) attempts to quantify “how much”
is currently missing.

Roadmap. The rest of the paper is organised as follows. Section 2 briefly re-
calls the TPS paradigm. Section 3 contains a short introduction to our three
implementations of TPS, including some examples of their uses. Sections 4-7
examine the approaches according to our four comparison axes. Section 8 dis-
cusses selected design alternatives and the associated trade-offs with respect to
our comparison axes. Section 9 overviews language mechanisms supporting pow-
erful library implementations of TPS in a general context. Section 10 discusses
related work on distributed programming abstractions, focusing on Java. Section
11 summarizes our paper and draws some conclusions.

2 Type-Based Publish/Subscribe

The basic publish/subscribe paradigm offers the illusion of an omnipresent “soft-
ware bus” interconnecting components in a distributed application, leading to
the decoupling of these components.

2.1 A Brief History of Publish/Subscribe

Several commercial products support large-scale distributed event-based com-
munication based on the publish/subscribe paradigm (e.g., TIB/Rendezvous
[43], SmartSockets [42], iBus [2]). These are all mainly based on the traditional
subject-based (topic-based) publish/subscribe interaction style, in which publish-
ers publish events to a particular subject, and subscribers subscribe to subjects
and thus receive the events that are published to those subjects. Most of these
systems support one or several specifications out of a proliferating family of
standards, e.g., Java Message Service (JMS) [25], CORBA Event & Notification
Services [34, 33], or even JavaSpaces [20], which all promote some form of first-
class communication channel or subject. The content-based publish/subscribe
variant, whose origins can be found in academia (e.g., Siena [13], Gryphon [1],
Jedi [15]) has made its way into most of these systems and specifications. In
content-based publish/subscribe, subscribers can refine their subscriptions fur-
ther by specifying that they are only interested in events with certain runtime
properties, these properties usually being interpreted as the attributes of the
events.
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2.2 From Publish/Subscribe to Type-Based Publish/Subscribe

TPS [19] is a recent object-oriented variant of the publish/subscribe interaction
style. In TPS, publishers generate and publish instances of native types, i.e.,
event objects, and subscribers subscribe to particular types of objects. A sub-
scription can furthermore have a content filter associated, which is based on the
public members of the type, including attributes as well as methods. Since event
objects are instances of application-defined types, they are first-class citizens.
The main contract that the design of such types involves is the subtyping of a
basic event type.

A general abstraction. TPS is general, in the sense that it can be used
to implement the traditional content-based publish/subscribe, and hence also
subject-based publish/subscribe. When implemented in a single language, TPS
can exploit the type system of the language at hand. TPS can, however, also be
put to work in a heterogeneous environment, e.g., by making use of a language-
independent event definition language and following a similar approach as the
value types in CORBA.

A challenging abstraction. By enabling the expression of content-based
queries based on event methods, TPS offers new possibilities, but also poses
new challenges related to the native language connection. Design issues include
how to translate the action of “subscribing to a type”, and how to express type-
safe content filters in the programming language itself, in a way that does not
violate encapsulation of events, yet allows for optimisations when applying these
filters. Clearly, TPS mainly aims at ensuring [17] (1) type-safety and (2) en-
capsulation with (3) application-defined event types (the first two requirements
could be trivially satisfied with predefined event types). Since TPS aims at large-
scale, decentralised applications in which performance is a primary concern, (4)
“open” content filters are important to enable optimisations in the filtering and
routing of events: the underlying communication infrastructure must be granted
insight into subscription criteria (i.e., content filters) to possibly transfer (parts
of) these filters to remote hosts, where they can be applied more efficiently.
Last but not least, a form of (5) qualities of service (QoS) expression is crucial
in any distributed context where partial failures are an issue and application
requirements on this issue change drastically.

2.3 Running Example

We describe below an example application, which is used throughout this paper
to examine how our three implementations handle the challenges posed by TPS.

A stock market publishes stock quotes, and stock brokers subscribe to these
stock quotes. A stock quote is an offer to buy a certain amount of stocks of a
company at a certain price, and it may be implemented as shown in Figure 1.
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public class StockQuote implements Event {
private String company;
private float price;
private int amount;
public String getCompany() {return company;}
public float getPrice() {return price;}
public int getAmount() {return amount;}
public StockQuote(String company, float price, int amount) {
this.company = company;
this.price = price;
this.amount = amount;

}
}

Fig. 1. Simple stock quote events
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Fig. 2. Type-based publish/subscribe

Figure 2 illustrates a situation, where process p1 publishes a stock quote,
i.e., an instance of the type StockQuote. Process p2 has subscribed to the
StockQuote type and thus receives the stock quote published by p1. Process
p3 has subscribed to the Event type, which is the basic event type and a su-
pertype of StockQuote, and it thus receives all published events, including the
stock quote from p1.

In the examples given in the rest of this paper, we will be interested in stocks
from the Telco Group that cost less than 100$. Given a stock quote q, this
interest can be expressed as follows:

q.getPrice()<100 &&
q.getCompany().indexOf("Telco")!=-1

I.e., we are interested in the stock quotes, whose company has “Telco” as a
substring, and whose price is less than 100.
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3 Three Implementations

This section gives a short introduction to the three implementations of TPS that
we have considered (details can be found in [18, 19, 16, 17]). The first approach
augments Java with primitives for TPS, resulting in a dialect of Java called
JavaPS. The second approach is an implementation of TPS in standard Java,
while the last approach is based on GJ, which adds genericity to Java, as foreseen
for Java version 1.5.

3.1 JavaP S Implementation

JavaPS, introduced in [17], is a dialect of Java that is designed specifically to
support TPS. As such, JavaPS represents a proposal for the optimal TPS ab-
straction.

Syntax. JavaPS integrates TPS by adding two new primitives to the original
Java language.

publish Expression;
subscribe (EventType Identifier) Block Block;

We have made use of an extensible compiler [44] to cope with these primitives.
As intuition suggests, the publish primitive publishes an event. The subscribe
primitive generates a subscription to an event type, specifying a first block repre-
senting a content filter referring to the actual event through an identifier, and a
second block representing an event handler which is executed every time an event
passes the filter, using the same identifier. The subscribe primitive returns an
expression of type Subscription, representing a handle for that subscription.

Programming with JavaP S. Using these primitives, a stock quote can be
published like the following:

StockQuote q = new StockQuote("TelcoOperators", 80, 10);
publish q;

Subscribing to stock quotes can be expressed as follows:

Subscription s = subscribe (StockQuote q)
{
return (q.getPrice()<100 &&

q.getCompany().indexOf("Telco")!=-1);
}
{
System.out.println("Got offer: " + q.getPrice());

};
s.activate();
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As mentioned, the first block specifies the content filter, saying that the sub-
scriber is only interested in cheap Telco stocks. Please note that the content
filter is expressed with the exact same code as in Section 2.3 above, which is not
obvious, given the required “transparency” of these filters. As we shall see with
the other two implementations, expressing content filters in a convenient way is
one of the big challenges of TPS.

3.2 Java Implementation

Most systems mentioned in Section 2.1 are implemented with language bindings
to standard Java. These systems promote a first-class abstraction of a ubiquitous
communication channel.

Distributed Asynchronous Collections. Similarly, our Java implementation
described in this section and in [18, 16] is based on our Distributed Asynchronous
Collections (DACs). In fact, DACs are abstractions of object containers, which
however differ from conventional collections by being asynchronous and essen-
tially distributed. It is thus not centralized on a single host, and operations on
a DAC may be invoked through local proxies from various nodes of a network.
A DAC appears like a conventional collection (e.g., you can query the DAC
with the contains(Object) method). A DAC may, however, also be used in
an asynchronous way, which means that, instead of invoking the synchronous
contains(Object) method, you can invoke the contains(Subscriber,...)
method passing a callback object, which will be notified whenever a new match-
ing element is inserted into the DAC (cf. Figure 3). This kind of asynchrony
is similar to the notion of explicit future [30], where a method invocation does
not return a result immediately, but instead returns a future object, which is an
object that can be queried for the result later.

Expressing ones interest in receiving notifications whenever an object is in-
serted into a DAC can be viewed as subscribing to the objects, or events, be-
longing to that DAC. Similarly, inserting objects into a DAC can be viewed as
publishing those events, since all subscribers will be notified of the new event.
In this sense, a DAC may represent a subject, and publishing and subscrib-
ing to events corresponds to inserting events and expressing interest in inserted
events, respectively. By mapping types to subjects, a DAC can be used to sup-
port TPS. We use a scheme for translating types to subjects, which encodes the
type and class hierarchy of the type in a subject based on a URL-like notation.
For example, the event class StockQuote, which extends Object and implements
Event (which in turn extends java.io.Serializable), will be represented by
the following string (for simplicity we have omitted the package names of the
StockQuote and Event types):

java.lang.Object/StockQuote(Event(java.lang.Serializable))
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interface DAC extends java.util.Collection {
boolean add(Object event);
Object get();
boolean contains(Object event);
boolean contains(Subscriber subscriber, Condition contentFilter);
...

}

interface Subscriber {
void notify(Object event, String subject);

}

interface Condition {
boolean conforms(Object event, String subject);

}

Fig. 3. Basic interfaces in the Java implementation

Subscribing with DACs. A subscription to an event type (and implicitly, its
subtypes) is issued through a DAC representing that type, which might require
the creation of a new DAC for that type if none is available.

Returning to the example application described in Section 2, Figure 4 illus-
trates how a stock broker issues a subscription. The subscriber subscribes to
the DAC representing the type StockQuote, and assumes both in the notify()
method and in the content filter that events are of that type (the instantiated
DAC class DAS reflects reliable delivery). The awkward appearance of the filter is
motivated by the special requirements on content filters, such as its undergoing
of deferred evaluation to enforce prior optimisation (see Section 7).

Publishing with DACs. Similarly, the stock market publishes stock quotes
through the DAC representing the type StockQuote like this:
DAC stockQuotes = new DAS("StockQuote");
StockQuote q = new StockQuote("TelcoOperators", 80, 10);
stockQuotes.add(q);

3.3 GJ Implementation

In our Java implementation of Section 3.2 just described, a DAC is used to
represent a specific type, yet nothing would prevent, at least at the time of
compilation, an attempt of inserting non-conformant events into a DAC. Even
if all published events inserted into a given DAC are of the right type, the
programmer has to manually cast events to the desired type upon receiving
them. Using genericity, illegal inserts and manual type casts can be avoided.
Many languages support some sort of genericity directly, including C++ [39],
Ada 95 [27], and BETA [8], whereas other languages were initially designed
without support for genericity in mind, including Java and Oberon [35].
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class StockQuoteSubscriber implements Subscriber {
public void notify(Object event, String subject) {
StockQuote q = (StockQuote)event;
System.out.println("Got offer: " + q.getPrice());

}
}

Condition telcoCondition = new Equals("getCompany.indexOf",
new Object[]{"Telco"}, new Integer(-1));

Condition priceCondition = new Compare(".getPrice",
new Object[]{100}, -1);

Condition contentFilter = telcoCondition.not().and(priceCondition);

Subscriber subscriber = new StockQuoteSubscriber();
DAC stockQuotes = new DAS("StockQuote");
stockQuotes.contains(subscriber, contentFilter);

Fig. 4. Subscribing with DACs

Generic DACs. The generic library approach described in this section, and
introduced in [19], is based on GJ [4], which is an extension of Java with support
for genericity through parametric polymorphism (F-bounded polymorphism [10]).
With parametric polymorphism, we obtain typed DACs without generating type-
specific code, and nevertheless avoid explicit type casts. The resulting generic
DACs (GDACs) and associated types are shown in Figure 5. As a result of
the typed subscriber, there is no longer a need for a subject name parameter
in the callback method of the GSubscriber, because the classification is given
implicitly by the type.

Programming with GDACs. Using this generic version of DACs, stock
quotes can be published like this:

GDAC<StockQuote> stockQuotes = new GDAS<StockQuote>(StockQuote.class);
StockQuote q = new StockQuote("TelcoOperators", 80, 10);
stockQuotes.add(q);

Subscriptions expressed through GDACs come very close to subscriptions ex-
pressed with DACs, and we will leave it to the reader to see how the example in
Figure 4 can be modified to use GDACs. Please note that the parameter passed
to the GDAC constructor above is necessary, since GJ does not provide runtime
type information.

As in our Java implementation (Section 3.2), the programmer is responsible
for publishing and subscribing to the right GDAC, i.e., the GDAC representing
the event type. However, in this case, the compiler assists the programmer in
developing type-safe code, by performing type checks (and casts).
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interface GDAC<T> {
boolean add(T event);
T get();
boolean contains(T event);
boolean contains(GSubscriber<T> subscriber,

GCondition<T> contentFilter);
...

}

interface GSubscriber<T> {
void notify(T event);

}

interface GCondition<T> {
boolean conforms(T event);

}

Fig. 5. Basic interfaces in the GJ implementation

The following four sections compare our three implementations, according to
simplicity, flexibility, type safety, and performance.

4 Simplicity

Simplicity is a (subjective) measure of the effort necessary (1) for a programmer
to learn and use the considered implementation of TPS, and (2) for third parties
to read and understand TPS-related code. Clearly, distributed applications can
become very complex, and a powerful yet simple programming abstraction can
reduce the burden on the developer.

Note that simplicity does not necessarily favour a language integration. In-
deed, a programmer acquainted with other publish/subscribe systems might find
it easier to shift from one Java library to another, than to learn a “new” language.

4.1 Content Filters

An important aspect of simplicity relates to the query language with which
subscriptions are expressed – the subscription language.

Subscription language. In most common publish/subscribe systems providing
a form of content-based subscribing, a subscription can contain (besides possibly
a URL-like expression representing an explicit subject) simple predicates (=,
�=, <, >, etc.) on the attributes of events [13]. These subscriptions are most
commonly expressed by a string following a specific grammar (as shown by
specifications such as the CORBA Notification Service [33] or JMS [25]).
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Such query languages do not necessarily have a negative effect on simplicity.
They are even likely to have a very concise syntax and semantics (consider, e.g.,
SQL for relational databases). However, these languages systematically express
queries through attributes, violating encapsulation, and they offer only poor
support for queries based on methods, such as required by TPS.2

Programming language. In our JavaPS implementation,3 the content filters
are truly expressed in the native language, making them simple to express for
programmers that are already familiar with the native language. There are,
however, restrictions on what variables can be accessed inside content filters.
Indeed, to make filters easily transferable in a distributed environment, only
final variables declared outside the filter can be used, and these can only be of
primitive object types, such as Integer or Float, including String [17].

Subscription API. Our Java and GJ implementations on the other hand in-
troduce a form of subscription language, based partly on an API, and partly
on the native invocation semantics of Java. Primitive conditions are reified as
Condition objects, and are logically combined through method calls on them.

Although subscriptions our the Java and GJ implementations rely on method
invocations, these are difficult to express, i.e., even simple constraints lead to
poorly readable code (see the telcoConditions used in Figure 4). In addition,
many errors, e.g., a wrong number of parameters, are only detected at runtime.
Clearly, content filters in this subscription scheme enforce encapsulation at a
high price in terms of simplicity.

4.2 Channel Management

In our Java and GJ implementations, the actions of publishing and subscribing
are both expressed through first-class channel abstractions, (G)DACs, which
have to be managed explicitly. Though programmers experienced with pub-
lish/subscribe systems are used to publishing explicitly through some form of
channel or connection abstraction, it is easier to understand for a programmer
who is less experienced with publish/subscribe, that objects to be published are
simply “fired”, and similarly, that subscriptions are expressed arbitrarily in the
application.

4.3 Qualities of Service

The limited form of QoS expressed through the specific (G)DAC type, e.g.,
(G)DASet for reliable communication, (G)DAList for additional ordering guar-
antees (see [18]), enables the use of the same event types with different and
2 Furthermore, query languages provide little safety, and are plentiful, contradicting

the often claimed portability.
3 This abbreviates “our JavaPS implementation of TPS”.
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maybe even incompatible QoS: a publisher can publish events of a given type
through a DAC offering best-effort guarantees, while a party subscribed to that
type has expressed its desire for receiving all published instances by subscribing
to a DAC reflecting reliable delivery. What would a compromise between these
QoS be? With an increasing number of QoS parameters, it becomes difficult to
define a general policy for mediating between different expectations. With the
current implementations, developers are expected to ensure manually that DACs
used with the same type of events are of the same type as well.

This risk of potential mismatch has been strongly reduced in our JavaPS

implementation by expressing the QoS through the events themselves. In other
terms, the QoS associated with an event are given as part of its type, which is
in fact anyway the only “contract” between publishers and subscribers. E.g., by
subtyping an event type Reliable, the developer expresses that all instances
of that event type should be reliably transferred between publishers and sub-
scribers.

4.4 Receiving Events

In our Java and GJ implementations, a subscriber must implement a notify()
method, which is invoked upon reception of an event. This method is imple-
mented by a callback object – an event handler – and passed to the (G)DAC
upon subscription. The code for such an event handler, i.e., a class that imple-
ments (G)Subscriber, is isolated in a specific class, leading to a scattering of
the code related to single subscriptions.

In our JavaPS implementation, the above event handler is viewed as a closure,
whose signature is implicitly given as part of the syntax of the subscription
expression, and all the code related to a subscription is colocated, making it
easy to understand what the subscription does. Given that the content filter and
the event handler are two sides of the same story, it seems more adequate to
concentrate these at the same place.

4.5 Verdict

Our TPS-specific language primitives in JavaPS offer a very concise syntax,
and despite the restrictions put on filters, these are easiest to use: subscription
expressions are compact and use a subset of native Java syntax, which makes
them easily understandable.

The Java implementation, at the other end of the range, presents many po-
tential conflicts, like the possible mismatch in QoS also found in the GJ im-
plementation, but also possible mismatches in types when casting or setting up
DACs. Although event handlers in the Java implementation, and also in the
GJ implementation, could be expressed as anonymous classes placed inside sub-
scription expressions, the heavy syntax of these anonymous classes (compared
to the specific closures in the language integration approach) limits their benefit
much in terms of simplicity. In addition, filter expression in these two approaches
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suffers from the lack of custom operator overloading, which could enable simpler
combinations of conditions (see Section 8.2).

5 Flexibility

By the flexibility of an implementation of publish/subscribe, we mean the extent
to which it can be used to devise applications based on (type-based) publish/-
subscribe with various requirements.

5.1 Content Filters

Content filters make event handling simpler, and increase performance by avoid-
ing sending events to subscribers that anyway ignore them.

All three implementations allow for arbitrarily complex content filters. How-
ever, the Java and GJ implementations have a rather cumbersome way of ex-
pressing content filters, and it is thus likely that programmers are tempted to
shift at least parts of the content filters to the event handlers, with serious con-
sequences on performance. This is slightly counterbalanced by giving developers
the possibility of writing their own conditions; only slightly, because in order to
nevertheless enforce optimizitions, such custom conditions must provide several
hooks to enforce optimizations (see Section 8.2).

In our JavaPS implementation, it makes no difference to the programmer
if the filtering is done in the content filter or in the event handler, since these
are expressed in the same language. By the absence of reified conditions, such
as in the Java and GJ approaches, specific conditions can be implemented by
integrating their logic into the events, however only prior to deployment.

5.2 Qualities of Service

In our JavaPS implementation, the quality of service is specified in the type of
the event. Although this solution would also have been possible in the other im-
plementations, these associate QoS with the channel abstractions, as it is done in
many other publish/subscribe systems. The already mentioned possible conflicts
between QoS of publishers and subscribers in this case can diminish simplicity,
but potentially increases flexibility. Indeed, much research effort has been in-
vested into negociating between different QoS requirements, and (G)DACs could
be implemented in a way which enables participants to use diverging (G)DAC
types to connect to the same event types. In JavaPS, a weakening of QoS require-
ments could be expressed, less elegantly, by adding methods to the subscription
handles returned by the subscribe expression.

The QoS framework used in the Java and GJ implementations can itself be
more easily extended, by adding, deriving, and combining new (G)DAC types,
since these reflect the guarantees they offer. In our JavaPS implementation, such
a customisation becomes more difficult. Although new abstract event types sim-
ilar to Reliable etc. can be added to the framework to reflect new kinds of ser-
vices, these types are decoupled from the actual algorithms implementing them.
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Any extension of the QoS framework hence currently requires the intervention
of one of its developers, while simple customizations in the case of (G)DACs can
be more easily made by any experienced developer.

5.3 Verdict

Obviously, identifying all possible application scenarios for TPS is impossible.
Should there arise new needs at some point, which require changing the pub-
lish/subscribe system, a library in Java or GJ is easier to change. For instance,
none of the three implementations currently addresses security aspects. Restrict-
ing the scope of an event type would require modifications to (G)DACs, but also
to JavaPS. The former case is however easier to handle.

A library will always is typically more flexible than a solution integrated in
the language, since the latter type of solution is more tedious to modify.

6 Type Safety

Most recent object-oriented programming languages are statically typed, aiding
the developer in devising reliable applications. Distributed applications bring
an increased degree of complexity, and it becomes even more important here to
assist developers by providing them with mechanisms to ensure type safety in
remote interactions.

6.1 Publishing and Receiving Events

In our Java implementation, publishing an event corresponds to inserting the
event into an untyped collection (DAC). It is impossible to ensure at compi-
lation that an event is published through a DAC that represents the type of
that event (or a subtype), and symmetrically, there is a high risk that a sub-
scriber casts events to a wrong type. These type coercions strongly contradict
our requirements for type safety, since an event consumer might not be able to
foresee the types of events that it will recieve. To avoid that the program halts
prematurely, runtime exceptions (ClassCastException in Java) will have to be
caught.

In our JavaPS implementation, publishing and receiving events is completely
type-safe. In the GJ implementation, both publishing and receiving events is
type-safe, provided that the involved GDACs have been correctly initialized:
due to the absence of runtime information on type parameters in GJ, a class
meta-object is expected by GDAC constructors (see Section 3), which can lead
to possible mismatches. In fact, the homogenous implementation of genericity
in GJ “erases” type parameters, making it impossible for an instance of a type
parameterized class to find its actual type parameters. The need for such runtime
support for type parameters, has also become apparent in other contexts, e.g.,
orthogonal persistence [37].
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6.2 Content Filters

The content filters in our JavaPS implementation are completely type-safe, since
they are type-checked by the compiler. In the other two implementations, con-
tent filters are expressed partially through strings, putting type-safety at stake.
Type checks can however be performed at runtime in predefined content filters
(e.g., Equals and Compare, see Section 3.2), through the introspection capabil-
ities of Java. For instance, it can be ensured that the StockQuote class imple-
ments methods corresponding to the name and arguments that are passed to the
constructor of a condition (e.g., ".getCompany.indexOf").

Note, however, that the developer, though not using reflection explicitly to
define which methods (and arguments) are to be used to query events, has to be
aware of the fact that reflection is used underneath to find the appropriate meth-
ods: unlike with static invocations in Java, the dynamic types of the specified
invocation arguments are used to identify the appropriate method.

6.3 Verdict

To summarise, and not surprisingly, the safety increases in the GJ implementa-
tion compared to the Java implementation, and it increases further with JavaPS,
where there can be no “type unsafety” related to publish/subscribe.

Although the GJ implementation ensures type safety when publishing and
receiving events, this is probably of less importance than having type-safe con-
tent filters. The reason is that most Java programmers are currently used to
having untyped collections: they know that they must insert StockQuotes in the
collection referred to by stockQuotes, and they know that they have to cast the
result when extracting an element from such a collection. Having typed content
filters, on the other hand, is really useful, because here you may make a lot of
errors.

7 Performance

Last but not least, we present the most significant results of our performance
measurements realized with the three different approaches [31]. We actually mea-
sure the overhead of the GJ and Java approaches with respect to JavaPS.

7.1 Setting

In comparing the different approaches, we have used the same simple archi-
tecture underlying our first library implementation in Java as a testbed. That
architecture is characterized by a class-based dissemination, i.e., every event
class is mapped to an IP Multicast channel. The test application involved three
types; a type Event, its subtype StockQuote, and a subtype of the latter type,
StockRequest. Since the filter evaluation seen from a system perspective is es-
sentially the same in all three approaches, we have focused more on the static
aspect of TPS.
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The measurements presented here concentrate on the latency of publishing
events, which refers to the average time (ms) that is required to publish an event
onto the corresponding channel (as perceived by the publisher), including a 1ms
break between each two events. Further measurements are presented in [31],
e.g., illustrating the impact of latency and other aspects on reliability, i.e., a
measure of the percentage of events that are delivered correctly to their intended
subscribers.

7.2 Library vs Language Integration

The two library implementations differ from the implementation of JavaPS, in
that upon publishing an event, the precise channel for the corresponding class has
to be found. In the case of JavaPS, a simple publish()method is automatically
added to every event class, which automatically pushes the event onto the fitting
channel.

This difference is visible in Figure 6, where we compare the GJ implementa-
tion (the Java implementation yielded similar results) with our JavaPS imple-
mentation. One can see that the latency of publishing an event in the case of GJ
is increased by runtime type checks performed to obtain the appropriate chan-
nel. The latency varies here with the number of events published in a row (due
to a “warm-up” effect observed with IP Multicast). As the figure conveys, the
difference in latency remains nearly the same with a varying number of published
events.
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Fig. 6. Latency of publishing: JavaPS vs GJ

7.3 The Cost of Subtyping

The performance of the library approaches is conditioned by the number of dif-
ferent subtypes whose instances are published through a given (G)DAC. The
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second set of latency measurements presented here relates to the GJ implemen-
tation, and intends to compare the latencies obtained with the various event
types published through a GDAC for the uppermost type. Figure 7 conveys the
very fact that the system performs best for the uppermost type of the hierarchy
(Event) and that the performance degrades as we go down this hierarchy. This
was expected, since publishing a StockEvent through a GDAC for type Event
in our architecture involves a lookup of the corresponding channel in an internal
structure (and possibly the creation of the channel). This lookup in the case of
the StockRequest type, requires even more effort.
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7.4 Verdict

The latency observed when publishing events is slightly, but clearly, smaller in
the case of JavaPS than in the case of the Java or GJ implementations. Also, this
increased latency becomes even more important as the events published through
a (G)DAC are of an increasing number of different subtypes of the event type
represented by that (G)DAC. Note, however, that optimisations for the involved
channel lookups could certainly be performed (more details are given in [31]).

8 Trade-Offs

Some of the differences between the features of the three implementations reflect
explicit design choices, while others result from inherent limitations. This section
first summarises the results from the previous sections, and then discusses a
selected choice of trade-offs related to explicit design choices.
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8.1 Comparison Summary

Table 1 summarises the results of the previous sections. Clearly, our JavaPS

implementation comes off best, with the GJ implementation coming in second.
The weak points of the GJ implementation mainly result from its unsatisfactory
expression of content filters.

Java GJ JavaPS

Simplicity ∼ ∼ +

Flexibility + + ÷
Type safety ÷ ∼ +

Performance ∼ ∼ +

Table 1. Comparison summary (÷ insufficient, ∼ acceptable, + good)

8.2 Content Filters

Many controversies reside around the largely unsatisfactory content filter expres-
sion in the Java and GJ implementations.

Simplicity vs performance. One way to improve simplicity of content filter
expression, as already alluded to, consists in putting user-defined (public) condi-
tion classes to work, instead of predefined ones. The condition in the stock quote
example could then be implemented as illustrated by Figure 8. The conforms()
method defined in class PriceAndCompanyCondition contains a very concise and
readable form of the same filter expressed previously in Section 3.2.

Regardless of the fact that predefined conditions are reusable and probably
sufficient for expressing many simple filters, user-defined conditions present the
considerable shortcoming that they are difficult to optimise. In the absence of
the source code of used-defined filters, for instance, automatic optimisations
such as the avoiding of redundant invocations on the events (cf. [16]), require
the condition implementer to be accustomed with reflection in Java, in order to
implement the required hooks.4

The same problem occurs when trying to merge the event handler and filter
in the same class: it is hard to impose restrictions on the filter semantics and to
supply the underlying communication engine with an insight into such filters.
4 Optimisations could to some degree be performed on byte code, but there it becomes

difficult to impose restrictions on what can be done inside a content filter, which is
very important to limit the amount of code that has to be sent over the wire when
transferring such a filter to apply it at a more favourable stage.
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public class PriceAndCompanyCondition implements Condition {
private float priceLimit;
private String companySubstring;
PriceAndCompanyCondition(float priceLimit, String companySubstring) {
this.priceLimit = priceLimit;
this.companySubstring = companySubstring;

}

public boolean conforms(Event e) {
StockQuote q = (StockQuote)e;
return (q.getPrice()<priceLimit &&

q.getCompany().indexOf(companySubstring)!=-1);
}

}
...
DAC stockQuotes = new DAS("StockQuotes");
stockQuotes.contains(..., new PriceAndCompanyCondition(100,"Telco"));

Fig. 8. User-defined conditions in the Java implementation

Type safety and simplicity. An alternative mechanism for the type-safe
expression of content filters was anticipated with the integration of behavioural
reflection with Java 1.3: while the introspection mechanisms present in Java since
version 1.1 enable the reification of methods and the dynamic invocation of these,
behavioural reflection allows the interception of also statically expressed method
invocations, and the performing of pre- and post-invocation actions. Such a
scheme could allow the developer to express queries on event objects by making
the corresponding invocations on a proxy, which records these invocations (reifies
the invocations), such that they can be replayed on the effective events. To
that end, the contains() method of the (G)DAC interface would be changed,
as illustrated by Figure 9, to return an instance of a proxy class bound to an
InvocationHandler, which would register the invocations performed on it.

However, Java’s Proxy class only allows this as long as the effectively imitated
(event) type T – and in the case of nested invocations also the types of any
object returned as result of an invocation – are interface types. This precludes
the use of primitive types, and also primitive object types (e.g., Integer). Hence,
the GDAC implementation sketched in Figure 9 could not be instantiated with
strings, making even the simple following scenario impossible:

class StockQuoteSubscriber implements GSubscriber<StockQuote> {...}
GDAC<StockQuote> stockQuotes = new GDAS<StockQuote>(StockQuote.class);
StockQuote quote = stockQuotes.contains(new StockQuoteSubscriber());
quote.getCompany().equals("Telco");

Furthermore, the composition of composed filters, such as

String company = quote.getCompany();
company.equals("Telco") || company.equals("MobileCo");
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would require operators defined on primitive types to be reflected by methods
on the corresponding object types, which sometimes comes as part of operator
overloading not currently part of Java.

public class GDASet<T> {
private Class type;
...
public GDASet(Class type) { this.type = type; }
...
/* return a "fake" instance of T
public T contains(Subscriber<T>) {
return (T)Proxy.newProxyInstance(type.getClassLoader(),

new Class[] { type }, new FilterRegistrar());
}
...
private static class FilterRegistrar implements InvocationHandler {
public Object invoke(Object proxy, Method method, Object[] args) {

/* register the invocation */
...
/* if the method returns an object, return another proxy */
return ...;

}
}

}

Fig. 9. Using behavioural reflection for content filter expression

8.3 Improving Simplicity in the Java and GJ Implementations

In the Java and GJ implementations, the programmer has to create a (G)DAC
for the right type in order to subscribe to that type. As discussed in Section 4,
this reduces simplicity. As the (G)DAC depends directly on the event type, it
seems unnecessary to require the programmer to create the (G)DAC. Figure 10
illustrates how this could be circumvented by a wrapper, which would be used
like this:

Condition condition = new Compare(".getPrice", ....);
Subscriber subscriber = new StockQuoteSubscriber();
pubsub.subscribe(subscriber, StockQuote.class, condition);

pubsub.publish(new StockQuote("TelcoOperators", 80, 10));

pubsub.unsubscribe(subscriber, StockQuote.class);

Of course, the wrapper could be implemented to be more efficient than this by
reusing the created DAC proxies between calls, and QoS could be expressed,
akin to JavaPS, through the event types.



21

This also removes the possibility of publishing an event to a wrong DAC,
i.e., type safety is improved. Such wrapper methods can also be implemented
in GJ, since methods can also be implemented in a generic manner. However,
reusing the same GDACs poses problems, due to the diverging type parameters
(when storing GDACs with different type parameters in a collection, the type
parameters are lost).

class pubsub {
static void subscribe(Subscriber subscriber, Class type,

Condition contentFilter) {
DAC dac = new DAS(type.getName());
dac.contains(subscriber, condition);

}

static void unsubscribe(Subscriber subscriber, Class type) {
DAC dac = new DAS(type.getName());
dac.clear(subscriber);

}

static void publish(Event e) {
DAC dac = new DAS(e.getClass().getName());
dac.add(e);

}
}

Fig. 10. Wrapping DACs

9 Language Mechanisms for TPS

What language features would enable a library implementation of TPS (and
maybe also other paradigms for distributed programming) in a way that satisfies
our requirements outlined in Section 2.2, without any extensions to the target
language? We address here this question using elements of our comparison in
the previous sections.

9.1 Type Safety

Type safety has to be ensured mainly at two points. First, upon subscriptions,
it has to be guaranteed that filters and handlers deal with the same type of
events, which is different for every subscription. Hence, a subscription is type
parameterized, requiring some form of genericity. Second, given the nature of our
distributed context, there must be a way for distributed participants making use
of the same event types to “connect”. This requires runtime type information,
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e.g., the possibility of reifying types. Indeed, verifying how types are related, and
performing runtime type inclusion checks on objects ensures type safety at the
communication infrastructure level. Such mechanisms are commonly viewed as
part of introspection, or more generally, structural reflection.

As shown by the GJ implementation, runtime support for type parameters in
genericity can be useful to perform dynamic type checks if the filters can not be
checked at compilation.

9.2 Filters

In JavaPS, filters are implemented by some form of deferred code evaluation
(e.g., MetaML [41]) to ensure that these can be type-checked at compilation, by
offering an insight to the middleware [17]. A reification of the entire program
in the form of parse tree, such as in Smalltalk [36], could address the same re-
quirement. Alternatively, behavioural reflection, possibly combined with operator
overloading, could provide for an ideal compromise of static type checking and
deferred evaluation.

The requirements posed by filters are the most tedious to fulfil, and only few
languages provide sufficient mechanisms.

9.3 Handlers

Handlers can be methods implemented by callback objects of a specific type, or
closures (also function pointers). While closures enable the concentration of all
subscription-related code, pointers enable the placing of the event handler at any
point, and methods force the definition of a specific class. With respect to type
safety, the main issue consists in verifying that the signature of the provided
piece of code corresponds to the filter, i.e., the handler and the filter each have a
single formal argument with a coinciding type. In the case of a callback object,
to avoid generating specific callback types for each event type, genericity can be
used to type parameterize the callback type.

9.4 Events

Serialization, provided as inherent feature in Java, is a first step towards sup-
porting a programming scope exceeding a single address space. Events, in all the
implementations of TPS, exploit this mechanism in Java. In languages lacking
such a built-in mechanism, the application developer can be asked to implement
hooks to support serialization/deserialization of the events. The Java model (in-
spired by Smalltalk), however, is very simple to understand and to use, since it
provides a default behavior which can be overridden if needed.

Subtyping, a key paradigm in object-oriented programming, provides the
necessary foundation for the ability of updating applications. Especially in a
distributed context, the full exploitation of this paradigm is only given by dy-
namic class loading, that is, the possibility of updating existing components by
adding new implementations at runtime.
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9.5 No Limits

The prominent mechanisms stated above have all been investigated in the con-
text of TPS in variants of Java, and by no means the intention is to claim that
the outlined mechanisms cover all possibilities, since there are obviously many
other language features to think about.

Consider for instance the myType type qualifier introduced by Bruce et al. in
PolyTOIL [7], and inherited by its follow-up Loom [6]. In any given method body,
this qualifier refers to the dynamic type of the considered object, the type of
this. In the words of the authors, “myType is anchored to the type of the object
in which it appears”. This paradigm enables an inherently clean implementation
of binary methods. In the context of TPS, it could be used in combination
with behavioural reflection and simple unbounded parametric polymorphism
(also part of PolyTOIL), to ensure type-safe direct subscriptions to application-
defined event classes (i.e., without first-class channels), which subtype a specific
root event type Event. Following the Java syntax, one could imagine having
something like the following:5

public class Event {
public myType subscribe(Subscriber<myType> s) {
...
/* return a proxy */

}
}
public class MyEvent extends Event {...}

Subscribing to an application-defined event class, such as the MyEvent class
above, can be done simply by first creating an instance of that class, and then
invoking the subscribe() method:

class MyEventSubscriber implements Subscriber<MyEvent> {...}
MyEvent proxy = new MyEvent().subscribe(new MyEventSubscriber());
proxy.equals(new MyEvent(...));

The above subscription scheme could fulfil all our requirements in a language
which, unlike Java, does not provide any purely abstract types (since these are
not supported by the above design). Furthermore, if the myType type qualifier is
available in class methods, one could omit creating an instance of an event class
just for subscribing to that type.

Similarly to the myType type qualifier, the concept of mixins could enable
the merging of the abstraction for subscribing with the very event types; here by
“adding” methods expressing subscriptions and unsubscriptions to application-
defined event types instead of inheriting them from an abstract event type.

While the investigation of further candidate language features is an ongoing
task, the experience related throughout this paper entitles us to claim that Java
clearly does not fulfil our requirements with respect to TPS.
5 myType has a companion, written @myType, which denotes the exact dynamic type of
this, i.e., subtypes are considered harmful. To be fully precise, the following example
should use @myType as type parameter for the subscriber.
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10 Related Work

We are only aware of one effort discussing different ways of integrating pub-
lish/subscribe into a language, namely the events + constraints + objects (ECO)
model [26]. In that context however, the question of what language mechanisms
would help avoiding any extension is devoted less attention.

In the following, we look at the way this question was addressed for two
alternative distributed interaction abstractions with respect to Java, namely the
tuple space (TS) and the remote method invocation (RMI) paradigms.

10.1 Tuple Spaces

The TS abstraction first appeared in the Linda programming language [22], in
which spaces served as coordination means between cooperating processes.

The basic abstraction. A TS is a place where processes can exchange ar-
bitrary length tuples of values. Putting a tuple into the TS is done using the
out primitive. Getting a tuple from the tuple space is done using a blocking
primitive, either in to subsequently remove the read tuple from the space, or
read to enable the same tuple to be read by several consumers. The TS has
since been extended with further primitives, e.g., non-blocking read primitives
and callbacks. The latter option leads to a publish/subscribe-like interaction
when combined with non-destructive (read) semantics. Consider the following
example expressed in Linda:
out ("StockQuote", "Telco", 80, 10); // 1
int i = 80; // 2
in ("StockQuote", "Telco", i, 10); // 3
in ("StockQuote", "Telco", var i, 10); // 4
in ("StockQuote", "Telco", j: integer, 10); // 5

In line 1, a tuple consisting of 4 values is put into the tuple space. In line 3, a
tuple with 4 values is requested. Since the value of i is 80, the tuple from line 1
matches the request, which means that this tuple may be extracted from the TS.
The var keyword in line 4 causes the i to be treated as a formal parameter, i.e.,
it can match any value. The tuple added in line 1 may be extracted by line 4,
and the actual value of i will then be 80. In line 5, the integer keyword at the
same time declares a variable j and uses it as a formal parameter as in line 6.

Translating to Java. Implementing TSs in Java poses similar problems to
those we described for TPS in this paper. As an example, Jada [14] instruments
Java with a library that supports TSs. In Jada, a Tuple represents a list of Java
Objects, i.e., the values of the tuple. Clients thus have to cast these objects
explicitly upon reception, thereby reducing type safety. In order to improve sim-
plicity, a Tuple has constructors for up to 10 values. Formal parameters are repre-
sented by objects representing the desired type (instances of java.lang.Class;
meta-objects). The above Linda example can be expressed in Jada as follows
(note that line 5 has no equivalent in Jada):
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TupleSpace tupleSpace = new TupleSpace();
tupleSpace.out(new Tuple(

"StockQuote", "Telco", new Integer(80), new Integer(10))); // 1
int i = 80; // 2
Tuple tuple1 = tupleSpace.in(new Tuple(

"StockQuote", "Telco", new Integer(i), new Integer(10))); // 3
Tuple tuple2 = tupleSpace.in(new Tuple(

"StockQuote", "Telco", Integer.class, new Integer(10))); // 4
i = ((Integer)tuple2.getItem(3)).intValue();

As illustrated by Jada, such a TS library becomes clumsy compared to the
original support in the Linda language.

More recent approaches to TS interaction into Java, like JavaSpaces [20],
apply a different model, viewing tuples as single objects, whose attributes reflect
tuple values. Hence, the JavaSpace type requires a single signature for its read()
operation. Custom events are defined by subtyping the basic Event type, which
again does not ensure type safety, since type checks and type casts are necessary.
Also, encapsulation is broken by forcing attributes to be declared as public;
expressing and performing any content-based filtering through these attributes.

Library or language integration? The question of library vs language inte-
gration has also been raised in the context of TSs. Rather surprisingly, a separa-
tion of the programming language from the concurrency mechanism was advo-
cated by Carriero and Gelernter [23], while their Linda language is widely viewed
as a monolithic solution to merging a coordination language with a programming
language.

In the case of Java, through the similarity between TPS and TSs such as
JavaSpaces, a “clean” library could be implemented with similar features claimed
for TPS.

10.2 RMI

Another prominent mechanism for distributed interaction in whose context the
question of language integration vs library has been addressed is the RMI para-
digm.

Java RMI. The implementation of Java RMI can be viewed as an intermedi-
ate solution between a language-integrated RPC package and a standard Java
library. Java RMI relies on the inherent Java type system, yet further constrains
the use of that type system in its own context: (1) static types of remote ref-
erences must be abstract types, i.e., interfaces, and (2) any methods in such
interfaces must imperatively declare that they can throw RemoteExceptions.
Java RMI can also be considered as a language extension in the sense that a
specific compiler (rmic) is needed to generate type-specific proxies. The absence
of the corresponding proxies is, however, only signalled at runtime.
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Library or language integration? A form of RMI can be implemented in
Java as a pure library (without specific compilation) with Java 1.3, thanks to its
support for behavioural reflection: the same mechanism used in Section 8.2 can
be used to defer the binding to a remote object to runtime. This mechanism has
obviously been devised with the requirements of RMI in mind. Indeed, (1) the
class responsible for behavioural reflection has been called proxy, and (2) only
interface types can benefit from this type of reflection, and the static types of
remote Java objects are always interfaces.

In the case of TPS, where “nested” invocations, i.e., invocations on the return
types of invocations, have to be intercepted, the proxy class is clearly insuffi-
cient, as illustrated in Section 8.2. In the case of RMI, it is not clear whether this
mechanism for behavioural reflection will replace the generation of type-specific
proxies through the rmic compiler. While in the context of interoperability, like
in CORBA, such a precompilation can help dealing with language diversity, a
precompilation can in the context of Java only more be motivated by perfor-
mance reasons.

11 Conclusions

JavaPS, our extension of the Java language, was motivated by the obvious lacks
manifested by the Java language with respect to TPS. First, to achieve a level
of type safety worth mentioning as such, we made use of GJ, a variant of Java
incorporating genericity. Second, to enable a satisfactory expression of content
filters, we went a step further and devised JavaPS. Comparing the three ap-
proaches helps measure the difference between JavaPS, on the one hand, and
the two library approaches (i.e., Java, and Java with genericity), on the other
hand.

In general, and in the face of today’s heterogeneity across platforms, we
believe that programming languages should not be implemented with abstrac-
tions for distributed interaction as primitives. We rather believe that designers
of future languages should foresee a more general support for distributed inter-
action abstractions. In particular, avoiding an integration avoids the question
of which abstractions for distributed interaction should be supported. Although
TPS is surely not the last paradigm for distributed programming, the constraints
imposed by TPS should be kept in mind when conceiving future support for dis-
tributed programming. As shown by the difficulty in expressing content filters,
TPS, as a paradigm emphasizing scalability and performance, requires a strong
interaction with the native programming language, and is hence a very demand-
ing abstraction. Most abstractions established for distributed interaction, such
as sockets, tuple spaces, or RMI, can be implemented with only a subset of the
features mandated by TPS.

We argue that reflection, just like genericity, as faces of extensibility, to be the
key concepts for a general language support of distributed programming. With
inherent reflective capabilities and genericity, we believe one could implement
a (1) simple to use, (2) flexible, (3) type safe, and (4) performant TPS library
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without modifying the language, and, as discussed in this paper, also alternative
abstractions for distributed interaction such as tuple spaces and RMI.

Pointing out the very fact that, to be extensible, an object-oriented language
should be generic and reflective is not new (e.g., [38]). In this paper we have
identified a precise case for this argument in the area of distributed computing.
We have illustrated how our case poses more stringent demands than those pre-
viously expressed and partially addressed without distribution in mind, and have
also more precisely quantified “how much” is missing in a current mainstream
language such as Java. We insist on the fact that, in the face of modern abstrac-
tions for distributed interaction such as TPS, genericity needs to be provided in
a form that includes runtime support for type parameters, and that reflection
has to go beyond simple message reification (considered sufficient in the context
of RMI, e.g., [3]). We pointed out the very fact that the current support in Java
for genericity and reflection, from our perspective, is clearly insufficient.

Note that very few languages currently satisfy all our requirements. A rea-
sonable candidate is Funnel [32], whose sole lack with respect to TPS is currently
being repaired. Indeed, it is planned to instrument the Funnel language with a
form of closures enabling a deferred evaluation. These will enable the expression
of subscription patterns in a way conforming to the requirements posed by TPS.
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