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Abstract

This paper studies the rate distortion behavior of sparse memoryless sources that serve as models

of sparse signal representations. For the Hamming distortion criterion, R(D) is shown to be essentially

linear. For the mean squared error measure, two models are analyzed: the mixed discrete/continuous

spike processes and Gaussian mixtures. The latter are shown to be a better model for \natural" data such

as sparse wavelet coeÆcients. Finally, the geometric mean of a continuous random variable is introduced

as a sparseness measure. It yields upper and lower bounds on the entropy and thus characterizes high-rate

R(D).
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I. Introduction

T
HE success of wavelet based coding, especially in image compression, is often attributed

to the ability of wavelets to \isolate" singularities, something Fourier bases fail to do

eÆciently. Thus, a piecewise smooth signal is mapped through the wavelet transform into a

sparse set of non-zero transform coeÆcients, namely coeÆcients around discontinuities as well

as coeÆcients representing the general trend of the signal. While this behavior is well understood

in terms of nonlinear approximation power (approximation by N largest terms of the wavelet

transform, see [1] for a thorough treatment), the rate-distortion behavior is more open.

The work by Mallat and Falzon [2] was the �rst to analyze the low-rate behavior of transform

image coding, and showed the very di�erent behavior with respect to classic, Karhunen-Lo�eve

The material in this paper was presented in part at the Data Compression Conference, Snowbird UT, March

1999 and 2000, and at the IEEE International Symposium on Information Theory, Washington DC, June 2001.

Part of this work stems from the Ph.D. thesis of the �rst author and was supported by an ETHZ/EPFL fellowship.

The authors are with the Audiovisual Communications Laboratory, Swiss Federal Institute of Technology (EPFL),

Lausanne, Switzerland. E-mail: Claudio.Weidmann, Martin.Vetterli@ep.ch.

M. Vetterli is also with the Department of EECS, UC Berkeley, Berkeley CA 94720.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147902598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


transform (KLT) theory. In essence, at low rates, only few wavelet coeÆcients are involved in the

approximation of piecewise smooth functions, leading to a steeper decline of the rate-distortion

function as compared to the classic exponential decay in the case of Gauss-Markov processes and

the KLT. This result had been observed experimentally in low-rate image coding (see Figure 1

for an example).

The results above indicate the interest to understand more fully the rate-distortion behavior

of sparse vectors. The wavelet transform being a unitary map, it is suÆcient to get bounds on

the rate-distortion function of sparse sources in order to understand the compression of sources

that are \sparsi�ed" by the wavelet transform, like piecewise smooth functions.

It is probably worthwhile to contrast the KLT on jointly Gaussian processes with the wavelet

transform on piecewise smooth processes. In the KLT case, the optimal strategy is water�lling

[3], and the approximation process is linear (up to quantization). In the wavelet transform

approach, the approximation is non-linear, and a key element of eÆcient compression is to

\point to" the important coeÆcients (for example, many data structures have been proposed

just for this, e.g. zero trees [4]). This points again to the importance of \location" in compressing

vectors with few important coeÆcients.

In this paper, we consider various forms of sparse vectors, where both position and value are

important. The �rst case, in Section II, deals with pure position coding by considering binary

vectors and Hamming distortion. In the deterministic case, when the number of non-zero entries

is known a priori, it is possible to give closed form rate-distortion functions. Interestingly, for

sparse spikes, the R(D) function is \almost" linear. In the non-deterministic case of a Bernoulli-p

source, it is shown in Theorem 1 that the normalized rate-distortion function is asymptotically

linear as p! 0.

In Section III, a mixed discrete/continuous spike process is considered. This Bernoulli-

Gaussian spike process uses a Bernoulli process to turn a normal random variable on or o�.

So both position and value are important. The rate distortion behavior of the spike process

is characterized using classi�cation-based upper bounds. However, the results do not match

experimental rate-distortion curves closely because of the mixed discrete/continuous nature.

This leads to consider Gaussian mixtures in Section IV, where a hidden process picks one

of two normal random variables with di�erent variances. Both upper and lower bounds show
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the knee in the rate-distortion curve that is typical for such mixtures. A notion akin to the

classic coding gain of transform coding is introduced, which is based on magnitude classifying

quantization. Instead of separately considering the transform coeÆcients, they can be mixed

without incurring much loss.

Finally, Section V considers the geometric mean of a source as a sparseness measure, which is

used to bound the coding gain of Section IV. Additionally, the geometric mean yields lower and

upper bounds on the source entropy. Therefore it is a good means to characterize the high-rate

rate distortion behavior of sparse sources.

II. Spike Position Encoding

Consider a source emitting sparse random vectors of length N in which most components are

zero, except for a few spikes that stick out. In this section, we are only interested in the positions

of the nonzero values (the spikes), therefore we can restrict ourselves to binary vectors. A lossy

encoder maps a source vectorX to a reconstructed version X̂. The �delity of this approximation

is measured by the Hamming distance:

dH(X; X̂) =
NX
i=1

[1� Æ(Xi � X̂i)]: (1)

This is equivalent to a frequency of error criterion where both types of errors have the same

cost (coding a spike when there is none and vice-versa). The rate distortion function R(D)

gives the minimum rate R necessary to encode the source with �delity D. In the following, we

will �rst consider a purely combinatorial setting, where exactly K out of N positions are equal

to one, with a uniform prior on the
�N
K

�
possible combinations. Hence the problem looses its

dimensionality and can actually be solved with the methods for discrete memoryless sources

which are summarized in the appendix.

A. Single Spike

The source X is equivalent to a i.i.d. uniform source U with alphabet U = f1; 2; : : : ; Ng.
Using the standard basis vectors ei we can write X = eU . It can be shown (see Theorem 10

from [5] in the appendix) that just one additional reconstruction letter is needed to achieve the

rate distortion bound, and it will map to the all-zero vector 0. To see that it can only be the

all-zero vector, consider the source alphabet fe1; e2; : : : ; eNg, which consists of all vectors of
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Hamming weight one. Any other non-zero vector will be at Hamming distance one or more from

these vectors and thus can only worsen the distortion achieved by the all-zero vector, i.e. exactly

one. If we de�ne bU = U [ f0g and e0 = 0, then everything �ts nicely. Using û = 0 corresponds

to not coding the position. We get the following distortion measure:

�(u; û) = dH(eu; eû) = 2[1 � Æ(u � û)]� Æ(û) (2)

Thus \giving the right answer" has zero distortion, a wrong answer two, and not answering costs

one distortion unit.

Proposition 1 The rate distortion function for a single spike in N � 2 equiprobable positions

with the Hamming distortion criterion (1) is

R(D) =

8>><
>>:
(1�D) log(N � 1) if 2

N < D � 1;

logN � D
2 log(N � 1)� hb

�
D
2

�
if 0 � D � 2

N :

(3)

Proof: The following derivation relies heavily on the rate distortion results for discrete

memoryless sources summarized in the appendix. There it is shown that R(D) can be computed

by solving a set of equations involving the marginal (random codebook) distributionQ(k) on the

reconstruction alphabet. The symmetry of the input distribution, P (j) = 1=N (j = 1; : : : ; N),

suggests the following marginal distribution (with a slight abuse of notation):

Q = (q0; q1 = q2 = : : : = qN =
1� q0
N

): (4)

Let us �rst assume that qk > 0 holds for all k. Then the N+1 conditions (61) from the Appendix

have to be met. We make the substitution � = e�� and insert our Q(k) into the equation, �rst

for k 6= 0:

�0

q0�1 +
1�q0
N (�0 + (N � 1)�2)

+
(N � 1)�2

q0�1 +
1�q0
N (�0 + (N � 1)�2)

=
1

P (j)
= N

...

q0((N � 1)�2 �N� + 1) = 0: (5)
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For k = 0 we get almost the same equation:

N�1

q0�1 +
1�q0
N (�0 + (N � 1)�2)

=
1

P (j)
= N

...

(1� q0)((N � 1)�2 �N� + 1) = 0: (6)

The solution � = 1 corresponds to the point (0;Dmax) (with Dmax = 1) in the (R;D) plane,

which is achieved by setting q0 = 1. Therefore the interesting solution is � = 1=(N � 1), which

when inserted into (60) yields

Q(kjj) = qk(N � 1)1��(j;k): (7)

Putting (7) into (58) we get the average distortion d(Q) = 1 � N�2
N (1 � q0) and from (59) the

rate I(Q) = N�2
N (1 � q0) log(N � 1). Noting that these hold for q0 > 0, we combine them to

eliminate q0 and get

D(R) = 1� R

log(N � 1)
for R <

N � 2

N
log(N � 1): (8)

This proves the �rst part of equation (3). When R reaches its upper bound in (8), D reaches

2=N and we have q0 = 0. At that point, equation (5) will be satis�ed for all �. According to

condition (62), equation (6) now becomes an inequality:

(N � 1)�2 �N� + 1 � 0: (9)

This is satis�ed by � � 1 or � � 1
N�1 , which is equivalent to � � log(N � 1). The �rst solution

(� � 1) can be discarded, since it would result in D(R) being larger than 1 and discontinuous.

The conditional distribution parameterized by � is

Q(kjj) =

8>><
>>:
0; k = 0

��(j;k)

1+(N�1)�2
; k 6= 0

(10)

As before, we put this into (58) to get d(Q) = 2(N�1)�2

1+(N�1)�2
and into (59) yielding

I(Q) = logN � (N � 1)�2

1 + (N � 1)�2
log(N � 1)� hb

�
1

1 + (N � 1)�2

�
;

where hb(p) = �p log p� (1 � p) log(1 � p) is the binary entropy function. Eliminating � from

the last two equations yields the second part of equation (3).
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Figure 2 shows a set of typicalR(D) functions. AsN grows large, the linear segment dominates

the rate distortion characteristics. Further we observe that in the special case N = 2 the solution

degrades to the R(D) function of a binary symmetric source (with doubled distortion).

B. Multiple Spikes

Now we consider a source emitting one of the
�
N
K

�
binary vectors of length N and Hamming

weight K. We will again assume that all source letters are equally probable, and that N and K

are given. We look only at the case where the number of 1's is K � N=2, since the other case

(N=2 � K � N) is complementary.

The analysis is simpli�ed by the fact that the set of source vectors of weight K forms a

group code under permutation. Under the action of the symmetric group SN , any vector of

the set will again yield the whole set. The code is thus geometrically uniform, i.e. the distance

(distortion) pro�le looks the same from any vector in the set. By decomposing permutations

into transpositions, one establishes that the distances will always be integer multiples of two.

Assuming that K � N=2, there are exactly

wd =

�
K

d

��
N �K

d

�
; d = 0; : : : ;K (11)

vectors at Hamming distance 2d from a given vector. The following identity will also be very

helpful in our development:

KX
d=0

wd =
KX
d=0

�
K

d

��
N �K

d

�
=

�
N

K

�
: (12)

As in the single spike case, the reconstruction alphabet consists of the source alphabet plus the

zero vector, to which we assign the probability q0 as before. To compute the slope of the linear

part of the rate distortion curve we have to solve (compare with (5, 6))

KX
d=0

wd�
2d �

�
N

K

�
�K = 0: (13)

The solution � = 1 corresponds again to the maximum distortion, D = K. We will now assume

that somehow we found the interesting root �0 with 0 < �0 < 1 (for K = 2 it is �0 =
�N�2

2

��1=2
,

for largerK it can be computed numerically). Then the linear part of the rate distortion function

will be

R(D) = (D �K) log �0; D(�0) < D < K (14)
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where the bounds on D guarantee 0 < q0 < 1 (D(�0) is de�ned below in (16a)). For q0 = 0, any

� � �0 will satisfy the Kuhn-Tucker conditions. We de�ne a pseudo-distribution

bd =
wd�

2dPK
d0=0wd0�

2d0
; d = 0; : : : ;K: (15)

After some calculations, we get a parametric expression for the rate-distortion curve for 0 < � <

�0:

D(�) =
KX
d=1

bd2d; (16a)

R(�) = log

�
N

K

�
+

KX
d=0

bd log bd �
KX
d=0

bd logwd: (16b)

The middle term in the expression for R is the negative entropy of the pseudo-distribution bd

(compare with (3)). Figure 3 shows that for sparse spikes (small K=N) the linear segment again

dominates the rate distortion behavior. The consequence of this \almost linear" R(D) behavior

for sparse spikes is the following: to build a close to optimal encoder for intermediate rates

0 < R < log
�
N
K

�
, we can simply multiplex between a rate 0 code (no spikes coded) and one with

rate log
�N
K

�
(all K spikes coded exactly). Put otherwise, if we have a bit budget to be spent in

coding a sparse binary vector, we can simply go ahead and code the exact positions of the ones

(the spikes) until we run out of bits.

These results can also be used to derive the asymptotic operational rate distortion function

of a simple two-pass universal lossy source coder: �rst, the number of ones (K) in a block of

length N is determined and sent to the decoder using at most log2N bits. Then a code for a

weight K vector is used. For N ! 1, we approach the above rate distortion functions with a

redundancy of log2 N
N bits per sample. (In view of the results for universal lossless source coding

[6], we expect that this redundancy could be halved.)

C. Nondeterministic case

The above results should be compared with the rate distortion function of a binary memoryless

source (BMS) with p = PrfX = 1g = K=N , corresponding to the nondeterministic situation

where only the average number of spikes is known a priori.

Theorem 1 Consider a Bernoulli-p source (p � 1
2 w.l.o.g.) with normalized Hamming dis-

tortion d = D=p. Then the normalized rate distortion function is asymptotically linear when
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p! 0:

lim
p!0

R(d)
hb(p)

= 1� d; 0 � d � 1 (17)

Proof: The rate distortion function for a BMS is R(D) = hb(p) � hb(D) for D � p � 1
2 .

Therefore

R(d)
hb(p)

= 1� hb(pd)
hb(p)

= 1� pd log(pd)+(1�pd) log(1�pd)
p log(p)+(1�p) log(1�p) ;

from which

lim
p!0

R(d)
hb(p)

= 1� lim
p!0

d log(pd)�d log(1�pd)
log p�log(1�p)

= 1� lim
p!0

d=p+ d2=(1�pd)
1=p+1=(1�pd)

= 1� d

Theorem 1 shows that if we normalize the rate and the distortion by their maxima, hb(p) and

p, respectively, the rate distortion function becomes linear for sparse sources (p! 0).

III. Scalar-valued Spike Processes

The previous section considered only the spike positions using the Hamming distortion mea-

sure. Now we also assign a scalar value to each spike, and the distortion will be measured by the

mean squared error. Moreover, we abandon the setting \K spikes in N positions" in favor of a

less deterministic model: a (scalar-valued) spike process is simply the product of a binary-f0; 1g
source with a memoryless real-valued source. Here we consider only Gaussian values, because

they serve as the usual worst-case benchmark. The binary source simply \switches the value

source on or o�".

De�nition 1 (Bernoulli-Gaussian (BG) spike process) An i.i.d. Bernoulli-Gaussian spike

source emits a memoryless random variable X that is the product of a binary random variable

with PrfX = 1g = p and PrfX = 0g = 1�p and a zero mean Gaussian with variance �2. Using

the Æ(�) distribution, the pdf of the BG spike can be written as

f(x) = (1� p)Æ(x) + p
1p
2��

e�x
2=2�2 : (18)
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This pdf can also be seen as a mixture of two zero mean Gaussian random variables, with

one of them having zero variance (a special case of the model that will be studied in the next

section). In order to characterize the rate distortion behavior of the BG spike we use the upper

bounds presented in [7], [8], which are obtained by classifying the magnitudes of the source

samples using a threshold t and applying the Gaussian upper bound to each of the two classes.

These bounds are upper bounds on the operational rate distortion function Æ(R) of magnitude

classifying quantization (MCQ), which is a quantization method where the classi�cation side

information is used to switch between two codebooks. A low-rate bound is obtained by upper

bounding only the samples with magnitude above threshold (also called signi�cant samples),

while the other samples are quantized to zero, thus yielding a distortion oor.

Theorem 2 [8] (Low-Rate Bound) The distortion rate function of a memoryless source with

symmetric pdf f(x) and variance �2 is upper bounded by

D(R) � B(t; R) = A(t)
h
exp

�
�2R�hb(�(t))�(t)

�
� 1
i
+ �2; 8 t � 0; (19)

where the incomplete moments �(t) = PrfjXj � tg = 2
R1
t f(x) dx and A(t) = �(t) E[X2j jXj �

t] = 2
R1
t f(x)x2 dx are the ratio of signi�cant samples and their unnormalized variance, re-

spectively (note that A(0) = �2). In the neighborhood of a �xed threshold t the tightest bound

is

D(R�(t)) � B(t; R�(t)); 8 t � 0 : 9R�(t) (20)

with the rate R�(t) given by

R�(t) = hb(�(t))� 1
2�(t)

h
2h0b(�(t)) + (t) +W�1

�
�(t)e�2h0b(�(t))�(t)

�i
; (21)

where  is the reciprocal normalized tail variance (t) = �(t)
A(t) t

2 = t2

E[X2jX�t] andW�1 is the second

real branch of Lambert's W function, taking values on [�1;�1). (W (x) solves W (x)eW (x) = x.)

We can use (20) to trace an upper bound on D(R) by sweeping the threshold t = 0 : : :1. If we

also consider the insigni�cant samples (below threshold), a high-rate bound results.

Theorem 3 [8] (High-Rate Bound) Let the variances of the insigni�cant and the signi�cant

samples be �20(t) = E[X2j jXj < t] = �2�A(t)
1��(t) and �21(t) = E[X2j jXj � t] = A(t)

�(t) , respectively.
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Then for all R � Rmin(t) = hb(�(t)) +
1
2 log

�21(t)

�20(t)
, the distortion rate function of a memoryless

source is upper bounded by

D(R) � Bhr(t; R) = c(t)�2e�2R; (22)

where

c(t) = exp
�
2hb(�(t)) + [1� �(t)] log 1�A(t)=�2

1��(t) + �(t) log A(t)=�2

�(t)

�
: (23)

The best asymptotic upper bound for R!1 is obtained by numerically searching the t0 2 [0;1)

that minimizes c(t). Since limt!0+ c(t) = 1, the Gaussian upper bound is always a member of

this family.

The low-rate and high-rate bounds coincide in the minimum of the latter, i.e. as expected

there is a smooth transition between the two bounds. For proofs, see [8]. We remark that

results by Sakrison [9] and Gish-Pierce [10] imply that the operational distortion rate function

Æ(R) of a magnitude classi�er followed by a Gaussian scalar quantizer (adapted to the class

variance) will be at most a factor of �e=6 (1.53 dB) above these bounds. Actually, this gap is

even smaller at low rates, since the \minimum" distortion D(R0)jR0=0 = �20 is trivially achieved

for the insigni�cant samples.

The low-rate bound can be easily evaluated for the BG spike if one replaces t by t+ � in the

lower integration boundaries, with an arbitrarily small number � > 0. By doing so, we exclude

the Dirac (1 � p)Æ(x) from the integral, and hence we have �(t) � p for all t � 0. This is

obviously correct, since we never have to code the value of a spike with zero amplitude.

Figure 4 shows the low-rate bound and the empiricalD(R) for p = 0:11. The asymptote shown

is actually the trivial upper bound B(0; R), i.e. when all spikes are coded (thus at least R =

hb(0:11) = 0:5 bits are required before the distortion starts decreasing). The �gure illustrates the

change in D(R) behavior between low and high rates that is typical of spike processes, regardless

whether the continuous part of the pdf is a Gaussian or some other density. In particular, the

asymptotic distortion decay is of the order of �6=p dB per bit, which can be much steeper than

the �6 dB typical of random variables with an absolutely continuous distribution.

In fact, spikes are mixed random variables that have both a discrete and a continuous part

and for which most results in \standard" rate distortion theory do not hold. Their entropy
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cannot be computed with the usual integral, but only via mutual information conditioned on

the discrete part [11, Ch. 2]. With this trick, Rosenthal and Binia were able to derive the

asymptotic rate distortion behavior of mixed random variables [12]. Their results coincide with

our asymptotic upper bound B(0; R) if the continuous part is Gaussian, otherwise their result

is obviously tighter. These results were later extended to the vector case by Gy�orgi et al. [13].

A natural extension of the memoryless spike model is to consider bursts of spikes. To model

such a bursty behavior we can simply replace the Bernoulli process by a �rst order binary Markov

process, with states S0 (no spike) and S1 (spike). An example of this has been studied in [8].

We proposed the spike process as a model for sparse transform coeÆcients. However, com-

paring with Figure 1 we see that its D(R) behavior is very di�erent from the one observed in

actual image coders. The reason lies in the mixed nature of the model: at large rates, we have

to spend the rate to code the discrete part, but in turn the distortion decay will be steeper,

inversely proportional to the probability of nonzero samples. Conversely, by the tightness of

the Shannon lower bound, a continuous random variable cannot have an asymptotic distortion

decay other than the well known �6 dB per bit. Thus the spike process is not suited to model

the coeÆcients of a transformed continuous random process.

However, there are other applications, such as using the spike as a benchmark for sparsifying

transforms. For example, the KLT of a spike process will be dense, showing that the KLT is

not optimal in terms of sparseness [14]. The work by Saito et al. is a further exploration of this

direction [15].

IV. Gaussian Mixture Model

As became clear in the above discussion, continuous densities are more appropriate for mod-

eling sparse transform coeÆcients. One of the more common approaches to density estimation

is based on Gaussian mixtures. In this section we will analyze a simple i.i.d. Gaussian mixture

model, where a hidden binary memoryless source picks one of two zero mean memoryless Gaus-

sian sources. This is a generalization of the spike model, where one source had zero variance.

The model pdf is:

f(x) = pf(xjS = 1) + (1� p)f(xjS = 2) (24)
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where S is the hidden state selecting a source, and

f(xjS = i) =
1p
2��i

e�x
2=2�2i : (25)

Such models have been used quite successfully in various applications, see e.g. [16] and references

therein. To get realistic estimates for the parameters, we used the EM algorithm on the wavelet

coeÆcients of the Lena image (transformed with the classic 9/7 biorthogonal wavelet).

Plots of the bounds (20) and (22) appear in Figure 5 together with the empirical D(R)

computed with Blahut's algorithm. Up to the knee, which is typical for image coding D(R),

the distortion decays faster than �6 db/bit. This means mainly that the sparse coeÆcients

from the high variance source are retained by the thresholding operation. At higher rates,

the coeÆcients from the low variance source also start being signi�cant. If the model (24) is

extended to three or more Gaussian components, the knee in D(R) becomes rounder, but the

basic behavior is unchanged. From these observations we can reach two conclusions: �rst, two-

component Gaussian mixtures suÆce to capture the essential features of image coding D(R),

and second, the rate Rmin(t0) in the high-rate bound (Theorem 3) marks the beginning of the

high-rate compression regime.

Gaussian mixture models have often been used in image compression, for example a classi�ca-

tion approach has been proposed in [17]. The authors consider the joint numerical optimization

of the classi�er and (high-rate) uniform quantizers for each of the N classes. Their simula-

tion results indicate that for typical image data N = 2 classes yield a substantial improvement

over a single class. Adding more classes gives only minor gains over N = 2, which support-

s our observation that a two-component Gaussian mixture is a good basic model for wavelet

coeÆcients.

A. Oracle Lower Bound on D(R) of Gaussian Mixtures

Since Gaussian mixtures are a popular tool to approximate unknown densities, it is useful to

also have a lower bound on their rate distortion function. The Gaussian mixture source can be

viewed as a discrete memoryless source S that switches between jSj Gaussian sources N (ms; �
2
s)

with selection probabilities ws = PrfS = sg. A lower bound on D(R) is found by assuming

that an oracle provides the hidden state variable S to the source encoder. Since S ! X ! bX
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form a Markov chain, we have

I(X; bX jS) � I(X; bX): (26)

We observe that Rlb(D) = minp(x̂jx;s)2QD
I(X; bX jS) (with QD = fp(x̂jx; s) : E(X � bX)2 � Dg)

can be computed exactly by solving the following standard rate allocation problem:

Dlb(Rlb) = min
fRsg

X
ws�

2
s2
�2Rs (27)

subject to

X
wsRs = Rlb and Rs � 0: (28)

This yields the lower bound D(R) � Dlb(R), which can be seen as a special case of a conditional

rate distortion function [18].

Figure 5 shows the lower bound (27), together with the upper bounds from the previous section

and the (R;D) points achieved by a scalar bitplane quantizer (applied to 3 � 105 pseudo-random
samples from the mixture source; signi�cance maps are entropy coded, sign and re�nements bits

left uncoded). At low rates, thresholding with simple scalar quantization performs very close to

the R/D optimum.

B. Coding Gain Revisited

In linear transform coding, the coding gain measures the compression gain of a transform

coding system with quantizer bit allocation compared to a single scalar quantizer without trans-

form. Here we show how the high-rate upper bound (Theorem 3) leads to an expression that is

reminiscent of the coding gain of a two-dimensional transform coding system.

Let us quickly go through the derivation of the classical transform coding gain. Consider a

real-valued, time-discrete, stationary and ergodic process fXkg with mean zero and variance

�2. The samples are grouped into blocks X = [XN
i=1] of length N and transformed with an

orthonormal transform: Y = TX. By Parseval's equality, the quantization error in the signal

domain will be equal to the error in the transform domain:

kX �cXk2 = kY � bY k2:
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Also, the average variance of the transform coeÆcients Yi is equal to the variance of X:

1

N

NX
i=1

EY 2
i =

1

N

NX
i=1

EX2
i = �2:

This holds (by linearity of expectation) assuming zero mean and can be easily extended to

the non-zero mean case. Let �2i = EY 2
i be the variance of the i-th component, i.e. trans-

form coeÆcient. Note that we actually mean a random variable when we talk about coeÆ-

cients/components. If we use N scalar quantizers to quantize Y , the optimal high-rate bit

allocation is easily found using Lagrangian optimization.1 We get an average distortion of the

form D = C(
QN
i=1 �

2
i )

1=N e�2R, with C a constant. This can be compared with the distortion of

a scalar quantizer applied to the Xi's, which is D = C�2e�2R = C[ 1N
PN

i=1 EX
2
i ]e

�2R. In fact,

the transform coding gain is de�ned as the ratio of the distortion of direct scalar quantization

of the signal samples over scalar quantization of the transform coeÆcients (with bit allocation):

GTC =
1
N

PN
i=1 �

2
i�QN

i=1 �
2
i

�1=N =
A(�21 ; �

2
2 ; : : : ; �

2
N )

G(�21 ; �
2
2 ; : : : ; �

2
N )
: (29)

In purely algebraic terms, equation (29) is the ratio of the arithmetic mean A of the coeÆcient

variances to their geometric mean G, which is often used as the \axiomatic" de�nition of coding

gain (the notation A;G is from [19]). Our short derivation gives some additional insight into

the implicit assumptions, namely high rate and (near-)Gaussianity.

Now it is obvious that we can de�ne a measure of coding gain for magnitude classifying

quantization by considering the ratio of the Gaussian upper bound to the high-rate upper bound

(22).

De�nition 2 The coding gain for optimal2 magnitude classifying quantization is

GMCQ =
c(0)

c(t0)
=

�2

c(t0)�2
=

�(t0)�
2
1(t0) + (1� �(t0))�

2
0(t0)

e2hb(�(t0)) �
2�(t0)
1 (t0)�

2(1��(t0))
0 (t0)

; (30)

where t0 is the threshold yielding the tightest upper bound in Theorem 3.

1This uses the assumption that either the signal is a correlated Gaussian process (then any orthonormal trans-

form will yield Gaussian coeÆcients), or at least that the signal components Xi and the transform coeÆcients Yi

have the same \marginal" high-rate D(R) behavior of the form D = Ce
�2R.

2Here optimal refers to the tightest upper bound of Theorem 3; directly optimizing a MCQ would yield tighter

bounds, because signi�cant and insigni�cant samples di�er in D(R) behavior.
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Except for the additional side information term e2hb(�(t0)), this de�nition corresponds to the

classical coding gain (29) for two sources with weights �(t0) and 1��(t0). This similarity opens

a new perspective on transform coding: instead of considering each transform coeÆcient as a

distinct random variable, we mix all coeÆcients together and use a quantizer for the marginal

density. A transform that has high classical coding gain will have a peaked marginal density, so

that the MCQ coding gain will also be large. At the same time, the mixing approach obviously

entails a loss in coding gain, which we study by means of an example.

Example 1 (Coding Gain Loss for Gaussian Mixtures) If the transform outputs zero mean

Gaussian coeÆcients, where each has one of just two distinct variances, the resulting marginal

density will be a two-component Gaussian mixture like the one studied in Section IV. We get the

largest classical coding gain if for every sample we know from which of the two sources it came

from. That situation corresponds exactly to the oracle lower bound presented in Section IV-A,

and the coding gain is simply the distance in dB to the Gaussian upper bound. The coding gain

loss is the ratio of MCQ coding gain (30) to classical coding gain (29), or the distance in dB

from the lower bound (27) to the high-rate upper bound (22):

�CG =
e2hb(�(t0)) �

2�(t0)
1 (t0)�

2(1��(t0))
0 (t0)

�
2(1�w1)
m0 �2w1

m1

:

Note that here �20(t0) denotes the variance of the sub-threshold samples, while �2m0 is the �rst

mixture variance. Figure 6 contains contour plots of (a) the coding gain and (b) the coding gain

loss �CG for di�erent ratios �2 = �2m1=�
2
m0 of the mixture variances and weights w1 = 1 � w0

(� = 1 is the Gaussian pdf). Large � and small w1 lead to peaked densities; for example the

wavelet coeÆcient mixture from Section IV has � � 30:9 and w1 � 0:09. From the graph, we

see that these values correspond to a loss of about 2.5 dB, which can be veri�ed by checking the

distance between the high-rate bounds in Figure 5.

The above de�nition of coding gain loss is based on the assumption that we are actually

mixing two Gaussian sources with distinct variances (i.e. � > 1). What if we only have a single

source with the same marginal mixture density? Then the lower bound is not achievable for

� > 1 and thus a better de�nition of coding gain loss is the ratio of the high-rate upper bound
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to the Shannon lower bound:

�CG(SLB) =
e2hb(�(t0)) �

2�(t0)
1 (t0)�

2(1��(t0))
0 (t0)

exp[2h(X) � log(2�e)]
:

The di�erential entropy h(X) has to be computed with numerical integration methods. Figure 7

plots the coding gain (see De�nition 4 in Section V-C) and the coding gain loss �CG(SLB) for

this case. The loss is remarkably low over a wide range of parameter values, which shows that

the magnitude classi�cation quantization approach is very e�ective for such sources. Let us also

remark that in this example the optimal MCQ threshold t0 was always larger than the threshold

for the maximum likelihood classi�cation, tML =
p
log �2=(1 � ��2)�m0. This is quite natural,

since the goal of the classi�cation is a tight distortion bound, not the optimal distinction of the

two component sources.

V. A Measure of Sparseness

In this section we will argue that the geometric mean G(jXj) = exp(E log jXj) of a scalar

random variable X, respectively its logarithm, is a useful single-letter measure of sparseness.

Under the condition that the distribution FX(x) is continuous at zero, i.e. that PrfX = 0g = 0,

the geometric mean is well de�ned and clearly measures sparseness. The more probability mass

is concentrated around zero, the smaller G(jXj) will be and the sparser a vector of samples of

X will look.

We will show that in combination with the variance, the geometric mean allows us to bound

the source entropy and therefore characterize the high-rate R(D) behavior of sparse sources. The

latter fact follows from the tightness of the Shannon lower bound, that is R(D)�RSLB(D)! 0

as D ! 0, see e.g. [5, Sec. 4.3.4]. To start, we prove that the geometric mean provides an upper

bound on the MCQ compression gain.

De�nition 3 The normalized squared geometric mean of a memoryless source with �nite vari-

ance is de�ned as

MG(X) =
exp(E logX2)

EX2
=
G(X2)

A(X2)
(31)

By the arithmetic-geometric mean inequality we have MG � 1, with equality i� the source mag-

nitude is constant (jXj = �).
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Theorem 4 The factor c(t) in the high-rate bound (Theorem 3) is lower bounded by the nor-

malized squared geometric mean:

c(t) �MG(X) (32)

Proof: We bound E logX2 by applying Jensen's inequality to the signi�cant and insigni�-

cant samples separately:

E logX2 = PrfX2< t2gE[logX2jX2< t2] + PrfX2 � t2gE[logX2jX2 � t2]

� [1� �(t)] log E[X2jX2< t2] + �(t) log E[X2jX2 � t2]

= [1� �(t)] log 1�A(t)=�2

1��(t) + �(t) log A(t)=�2

�(t) + log �2:

Now subtract log �2 from both sides and observe that hb(�(t)) � 0. Exponentiating both sides

proves the theorem.

An immediate consequence is that 1=MG is an upper bound to the MCQ coding gain GMCQ

(30). If MG � 1, there may exist a t0 such that c(t0)� 1, i.e. such that there is a large coding

gain. On the other hand, if MG is closer to 1, the coding gain is necessarily small.

We could also call Gs = M�1
G the sample coding gain for the following reason. Consider a

block of n i.i.d. samples from a memoryless source with a continuous distribution (in particular

with PrfX = 0g = 0), such that Fubini's theorem applies to the product density. The squared

geometric mean of these n samples is G2
n(x) = (

Qn
i=1 x

2
i )

1=n, while its expected value is

EG2
n(X) =

Z nY
i=1

jxij2=n
nY
i=1

f(xi) dx =

nY
i=1

Z
jxij2=nf(xi) dxi = (E jXj2=n)n:

If we let the block size go to in�nity, we obtain the geometric mean of the source [19, p. 139]:

G(X2) = lim
n!1

�
E jXj2=n

�n
= lim

p!0+

�
E jXj2p�1=p = exp(2E log jXj): (33)

The same follows for the arithmetic mean and hence the sample coding gain Gs deserves its

name.

At this point we want to remark that the quasi-norm kxkp = (
Pn

i=1 jxijp)1=p with 0 < p � 1

is often used as a sparseness measure, see for example [15] and references therein. The obvious

question is: how to choose p? If x is a sample of i.i.d. random variables, the choice p = 1=n

will yield the geometric mean as n! 1, by equation (33). This is a strong argument in favor
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of the geometric mean as a sparseness measure for random variables. In this respect, it is also

interesting to observe that limp!0+ kxkpp is equal to the Hamming weight wH(x), that is the

\strictest" sparseness measure in the sense that only values that are exactly zero contribute to

sparseness.

A. Lower Bound on Di�erential Entropy

The logarithm of the geometric mean, E log jXj, yields a lower bound on the entropy of

continuous random variables with one- or two-sided monotone densities. In turn, this can be

used to bound high-rate R(D). We �rst prove a weaker bound that has the appeal of displaying

the relationship with an analogous bound for discrete entropy. Then we will prove a bound

which is tight for the class of monotone densities considered.

Proposition 2 Let X be a �nite variance random variable with a monotone one-sided pdf f

and range [x0;1) or (�1; x0]. Then

h(X) � E log jX � x0j: (34)

Proof: Without loss of generality, consider a pdf f which is monotone decreasing on

[x0;1). The monotonicity implies that f is Riemann-integrable, and the �nite variance ensures

that the entropy integral is �nite (by the Gaussian upper bound). We will approximate the

integral h(X) � E log jX � x0j = � R1x0 f(x) log(jx � x0jf(x)) dx by a Riemann sum with step

size �. Let xi = x0 + i � � and pi = f(xi)�, for i = 1; 2; : : : . By monotonicity, we have

p1 � p2 � : : : and hence

1 �
1X
i=1

pi �
nX
i=1

pi � npn: (35)

Thus we can write

h(X) � E log jX � x0j = lim
�!0

�
1X
n=1

pn log(jxn � x0jf(xn))

= lim
�!0

�
1X
n=1

pn log
�
n� � pn

�

�

� lim
�!0

�
1X
n=1

pn log(1) = 0; (36)

where the inequality follows from taking the logarithm of (35).
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Remark: The inequality (35) was used by Wyner to prove an analogous bound for discrete

entropy [20].

By using a di�erent proof technique, we obtain a stronger result:

Theorem 5 Let X be a �nite variance random variable with a monotone one-sided pdf f and

range [x0;1) or (�1; x0]. Then

h(X) � E log jX � x0j+ 1; (37)

with equality i� f is a uniform density.

Proof: For simplicity we assume f to be decreasing on [0;1). Let B be the set of all such

monotone decreasing, �nite variance pdf's on [0;1). It is easy to verify that B is a convex set.

Its boundary is given by the set of all �nite variance uniform densities:

@B = fu(a; x) : a 2 (0;1)g; (38)

where

u(a; x) =

8>><
>>:
1=a if 0 � x � a;

0 else.

(39)

Too see that (38) is indeed the boundary of B, observe �rst that no uniform density u(a; x) can

be written as a nontrivial convex combination of two distinct monotone decreasing densities.

Moreover, any f 2 B can be written as a convex combination of elements of @B:

f(x) =

Z 1

0
�(a)u(a; x) da; (40)

where �(a) = �af 0(a), as can be shown with some simple calculus. �(a) is a proper distribution

if f(x) has �nite variance (in particular, limx!1 xf(x) = 0) and if f 0(x) � 0, which is indeed the

case for monotone decreasing f . Using the standard extensions to distributions, (40) also holds

if f contains a countable number of steps, e.g. if it is piecewise constant. In fact, (40) is nothing

but a disguised version of the \layer cake representation" of f , namely f(x) =
R1
0 �ff>tg(x) dt.

This follows from the monotonicity of f .

Looking at (37), we see that

h(X) � E logX = �
Z 1

0
f(x) log(xf(x)) dx (41)
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is a concave-\ functional of f , since h(X) is concave and E logX is linear in f . Therefore a

minimum of (41) over the convex set B must necessarily lie on its boundary @B. We insert an

arbitrary boundary element u(a; x) (0 < a <1) in (41) to obtain

h(X) � E logX = �
Z 1

0
u(a; x) log(xu(a; x)) dx

= �
Z a

0

1
a log

x
a dx

= log a� x
a (log x� 1)

��a
0

= 1: (42)

Since (42) holds for any a, we conclude that it is the global minimum, thus proving (37) and

one part of the \i�". To prove the other part, it suÆces to observe that h(X) � E logX is a

strictly concave functional and thus will be larger than (42) in the interior B n @B.
We de�ne a weakly unimodal density with mode x0 to be a pdf which is monotone increasing

(non-decreasing) on (�1; x0] and monotone decreasing (non-increasing) on [x0;1).

Corollary 6 Let X be a �nite variance random variable with weakly unimodal pdf f such that

PrfX � x0g = �, where x0 is the mode. Then

h(X) � E log jX � x0j+ 1 + hb(�): (43)

For a density that is symmetric about x0, f(�x� x0) = f(x� x0), this reduces to

h(X) � E log jX � x0j+ 1 + log 2: (44)

Proof: We view the weakly unimodal pdf f as a mixture of two non-overlapping monotone

one-sided densities, fl(x) and fr(x), with weights � and 1 � �, respectively. Without loss of

generality we can assume x0 = 0. Then,

h(X) � E log jXj = �Ef log[jXjf(X)]

= �
Z 0

�1
�fl(x) log(�x�fl(x))�

Z 1

0
(1� �)fr(x) log(x(1� �)fr(x))

= hb(�)� �Efl log[jXjf(X)] � (1� �) Efr log[jXjf(X)]

� hb(�) + 1; (45)

where the last inequality follows from Theorem 5.
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B. Upper Bound on Di�erential Entropy

If both the variance and the geometric mean are known, an upper bound on the entropy can

be easily obtained via the maximum entropy approach. Owing to the assumptions made in

this variational approach, the results in this section hold for random variables which have an

absolutely continuous distribution function F (x) with probability density f(x) = F 0(x).

Theorem 7 The two-sided maximum entropy pdf given the constraints EX2 = �2 and E log jXj =
� is

f(x) = ��1(u2 )
�

u
2�2

�u=2 jxju�1 exp��ux2

2�2

�
: (46)

The shape parameter u > 0 is obtained by solving

E log jXj = 1
2	(

u
2 )� 1

2 log
u
2�2

!
= �: (47)

For any � � log � there is a unique solution, since (47) is strictly monotone increasing in u.

The resulting entropy is

h(�; �) = u
2 � u�1

2 	(u2 ) + log �(u2 )� 1
2 log

u
2�2 (48)

Setting u = 1 yields the Gaussian density and thus the global entropy maximum given the

variance constraint alone.

Corollary 8 The entropy of any random variable with probability density f satisfying EX2 = �2

and E log jXj = � is upper bounded by (48).

Proof: Before proving Theorem 7 we state and prove an auxiliary lemma on one-sided

densities.

Lemma 1 The maximum entropy pdf on [0;1) given the constraints EX2 = �2 and E logX = �

is

g(x) = 2��1(u2 )
�

u
2�2

�u=2 jxju�1 exp��ux2

2�2

�
; (49)

with shape parameter u > 0 obtained by solving (47).
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The lemma can be derived using the calculus of variations [3, Chap. 11]. The constraints yield

the following functional:

J(f) :=

Z 1

0
f(x)[� log f(x) + �1 + �2x

2 + �3 log x] dx:

\Di�erentiating" with respect to f and setting the resulting expression to zero shows that the

maximizing density has the form

f(x) = e�1�1x�3e�2x
2
:

The three constraints are satis�ed by �3 = u� 1, �2 = �u=2�2 and e�1�1 = 2(��2)u=2=�(u=2).
We need to show that E log jXj is monotone increasing, so that the mapping between � and u

is one-to-one. By Jensen's inequality we have E log jXj � 1
2 log EX

2 = log �. Let v = u=2 and

�(v) = 2(E log jXj � 1
2 log EX

2) =  (v) � log v. Using a standard integral representation for

 (v) [21] we obtain

�(v) = � 1

2v
� 2

Z 1

0

tdt

(t2 + v2)(e2�t � 1)
v > 0: (50)

The �rst derivative,

�0(v) = � 1

2v2
+ 4

Z 1

0

vtdt

(t2 + v2)2(e2�t � 1)
; (51)

is strictly positive for v > 0, so E log jXj is indeed monotone increasing. By bounding the

integral in (50) one can further show that limu!1 E log jXj = log �. This proves the lemma.

For a two-sided random variable X with pdf f , the lemma implies that the pdf of the magni-

tude jXj must be of the form (49), or f(�x) + f(x) = g(jxj). Furthermore, the entropy cannot

be maximal unless f(�x) = �g(x) and f(x) = (1 � �)g(x) for x � 0 and some 0 � � � 1.

Now, if we write the entropy integral as � R10 f(�x) log f(�x) dx� R10 f(x) log f(x) dx, we see

immediately that this is maximal i� � = 1=2, that is f(�x) = f(x) = g(x)=2. This proves the

theorem; the corollary is implicit in the maximum entropy approach.

Theorem 9 The maximum entropy (48) for a �nite variance �2 has the following asymptotic

behavior as the geometric mean exp(�) goes to zero, resp. � ! �1:

h(�; �) ' � + log(�2e�); �! �1 (52)
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Proof: Note that � ! �1 corresponds to u! 0+. Let

� = h(�; �)� � � log(�2e�)

=
u

2
� u

2
	
�u
2

�
� 1 + log

�
�(u2 )

�	(u2 ) + log u
2�2

�
: (53)

To prove limu!0+� = 0, which is slightly stronger than required, we use the functional re-

lationships �(x + 1) = x�(x), 	(x + 1) = 	(x) + 1
x and the truncated series expansions

�(x + 1) = 1 � x + o(x2), 	(x + 1) = � + �2

6 x + o(x2), both for jxj < 1 (see e.g. [21]; 

is Euler's constant). We have

lim
u!0+

u
2	(

u
2 ) = lim

u!0+
[�1�  u2 +

�2

24u
2 + o(u3)] = �1;

hence limu!0+� is equal to the limit of the logarithm in (53). But

lim
u!0+

�(u2 )

�	(u2 ) + log u
2�2

= lim
u!0+

2
u(1� 

2u+ o(u2))
2
u + log u

2�2
+  � �2

12u+ o(u2)
= 1:

This can be easily seen by extending the fraction by u
2 and observing that limu!0+ u log u = 0.

By putting these steps together we obtain limu!0+� = 0.

Figure 8 shows the lower bound (44) and the upper bound (48) as a function of � = E log jXj
for unit-variance random variables with symmetric unimodal densities. The global maximum of

the upper bound corresponds to the unit-variance Gaussian density, which has E ln jXj � �0:635.
As a consequence of Theorem 9, the gap between the lower and upper bounds is asymptotically

equal to log �. Also shown is a tightened lower bound for Gaussian mixtures, namely equation

(57) below. The crossing between upper and lower bounds is only a seeming contradiction,

because in fact it simply means that to the right of the crossing there exist no unimodal densities

satisfying both the geometric mean and variance constraints.

C. Mixture versus Vector Coding Gain

For an application example of the geometric mean, we take another look at the Gaussian

mixtures in Example 1. There we compared the magnitude classi�cation upper bound for the

mixture of two zero mean Gaussians with the oracle lower bound and the Shannon lower bound.

Here we will show that there is a simple relationship between the geometric mean of the variances

of N Gaussians and the geometric mean of their uniform mixture. This can be used to bound

the coding gain of a Gaussian mixture vs. the coding gain for the unmixed sources.
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The logarithmic geometric mean of a mixture of N zero mean Gaussians with variances �2i

and mixing weights wi is

� = E logjXj = 1
2

NX
i=1

wi log �
2
i � 1

2 log 2� 1
2; (54)

where  = 0:5772156649 : : : is Euler's constant. Comparing this with the vector coding gain

of N -dimensional Gaussian transform coding (29), setting wi = 1=N (uniform mixture) and

�2 = 1
N

PN
i=1 �

2
i we see that

NX
i=1

wi log �
2
i = log(�2=GTC): (55)

This is the desired relationship between the coding gain for bit allocation over N independent

Gaussian sources and the geometric mean of the mixture of these sources.

At this point we explicit a de�nition that has already been used in Example 1.

De�nition 4 The coding gain for an i.i.d. (scalar) source is de�ned as the ratio of the Gaussian

D(R) upper bound to the Shannon lower bound:

GSLB =
2�e�2

exp(2h(X))
: (56)

It measures the coding gain achieved by using a codebook matched to the source instead of a

Gaussian codebook.

Via the geometric mean we can bound the mixture entropy h(X) and from that the mixture

coding gain GSLB (56). Therefore the upper bound of Corollary 8 leads to a lower bound on

GSLB . In the same manner we could use Corollary 6 to obtain an upper bound. However,

this can be tightened by the same approach as in Section IV-A, namely by lower bounding the

Gaussian mixture entropy by conditioning on the hidden state selecting the mixture components:

h(X) � h(XjS) = 1
2

X
wi log(2�e�

2
i ): (57)

In combination with (55) and (56) this yields GSLB � GTC ; which simply means that mixing

does not necessarily inict a performance penalty. Figure 9 is a plot of the upper and lower

bounds for mixture vs. vector coding gain.

What exactly are we comparing? On the one hand, we have the classical vector coding gain

for N independent Gaussian sources. On the other hand, the coding gain for a mixture source
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that outputs one of these N sources uniformly at random. As an example, consider a transform

that outputs N independent zero mean Gaussian components. If we know the variance of each

component, like e.g. in the KLT case, we can achieve the vector (transform) coding gain. If

however only the distribution of the variances is known, then we can design a codebook for

the corresponding scalar mixture source and still achieve the mixture coding gain. This is the

case of transforms with \known eigenvalue distribution", but \unknown positions". Intuitively,

wavelet transforms lie between these two extremes, since e.g. coeÆcient variances are correlated

across scales (however this also violates the underlying independence assumption). In summary,

the lower curve in Figure 9 bounds the maximum performance loss of a \naive" one-dimensional

system compared to one with perfect side information.

Appendix

De�nition 5 (Rate distortion function of a DMS) Let X � P be a discrete memoryless

random variable, �(x; x̂) a single-letter distortion measure, Q
bXjX(kjj) a conditional distribution

(de�ning a random codebook), and P
X; bX

(j; k) = P (j)Q(kjj) the corresponding joint distribution.

The average distortion associated with Q(kjj) is

d(Q) =
X
j;k

P (j)Q(kjj)�(j; k): (58)

If a conditional probability assignment satis�es d(Q) � D it is called D-admissible. The set of all

D-admissible Q is QD = fQ(kjj) : d(Q) � Dg. The average mutual information (\description

rate") induced by Q is

I(Q) =
X
j;k

P (j)Q(kjj) log Q(kjj)
Q(k)

; (59)

where Q(k) =
P

j P (j)Q(kjj). The rate distortion function R(D) is de�ned as

R(D) = min
Q2QD

I(Q)

This convex optimization problem can be solved with the method of Lagrange multipliers [5],

[3, Section 13.7]. We start with the functional

J(Q) = I(Q) + �d(Q) +
X
j

�j
X
k

Q(kjj);
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where the last term comes from the constraint that Q(kjj) is a proper conditional distribution,
i.e. satis�es

P
kQ(kjj) = 1. The minimizing conditional distribution can be computed as

Q(kjj) = Q(k)e���(j;k)P
k0 Q(k

0)e���(j;k0)
: (60)

The marginal Q(k) has to satisfy the following bN = j bXj conditions:
X
j

P (j)e���(j;k)P
k0 Q(k

0)e���(j;k0)
= 1 if Q(k) > 0; (61)

X
j

P (j)e���(j;k)P
k0 Q(k

0)e���(j;k0)
� 1 if Q(k) = 0: (62)

Inequality (62) stems from the Kuhn-Tucker conditions (for a detailed derivation of the above see

Section 13.7 in [3]). The solution of the problem is further simpli�ed by the following theorem

by Berger:

Theorem 10 [5, Theorem 2.6.1] No more than N reproducing letters need be used to obtain

any point on the R(D) curve that does not lie on a straight-line segment. At most, bN = N + 1

reproducing letters are needed for a point that lies on a straight-line segment.
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Fig. 1. Typical operational distortion rate curve of a wavelet image coder (decreasing curve, left scale).

At low rates, only a small fraction of coeÆcients is quantized to nonzero values, all the others are

not used in the reconstruction of the image (increasing curve, right scale).
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Fig. 2. R(D) for single spike with Hamming distortion, N = 2 (bottom) up to N = 5 (top curve). The

rate has been normalized to 1= logN . For N !1, R(D) becomes a straight line, see (3).
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bound B(0; R) (bottom to top curve). Normalized to unit variance.
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Fig. 5. Gaussian mixture model for wavelet (detail) coeÆcients: Upper and lower distortion rate bounds

for Gaussian mixture model. Model parameters, normalized to unit variance: p = 0:9141, �2
1
=

0:01207 and �2
2
= 11:51. The middle curve is the empirical D(R), the boxes denote (R;D) points

achieved with a bitplane quantizer. At bottom, detail of low-rate region.
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Fig. 6. Magnitude classifying quantization (MCQ) of two-component Gaussian mixtures (GM). (a)

Coding gain GTC for unmixed, separate sources (equivalent to GM lower bound). (b) Coding gain

loss relative to GTC for MCQ of the mixture.
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Fig. 7. Magnitude classifying quantization (MCQ) of two-component Gaussian mixtures (GM). (a)

Coding gain GSLB for mixture source (equivalent to Shannon lower bound). (b) Coding gain loss

relative to GSLB for MCQ of the mixture.
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Fig. 9. Bounds for Gaussian mixture vs. vector coding gain.
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