Metadata, citation and similar papers at core.ac.uk

Provided by Infoscience - Ecole polytechnique fédérale de Lausanne

CBC Padding: Security Flaws in SSL,
IPSEC, WTLS, ...

Serge Vaudenay

Swiss Federal Institute of Technology (EPFL)
Serge.VaudenayQepfl.ch

Abstract In many standards, e.g. SSL/TLS, IPSEC, WTLS, messages
are first pre-formatted, then encrypted in CBC mode with a block cipher.
Decryption needs to check if the format is valid. Validity of the format
is easily leaked out from communication protocols because the receiver
usually sends an error message when the format is not valid. This is a
side channel.

In this paper we show that the validity of the format of the decryption is
actually a hard core bit predicate. We demonstrate this by implementing
an efficient and practical side channel attack which enables the decryp-
tion of any ciphertext. The attack complexity is O(NbW') where N is
the message length in blocks, b is the block length in words, and W is
the number of possible words (typically 256).

We also discuss about extensions to other padding schemes and various
ways to fix the problem.

Variable input length encryption is traditionally constructed from
a fixed input length encryption (namely a block cipher) in a special
mode of operation. In RFC2040 [2], the RC5-CBC-PAD algorithm
is proposed, based on RC5 which enables the encryption of blocks of
b = 8 words where words are bytes. Encryption of any word sequence
with an RC5 secret key K is performed as follows.

1. Pad the word sequence with n words, all being equal to n, such
that 1 < n < b and the padded sequence has a length which is a
multiple of b.

2. Write the padded word sequence as a block sequence x,...,zy
in which each block z; consists of b words.

3. Encrypt the block sequence in CBC mode with a (fixed or random
or secret, whatsoever) IV with a permutation C' defined by RC5
with key K: get

p=ClVer), vyi=Clyi1®x);i=2,....,N (1)
where & denotes the XOR operation.
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The encryption of the message is the block sequence y, ..., yn.

Although decryption is not clearly defined in RFC2040 [2], it
makes sense to assume that the receiver of an encrypted message
first decrypts in CBC mode, then checks if the padding is correct
and finally removes it. The question is: how must the receiver behave
if the padding is not correct? Although the receiver should not tell
the sender that the padding is not correct, it is meaningful that
non-procession of a decrypted message ultimatly leaks this bit of
information. This leads to an attack which uses an oracle which for
any block sequence tells if the padding of the corresponding CBC-
decrypted sequence is correct according to the above algorithm.

This attack model is similar to the attack of Bleichenbacher
against PKCS#1 v1.5 [4] and of Manger against PKCS#1 v2.0 [8].
This paper shows that similar attacks are feasible in the symmetric
key world.

The paper is organized as follows. We first recall the well known
properties and security issues for the CBC mode. We describe our
attack against RC5-CBC-PAD. Then we discuss about extensions
to other schemes: ESP, random padding, ... We also discuss about
applications in real life: for SSL, IPSEC, WTLS. Next we present
some possible fixes which actually do not work like replacing the
CBC mode by a double CBC mode, the HCBC mode or other modes
which are in a standard process run by NIST. We further propose a
fix which does work: a new padding scheme. We finally conclude.

1 CBC Folklore

Several security properties of the CBC mode are already well known.
We think it is useful to recall them.

1.1 Integrity Limits

Fault tolerance is quite high but integrity is not guaranteed: one
can replace a ciphertext block without altering most of the plaintext
blocks (it only modifies two plaintext blocks), one can remove one
block, insert a sequence of blocks by copy and paste, ... Manipulation
of ciphertext blocks only induces modification in the corresponding
side plaintext blocks.



1.2 Confidentiality Limits

Confidentiality also has security flaws. Obviously, when using a fixed
IV, one can easily see when two different messages have a common
prefix block sequence by just looking at the two ciphertexts.

More generally, when two ciphertext blocks y; and y; are equal,
one can deduce from Eq. (1) that y,_; ®y,;—1 = x; @ ;. We can then
exploit the redundancy in the plaintext in order to recover x; and
x; from y;_1 @ y;—1. This flaw is however quite negligible: since the
ciphertext blocks get a distribution which is usually undistinguish-
able from a uniform distribution, the probability that two b-words
blocks out of NV are equal is given by the birthday paradox theorem

p~r~1— e zNW
where W is the number of possible words. The attack is efficient when
N reachs the order of magnitude of VIW?. Therefore, for b = 8 and
W = 256, we need about 32GigaBytes in order to get 39% chances
of success for this attack which leaks information on 16 Bytes only.

1.3 Authentication Limits

CBC mode is also used for message authentication code (MAC).
Raw CBC-MAC (i.e. taking the last encrypted block as a MAC) is
well known to have security flaws: with the MAC of three messages
my, mg, m3 where msy consits of m; augmented with an extra block,
we can forge the MAC of a fourth message which consists of ms
augmented with an extra block. This is fixed by re-encrypting the
raw CBC-MAC, but this new scheme have still attacks of complexity
essentially v/IW?. (See [9,11].)

2 The Attack

Let b be the block length in words, and W be the number of possible
words. (We assume that W > b and that all integers between 1 and
b can non ambiguously be encoded into words in order to make the
CBC-PAD scheme feasible.)

We say that a block sequence 1, x5, ..., 2y has a correct padding
if the last block z ends with a word string of n words equal to n with
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n > 0: 1, or 22, or 333, ... Given a block sequence y1,ys,...,yy, We
define an oracle O which yields 1 if the decryption in CBC mode has
a correct padding. Decryption is totally defined by a block encryption
function C' and IV. Oracle O is thus defined by C' and IV.

2.1 Last Word Oracle

For any y, we want to compute the last word of C~1(y). We call it
the “last word oracle”.

An attacker which accesses to O can easily implement this oracle
with WW/2 2-block oracle calls on average. (Or a single one, but with
a probability of succes of W~1.)

Let rq,...,7, be random words, and let » = ry...r,. We forge
a fake ciphertext r|y by concatenating the two blocks r and y. If
O(rly) = 1, then C~'(y) @ r ends with a valid padding. In this case,
the most likely valid padding is the one which ends with 1. This
means that the last word of C~!(y) is r, ® 1. If O(r|y) = 0, we can
try again (by making sure that we picked another r,: picking the
same one twice is not worthwile).

If we are lucky (with probability W), we find the last word
with the first try. Otherwise we have to try many rps. On average,
we have to try W/2 values.

Odd cases are when the valid padding found is not 1. This is easy
to detect by sending r'|y with ' =7} ...7, rp =m, and r,_; # 15 1.
If O(r'ly) = 1, the valid padding was 1 indeed. Otherwise, it was a
longer one. We can similarly check if it was 22 by sending |y with

n o _ ..n " n __ n _ n
r" =l ) =1y, ry o =11, and 1y o F rp_o...

2.2 Block Decryption Oracle

Now we want to implement an oracle which computes C~*(y) for
any y: a “block decryption oracle”.

Let a = a; ...a; be the word sequence of C~!(y). We can get a,
by using the last word oracle. Assuming that we already managed
to get a;...a, for some j < b, we show how to get a;_;, so that we
can iterate until we recover the whole sequence.

We let rq,...,7r;—1 be random words and r;, = a ® (b — j + 2)
for k =j,...,b. Let r = ry...7,. We forge a fake ciphertext r|y by

4



concatenating the two blocks 7 and y. When calling O on r|y, the
second decrypted block is r @ a due to Eq. (1), so we have made sure
that the last b — j + 1 words are all equal to b— j+2. If O(r|y) = 1,
we are thus ensured that r;_; ® a;_1 = b — j + 2 from which we can
deduce a;_1. When r;_; is random, there is a probability of W~! that
this occurs. We thus need W/2 trials on average to make this event
occur. We can thus recover an additional word within /2 trials.
Since there are b words per block, we need bI¥//2 trials on average in
order to implement the C~! oracle.

2.3 Decryption Oracle

Now we want to decrypt any message y1, ..., yy with the help of O.
It can be done with NbIW /2 2-block oracle calls on average. We just
have to call the block decryption oracle on each block y; and perform
the CBC decryption.

One problem remains in the case where IV is secret. Here we
cannot decrypt the first block. We can however get the first plaintext
block up to an unknown constant. In particular, if two messages are
encrypted with the same IV, we can compute the XOR of the two
first plaintext blocks.

The attack has a complexity of O(NbW). As an example for
b =8 and W = 256 we obtain that we can decrypt any N-block
ciphertext by making 1024/N oracle calls on average. The attack is
thus extremely efficient.

2.4 Postfix Equality Check Oracle

We can implement a more exotic oracle which has the nice property
of using a single O oracle call. Given a ciphertext y;,...,yy and a
block sequence wy ... w,,, we want to check if w;...w,, is a postfix
of the decryption of yq,...,yn.

Let us first consider that m < b. We just have to pick a few
random words ry...7,_.,, to take 1y, 1k = wip & m, and to send
(r ® yn_1)|yn to the oracle where r = ry...r,. If accepted by O,
then w; ...w,, is a postfix of the plaintext (but for an odd case
which occurs with probability W ! and which can be ruled out with
an extra oracle call). Otherwise it is not a postfix for sure.
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For m > b, one possibility is to perform the above process several
times. But this will use O more than once. As it will be noticed, some
CBC-PAD variant allow to have paddings longer than b (namely at
most W —1), so we can generalize the previous oracle and check post-
fixs within a single O oracle call. This will be used against SSL/TLS
in Section 4.1.

3 Other Padding Schemes

In Schneier [10, pp. 190-191], a slightly different padding scheme is
proposed: only the last word is equal to the padding length, and all
other padded words are equal to zero. The padded sequence is thus
00...0n instead of nn...n. Obviously, a similar attack holds.

[P Encapsulating Security Payload (ESP) [7] uses another slightly
different padding: the padded sequence is 1234. .. n instead of nn....n.
Obviously, a similar attack holds.

One can propose to have the last word equal to the padding
length and all other padded words chosen at random. The attack
still enables the decryption of the last word of any block. We also
have another security flaw: if the same message is encrypted twice,
it is unlikely that the last encrypted blocks are equal, but in the case
where the padding is of length one. We can thus guess what is the
padding length when the ciphertexts are equal.

4 The Attack in Real Life

4.1 SSL/TLS

SSL/TLS [5] uses the CBC-PAD scheme with W = 256 when using
block ciphers (default cipher being the RC4 stream cipher though).
The only difference is that the padding length is not necessarily less
than b but can be longer (but less than W — 1) in order to hide the
real length of the plaintext. We can thus expect to use a TLS server
like the O oracle. The attack is however not so practical since the
padding format error (the decryption_failed error) is a fatal alert
and the session must abort. The attacker thus needs to stop as soon
as the oracle outputs 0.



However the oracle will output 1 with a probability W ~!. There-
fore, the attacker can still decrypt one word with a probability of
success of W1, two words with a probability of success of W2, ...

We furthermore notice that the postfix equality check oracle of
Section 2.4 can be implemented since there is essentially a single
oracle call.

Interestingly, TLS wants to make secret the real message length
itself. We can easily frustrate this feature by implementing a “length
equality check oracle” in a very same way: if we want to check
whether or not the padding length is equal to n, we take the last
ciphertext block y, and we send |y to the server where the rightmost
word of 7 is set to n @ 1 and the others are random. Acceptance by
O means that the right length is n with probability at least 1 — W/ 1.
Rejection means that n is not the right length for sure.

Since the padding length is between 1 and W, the above oracle
may not look so useful. We can still implement an oracle which
answers whether or not the pad length is greater than b, i.e. if the
length hiding feature of TLS was used: let y; and y, be the last
two ciphertext blocks. We just send r|yi|y. with a random block
r to O. Acceptance means that the padding length is at most b
with probability at least 1 — W ~!. Rejection means that the padding
length is at least b+ 1 for sure.

4.2 IPSEC

IPSEC [6] can use CBC-PAD. Default padding scheme is similar, as
specified in ESP [7]. Standards clearly mention that the padding
should be checked, but the standard behavior in case of invalid
padding is quite strange: the server just discards the invalid mes-
sage and adds a notification in log files for audit and nothing else.
This simply means that errors are processed according to non stan-
dard rules. It is reasonnable to assume that the lack of activity of the
receiver in this case, or the activity of the auditor, can be converted
into one bit of information. So our attack may be applicable.

4.3 WTLS

WTLS [1] (which is the SSL variant for WAP) perfectly implements
the oracle O by sending decryption_failed warnings in clear. Ac-
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tually since mobile telephones have a limited power and CPU re-
sources, key establishment protocols with public key cryptography
are limited. So we try to limit the number of session initialization
and to avoid breaking them. So seldom errors are fatal alerts. Some
implementations of WTLS can however limit the tolerance number
of errors within the same session, which can limit the efficiency of
the attack. This is however non standard.

In the case of mobile telephones (which is the main application
of WTLS), WTLS is usually encapsulated in other protocols which
may provide their own encryption protocol, for instance GSM. In
this case, the extra encryption layer needs to be bypassed by the
attacker.

5 Fixes which Do not Work

5.1 Padding Before the Message

One can propose to put the padding in the first block. This only
works for CBC modes in which IV is not sent in clear with the
ciphertext (otherwise the same attack holds). This also requires to
know the total length (modulo b) of the message that we want to
encrypt before starting the encryption. When the plaintext is a word
stream, this assumption is not usually satisfied. Therefore we believe
that this fix is not satisfactory.

5.2 CBCCBC Mode

Another possibility consists of replacing the CBC mode by a double
CBC encryption (i.e. by re-encrypting the yq,...,yx sequence in
CBC mode). We call it the CBCCBC mode.

Unfortunately, a similar attack holds: given y and z we can re-
cover the value of u = C7'(y) ® C~'(y ® C~'(2)) by sending r|y|z
trials to the oracle. This is enough in order to decrypt messages: if
y is the (¢ — 1)th ciphertext block, z is the ith ciphertext block, and
if ¢ is the (i — 2)th ciphertext block, then the ith plaintext block is
nothing but ¢ ® u!

The same attack holds with a triple CBC mode...
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5.3 On-Line Ciphers and HCBC Mode

We can look for another mode of operation which provably leaks
no information. One should however try to keep the advantages of
the CBC mode: being able to encrypt a stream without knowing the
total length, without having to keep an expanding memory, ... In [3],
Bellare et al. presented the notion of on-line cipher. This notion is
well adapted for these advantages of the CBC mode.

They also proposed the HCBC mode as a secure on-line cipher
against chosen plaintext attacks. The idea consists in replacing Eq. (1)
by

yi = C(H(yim1) @ ;)

where H is a XOR-universal hash function which includes a part of
the secret key. For instance one can propose H () = K,z in GF(W?)
where K is a nonzero part of the secret key. (When a # b, we have
Pr[H(z) ® H(b) = ¢] < 1/(W? —1) for any c if K; is uniformly
distributed, thus H is XOR-universal.)

One problem is that this does not protect against the kind of
attack we proposed. For instance we can notice that if we get several
accepted r;|y messages with a fixed y, then we deduce that H(r;) ®x
ends with a valid padding for an unknown but fixed x. Hence H(r;)®
H (rj) is likely to end with the word zero. Since this is the last word
of Ky(r; ®rj), we can deduce K; from several (7, 7) pairs. With the
knowledge of K; we can then adapt the attack against the raw CBC.
It is even more dramatic here since we indeed recover a part of the
secret key.

Therefore the notion of on-line cipher resistant against chosen
plaintext attacks does not capture security against the kind of side
channel cryptanalysis that we have proposed.

5.4 Other Modes of Operation

The standardization process on modes of operation launched by
NIST also contains problematic proposals.! Several of the proposals
can be generalized as follows. The CBC mode is modified in order to
have a XOR before and after the block cipher encryption, depending

! See http://csrc.nist.gov/encryption/modes/



on all previous ciphertext blocks and all previous plaintext blocks.
We replace Eq. (1) by

yi = C(z: ® fi(z,y)) @ gi(z,y)
with a public f;(z,y) and g¢;(x,y) functions which depend on i and
Ty i1, Y1, - -+, Yi—1 only. (Note that HCBC is not an example
since f; is not public.)

Assuming that an attacker knows several (27, y’) plaintext-ciphertext
pairs written 2/ = x| ... |77, and v =yll... |y7,, and she wants to
compute C~'(y) for some given y, she can submit some ¢/ . . . [y |(y®
d) ciphertexts where k& < ¢;, & = gri1(27,97). Acceptance would
mean that the block C~*(y) ® fr11(27, y?) ends with a valid padding.
Therefore we can decrypt the rightmost word with W samples, two
words with W? samples, ...

Many other manipulations can also be performed.

6 A Fix which Does Work

One can propose to add a cryptographic checkable redundancy code
(crypto-CRC) of the whole padded message (like a hashed value) in
the plaintext and encrypt

message|padding|h(message|padding).

This way, any forged ciphertext will have a negligible probability to
be accepted as a valid ciphertext. Basically, attackers are no longer
able to forge valid ciphertexts, so the scheme is virtually resistant
against chosen ciphertext attacks.

Obviously it is important to pad before hashing: padding after
hashing would lead to the a similar attack. The right enciphering
sequence is thus

pad, hash, encrypt

Conversly, the right deciphering sequence consists of decrypting,
checking the hashed value, then checking the padding value. Invalid
hashed value must abort the decipherment.

The drawback is that fault resistance is now quite poor: if a
ciphertext block is not well received, the whole ciphertext is rejected
by the server. (But recovery is still exceptionally feasible in case of
message loss from the client.)
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7 Conclusion

We have shown that several popular padding schemes which are
used in order to transform block ciphers into variable-input-length
encryption scheme introduce an important security flaw. Correctness
of the plaintext format is indeed a hard core bit which easily leaks
out from the communication protocol.

It confirms that security analysis must not be limited to the block
cipher but must rather be considered with the whole environment.
This was already well known in the public key cryptography world.
We have demonstrated that the situation of symmetric cryptography
is virtually the same.
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