-

View metadata, citation and similar papers at core.ac.uk brought to you byf: CORE

provided by Infoscience - Ecole polytechnique fédérale de Lausanne

A Conceptual Model
for Remote Data Acquisition Systems:

Txomin Nieva, Alain Wegmann

Institute for computer Communications and Applications (ICA),
Communication Systems Department (DSC),
Swiss Federal Institute of Technology (EPFL),
CH-1015 Lausanne, Switzerland

Abstract. Data Acquisition Systems (DAS) are the basis for building monitoring tools that
enable the supervision of local and remote systems. DASs are complex systems. It is
difficult for developers to compare proprietary generic DAS products and/or standards, and
the design of a specific DAS is costly. In this paper we propose a conceptual model of a
generic DAS. This model gives DAS developers an abstraction of DASs; it enables them to
compare existing products and standards; and it provides the DAS developers that aim to
develop a specific DAS with a starting point for the design of a specific DAS. We have
found that a conceptual model of a generic system has many advantages. We propose
patterns and techniques that are useful for the development of conceptual models of generic
systems.
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1. Introduction

In the last few years, companies from many business areas have become increasingly interested in
maintenance and asset management. Maintenance improves the reliability and availability of equipment
and therefore the quality of service (QoS), which managers have found provides substantial benefits.
Maintenance management however makes up anywhere from 15 to 40% of total product cost (Wireman,
1994). Consequently, improving maintenance management can also represent a substantial benefit to
companies. Traditionally, there are two major maintenance approaches: Corrective Maintenance and
Preventive/Predictive Maintenance (PPM). Corrective Maintenance focuses on efficiently repairing or
replacing equipment after the occurrence of a failure. Corrective Maintenance aims to increase the
maintainability of equipment by improving the speed of repair, or return to service, after a failure. PPM
focuses on keeping equipment in good condition in order to minimize failures; repairing components
before they fail. PPM aims to increase the reliability of equipment by reducing the frequency of failures.
Substantial benefits can also be obtained by the intensive use of Asset Management Systems (AMS).
Asset management is a task complementary to maintenance. It provides support for the planning and
operation phases. Similar to maintenance tasks, in AMSs access to utility data source is essential.

A management technique that can be applied for improving maintenance and asset management is the
on-line supervision of the health of the equipment, which is usually known as condition monitoring.
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Condition monitoring, applied to maintenance tasks, provides necessary data in order to schedule
preventive maintenance and to predict failures before they happen. Condition monitoring is based on
direct monitoring of the state of equipment to estimate its Mean Time To Failure (MTTF). AMSs will
propose or update PPM plans based on the information provided by the condition monitoring systems. To
apply condition monitoring, the access to utility data source is essential. Remote monitoring systems have
been developed in many business areas such as building (e.g., Olken et al., 1998), power engineering
(e.g., Itschner et al., 1998) and transportation systems (e.g., Fabri et al., 1999) to provide condition-
monitoring systems with information about the state of equipment. The kernel of any remote monitoring
system is a data acquisition system (DAS), which enables the collection of relevant data. A DAS is a set
of hardware and software resources that provides the means to obtain knowledge-level data of a system,
provides the means to access operational-level data, converts knowledge-level and operational-level data
to more useful system information and distributes this information to the user. There are many standards
for DASs such as OLE for Process and Control (OPC) (OPC Foundation, 1997), Interchangeable Virtual
Instrument (IVI) (IVI Foundation, 1997) and Open Data Acquisition Standard (ODAS) (ODAA, 1998),
among others. Additionally, the Object Management Group (OMG) has recently issued a Data
Acquisition from Industrial Systems (DAIS) Request For Proposal (RFP) (OMG, 1999). Based on DAS
standards, there are many commercial generic DAS products that DAS developers can buy and customize
for their specific DAS application. DAS developers have to choose between buying a commercial DAS
product and customizing it for their specific requirements or designing from scratch a specific DAS.
However, DASs are complex systems. It is difficult for DAS developers to understand DAS standards
and/or generic DAS products. As each standard or product uses a different idiom it is also difficult for
DAS developers to compare them. Additionally, the development of a specific DAS from scratch is a
difficult task that requires high development costs.

In this paper we propose a conceptual model of a generic DAS. This model gives DAS developers an
abstraction of DASs; it enables them to compare existing products and standards; and it provides the DAS
developers that aim to develop a specific DAS with a starting point for the design of a specific DAS. We
have found that a conceptual model of a generic system has many advantages. We propose some patterns
and techniques to develop conceptual models of generic systems. Additionally, our generic DAS model
provides a case study of conceptual modeling of generic systems that demonstrates, by means of an
industrial example, the advantages of conceptual modeling for the specification of generic systems.

This paper is organized as follows: In section 2, we explain the methodology we used to obtain a
generic DAS conceptual model. In section 3, we present the generic DAS conceptual model. In section 4,
we discuss key issues about the development of the generic DAS conceptual model. In section 5, we
explain the applications of a conceptual model of a generic system. Finally, in section 6, we draw
conclusions from the actual work.

2. Methodology

A conceptual model is a formal description of a system, from the object perspective, that shows the
relevant concepts and relationships that make up this system. Using a conceptual model of a system
makes it easier to understand the system, because the model only focuses on the main aspects of the
system by hiding low-level details that render it difficult to understand. Boman et al. (1997) noted that:

“An effective approach to analyzing and understanding a complex phenomenon is to create a model of
it. By a model is meant a simple and familiar structure or mechanism that can be used to interpret some
part of reality. A model is always easier to study than the phenomenon it models, because it captures just
a few of the aspects of the phenomenon”.

The conceptual model presented in this paper is the result of an iterative process consisting of the
object-oriented analysis, specification, implementation and deployment of a DAS for railway equipment
(Fabri et al., 1999, Nieva, 1999). During this process, we used our own variation, which puts emphasis on
role modeling, of the Catalysis (D'Souza and Wills, 1999) development process based on Unified
Modeling Language (UML) (Rumbaugh et al., 1999). The concepts of the resulting model were
generalized to be used in different domains other than transportation systems. Finally, this model was
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compared to and enhanced with many DAS standards and the OMG’s DAIS RFP. Our generic DAS
conceptual model is also inspired by several software patterns. Appleton, B. (1997) defined software
patterns as:

“Patterns for software development are a literary form of software engineering problem-solving
discipline that has its roots in a design movement of the same name in contemporary architecture, literate
programming, and the documentation of best practices and lessons learned in all vocations”.

3. A Generic DAS Conceptual Model: the Model

In this section we present our generic DAS conceptual model. We show the main concepts that make
up any DAS and their relationships. For a better understanding of the model, we group the concepts into
five main packages. These packages and their inter-dependencies are shown in Figure 1.

1 ——1

Device Items Device Models

Observations &
Monitoring
Reports
Device ltem | Device Model
Monitoring Monitoring
Criteria Criteria

Figure 1 Data Acquisition Main Packages

Device Models. This package groups all the concepts regarding device models. A device model
represents a model that characterizes a set of device items.

Device Items. This package groups all the concepts regarding device items. A device item
represents a real world device that satisfies a device model.

Device Model Monitoring Criteria. This package groups all the concepts regarding the definition
of criteria, for generating monitoring reports, predefined in a device model and common for all the
corresponding device items.

Device Item Monitoring Criteria. This package groups all the concepts that allow for the
definition of criteria, for generating monitoring reports, specific for a device item.

Observations & Reports. This package groups all the concepts regarding observations and reports
taken on a system. Observations are classified as quantitative (measurements) or qualitative (category
observations), according to the measurements and observations analysis pattern described by Fowler
(1997). Monitoring reports are classified as reports that record a change in the composition of the system
(composition reports), reports that record a snapshot of the system at a specific time (status reports), and
reports that indicate a certain state of the system (event reports).

In the following sub-sections we describe each of these packages. In the models, we distinguish
between operational-level and knowledge-level concepts. We adopt this idea from Fowler (1997). At the
operational-level the model records the day-to-day events of the domain, whereas at the knowledge-level
the model records the general rules that govern this structure. We represent knowledge-level concepts by
using a box with a thick border, and a box with a thin border represents operational-level concepts.
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3.1 Device Models

The Device Models model is shown in Figure 2. A device model is an instance of Device Model that
represents a model, created in the design process, that characterizes a set of real world devices. A device
model can be composed of many device models, each of them implementing a specific function on the
parent device model. We used our own variation of the Composite pattern, named Model Composite
(further discussed in section 4.3), to manage the composition of device models. A device model defines
many measurement points. An instance of Measurement Point defines a measurement point associated
with a phenomenon type and a measurement type. An instance of Phenomenon Type represents something
that can be quantitatively (e.g. temperature), or qualitatively (e.g. door status), observed. A
phenomenon type defines the units on which observations of this phenomenon type are expressed. We
adopt the convention of using standard SI (metric) units, as proposed by Olken, F. et al. (1998), for
phenomenon types. A phenomenon type also specifies the range within which a value is qualified as
“normal”. Eventually, a phenomenon type records the set of potential qualitative values that a
measurement of such a phenomenon type <can take (e.g. temperature low,
temperature medium, and temperature high). Each of these values is an instance of
Phenomenon. Phenomenon records the range of quantitative observations of a phenomenon type that
corresponds to a qualitative observation. This enables the automatic recording of an occurrence of this
phenomenon upon a quantitative observation, of the corresponding phenomenon type, with a value within
the range of the phenomenon. An instance of Measurement Type is associated with a measurement point
to give some semantic information about the measurements taken at this measurement point.

d of parent Complex Single

composed o 17| Device Model Device Model
child|1..* R v A
Functional Device Model

Device Model | ] - -
designer : Designer

function : Function modellD : ModellD
11 has Measurement Type
B
Measurement |+ 1l sampleRange : Range

Point has |physicalRange : Range
mapping : MappingPolicy
measurementUnits : Unit

ﬂhas

Phenomenon Type

physicalNormalRange : Range
phenomenonTypeUnits : Unit
1

*

has

Phenomenon

qualitativeRange : Range

Figure 2 Device Models

3.2 Device Items

The Device Items model is shown in Figure 3. A device item is an instance of Device Item that
represents a real world device created in the manufacturing process. A device item is characterized by a
device model. As specified by its device model, a device item can be composed of many device items,
which are also characterized by the associated device models. We organize device items using the
Composite pattern. The association class Device Address allows us to record the address within a complex
device item where a child device item, characterized by an instance of Functional Device Model, is
installed. Each device item defines many measurement addresses. An instance of Measurement Address
defines the actual location in a device item associated with a measurement point, where observations of a
phenomenon type are taken.
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Figure 3 Device Items

3.3 Device Model Monitoring Criteria

The Device Model Monitoring Criteria model is shown in Figure 4. The ability to define reports, with
a consistent status, of a set of data is one of the requirements of any DAS. The OMG's DAIS RFP (OMG,
1999) refers to this as Dataset, and OPC (OPC Foundation, 1997, OPC Foundation, 1999) as OPC Group.
Our approach for defining criteria for recording monitoring reports is inspired by Mansouri-Samani and
Sloman (1994). In the design process of a device model, a designer can define certain criteria specific to
this device model and common to all the device items characterized by this device model. Device Model
Trigger Condition enables the definition of conditions in order to automatically trigger the recording of
reports at a specific time or when the system is in a certain state. We distinguish three kinds of monitoring
criteria: Device Model Composition Monitoring Criteria enables the recording of changes on the
composition of the system. A device model composition monitoring criteria is associated with a set of
device models; Device Model Status Monitoring Criteria enables the recording of a snapshot of the
system at a specific time. Status monitoring criteria are associated with a set of measurement points; and
Device Model Event Monitoring Criteria enables the recording of a certain state of the system.

related to
bl
Device Model
Composition *
Monitoring Criteria <<abstract>> . 1 Device Model
Dovice Model Device Model r (from "Device |—
ev:::en:’ e Monitoring Criteria has Models" package)
Monitoring Criteria 1 has 1
Device Model <<abstract>> .
] S?atus o Device Model
Monitoring Criteria Trigger Condition Phenomenon
* ‘ A\ ‘ >  (from "Device has
Device Model Device Model «| tp Models” package)
S Time Trigger Event Trigger
Condition Condition + Irelated Mea:‘:‘;:‘e“‘
. * i
time : TimeCondition isTrue : Boolean to——> (from "Device
1 Models" package)
Device Model |* groups *‘
Dataset
M
|

Figure 4 Device Model Monitoring Criteria

3.4 Device Item Monitoring Criteria

The Device Item Monitoring Criteria model is shown in Figure 5. In the installation and maintenance
phases administrators administer datasets, trigger conditions and monitoring criteria for device items. The
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DAS system will record monitoring reports corresponding to device item monitoring criteria. Device item
datasets, trigger conditions and monitoring criteria can be predefined, meaning that there are already
defined in the corresponding device model, or custom, meaning that there are defined in the device item.
A custom monitoring criteria may use any combination of custom or predefined datasets and trigger
conditions. Device item monitoring criteria can be public, meaning that any supervisor of the system can
access monitoring reports of such criteria, or private, meaning that only the creator of the monitoring
criteria is allowed to access monitoring reports corresponding to such criteria.

Device ltem Monitoring Criteri

Public Criteria Private Criteria

subscribers : SubscriberList | | subscriber : Subscriber

Device Item 1 has ‘ ‘
(from "Device
ltems" package) * _Custom
1 1T 1= . Device Il_:e_m <<abstract>> Monitoring Criteria i
C_om_posnu_)n . Device Item efined Dfewc_e Mod_el )
related to| [ Monitoring Criteria Monitoring Criteria Predefined «|py 4| Meonitoring Criteria
i : Monitoring Criteria (from "Device
Device It.em' creator : Creator Itoring Criteri Model Monitoring
Event I\_Ilon'ltorlng * Criteria " package)
has | has Criteria
has
Device Item Custom
Status Monitoring 1 Trigger Condition
Cr:tena .| <<abstract>> " Device Model
Device Item ] €lined 1 Trigger Condition
Trigger Condition _Predefined |+ by 1 (from "Device
Trigger Condition Model Monitoring
Criteria” package)
Phenomenon
h | *
as Device Item Device Item | related to (from "Device
Time Trigger Event Trigger Models" package)
Condition Condition *  related to
time : TimeCondition | [isTrue : Boolean ‘ Measurement Address
(from "Device Items”
1 package)
. | <<abstract>>| groups *
Device Item
Dataset
I S— defined De‘gcf M"tde'
Custom Predefined |+ by 1 alase

(from "Device
Model Monitoring
Criteria " package)

Dataset Dataset

Figure 5 Device Item Monitoring Criteria

3.5 Observations & Monitoring Reports

The Observation and Monitoring Reports model is shown in Figure 6. In this package we present
concepts that allow us to record observations and monitoring reports taken on a device item. Our
observation model is inspired by the Observations and Measurements analysis pattern described by
Fowler (1997). In a measurement address we can record many observations with different timestamps.
Observation is an abstract concept that represents both quantitative and qualitative observations. An
observation records a timestamp corresponding to the time an observation was taken. Measurement
represents quantitative observations. A measurement records the physical value corresponding to the
measurement, which is represented by the value attribute. A measurement is associated with a
phenomenon type, and a phenomenon type can have many measurements. A Category Observation
represents a qualitative observation. A category observation is associated with a phenomenon, and a
phenomenon can have many category observations. Sometimes recording that a phenomenon is absent is
as important as recording its presence. The isPresent Boolean attribute of category observation is added
to enable recording the absence or presence of a phenomenon. Monitoring Report enables the recording
of an occurrence of fulfilled monitoring criteria. A monitoring report is always associated with
monitoring criteria of a device item. A monitoring report is also associated with the observations that
generate the monitoring report.
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Measurement Category « has 1 Phenomenon
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Monitoring Criteria” time : TimeStamp
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Figure 6 Observations & Monitoring Reports

3.6 Detailed Concepts

In this section we explain some detailed concepts of our generic DAS conceptual model. These
concepts are: Measurement Type, Mapping Policy, Time Condition, Device Model Event Trigger
Condition, Device Item Event Trigger Condition, Timestamp and Data Qualifier.

Measurement Type. The Measurement Type model is shown in Figure 7. A measurement type defines
the permissible ranges of sampled and physical values, a mapping policy between sampled and physical
values, and the units of the measurement. This information could have been embedded in a phenomenon
type, but measurement type allows us to reuse the same information for several phenomenon types. The
measurement type information depends on how measurements are actually measured in a measurement
point. As a consequence it may happen that the measurement units are not the same as the phenomenon
type units, being then necessary to transform the physical value in measurement type units to the physical
value in phenomenon type units, which will be recorded in the system.

Range 1 sampleRange
has * .
upperValue : Number * mapping
lowerValue : Number Measurement Type
upperlsinclusive : Boolean J—hF - o has
lowerlsInclusive : Boolean physicalRange | |*measurementUnits ’

1
¢ Unit from Mapping
Policy
*to

Figure 7 Measurement Type

Mapping Policy. The Mapping Policy model is shown in Figure 8. An instance of Mapping Policy
defines the conversion between two numerical values. Linear Mapping Policy represents a mapping
policy with a linear function (y=Ax+B); where x corresponds to the original value and y to the calculated
value. Function Mapping Policy represents a mapping policy with a more complex function (y=f (x) ).
Function Mapping Policy seems to be a good scenario for applying mobile code (Carzaniga et al. 1997).
In this way, device designers could easily upload the code corresponding to this function.

y = f(x) Mapping Policy y=Ax+B
where where
x = SampledValue A x = SampledValue

y = PhysicalValue

y = PhysicalValue

Function Mapping Policy Linear Mapping Policy |
f (sampledValue : Number) : Number | |A: Number
B: Number
Figure 8 Mapping Policy
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Time Condition. The Time Condition model is shown in Figure 9. Time Condition enables the definition
of periodical or scheduled time conditions to record reports. Period enables the definition of a time
condition as a period of time in milliseconds. Schedule enables the definition of a schedule when a report
will be generated. A schedule is composed of a recurrence time, a recurrence pattern and a recurrence
range. Recurrence Time enables the definition of a 24-hour period when a report will be generated.
Recurrence Pattern enables the definition of many ways to record a time pattern for occurrences of a
report: Daily, Weekly, Monthly and Yearly allow us to define a report to be generated every certain
number of days, every certain number of weeks on some specific days of a week, every certain number of
months on a specific day of a month, and every certain number of years on a specific day of a month,
respectively. Finally, Recurrence Range enables the definition of a beginning time (just a Begin Date) to
start recording reports and an end time to stop recording reports. End Time enables the definition of an
end time by a number of occurrences, by a specific end date or with no end (meaning that the report will
be generated “forever”).

Dayly <<abstract>>
m Time Condition
everyNbDays : Integer T
]
Weekl
y Period
everyNbWeeks : Integer - "
onMonday : Boolean , LperiodinMs : Long
gzw:;g:g d:aB?(:BIZ?)rI‘ean — | <<abstract>> Recurrence Time Recurrence
V- > Recurrence Range
onThursday : Boolean hour : Integer
onFriday : Boolean Pattern minute : Integer * *
onSaturday : Boolean second : Integer has
onSunday : Boolean ] miliSecond : Integer ]
L
h

Monthly <<abstract>> as <<abstract>>
everyNbMonths : Integer | | Begin Time End Time
Day : Integer 4 [ 4 ]

Yearly Begin Date EndByNbOccurrences End Date | No End |
everyNbYears : Integer | | year : Integer nbOfOccurrences : Integer || year : Integer
month : Integer month : Integer month : Integer
day : Integer day : Integer day : Integer

Figure 9 Time Condition

Device Model Event Trigger Condition. The Device Model Event Trigger Condition model is shown in
Figure 10.

Device Model Measurement
Event Trigger Point
Condition (from "Device Device Model
isTrue : Boolean Models" package) Function Event
. > 1 Condition
triggered by . applied to
* f(): Bool
Device Model Device Model - Boolean
E * o ier
c dY?m s - Event Condition Device Model Phenomenon
ondition Set triggered [ - * " :
- isTrue : Boolean Boolean Event iied (from "Device
isTrue : Boolean by Condition ap;t)ole Models" package)

Figure 10 Device Model Event Trigger Condition

The Device Model Event Trigger Condition model enables the definition of conditions, common to all
the device items characterized by a device model, to trigger an event. In order to explain device model
event trigger conditions, we make use of a Boolean algebraic notation'. Device Model Event Condition

1 “ . ” corresponds to the “AND” logical operator; “ + ” corresponds to the “OR” logical operator;
and “ ’ ” corresponds to the “NOT” logical operator
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enables the recording of X=A and X=A"; where A means that a certain condition has been satisfied. There
are two kinds of Device Model Event Conditions. Device Model Boolean Event Condition enables the
recording of a condition that is satisfied when a certain phenomenon has been observed in a measurement
point. Device Model Function Event Condition enables the recording of a condition that is satisfied when
the result of applying a certain function in a measurement point returns true. Device Model Function
Event Condition seems to be a good scenario for applying mobile code (Carzaniga et al., 1997). In this
way device designers and/or administrators could easily upload the actual code corresponding to the
function to be satisfied. Device Model Event Condition Set enables the recording of conditions such as
X=A.B and X=(A.B) '; where A, B are Device Model Event Conditions. Device Model Event Trigger
Condition allows us to record trigger conditions such as X=A+B and X= (A+B) '; where A, B are Device
Model Event Condition Sets. This enables the recording of any device model event trigger condition,
because any device model event trigger condition can be expressed by means of an algebraic combination
of device mode event conditions with the AND logical operator and an algebraic combination of device
model event condition sets with the OR logical operator. A transformation of any algebraic expression
into these terms is possible by applying one of De Morgan's laws?.

Device Item Event Trigger Condition. The Device Item Event Trigger Condition model is shown in
Figure 11. The Device Item Event Trigger Condition model enables the definition of conditions, specific
to a device item, to trigger an event. The reasoning is analogous to the device model event trigger
condition, but the difference is that the condition is applied to a specific measurement address of a device
item rather than to a measurement point of a device model.

Device Item Measurement
Event Trigger Address
Condition (from "Device Device Item
isTrue : Boolean Items" package) Function Event
i * 1 Condition
triggered by . applied to
- * f(): Boolean
Device Item Device Item
Event * * it
Event Condition i
Condition Set [ triggered|- Device ltem |, Phem?'men_on
- isTrue : Boolean Boolean Event lied (from "Device
isTrue : Boolean by Condition api)ole Models" package)

Figure 11 Device Item Event Trigger Condition

Timestamps. Recording the time an observation is taken is a key issue for enabling a subsequent analysis
of observations. In order to avoid anomalies due to inconsistent time formats (e.g., because of different
time zones), we adopted the convention of storing all timestamps using Universal Coordinated Time
(UTC) format. This, further discussed by Olken et al. (1998), is a common practice in DASs.

Data Qualifiers. In DAS:s it is also a common practice to include a data qualifier (see Figure 12) with an
observation. According to OMG (1999) a Data Qualifier includes information about the Validity (valid,
held from a previous value, suspect, not valid or substituted manually, the Current Source
(metered, calculated, entered, or estimated) and the Normal Value (normal or
abnormal) of an observation.

=S Data Qualifier fiaS
*
1 has ‘1 1
Validity Normal Value Current Source

Figure 12 Data Qualifier

2 The two laws, known as De Morgan’s, are: (A+B)’'=A’ .B’;and (A.B) ' =A’+B’
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3.7 Complete Generic DAS Conceptual Model

The complete conceptual model of a generic DAS is shown in Figure 13.3
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Figure 13 Generic DAS Conceptual Model

3 To simplify the model we only show the main attributes of a concept and some concepts have been

intentionally designed as attributes of higher-level concepts.
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4. A Generic DAS Conceptual Model: Discussion

In this section we discuss key issues about the development of our generic DAS conceptual model.
We discuss the relationship between device models and device items; we define how to assign a Global
Unique Identifier (GUID) to device models and device items; we discuss the composition of device
models and device items introducing a new pattern, called Model Composite, for the management of the
composition of models; we explain how our conceptual model supports the notion of Plug&Play; and
finally we explain the mapping between sampled and physical values.

4.1 Device Models vs. Device Items

We refer as device to a generic concept for any industrial system or sub-system. In our model, we
represent a real world device as an instance of Device Item. We represent the type of a device, commonly
known as its model, as an instance of Device Model. The relationships between instances of Device Item
and instances of Device Model are shown in Figure 14. An instance of Device Item is always
characterized by an instance of Device Model. An instance of Device Model characterizes a set of
instances of Device Item.

Type

g Device Model
Domain

Device Item

instance of instance of

lnstange :Deviice Item characterized by :Device Model
Domain

Figure 14 Device Item vs. Device Model

4.2 Naming Management

A Global Unique Identifier (GUID) must be assigned to each device model and device item. In this
section we define how to assign a GUID to device models and device items.

Device Model Identifier. Device model designers are responsible for assigning a designer specific model
identifier to their device models. This identifier, which we named modelID, enables the distinction
between two different device models belonging to the same designer. A designer identifier, which we
named designerID, enables the distinction between two different device model designers. As a result, a
deviceModelGUID is obtained from the concatenation of designerID and modellD.

deviceModelGUID = designerID & modellD

Device Item Identifier. Device manufacturers are responsible for assigning a unique identifier, which is
named serialNumber, to each device item. serialNumber uniquely identifies device items of the same
device model manufactured by a manufacturer. In order to be able to globally identify a device item, it is
necessary to include the deviceModelGUID. As a result, a deviceltemGUID is obtained from the
concatenation of its corresponding deviceModelGUID, the manufacturerID and a serialNumber.

deviceltemGUID = deviceModelGUID & manufacturerID & serialNumber
deviceltemGUID = designerID & modellD & manufacturerID & serialNumber
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4.3 Composition Management

An industrial system is usually composed of many parts, which can also be composed of many other
parts in a part-whole hierarchy. In this section we discuss the management of the composition of device
models and device items.

Device Items Composition Management. In DASs, tree structures allow us to efficiently define an
industrial system. For example, an HVAC (heating, ventilation and air conditioning) system is composed
of subsystems such as heating coil, cooling coil, supply fan, etc., that can be composed of other
subsystems such as temperature sensors, ventilation sensors and so on. Part-Whole relationships are
commonly used to model the construction of composite objects out of individual parts. Part-Whole
relationship categories and their application in object-oriented analysis are further discussed by
Motschnig-Pitrik and Kaasboll (1999). One way to represent part-whole relationships of systems is by
using the Composite (Gamma et al., 1995) pattern. We used this pattern to organize device items.

Device Models Composition Management. An instance of Device Item is characterized by an instance
of Device Model. As a result, there is an analogous relationship between pairs of device models and pairs
of the corresponding device items. But, in the case of device models, the same device model may be used
many times as part of the same complex device model. This impedes the use of the Composite pattern for
the management of device models, as it would be not possible to distinguish between the different
instances of the same Device Model.

Example: as shown in Figure 15, an instance of VehicleModelA is composed of two instances of
DoorModelB. This is typically the case of vehicles with a 1eft door and a right door of the
same model. The problem is that there is no way to distinguish between the two instances of the same
model DoorModelB, which are both part of VehicleModelA.

Type Domain Instance Domain

VehicleModelA :VehicleModelA

modellD = vehicleModelA : ModellD

|

|

|

|

! modellD = vehicleModelA
* parent ‘

|

|

|

|

|

is composed of .
2 child
DoorModelB :DoorModelB :DoorModelB
modellD = doorModelB : ModellD modellD = modelDoorB modellD = modelDoorB

Figure 15 Example of Model Composition without Functional Model

An elegant manner to solve this problem is to use the Model Composite pattern. The Model Composite
pattern, shown in Figure 16, is our own variation of the Composite pattern, to represent part-whole
hierarchies of models.

compssed of __Parent Complex Single

1 Model Model

child [1..* %

Functional Model

— Model

function : Function

Figure 16 Model Composite Pattern

Model implements default behavior for a model. Complex Model defines behavior for a model that is
composed of other models. Functional Model is a specialization of Model that represents a model that is
part of a complex model. We called it functional because it implements a function within a complex
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model. Using this pattern we may have many different instances of Functional Model that inherit from the
same instance of Model, but each of them implements a different function on a complex model.

Example: as shown in Figure 17, a VehicleModelA is composed of a
VehicleModelALeftDoorDoorModelB, implementing the function of leftdoor and a
VehicleModelBRightDoorDoorModelB, implementing the function of rightdoor, which
inherit both from DoorModelB. In this way we can distinguish between the two instances of the same
model DoorModelB.

Type Domain Instance Domain

VehicleModelA ‘VehicleModelA

modellD = vehicleModelA : ModellD modellD = vehicleModelA

is composed 1 parent 1 parent is composed
of 1 child child 1 of

|
|
|
|
|
|
|
LeftDoor RightDoor | LeftDoor RightDoor
|
|
|
I
|
I
|
I

VehicleModelA VehicleModelA :‘VehicleModelA :‘VehicleModelA
DoorModelB DoorModelB DoorModelB DoorModelB
modellD = doorModelB : ModellD | | modellD = doorModelB : ModellD modellD = doorModelB | | modellD = doorModelB
function = leftDoor : Function function = rightDoor : Function function = leftDoor function = rightDoor
DoorModelB

modellD = doorModelX : ModellD

Figure 17 Example of Model Composition with Functional Model

4.4 Plug & Play

Plug&Play indicates that a system has the ability to automatically configure itself. The system must
be able to detect changes in its composition to adapt its configuration to the new composition. One of the
most known Plug&Play initiatives is Microsoft's Plug&Play (PnP) (MSDN, 1994), which is a framework
architecture for PCs to enable the automatic configuration of expansion cards and other devices. Other
initiatives, such as Universal Plug&Play (UPnP) (UPnP Forum, 2000) and Jini (Jini User Group, 2000),
enable the Plug&Play of systems, or services, in a network.

A Plug&Play DAS would allow supervisors of devices to register to be notified when changes in the
composition of the system happen. A Plug&Play DAS automatically detects changes in the composition
of the system and notifies to interested supervisor of such changes. If the real world devices support the
Plug&Play functionality, a Plug&Play DAS may subscribe itself in the devices to receive notifications
when changes on the composition of such devices happen. Otherwise, a Plug&Play DAS may check
periodically the composition of device items to detect eventual changes on their composition.

Our conceptual model supports the notion of Plug&Play through the concepts of Device Model
Composition Monitoring Criteria and Device Item Composition Monitoring Criteria; these concepts
allow for the definition of composition monitoring criteria, predefined in a device model or defined
specifically in a device item, respectively. A composition monitoring criteria groups a set of devices. A
supervisor may subscribe to receive a notification, by means of a monitoring report, when a change in the
composition of, at least, one of the devices of such monitoring criteria happens. Our conceptual model
defines the concepts that are necessary to enable the development of a Plug&Play DAS, but it does not
force developers the use a specific technology. In an actual implementation, developers will chose the
Plug&Play technology that fits better with their specific requirements.

4.5 Physical Values vs. Sampled Values

In DASs, it is very common for the value actually measured (we refer to this value as sampled value)
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to not correspond to the physical value. We need a way to record a mapping policy that makes it possible
to calculate the physical value from the sampled value. Eventually, the units in which a measurement is
taken could not correspond to the measurement of the associated phenomenon type. This could happen
because the measurement units depend on the sensor uses to acquire the measurement and not on the
phenomenon type. Thus, we also need to record the units of the measurement in order to makes it possible
to calculate the physical value in phenomenon type units from the physical value in measurement units. In
order to record this information we introduced the concept of measurement type and mapping policy.

5. Application and Validation

In this section we explain the applications of a conceptual model of a generic system. The most direct
application of a conceptual model of a generic system is for the writing of a RFP for a new standard.
Another potential application of a conceptual model of a generic system is for the evaluation of existing
systems, standards or RFP responses. We illustrate this by using our generic DAS conceptual model to
compare different DAS standards. Finally, a conceptual model of a generic system can be applied in the
development of a particular system. This will significantly reduce the development costs of a specific
system. We illustrate this by means of an example of development of a DAS for railway equipment based
on our generic DAS conceptual model.

5.1 Issuing/Replying a RFP

This is probably the most direct application of a conceptual model of a generic system. RFP issuers
may use a conceptual model of a generic system as a guide to specify the static concepts that a proposal
of standard in request for a new RFP must support and the functionalities that such a standard must deal
with, creating and writing down a specific RFP. RFP repliers may use a conceptual model of a generic
system to easier understand and analyze the requirements of this RFP. Additionally, RFP repliers can use
a conceptual model of a generic system to describe their proposal of standard in request to this RFP. In
this way a conceptual model of a generic system acts as an efficient communication mechanism between
RFP issuers and RFP repliers, facilitating the creation, writing, understanding and replying of a RFP. A
conceptual model of a generic system can be seen as an actor that actively collaborates in all these
actions, as shown in Figure 18.

A REP IS A REP A

N
, N
_~*Conceptuai*.

:RFP issue\r\\\ ) “ .~ ":REP replier
NS 2: write N7 Model Ny 4ireplyto 7
\ REP ofa N REP /
T Generic e
System

Figure 18 Issuing/Replying a RFP

5.2 Evaluation of Existing Systems or Proposals

Another potential application of a conceptual model of a generic system is the evaluation of existing
systems or standards. Developers may use a conceptual model of a generic system to check the concepts
that these systems or standards support. As an example, we used our generic DAS conceptual model to
compare different DAS standards (OPC, IVI and ODAS).

OPC. The conceptual model with the concepts OPC supports is shown in Figure 19. OPC is a standard
for process control in the automation field. In an OPC Server there are many OPC Items. An OPC Item is
quite similar to a Measurement Point. It also provides some semantic information such as that
corresponding to Measurement Type (data type, units, ranges and scales), Phenomenon Type and
Phenomenon (implicit within the data type). As OPC does not support the concept of model, this semantic
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information of an OPC Item is duplicated in all OPC Items corresponding to the same kind of
Measurement Point. Additionally, it is not possible to define Monitoring Criteria predefined in a device
model. We can say that OPC supports partially the notion of composition because an OPC Server can
manage a flat list of devices. However, OPC does not deal with complex hierarchical structures of
devices. OPC allows clients to define custom trigger conditions and custom datasets. Datasets are called
OPC Groups, which group a set of OPC Items to be retrieved at the same time. However, OPC does not
implement the composition monitoring criteria concept to enable the detection of changes on the
composition of the system.
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Figure 19 OPC Conceptual Model

IVI. The conceptual model with the concepts IVI supports is shown in Figure 20. IVI is a standard for
instrumentation to enable the interchangeability among instruments of different vendors. In the IVI
specification they refer to instrument or assets rather than devices. IVI defines many instrument classes
such as Oscilloscope (IviScope), Digital Multimeter (IviDmm), Function Generator (IviFGen), Switch
(IviSwtch), and Power Supply (IviPower) classes. An IVI Class can be considered a similar concept to a
generic Device Model. VI classes only deal with single devices. Additionally, IVI specifies the VI
Measurement and Stimulus System (IVI-MSS), which allows building complex virtual instruments
composed of many real instruments. Thus, we can state that IVI supports somehow the composition of
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devices through IVI-MSS. IVI is a standard defined to enable not only the interchangeability among

instruments but also the Plug&Play of instruments. IVI is based on the VXIPlug&Play standard to enable
a Plug&Play functionality. IVI classes specify predefined trigger conditions and predefined datasets.
These trigger conditions may be enabled or disabled on a specific device item. Additionally, IVI MSS

allows the definition of custom trigger conditions and custom datasets. Criteria defined in an IVI

instrument class or IVI MSS system is always public to any IVI client, as IVI does not support the notion

of private criteria.
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Figure 20 IVI Conceptual Model
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ODAS. The conceptual model with the concepts ODAS supports is shown in Figure 21. ODAS is a
standard for PC-based data acquisition systems. ODAS defines standard interfaces for analog/digital
inputs and outputs. The scope of ODAS is single devices. ODAS does not support the notion of model. It
does not support either the notion of composition. Only custom datasets and custom event-based trigger
conditions may be defined by an ODAS client application. This allows clients to define status monitoring
criteria. Criteria defined by a client is always private for this client, as ODAS does not support the notion
of public criteria.
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Figure 21 ODAS Conceptual Model

We summarize the information that we draw out from the comparisons, shown in Table 1, in the
following points:

(1) Lack of Models. Some systems (such as OPC, IVI and ODAS) do not support the notion of
model. This implies that many of the concepts regarding models (Device Model from the Device Models
package; all the concepts defined in the Device Model Monitoring Criteria package; Predefined
Monitoring Criteria, Predefined Trigger Condition and Predefined Dataset from the Device Item
Monitoring Criteria package) do not exist either. This means that information (such as instances of
Measurement Point, Measurement Type, Phenomenon Type and Phenomenon) that is common to all the
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instances of Device Item associated with the same instance of Device Model must be repeated for each
instance. This duplication of knowledge-level data is rather inefficient and error prone.

Table 1 Concept Comparison of DAS Standards

Generic DAS Concept YEE IVI ODAS

(v2)
Device Models
Single Device Model
Complex Device Model
Functional Device Model
Measurement Point
Measurement Type
Phenomenon Type
Phenomenon
Device Items
Single Device Item
Complex Device Item
Device Address
Measurement Address
Device Model Monitoring Criteria
Device Model Composition Monitoring Criteria
Device Model Event Monitoring Criteria
Device Model Status Monitoring Criteria
Device Model Time Trigger Condition
Device Model Event Trigger Condition
Device Model Dataset
Device Item Monitoring Criteria
Public Criteria
Private Criteria
Device Item Composition Monitoring Criteria
Device Item Event Monitoring Criteria
Device Item Status Monitoring Criteria
Predefined Monitoring Criteria
Device Item Time Trigger Condition
Device Item Event Trigger Condition
Predefined Trigger Condition
Custom Dataset
Predefined Dataset
Observations & Monitoring Reports
Measurement
Category Observation
Monitoring Report

NN NN N x| xp x| x
NN NN NN x x| x

XX X[ x| x| x
XX X[ x| x| x

XN R NN NN NS
Y ANEIRNEIRIRNEIRPIRNES

AN N NN NN AN AN AN NE I N B RN ENANENANANEEANENRNANEEENE SR VAN RNRNAN

NS
NS

(i1) Lack of Composition. Some systems (such as ODAS) do not support the notion of composition.
This means, they do not deal with complex devices composed of other (single or complex) devices,
neither in the domain of models nor in the domain of device items. They only deal with single devices.
This is typically the case of a DAS that acquires data from a single device item.

(i) Plug&Play. Some systems (such IVI) support the notion of Plug&Play. In these systems it is
possible to define predefined, or custom, composition monitoring criteria. Then, a client can subscribe to
receive notifications when changes on the composition of certain devices happen. Systems that do not
support the notion of Plug&Play (such as OPC and ODAS) do not have concepts regarding Composition
Monitoring Criteria (Device Model Composition Monitoring Criteria from the Device Model Monitoring
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Criteria package and Device Item Composition Monitoring Criteria from the Device Item Monitoring
Criteria package).

(iv) Public Criteria versus Private Criteria. Some systems (such as IVI) allow clients to define only
public criteria. Some other systems (such as ODAS) allow clients to define only private criteria. There
are also systems (such as OPC) that allow clients to define both public criteria and private criteria.

5.3 Design of a New System

A conceptual model of a generic system can be applied in the analysis phase of a particular system to
better understand the problem and to easier specify the best solution, depending on the specific
requirements of a particular system. A conceptual model of a generic system can also be used as a starting
point for the design of a particular system. As a result, the use of a conceptual model of a generic system
will save time and reduce the costs of the development of a particular system. In order to validate this
hypothesis we developed a DAS for railway equipment based on our generic DAS conceptual model. In
this section we summarize the major results and conclusions from the development of this DAS.

Development of a DAS for Railway Equipment. The main objective of this development was to
validate our generic DAS conceptual model by means of an example. The development of this DAS gives
also developers a case study on the development of a particular system based on a conceptual model of a
generic system. Additionally, as part of the development of the DAS for railway equipment, we
implemented a generic library of concepts, independent from the context of railway equipment, that can
be reused and/or extended for the implementation of another DAS based on our generic DAS conceptual
model. We analyzed our generic DAS conceptual model to obtain a DAS conceptual model specialized in
the context of railway equipment, shown in Figure 22, going from the packages with fewer dependencies
to the packages that have more dependencies:

1. We analyzed the Device Models package in the context of railway equipment. The result of this
analysis was a partial conceptual model of the system that consists of a three-level hierarchy of device
models: at the top level there are train models that are composed of vehicle models that are composed of
equipment models. Railway Equipment Model is a specialization of Device Model; Train Model and
Vehicle Model are specializations of Complex Device Model;, and Equipment Model is a specialization of
Single Device Model and Functional Device Model.

2. We analyzed the Device Items package in the context of railway equipment. From this analysis
we included, in the conceptual model of the system, a three-level hierarchy of items: at the top level there
are train items that are composed of vehicle items that are composed of equipment items, each of these
items being characterized by its corresponding train, vehicle or equipment model. Railway Equipment
Item is a specialization of Device Item; Train Item and Vehicle Item are specializations of Complex
Device Item; and Equipment Item is a specialization of Single Device Item.

3. We analyzed the Device Model Monitoring Criteria package in the context of railway
equipment. One of the requirements of the system was to be able to use datasets predefined in a model of
train to record status monitoring reports of particular train items. Therefore, we included the concept of
Train Model Dataset, which is a specialization of Model Dataset that groups measurement points
corresponding to a train model or to one of its vehicle models or equipment models.

4. We analyzed the Device Item Monitoring Criteria package in the context of railway equipment.
The requirements of the system were: (i) to enable the recording of status monitoring reports and event
monitoring reports corresponding to a train item, such reports being triggered either by a time trigger
condition or by an event trigger condition; (ii) to enable the definition of both private and public
monitoring criteria; and (iii) to enable the definition of custom and predefined train datasets. Therefore,
we introduced the concepts of: Train Item Monitoring Criteria, Train Item Public Criteria, Train Item
Private Criteria, Train Item Status Monitoring Criteria and Train Item Event Monitoring Criteria, which
are specializations of Device Item Monitoring Criteria, Public Criteria, Private Criteria, Device Item
Status Monitoring Criteria and Device Item Event Monitoring Criteria, respectively; Train Item Trigger
Condition, Train Item Time Trigger Condition and Train Item Event Trigger Condition, which are
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5. Finally, we analyzed the Observations and Monitoring Reports package in the context of railway
equipment. The requirements of the system were that both measurements and category observations could

Predefined Dataset, which are specializations of Device Item Dataset, Custom Dataset and Predefined
be recorded. Additionally, status and event monitoring reports could also be recorded. Therefore, we

Dataset, respectively.
introduced the concepts of Observation, Measurement, Category Observation and Monitoring Report to

Event Trigger Condition, respectively; and Train Item Dataset, Train Custom Dataset and Train
the conceptual model of the system.

specializations of Device Item Trigger Condition, Device Item Time Trigger Condition and Device Item
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Figure 22 Railway Equipment DAS Conceptual Model




Our generic DAS conceptual model had a significant role in the design of the DAS railway
equipment. We used this model to better organize the data that will be used by the components of the
system. The conceptual model also made it easier the design of some of these components of the system.
As a result, we had an implementation where a significant amount of the designed classes represent
concepts specified in our generic DAS conceptual model. The development of this particular DAS
demonstrated, by means of an industrial example, the usefulness of a conceptual model of a generic
system for the development of a particular system.

6. Conclusions

In this paper, we described a conceptual model of a generic DAS. This model gives DAS developers
an abstraction of DASs; it enables them to compare existing products and standards; and it provides the
DAS developers that aim to develop a specific DAS with a starting point for the design of a specific DAS.
We have found that a conceptual model of a generic system has many advantages. We propose patterns
and techniques that are useful for the development of conceptual models of generic systems.

The most direct application of a conceptual model of a generic system is for the writing of a RFP for a
new standard. Another potential application of a conceptual model of a generic system is for the
evaluation of existing systems, standards or RFP responses. We illustrated this by using our generic DAS
conceptual model to compare the different DAS standards. Finally, a conceptual model of a generic
system can be applied in the development of a particular system. This will significantly reduce the
development costs of a specific system. We illustrated this by means of an example of development of a
DAS for railway equipment based on our generic DAS conceptual model. This development
demonstrates, by means of an industrial example, the usefulness of a conceptual model of a generic
system for the development of a particular system.

A conceptual model only specifies the static concepts of a system. We are currently working on the
specification, using role-based use case modeling, of the dynamic behavior of a generic DAS. The role-
based use case and conceptual models of a generic DAS will provide a complete specification of a generic
DAS.
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